微课课件配方法解一元二次方程

合集下载

一元二次方程的解法(第3课时配方法)(课件)九年级数学上册精品课件(苏科版)

一元二次方程的解法(第3课时配方法)(课件)九年级数学上册精品课件(苏科版)
将常数项移到等号右边,含未 知数的项移到等号左边.
左、右两边同时加上一次项系 数一半的平方.
利用平方根的意义直接开平方.
移项,合并.
例题讲解
例1.用配方法解下列方程:
(2)2x2-2x+1=0
∴原方程无解.
<0?
新知巩固
用配方法解下列方程:
(1)3x2-1=6x;
(2) -5x2+2x-1=0.
当堂检测
2.用配方法解下列方程,正确的是( D ) A. x2+4x-1=0化为(x+2)2 = -1+4
B. t2-2t-4 = 0化为(t-1)2 = 4
当堂检测
3.用配方法解下列方程,配方错误的是( C )
当堂检测
4.若方程4x2-(m+2)x+1=0的左边可以写成一个完全平方
式,则m的值为( C ) A. 2或-2 B. 6或-6
变式:试判断代数式-x2+2x+3是存在最大值还是最小值?
课堂小结
二次项系数为1 (x+h)2=k(k≥0) 配方法解一 元二次方程
二次项系数不为1 ax2+bx+c=0 (a≠0)
特别提醒: 在使用配方法解方程之前先把方程的二次项系数化为1.
当堂检测
1. 将方程2x2+8x+3=0变形为(x+h)2=k的形式,正确的是 ( D ) A. (x+2)2=1
∴原方程无解.
例题讲解
例2. 求证:不论x取何值,代数式2x2-4x+3的值总大于零.
证明:2x2-4x+3=2(x2-2x+1)+1 =2(x-1)2+1
∵不论x取何值时,总有2(x-1)2≥0 ∴2(x-1)2+1>0 ∴不论x取何值,代数式2x2-4x+3的值总大于零.

《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)

《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)

知2-讲
(2) 移项,得
2x2-3x=-1.
x2
二次项系数化为1,得
3
1
x .
2
2
2
2
3
1 3
3
x x .
2
2 4
4
2
配方,得
2
3
1

x

=
.


4
16

3
1
x ,
4
4
由此可得
x1 1, x2
1
2
知2-讲
(3)移项,得
(1)当p>0时,方程(Ⅱ)有两个不等的实数根
x1=-n-
p ,x
2=-n+
p;
(2)当p=0时,方程(Ⅱ)有两个相等的实数根
x1=x2=-n;
(3)当p<0时,因为对任意实数x,都有(x+n)2≥0,
所以方程(Ⅱ)无实数根.
知2-练
1 用配方法解下列方程,其中应在方程左右两边同时 加上4的
是(
)
12.在实数范围内定义一种新运算“※”,其规则为a※b=a2-b2,根据这个规则求方程( 2x1 )※( -4 )=0的解.
解:根据新定义得( 2x-1 )2-( -4 )2=0,
即( 2x-1 )2=( -4 )2,
5
3
∴2x-1=±4,∴x1=2,x2=-2.
-41-
第二章
2.2 用配方法求解一元二次方程
2
3
1
A.x,-4
B.2x,-2
3
3
C.2x,D.x,2
2
C )
10.已知关于x的多项式-x2+mx+4的最大值为5,则m的值为( B )

一元二次方程的解法——配方法优秀公开课课件(比赛课)ppt

一元二次方程的解法——配方法优秀公开课课件(比赛课)ppt
2
解:移项,得
方程两边 b 2 同时加上 ( )
x 8x 1
2
2
配方,得
2 2 4 4 x 8x ___ 1 ___
2
(x 4)2 15
x 4 15
x1 15 4, x 2 15 4
用配方法解下列方程
(x 1)(x 2) 2x 4
解:化为一般形式为 移项,得 配方,得
x x 2 1 2 1 2 2 x x ( ) 2( ) 2 2
2
x2 x 2 0
方程两边 b 2 同时加上 ( )
2
1 2 9 (x ) 2 4 1 3 x 2 2
x1 1, x 2 2
练习1:用配方法解下列方程:
2
二次项系数都为1
2
2
6 (2) x 12 x ___ 6 ( x __)
2
2 x 5
2
2
5 ( )2 (3) 5 x 5 ____ 2 2 x 1 2 2 ( ) 2 2 (4) x ___ 3
2 x6
x
2
( x __) ( x __)
x
2
例.x, y为实数x y 2 x 4 y 7
2 2
的最小值是 _____
.配方:
x y 4 x 6 y 13 0, 则x _____
2 2 y
6.a, b为实数, a b 20ab a 4a 104 0 a ____, b ________
一元二次方程的解法(二)
配方法
(1)方程 3x
2
1 5 的根是
x1 2,x2 2

用配方法求解一元二次方程ppt课件

用配方法求解一元二次方程ppt课件
[解题思路]观察各个方程,通过变形,把方程转化为

点 适用直接开平方法的形式,利用直接开平方法求解.

[答案]解:(1)2x2=6,x2=3,


∴x=± ,∴x1= ,x2=- ;

(2)(x+1)2-8=0,移项,得(x+1)2=8,开平方,得
x+1=±2
,解得 x1=-1+2 ,x2=-1-2 ;

单 方程,一元二次方程的解有两个,特别注意开方后不要丢掉

读 负值.
2.2 用配方法求解一元二次方程






对点典例剖析
典例1 用直接开平方法解下列方程:
(1)2x2=6;
(2)(x+1)2-8=0;
(3)4x2+1=-4x;
(4)9(x-1)2=16(x+2)2.
2.2 用配方法求解一元二次方程

2-16=0;

解方程:(1)4(x-1)


(2)2x2+4x-1=0.


2.2 用配方法求解一元二次方程

[答案] 解:(1)整理,得(x-1)2=4,开方,得

题 x-1=2 或 x-1=-2,解得 x1=3,x2=-1;



2
2

(2)整理,得 x +2x= ,配方,得 x +2x+1= +1,
2.2 用配方法求解一元二次方程






■考点一
原理
一般

用配方法求解一元二次方程1课时ppt课件

用配方法求解一元二次方程1课时ppt课件

D
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
1
B 2
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
D
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
今天我们的收 获

为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
理解并掌握配方法,能够灵活运用配方法 解一元二次方程·
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能

配方法一元二次方程的解法精选(共14张PPT)

配方法一元二次方程的解法精选(共14张PPT)
配方,得 y 2 4 2 y 2 2 2 1 2 2 2

2
y22 9
直接开平方,得 y2 23
∴ x1 2 23 x2 2 23
第8页,共14页。
典型例题
例2 解下列方程
3 (1)y2+ 4 2 y-1=0 (2)y2-2 y=24
解(2)配方,得 y 2 2 3 y 3 2 2 4 3 2
直接开平方,得x-2=±3 变形:方程左边分解因式,右边合并同类项
包装纸的长与宽。 变形:方程左边分解因式,右边合并同类项
例1 解下列方程: 问题1:解方程(x+3)2=5 x2+6x = -4 什么样的一元二次方程能用直接开平方法解? 例1 解下列方程:
第13页,共14页。
归纳总结
1、用配方法解一元二次方程,配方时
(4) x2-x=1
问题1:解方程(x+3)2=5
所以x1=5,x2=-1 所以 x1 = ―3+
x2+6x = -4
即 x2+2· x· 3 = -4
例2 解下列方程
例配1方在:方解方程下两列程边方都程的加:上两一次边项都系数加一半上的平一方;次项系数6的一半的平方,即32后,得
式的结构,配方时尤其要注意未知数的一次
第5页,共14页。
典型例题
例1 解下列方程:
(1) x2-4x+3 = 0 (2)x2+3x-1 = 0
解:(1)移项,得x2-4x=-3
配方,得x2-2· x· 2+22=-3+22 即(x-2)2=1
直接开平方,得x-2=±1
∴x1=3,x2=1
第6页,共14页。
典型例题
例1 解下列方程:
(2)x2+3x-1 = 0

一元二次方程的解法ppt课件

的各项系数a、b、c确定的,当 2 -4ac≥0时,它的实数根

公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=

,x
2=1

观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室

一元二次方程ppt课件

一元二次方程ppt课件
contents
目录
• 一元二次方程的定义 • 一元二次方程的解法 • 一元二次方程的应用 • 一元二次方程的判别式 • 一元二次方程的根的性质 • 一元二次方程的根与系数的关系
01
一元二次方程的定义
定义与特点
定义
只含有一个未知数,且未知数的 最高次数为2的整式方程叫做一元 二次方程。

根的判别条件
判别式
一元二次方程的判别式Δ=b²-4ac,当 Δ>0时,方程有两个不相等的实根;当 Δ=0时,方程有两个相等的实根;当 Δ<0时,方程没有实根。
VS
根的存在性
一元二次方程一定有两个实根,除非判别 式Δ<0。
根的性质与关系
根与系数的关系
一元二次方程的两个根x1和x2与系数a、b、c之间存在关系,如 x1+x2=-b/a,x1*x2=c/a等。
配方法
步骤 1. 将方程 $ax^2 + bx + c = 0$ 移项,使等号右侧为0。
2. 将二次项系数化为1,即方程两边都除以 $a$。
配方法
01
3. 将一次项系数的一半的平方加 到等式两边,使左侧成为一个完 全平方项。
02
4. 对方程两边同时开平方,得到 $x$ 的解。
公式法
总结词
利用一元二次方程的解的公式直接求解。
根的积
一元二次方程的根的积等于常数项与 二次项系数之比。
根的平方和与积的性质
要点一
根的平方和
一元二次方程的根的平方和等于常数项与二次项系数绝对 值的商。
要点二
根的平方积
一元二次方程的根的平方积等于二次项系数绝对值的商。
感谢您的观看

新北师大版九年级数学上册《用配方法求解一元二次方程》优质课课件(共15张PPT).ppt



THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/1/142021/1/142021/1/142021/1/14
谢谢观看
是 n≤0

6.(2014·无锡)解方程:x2-5x-6=0. 解:移项,得 x2-5x=6,配方,得 x2-5x+(-52)2=6
+(-25)2,整理,得(x-52)2=449,开平方,得 x-25=±72,解得, x1=6,x2=-1
7 . (2014·聊 城 ) 用 配 方 法 解 一 元 二 次 方 程 ax2 + bx + c =
解:x2-14x+48=0 得 x1=6,x2=8,故该三角形为直 角三角形,面积为 S=12×6×8=24
19.用配方法证明: (1)a2-a+1 的值为正; (2)-9x2+8x-2 的值小于 0.
解:证明:(1)∵a2-a+1=a2-a+14+34=(a-12)2+34≥34 >0,∴a2-a+1 的值为正 (2)∵-9x2+8x-2=-9[x2-89x+(49)2] +196-2=-9(x-49)2-29≤-29<0,∴-9x2+8x-2 的值不小于 0
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way a.±6

北师大九年级数学上册《用配方法求解一元二次方程》课件(共15张PPT)


12.用配方法解下列方程时,配方有错误的是( C ) A.x2-2x-99=0 化为(x-1)2=100 B.2x2-7x-4=0 化为(x-74)2=8116 C.x2+8x+9=0 化为(x+4)2=25 D.3x2-4x-2=0 化为(x-23)2=190 13.三角形的两边长分别为 3 和 6,第三边长是方程 x2- 6x+8=0 的解,则三角形的周长是( B ) A.11 B.13 C.11 或 13 D.以上都不对
A.6
B.-6
C.±6
D.±
3.将多项式x2+6x+2化为(x+p)2+q的形式为( B ) A.(x-3)2+11 B.(x+3)2-7
C.(x+3)2-11 D.(x+2)2+4
4.(2014·珠海)x2-4x+3=(x-____2)2-1.
5 . 若 方 程 (x - 2)2 + n = 0 有 实 数 解 , 则 实 数 n 的 取 值 范 围
•7、is a progressive discovery of our ignorance.教育是一个逐步发现自己无知的过程。2021/11/252021/11/25November 25, 2021
•8、is a admirable thing, but it is well to remember from time to time that nothing worth knowing can be taught.教育 是令人羡慕的东西,但是要不时地记住:凡是值得知道的,没有一个是能够教会的。2021/11/252021/11/252021/11/252021/11/25
2.2 用配方法求解一元二次方程
1.通过配方,把方程的一边化为
完全平方式 ,另一边化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档