赵县赵州镇中学2013-2014学年八年级上期末考试数学试题

合集下载

2013-2014最新人教版八年级(上)数学期末考试试卷(十)

2013-2014最新人教版八年级(上)数学期末考试试卷(十)

2013-2014最新人教版八年级数学(上)数学期末测试卷(十)一、填空题(每小题3分,共30分)1. 长方形的对称轴有_________________条.2. (a +b)(a -2b)= ;(a +4b)(m+n)= . 3、当x 为 时,分式22x x -的值为负。

4.已知△DE F ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4 cm ,则△DE F 的边中必有一条边等于______.5. 如图,△ABC 中,DE 是AC 的垂直平分线,AE=3cm,△ABD 的周长为13cm,则△ABC 的周长为____________.6. 已知一个工人生产零件,计划30天完成,若每天多生产5个,则在26天完成且多生产15个。

求这个工人原计划每天生产多少个零件?如果设原计划每天生产x 个,根据题意可列出的方程为 。

7. ( 23)2002×(1.5)2003÷(-1)2004=________.8.如图8,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角______.9.如果(2a +2b +1)(2a +2b -1)=63,那么a +b 的值为 .10.在数学活动课上,小明提出这样一个问题:∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,∠CED =35°,如图7,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.二、选择题(每小题3分,共30分)11.下列图形中对称轴最多的是 ( ) (A)圆 (B)正方形 (C)等腰三角形 (D)线段12.下列各式中,相等关系一定成立的是 ( )A.(x-y)2=(y-x)2B.(x+6)(x-6)=x 2-6C.(x+y)2=x 2+y 2D.6(x-2)+x(2-x)=(x-2)(x-6)13.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是 ( )A .形状相同B .周长相等C .面积相等D .全等 14.有下列说法:(1)带根号的数是无理数;(2)无限循环小数是无理数;(3)不带根号的数不是无理数;(4)无理数包括正无理数、零、负无理数.其中正确的说法的个数是 (A) 1个 (B) 2个 (C) 3个 (D) 4个 ( ) 15. a3m+1可写成 ( )A. (a 3)m+1B. (a m )3+1C. a ·a 3mD. (a m )2m+116、若)5)(3(+-x x 是q px x ++2的因式,则p 为( )A 、-15B 、-2C 、8D 、217、将分式2x x y+中的x 、y 的值同时扩大2倍,则扩大后分式的值( )A 、扩大2倍;B 、缩小2倍;C 、保持不变;D 、无法确定;ADOC B 图818、如果012=-+x x ,那么代数式7223-+x x 的值为…………………………( ) A 、6 B 、8 C 、—6 D 、—819、.若使分式22231x x x +--的值为0,则x 的取值为 ( )A.1或1- B.3-或1 C.3- D.3-或1-20、如下图是由边长为a 和b 的两个正方形组成,通过用不同的方法,计算下图中阴影部分的面积,可以验证的一个公式是 .第20题三、解答题21. 分解因式: 22(32)(23)a b a b --+(6分)22. 已知a ,b 是有理数,试说明a 2+b 2-2a -4b+8的值是正数. (8分)23. (6分)先化简:22214()244x x x x x x x x+---÷--+后,选择你喜欢的x 的值代入求值。

2013-2014最新人教版八年级(上)数学期末考试试卷(二)

2013-2014最新人教版八年级(上)数学期末考试试卷(二)

最新人教版八年级数学(上)数学期末测试卷(二)一、相信你一定能选对!(每小题3分,共36分)1.下列各式成立的是 ( )A .a-b+c=a-(b+c )B .a+b-c=a-(b-c )C .a-b-c=a-(b+c )D .a-b+c-d=(a+c )-(b-d )2.直线y=kx+2过点(-1,0),则k 的值是 ( )A .2B .-2C .-1D .13.和三角形三个顶点的距离相等的点是 ( )A .三条角平分线的交点B .三边中线的交点C .三边上高所在直线的交点D .三边的垂直平分线的交点4.一个三角形任意一边上的高都是这边上的中线,•则对这个三角形最准确的判断是( )A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形5.下图所示的扇形图是对某班学生知道父母生日情况的调查,A•表示只知道父亲生日,B 表示只知道母亲生日,C 表示知道父母两人的生日,D 表示都不知道.•若该班有40名学生,则知道母亲生日的人数有( )A .25%B .10C .22D .126.下列式子一定成立的是 ( )A .x 2+x 3=x 5;B .(-a )2·(-a 3)=-a 5C .a 0=1D .(-m 3)2=m 57.黄瑶拿一张正方形的纸按右图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是 ( )8.已知x 2+kxy+64y 2是一个完全式,则k 的值是( )A .8B .±8C .16D .±169.下面是一组按规律排列的数:1,2,4,8,16,……,则第2005个数是( )A .22005B .22004C .22006D .2200310.已知(x+a )(x+b )=x 2-13x+36,则a+b 的值分别是 ( )A .13B .-13C .36D .-3611.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 交EF 于F ,若BF=AC ,则∠ABC 等于( )A .45°B .48°C .50°D .60°(11题) (12题) (19题)12.如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是 ( )A .10cmB .12cmC .15cmD .17cm二、你能填得又对又快吗?(每小题3分,共24分)13.计算:1232-124×122=_________.14.在实数范围内分解因式:3a 3-4ab 2=__________.15.已知△ABC ≌△DEF ,若∠A=60°,∠F=90°,DE=6cm ,则AC=________.16.点P 关于x 轴对称的点是(3,-4),则点P 关于y 轴对称的点的坐标是_______.17.已知a 2+b 2=13,ab=6,则a+b 的值是________. 18.若2222,2b a b ab a b a ++-=则= 19.如图为杨辉三角表,它可以帮助我们按规律写出(a+b )n (其中n 为正整数)•展开式的系数,请仔细观察表中规律,填出(a+b )4的展开式中所缺的系数.(a+b )1=a+b ;(a+b )2=a 2+2ab+b 2;(a+b )3=a 3+3a 2b+3ab 2+b 3;(a+b )4=a 4+_____a 3b+_____a 2b 2+______ab 3+b 420.如图所示,一个窗户被装饰布挡住了一部分,其中窗户的长a 与宽b 的比是3:2,装饰布由一个半圆和两个四分之一圆组成,圆的直径都是0.5b ,那么当b=4时,•这个窗户未被遮挡的部分的面积是__________.三、认真解答,一定要细心哟!(共60分)21.(5分)先化简再求值:[(x+2y )(x-2y )-(x+4y )2]÷(4y ),其中x=5,y=2.22.(7分)求证:等腰三角形两腰上的高的交点到底边两端的距离相等.23、计算:()2211n m m n m n -⋅⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+24、有这样一道题:“计算:2222111x x x x x x x-+-÷--+的值,其中2004x =.”甲同学把“2004x =”错抄成“2040x =”,但他的计算结果也是正确的.你说这是怎么回事?25、某 市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?26.(10分)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB•交CE于点F,DF的延长线交AC于点G,求证:(1)DF∥BC;(2)FG=FE.。

2013-2014学年初二上数学期末考试试卷及答案解析

2013-2014学年初二上数学期末考试试卷及答案解析
25.(2012•遵义)如图,△ABC 是边长为 6 的等边三角形,P 是 AC 边上一动点,由 A 向 C 运动(与 A、C 不重 合),Q 是 CB 延长线上一点,与点 P 同时以相同的速度由 B 向 CB 延长线方向运动(Q 不与 B 重合),过 P 作 PE⊥AB 于 E,连接 PQ 交 AB 于 D. (1)当∠BQD=30°时,求 AP 的长; (2)当运动过程中线段 ED 的长是否发生变化?如果不变,求出线段 ED 的长;如果变化请说明理由.
2013-2014 学年八年级[上]数学期末考试试卷
一.选择题(共 10 小题) 1.(2013•铁岭)如图,在△ABC 和△DEC 中,已知 AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加 的一组条件是( )
A BC=EC,∠B=∠E .
B.BC=EC,AC=DC
C.BC=DC,∠A=∠D
A 4cm .
B.6cm
C.8cm
D 9cm .
4.(2010•海南)如图,a、b、c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( )
A
B.
.(2013•珠海)点(3,2)关于 x 轴的对称点为( )
那么在△ABC 中,仍然有条件“AD 是∠BAC 的角平分线,点 E 和点 F,分别在 AB 和 AC 上”,请探究以下两个问 题: (1)若∠AED+∠AFD=180°(如图(2)),则 DE 与 DF 是否仍相等?若仍相等,请证明;否则请举出反例. (2)若 DE=DF,则∠AED+∠AFD=180°是否成立?(只写出结论,不证明)
26.(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的 形式,使点 B、F、C、D 在同一条直线上. (1)求证:AB⊥ED; (2)若 PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.

初二数学计算题答案

初二数学计算题答案

初二数学计算题答案【篇一:2014年1月初二数学期末试题及答案】txt>2014年1月一、选择题:(共12个小题,每小题2分,共24分)在每个小题的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母填在题后的括号内.1. 9的算术平方根() a.3b.?3 ca. b. c. d.3. 分式x2?9x?3d.2. 下列交通标志中,不是轴对称图形的是()..的值为零,则x的取值().b.?3c.?3d.0a.35. 下列事件中确定事件是()a.掷一枚均匀的硬币,正面朝上 b.买一注彩票,一定中奖图1c.把五个球放入四个抽屉中,其中一个抽屉中,至少有2个球d.掷一枚六个面分别标有1、2、3、4、5、6的均匀正六面体骰子,骰子停止转动后奇数点朝上 6. 下列变形正确的是(). a.a?1a?b?1ba?1a?1???bbb.a?b1c.22?a?ba?b(?a?b)2d.??1(a?b)27. 有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为() a.5bc.5d.不确定初二数学期末试卷第1页(共6页).9. 若三角形的一个外角大于与它相邻的内角,则这个三角形是()a.锐角三角形b.钝角三角形c.直角三角形d.不能确定10.实数a的大致位置是()o 111. 京通高速东起通州区北苑,西至朝阳区大望桥,全长18.4千米.京通公交快速通道开通后,为通州区市民出行带来了很大的便利.某一时段乘坐快速公交的平均速度比自驾汽车的平均速度提高了40,因此可以提前15分钟走完这段路,若设这一时段自驾汽车的平均速度为x千米/时,则根据题意,得() a.c.18.4x?18.44000x??15 18.4x156018.4x18.4x18.4(1?400)x18.4(1?400)xb.4 d.图21 2 o 1 32 a 3o 1 3 a 4b.d.??15 156018.4(1?40)x? ??12. 如图3,d为△abc外一点,bd⊥ad,bd平分△abc的一个外角,∠c=∠cad,若ab=5,bc=3,则bd的长为() a.1 c.2 b.1.5 d.3图3二、填空题:(共8个小题,每小题3分,共24分)13.?3,则x14. 若二次根式?2有意义,则x的取值范围是 . x初二数学期末试卷第2页(共6页)15. 在.?1,,1.23这五个实数中,无理数是 2316. 若一个三角形两边长分别为2、5,则此三角形的周长c的取值范围为___________. 17. 如图4,已知af=cd,∠b?∠e,那么要得到△abc≌△def,可以添加一个条件是 .图4图518. 如图5,点d、b、e在同一直线上,e为ac中点,若ab=bc,?c?33?,则∠d+∠dab =.19. 观察分析下列数据,按规律填空:1,2…,第n(n为正整数)个数可以表示为 .20. 如图6,有一块直角三角形纸片,?a?30?, bc=,现将三角形abc沿直线ef折叠,使点a落在直角边bc的中点d上,则cf=_______cm .图6三、解答题:(共11个小题,第21、22每小题各2分,第23—28每小题各5分,第29—31每小题各6分,共52分)21. 计算:20?????3.14???2 222. 解方程:6x??1. x?2x?3m2?mnm2?mn?22的值. 23. 已知2m?n?0,其中m?0,求2nm?n初二数学期末试卷第3页(共6页)24. 已知:如图7,点c是ae的中点,?b??d,bc//de,求证:bc = de.25. 列方程解应用题新城建设的过程中,需要铺设一条地下排水管道,决定由甲、乙两个工程队来完成这一工程,已知甲工程队比乙工程队每天多铺20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.求甲、乙工程队每天各铺设多少米?26. 已知:如图8,某汽车探险队要从a城穿越沙漠去b城,途中需要到河流l边为汽车加水,汽车在河边哪一点加水,才能使行驶的总路程最短?(1)请你在图上画出这一点.(保留作图痕迹)(2)根据图示,求出最短路程.图77km40km13km 图8初二数学期末试卷第4页(共6页)cdeam n第27题图b28. 已知:如图9,?bac?90?,ab?ac,bd平分?abc,ce?bd,垂足为e.求证:bd?2ce.图929. 已知:如图10,等边三角形abd与等边三角形ace具有公共顶点a,连接cd,be,交于点p.(1)观察度量,?bpc的度数为____.(直接写出结果)(2)若绕点a将△ace旋转,使得?bac?180?,请你画出变化后的图形.(示意图)(3)在(2)的条件下,求出?bpc的度数.图1030. (本题10分)如图,在△abc中,ab=ac,点d、e、f分别在ab、bc、ac边上,且be=cf,bd=ce. (1)求证:△def是等腰三角形;(3)△def可能是等腰直角三角形吗?为什么?初二数学期末试卷第5页(共6页)第30题图【篇二:初二数学上册习题大全】>1.如图3,ab,cd相交于点o,ad=cb,请你补充一个条件,使得△aod≌△cob.你补充的条件是 _ . 2.如图4,ac,bd相交于点o,ac=bd,ab=cd,写出图中两对相等的角____.b dcdc c 图4 图6图54.地基在同一水平面上,高度相同的两幢楼上分别住着甲、乙两位同学,有一天,甲对乙说:“从我住的这幢楼的底部到你住的那幢楼的顶部的直线距离,等于从你住的那幢楼的底部到我住的这幢楼的顶部的直线距离.”你认为甲的话正确吗?答:____.5.如图6,直线ae∥bd,点c在bd上,若ae=4,bd=8,△abd的面积为16,则△ace的面积为__.二、选择题(每小题3分,共24分) 1.如图7,p是∠bac的平分线ad上一点,pe⊥ab于e,pf⊥ac于f,下列结论中不正确的是()a.pe?pf b.ae?af c.△ape≌△apf d.ap?pe?pf2.下列说法中:①如果两个三角形可以依据“aas”来判定全等,那么一定也可以依据“asa”f来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全d 等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()a.①和② b.②和③ c.①和③ d.①②③图73.如图8, ad是△abc的中线,e,f分别是ad和ad延长线上的点,且de?df,连结bf,ce.下列说法:①ce=bf;②△abd和△acd面积相等;③bf∥ce;④△bdf≌△cde.其中正确的有()a.1个b.2个c.3个d.4个4.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是() a.形状相同b.周长相等c.面积相等d.全等a d 图8 a′e′c c fd a eb 图9c 图11d图106.已知:如图10,在△abc中,ab=ac,d是bc的中点,de⊥ab于e,df⊥ac于f,则图中共有全等三角形() a.5对b.4对c.3对d.2对7.将一张长方形纸片按如图11所示的方式折叠,bc,bd为折痕,则∠cbd的度数为()ob=70mm,连结ab,画∠aob的平分线与ab交于点c,并量出ac和o c 的长.(结果精确到1mm,不要求写画法).c 2.(本题10分)已知:如图12,ab=cd,de⊥ac,bf⊥ac,e,f是垂足,de?bf. d求证:(1)af?ce;(2)ab∥cd.a b 图123.(本题11分)如图13,工人师傅要检查人字梁的∠b和∠c是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在ba和ca上取be?cg;②在bc上取bd?cf;③量出de的长a米,fg的长b米.如果a?b,则说明∠b和∠c是相等的.他的这种做法合理吗?为什么?c d f图134.(本题12分)填空,完成下列证明过程.如图14,△abc中,∠b=∠c,d,e,f分别在ab,bc,ac上,且bd?ce,∠def=∠b 求证:ed=ef. f证明:∵∠dec=∠b+∠bde(),又∵∠def=∠b(已知),∴∠______=∠______(等式性质).在△ebd与△fce中,∠______=∠______(已证),______=______(已知),c e ∠b=∠c(已知),∴△ebd≌△fce( ).∴ed=ef( ).图145.(本题13分)如图15,o为码头,a,b两个灯塔与码头的距离相等,oa,ob为海岸线,一轮船从码头开出,计划沿∠aob的平分线航行,航行途中,测得轮船与灯塔a,b的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.图156.(本题15分)如图16,把△abc纸片沿de折叠,当点a落在四边形bcde内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠aed的度数为x,∠ade的度数为y,那么∠1,∠2 的度数分别是多少?(用含有x或y的代数式表示)a a′(3)∠a与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.d图16单元测试题轴对称一.选择题1.下列图形中,不是轴对称图形的是() a.hb。

2013-2014学年上学期八年级数学期末质量检测考试试卷

2013-2014学年上学期八年级数学期末质量检测考试试卷

龙子心中学2013-2014学年度第一学期期末质量检测八年级数学试题一、选择题:(每小题3分,共36分。

) 1、下列各式中计算正确的是( )A 、9)9(2-=-B 、525±=C 、1)1(33-=- D 、2)2(2-=-2、根据下列表述,能确定位置的是( )A 、某电影院2排B 、大桥南路C 、北偏东30°D 、东经118°,北纬40° 3、有一个数值转换器,原理如下:当输入的x=64时,输出的y 等于( )A 、2B 、8C 、23D 、224.如图,AB ∥CD ,∠A +∠E =75°,则∠C 为( )A .60°B .65°C .75°D .80°5、已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是( )A B C D 6、下列命题是真命题的是( )A 、同旁内角互补B 、直角三角形的两锐角互余C 、 三角形的一个外角等于它的两个内角之和D 、三角形的一个外角大于内角 7.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读数情况,随机调查了50名学生的册数,统计数据如表所示:册数 0 1 2 3 4 人数31316171则这50名学生读书册数的众数、中位数是( )A .3,3B .3,2C .2,3D .2,2 8.对于一次函数y = x +6,下列结论错误的是( )A . 函数值随自变量增大而增大B .函数图象与两坐标轴围成的三角形面积为18.C . 函数图象不经过第四象限D .函数图象与x 轴交点坐标是(0,-6) 9.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么(a +b )2的值为 A .49 B . 25 C .13 D . 110.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x 元,包子每个y 元,则所列二元一次方程组正确的是 A .⎩⎨⎧⨯=++=+9.0186811035y x y x B . ⎩⎨⎧÷=++=+9.0186811035y x y x C .⎩⎨⎧⨯=+-=+9.0186811035y x y x D .⎩⎨⎧÷=+-=+9.0186811035y x y x12、如图,AB ∥EF , ∠C=90°,则α、β、γ的关系为( )A 、β=α+γB 、α+β+γ=180°C 、β+γ-α=90°D 、α+β-γ=90°二、填空题(每小题3分,共18分)13、数据1,0,-3,2,3,2,-2的方差是 .14.一个宽度相等的纸条按如图所示方法折叠一下,则∠1= .15、已知直角三角形两边的长分别为3cm,4cm, 则以第三边为边长的正方形的面积为 .16.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有_____种. 17.如图,已知一次函数b ax y +=的图象为直线, 则关于x 的方程1=+b ax 的解x = .18.如图①,在△AOB 中,∠AOB=90°,OA=3,OB=4.x y x yx yx yO O OO 输入 取算术平方根 输出 是无理数是有理数将△AOB 沿x 轴依次以点A 、B 、O 为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为 . 三、解答题:19(10分)、(1)计算:2163)1526(-⨯- (2)解方程组:257320x y x y -=⎧⎨-=⎩20、(8分)一住宅楼发生火灾,消防车立即赶到准备在距大厦6米处升起云梯到火灾窗口展开营救,已知云梯AB 长15米,云梯底部B 距地面2米,此时消防队员能否成功救下等候在距离地面约14米窗口的受困人群?说说你的理由。

【中学教材全解】2013-2014学年八年级数学(上)(上海科技版)期末检测题(含答案)

【中学教材全解】2013-2014学年八年级数学(上)(上海科技版)期末检测题(含答案)

期末检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共36分)1. 如果直线AB 平行于y 轴,则点A 、B 的坐标之间的关系是( ) A.横坐标相等B.纵坐标相等C.横坐标为0D.纵坐标为0 2. 若点P (13++m m ,)在直角坐标系的x 轴上,则点P 的坐标为( ) A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)3. 下列图中不是轴对称图形的是( )4. 如图所示,在平面直角坐标系中,直线y =-与矩形ABCO的边OC 、BC 分别交于点E 、F ,已知OA =3,OC =4,则 △CEF 的面积是( )A .6B .3C .12D . 5. 已知直线 =k -4(k <0)与两坐标轴所围成的三角形面 积等于4,则直线的关系式为( ) A . =- -4 B . =-2 -4 C . =-3 +4 D . =-3 -46. 正比例函数(≠0)的函数值随的增大而增大,则一次函数的图象大致是( )A B C D 7. 在△ABC 中,AC =5,中线AD =4,则AB 边的取值范围是( ) A .1<AB <9 B .3<AB <13 C .5<AB <13 D .9<AB <138. 如图所示,两个全等的等边三角形的边长为1 m ,一个微型机器人 由A 点开始按ABCDBEA 的顺序沿等边三角形的边循环运动,行走 2 012 m 停下,则这个微型机器人停在( ) A.点A 处 B .点B 处 C.点C 处 D.点E 处 9. 如图所示,在△ABC 中,AQ =PQ ,PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则三个结论①AS =AR ;②QP ∥AR ;③△BPR ≌△QPS 中( )A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确第4题图第8题图10. 如图所示,是一个风筝的图案,它是以直线AF 为对称轴的轴对称图形,下列结论中不一定成立的是( )A.△ABD ≌△ACDB.AF 垂直平分EGC.直线BG ,CE 的交点在AF 上D.△DEG 是等边三角形11. 数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题,如图所示,∠1=∠2,若∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1为( )A.60°B.30°C.45°D.50° 12. 以下各命题中,正确的命题是( )(1)等腰三角形的一边长为4 cm ,一边长为9 cm ,则它的周长为17 cm 或22 cm ; (2)三角形的一个外角等于两个内角的和; (3)有两边和一角对应相等的两个三角形全等; (4)等边三角形是轴对称图形;(5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形. A .(1)(2)(3) B .(1)(3)(5) C .(2)(4)(5) D .(4)(5)二、填空题(每小题3分,共24分)13. 已知是整数,点在第二象限,则 _____.14. 如图所示,已知函数和的图象交于点(-2,-5),根据图象可得方程的解是 .15. 如图所示,∠E =∠F =90°,∠B =∠C ,AE =AF .给出下列结论:①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN .其中正确的结论是 (将你认为正确的结论的序号都填上).第9题图第10题图第11题图第14题图第15题图第16题图16. 如图所示,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2= . 17. 如图所示,已知△ABC 和△BDE 均为等边三角形,连接AD 、CE ,若∠BAD =39°,则∠BCE = 度.18. 如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P为线段EF 上一个动点,连接BP 、GP ,则△PBG 的周长的最小值是 .19. 小明不慎将一块三角形的玻璃打碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带 去.20. 已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为 .三、解答题(共60分)21.(6分) 如图,在平面网格中每个小正方形的边长为1. (1)线段CD 是线段AB 经过怎样的平移后得到的? (2)线段AC 是线段BD 经过怎样的平移后得到的?22. (6分)已知一次函数的图象经过点A (2,0)与B (0,4).(1)求一次函数的关系式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数的值在-4≤≤4范围内,求相应的的值在什么范围内. 23. (8分) 如图所示,A 、B 分别是轴上位于原点左右两侧的点,点P (2,p )在第一象限,直线P A 交y 轴于点C (0,2),直线PB 交y 轴于点D ,△AOP 的面积为6. (1)求△COP 的面积; (2)求点A 的坐标及p 的值;(3)若△BOP 与△DOP 的面积相等,求直线BD 的函数关系式.第17题图第21题图第18题图第19题图24. (8分)如图所示,△ABC 是等腰三角形,D ,E 分别是腰AB 及AC 延长线上的一点,且BD =CE ,连接DE 交底BC 于G .求证:GD =GE .25. (8分)(1)如图(1)所示,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明 理由.(2)园林小路,曲径通幽,如图(2)所示,小路由白色的正方形大理石和黑色的三角形大理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米?26. (8分)如图所示,将矩形纸片ABCD 按如下顺序进行折叠:对折,展平,得折痕EF (如图①);沿CG 折叠,使点B 落在EF 上的点B ′处,(如图②);展平,得折痕GC (如图③);沿GH 折叠,使点C 落在DH 上的点C ′处,(如图④);沿GC ′折叠(如图 ⑤);展平,得折痕GC ′,GH (如图 ⑥). (1)求图 ②中∠BCB ′的大小.(2)图⑥中的△GCC ′是正三角形吗?请说明理由.第23题图AGFCBD E第25题图(1)(2)第24题图第26题图27. (8分)如图所示,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F . 求证:(1)FC =AD ;(2)AB =BC +AD . (8分)将两个等边28.△ABC和△DEF (DE >AB )如图所示摆放,点D 是BC 上的一点(除B 、C 点外).把△DEF 绕顶点D 顺时针旋转一定的角度,使得边DE 、DF 与△ABC 的边(除BC 边外)分别相交于点M 、N . (1)∠BMD 和∠CDN 相等吗?(2)画出使∠BMD 和∠CDN 相等的所有情况的图形.(3)在(2)题中任选一种图形说明∠BMD 和∠CDN 相等的理由.第27题图第28题图1. A 解析:∵ 直线AB 平行于y 轴,∴ 点A 、B 的坐标之间的关系是横坐标相等.2. B 解析:∵ 点P (13++m m ,)在直角坐标系的x 轴上,∴ ,解得, ∴ 点P 的坐标是(2,0).3. C 解析:由轴对称图形的性质,A 、B 、D 都能找到对称轴,C 找不到对称轴,故选C.4. B 解析:当y =0时,-=0,解得=1, ∴ 点E 的坐标是(1,0),即OE =1. ∵ OC =4,∴ EC =OC -OE =4-1=3. ∵ 点F 的横坐标是4,∴ y =×4-=2,即CF =2. ∴ △CEF 的面积=×CE ×CF =×3×2=3.故选B . 5. B 解析:直线 =k -4(k <0)与两坐标轴的交点坐标为(0,-4), ∵ 直线 =k -4(k <0)与两坐标轴所围成的三角形面积等于4,∴ 4××=4,解得k =-2,则直线的关系式为y =-2 -4. 故选B .6. A 解析:因为正比例函数(≠0)的函数值随的增大而增大,所以,所以答案选A.7. B 解析:如图所示,延长AD 到E ,使DE =AD ,连接BE . 在△ADC 和△EDB 中, ∴ △ADC ≌△EDB (SAS ),∴ AC =BE . ∵ AC =5,AD =4,∴ BE =5,AE =8. 在△ABE 中,AE -BE <AB <AE +BE ,∴ AB 边的取值范围是3<AB <13.故选B.8. C 解析:∵ 两个全等的等边三角形的边长均为1 m , ∴ 机器人由A 点开始按ABCDBEA 的顺序沿等边三角形的边 循环运动一圈,即为6 m.∵ 2 012÷6=335……2,即行走了335圈余2 m , ∴ 行走2 012 m 停下时,这个微型机器人停在C 点.故选C .9. B 解析:∵ PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,AP =AP ,∴ △ARP ≌△ASP (HL ),∴ AS =AR ,∠RAP =∠SAP .∵ AQ =PQ ,∴ ∠QP A =∠QAP ,∴ ∠RAP =∠QP A ,∴ QP ∥AR .而在△BPR 和△QPS 中,只满足∠BRP =∠QSP =90°和PR =PS ,找不到第3个条件, ∴ 无法得出△BPR ≌△QPS .故本题仅①和②正确.故选B . 10. D 解析:A.因为此图形是轴对称图形,正确; B.对称轴垂直平分对应点连线,正确;C.由三角形全等可知,BG =CE ,且直线BG ,CE 的交点在AF 上,正确;D.题目中没有60°条件,不能判断是等边三角形,错误.故选D . 11. A 解析:∵ 台球桌四角都是直角,∠3=30°,∴ ∠2=60°.∵ ∠1=∠2,∴ ∠1=60°,故选A .12. D 解析:(1)等腰三角形的一边长为4 cm ,一边长为9 cm ,则三边长可能为9 cm , 9 cm ,4 cm ,或4 cm ,4 cm ,9 cm ,因为4+4<9,所以它的周长只能是22 cm ,故此命题错误;(2)三角形的一个外角等于与它不相邻的两个内角的和,故此命题错误; (3)有两边和一角对应相等的两个三角形全等错误,必须是夹角; (4)等边三角形是轴对称图形,此命题正确;(5)如果三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形, 正确.如图所示:∵ AD ∥BC ,∴ ∠1=∠B ,∠2=∠C .第7题答图∵AD是角平分线,∴∠1=∠2,∴∠B=∠C,∴AB=AC.即△ABC是等腰三角形.故选D.13. -1 解析:因为点A在第二象限,所以,所以.又因为是整数,所以.14.=-2 解析:已知两直线的交点坐标为(-2,-5),所以方程的解为.15. ①②③解析:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF.∴AC=AB,∠BAE=∠CAF,BE=CF,∴②正确.∵∠B=∠C,∠BAM=∠CAN,AB=AC,∴△ACN≌△ABM,∴③正确.∵∠1=∠BAE-∠BAC,∠2=∠CAF -∠BAC,又∵∠BAE=∠CAF,∴∠1=∠2,∴①正确.∴题中正确的结论应该是①②③.16. 50°解析:如图,由三角形外角的性质可得∠4=∠1+∠3=50°,∵∠2和∠4是两平行线间的内错角,∴∠2=∠4=50°.17. 39 解析:∵△ABC和△BDE均为等边三角形,∴AB=BC,∠ABC =∠EBD=60°,BE=BD.∵∠ABD=∠ABC +∠DBC,∠EBC=∠EBD +∠DBC,∴∠ABD=∠EBC,∴△ABD≌△CBE,∴∠BCE=∠BAD =39°.18. 3 解析:要使△PBG的周长最小,而BG=1一定,只要使BP+PG最短即可.连接AG交EF于M.∵△ABC是等边三角形,E、F、G分别为AB、AC、BC的中点,∴AG⊥BC.又EF∥BC,∴AG⊥EF,AM=MG,∴A、G关于EF对称,∴P点与E重合时,BP+PG最小,即△PBG的周长最小,最小值是2+1=3.19. 2 解析:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去.只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.20. 20°或120°解析:设两内角的度数为、4.当等腰三角形的顶角为时,+4+4=180°,=20°;当等腰三角形的顶角为4时,4++=180°,=30°,4=120°.因此等腰三角形顶角的度数为20°或120°.21. 解:(1)将线段AB向右(或下)平移3个小格(或4个小格),再向下(或右)平移4个小格(或3个小格),得线段CD.(2)将线段BD向左平移3个小格(或向下平移1个小格),再向下平移1个小格(或向左平移3个小格),得到线段AC.22.分析:根据A、B两点可确定一次函数的关系式.解:(1)由题意得20,2, 4,4,a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一次函数的关系式为,函数图象如图所示.(2)∵,-4≤≤4,∴ -4≤≤4,∴0≤≤4.23. 解:(1)过点P作PF⊥y轴于点F,则PF=2.∵C(0,2),∴CO=2.∴S△COP=×2×2=2.第16题答图第22题答图(2)∵ S △AOP =6,S △COP =2,∴ S △COA =4,∴ OA ×2=4, ∴ OA =4,∴ A (-4,0).∴ S △AOP =×4|p |=6,∴ |p |=3. ∵ 点P 在第一象限,∴ p =3.(3)∵ S △BOP =S △DOP ,且这两个三角形同高,∴ DP =BP ,即P 为BD 的中点. 作PE ⊥轴于点E ,则E (2,0),F (0,3).∴ B (4,0),D (0,6). 设直线BD 的关系式为y =k +b (k ≠0),则解得 ∴ 直线BD 的函数关系式为y =+6.分析:24. 从图形看,GE ,GD 分别属于两个显然不全等的三角形:△GEC 和△GBD .此时就要利用这两个三角形中已有的等量条件,结合已知添加辅助线,构造全等三角形.方法不止一种,下面证法是其中之一.证明:过E 作EF ∥AB 且交BC 的延长线于F .在△GBD 及△GEF 中,∠BGD =∠EGF (对顶角相等), ① ∠B =∠F (两直线平行,内错角相等). ②又∠B =∠ACB =∠ECF =∠F ,所以△ECF 是等腰三角形,从而EC =EF .又因为EC =BD ,所以BD =EF . ③由①②③知△GBD ≌△GFE (AAS),所以 GD =GE .25. 解:(1)ABC △与AEG △的面积相等.理由如下:过点C 作CM AB ⊥于M ,过点G 作GN EA ⊥交EA 的延长线于N ,则AMC ∠=90ANG ∠= .四边形ABDE 和四边形ACFG 都是正方形, 90,180.BAE CAG AB AE AC AG BAC EAG ∴∠=∠===∴∠+∠=,,180,,EAG GAN BAC GAN ∠+∠=∴∠=∠第23题答图FAGCBDEMN第25题答图第24题答图,ACM AGN ∴△≌△ .11··22ABC AEG CM GN S AB CM S AE GN ∴=== △△,, .ABCAEG S S ∴=△△(2)由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和, 这条小路的占地面积为(2)a b +平方米.26. 分析:(1)由折叠的性质知:=BC ,然后在Rt △中,求得cos ∠的值,利用特殊角的三角函数值的知识即可求得∠BCB ′的度数;(2)首先根据题意得:GC 平分∠BCB ′,即可求得∠GCC ′的度数,然后由折叠的性质知:GH 是线段CC ′的对称轴,可得GC ′=GC ,即可得△GCC ′是正三角形. 解:(1)由折叠的性质知: =BC , 在Rt △中,∵ cos ∠=,∴ ∠=60°,即∠BCB ′=60°.(2)根据题意得:GC 平分∠BCB ′,∴ ∠GCB =∠GCB ′=∠BCB ′=30°,∴ ∠GCC ′=∠BCD -∠BCG =60°. 由折叠的性质知:GH 是线段CC ′的对称轴,∴ GC ′=GC ,∴ △GCC ′是正三角形. 27. 分析:(1)根据AD ∥BC 可知∠ADC =∠ECF ,再根据E 是CD 的中点可证出△ADE ≌△FCE ,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB =BF 即可. 证明:(1)∵ AD ∥BC (已知),∴ ∠ADC =∠ECF (两直线平行,内错角相等). ∵ E 是CD 的中点(已知),∴ DE =EC (中点的定义).∵ 在△ADE 与△FCE 中,∠ADC =∠ECF ,DE =EC ,∠AED =∠CEF , ∴ △ADE ≌△FCE (ASA ),∴ FC =AD (全等三角形的性质).(2)∵ △ADE ≌△FCE ,∴ AE =EF ,AD =CF (全等三角形的对应边相等). 又BE ⊥AE ,∴ BE 是线段AF 的垂直平分线,∴ AB =BF =BC +CF . ∵ AD =CF (已证),∴ AB =BC +AD (等量代换). 28. 分析:(1)根据三角形内角和定理以及外角性质即可得出; (2)根据(1)分类画出图形,即可解答;(3)根据三角形的内角和与平角的定义,即可得出. 解:(1)相等.(2)有四种情况,如下:第28题答图(3)选④证明:∵△ABC和△DEF均为等边三角形,∴∠B=∠EDF=60°,∴∠ADB+∠BMD+∠B=180°,∠EDF+∠ADB+∠CDN=180°,∴∠BMD=∠CDN.。

八年级数学(上)期末测试试卷含答案解析

八年级数学(上)期末测试试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:54.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.557.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.310.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=.13.(﹣2)2的平方根是.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是.17.(2分)若直线y=k x+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图①中的值是.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距千米,客车的速度是千米/时;(2)小亮在丙地停留分钟,公交车速度是千米/时;(3)求两人何时相距28千米?25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=是有理数,故A错误;B、是有理数,故B错误;C、3.是有理数,故C错误;D、﹣π是无理数,故D正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.【考点】二元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把各项中x与y的值代入方程检验即可.【解答】解:A、把x=0,y=﹣代入方程得:左边=﹣1,右边=1,不相等,不合题意;B、把x=1,y=1代入方程得:左边=2﹣1=1,右边=1,相等,符合题意;C、把x=1,y=0代入方程得:左边=﹣1,右边=1,不相等,不合题意;D、把x=﹣1,y=﹣1代入方程得:左边=﹣3,右边=1,不相等,不合题意,故选B.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形的内角和定理得出A是直角三角形,D不是直角三角形,由勾股定理的逆定理得出B、C是直角三角形,从而得到答案.【解答】解:A、三个内角之比为1:1:2,因为根据三角形内角和定理可求出三个角分别为45°,45°,90°,所以是直角三角形,故正确;B、三条边之比为1:2:,因为12+22=()2,其符合勾股定理的逆定理,所以是直角三角形,故正确;C、三条边之比为5:12:13,因为52+122=132,其符合勾股定理的逆定理,所以是直角三角形,故正确;D、三个内角之比为3:4:5,因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确.故选:D.【点评】本题考查了勾股定理的逆定理、三角形内角和定理、直角三角形的判定;熟练掌握勾股定理的逆定理和三角形内角和定理是解决问题的关键.4.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等【考点】命题与定理.【分析】利用数轴上的点与实数一一对应可对A进行判断;根据平行线的判定方法对B进行判断;根据无理数的定义对C进行判断;根据补角的定义对D进行判断.【解答】解:A、所有实数都可以用数轴上的点表示,所以A选项为真命题;B、同位角相等,两直线平行,所以B选项为真命题;C、无理数包括正无理数、负无理数,所以C选项为假命题;D、等角的补角相等,所以D选项为真命题.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得3<<4,再根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得<<,即3<<4,都减1,得2<﹣1<3.故选:B.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题关键.6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.55【考点】平行线的性质.【分析】先由垂直的定义,求出∠PEF=90°,然后由∠BEP=50°,进而可求∠BEF=140°,然后根据两直线平行同旁内角互补,求出∠EFD的度数,然后根据角平分线的定义可求∠EFP的度数,然后根据三角形内角和定理即可求出∠EPF的度数.【解答】解:如图所示,∵EP⊥EF,∴∠PEF=90°,∵∠BEP=50°,∴∠BEF=∠BEP+∠PEF=140°,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EFD=40°,∵FP平分∠EFD,∴=20°,∵∠PEF+∠EFP+∠EPF=180°,∴∠EPF=70°.故选:A.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.7.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁【考点】一元一次方程的应用.【分析】可设儿子现在的年龄是x岁,则父亲现在的年龄是3x岁,根据等量关系:7年前父亲的年龄=7年前儿子的年龄×5,依此列出方程求解即可.【解答】解:设儿子现在的年龄是x岁,依题意得:3x﹣7=5(x﹣7).解得x=14.则3x=42.即父亲和儿子现在的年龄分别是42岁,14岁.故选:A.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由年龄的倍数问题找出合适的等量关系列出方程,再求解.8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:m>5时,m﹣5>0,m+2>0,点位于第一象限,故A不符合题意;m=5时点位于y轴;﹣2<m<5时,m﹣5<0,m+2>0,点位于第二象限,故B不符合题意;m=﹣2时,点位于x轴;m<﹣2时,m﹣5<0,m+2<0,点位于第三象限,故C不符合题意;M(m﹣5,m+2)一定不在第四象限,故D符合题意;故选:D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.3【考点】等腰直角三角形.【分析】由等腰直角三角形的性质得出∠A=∠B=45°,证出四边形PECF是矩形,得出PF=CE,证出△APE和△BPF是等腰直角三角形,得出AE=PE,BF=PF,再由三角形的面积得出PE2=14,CE2=PF2=4,由勾股定理求出PC的长即可.【解答】解:∵△ABC是等腰直角三角形,∠ACB=90°,∴∠A=∠B=45°,∵PF⊥BC于点F,PE⊥AC于点E,∴∠PFB=∠PEA=90°,四边形PECF是矩形,∴△APE和△BPF是等腰直角三角形,PF=CE,∠PEC=90°,∴AE=PE,BF=PF,∵S△APE=AE•PE=PE2=7,S△PBF=PF•BF=PF2=2,∴PE2=14,CE2=PF2=4,∴PC===3;故选:B.【点评】本题考查了等腰直角三角形的判定与性质、矩形的判定与性质、勾股定理;熟练掌握等腰直角三角形的判定与性质,运用勾股定理求出PC是解决问题的关键.10.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.【考点】一次函数的图象;正比例函数的图象.【分析】根据正比例函数与一次函数的图象性质作答.【解答】解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;当0<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;当k<0时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限;故选B.【点评】此题考查一次函数的图象问题,正比例函数的性质:正比例函数y=kx的图象是过原点的一条直线.当k>0时,直线经过第一、三象限;当k<0时,直线经过第二、四象限.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是x≤2.【考点】函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0,解得:x≤2.故答案是:x≤2.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=6或﹣3.【考点】极差.【分析】分别当x为最大值和最小值时,根据极差的概念求解.【解答】解:当x为最大值时,x﹣(﹣1)=7,解得:x=6,当x为最小值时,4﹣x=7,解得:x=﹣3.故答案为:6或﹣3.【点评】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.13.(﹣2)2的平方根是±2.【考点】平方根.【专题】计算题.【分析】先求出(﹣2)2的值,然后开方运算即可得出答案.【解答】解:(﹣2)2=4,它的平方根为:±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.【考点】一次函数与二元一次方程(组).【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解易得答案.【解答】解:∵直线y=2x+1与y=﹣x+4的交点是(1,3),∴方程组的解为.故答案为.【点评】本题考查了一次函数与一元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是26.【考点】二元一次方程组的应用.【专题】数字问题.【分析】设这个两位数个位数为x,十位数字为y,根据个位数字比十位数字大4,个位数字与十位数字的和为8,列方程组求解.【解答】解:设这个两位数个位数为x,十位数字为y,由题意得,,解得:,则这个两位数为26.故答案为:26.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是cm.【考点】平面展开-最短路径问题.【分析】将图形展开,可得到AD较短的展法两种,通过计算,得到较短的即可.【解答】解:(1)如图1,BD=BC=6cm,AB=5+10=15cm,在Rt△ADB中,AD==3cm;(2)如图2,AN=5cm,ND=5+6=11cm,Rt△ADN中,AD===cm.综上,动点P从A点出发,在长方体表面移动到D点的最短距离是cm.故答案为:cm.【点评】本题考查了平面展开﹣﹣最短路径问题,熟悉平面展开图是解题的关键.17.(2分)若直线y=kx+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为y=﹣2x+19.【考点】两条直线相交或平行问题.【专题】计算题.【分析】根据两直线平行的问题得到k=﹣2,然后把(5,9)代入y=﹣2x+b,求出b的值即可.【解答】解:根据题意得k=﹣2,把(5,9)代入y=﹣2x+b得﹣10+b=9,所以直线解析式为y=﹣2x+19.故答案为y=﹣2x+19.【点评】本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是(2,1008).【考点】规律型:点的坐标.【分析】由于2016是4的整数倍数,故A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,可见,A2016在x轴上方,横坐标为2,再根据纵坐标变化找到规律即可解答即可.【解答】解:∵2016是4的整数倍数,∴A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2016÷4=504…0,∴A2016在x轴上方,横坐标为2,∵A4、A8、A12的纵坐标分别为2,4,6,∴A2016的纵坐标为2016×=1008.故答案为:(2,1008).【点评】本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【专题】计算题.【分析】(1)先进行二次根式的乘法运算,然后合并即可;(2)利用加减消元法解二元一次方程组.【解答】解:(1)原式=3﹣6﹣3(2),①+②×5得:13y=13,解得y=1,把y=1代入②中得2x﹣1=1,解得x=1,所以原方程组的解是.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.【考点】作图-轴对称变换;全等三角形的性质;作图-平移变换.【分析】(1)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;(2)首先确定A、B、C三点向下平移4个单位长度的对应点的位置,再连接即可;(3)首先确定D点位置,然后再写出坐标即可.【解答】解:(1)(2)如图所示:;(3)(﹣4,﹣1);(﹣2,﹣1);(﹣4,3).【点评】此题主要考查了作图﹣﹣平移变换,以及关于坐标轴对称,全等三角形的判定,关键是正确确定对称点和对应点的位置.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为50人,图①中的值是12.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】计算题.【分析】(1)利用条形统计图得各组的频数,然后把它们相加即可得到抽样调查的学生的总数,再用16除以50即可得到m的值;(2)根据众数和中位数的定义求解;(3根据样本估计总体,用样本中捐款10元所占的百分比表示全校捐款10元的百分比,然后计算1900×32%即可.【解答】解:(1)本次接受随机抽样调查的学生人数为4+16+12+10+8=50(人),m%=×100%=32%;故答案为50;32;(2)本次调查获取的样本数据的众数是10元;中位数是15元;(3)1900×32%=608(人),答:估计该校捐款10元的学生人数有608人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了用样本估计总体、中位数和众数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,根据等量关系为“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,根据这两个等量关系可列方程组,再进行求解即可.(2)求小王每月工资额的范围,需要求助于函数,由(1)知生产A、B的单个时间,又每月工作总时间一定为25×8×60,所以可列一个二元一次方程,又工资计算方法已知,则可利用一个未知量,去表示另一个未知量,得到函数,进行解答.【解答】解:(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,依题意得:,解得:,答:生产一件A种产品需要15分钟,生产一件B种产品需要20分钟.(2)设小王每月生产A、B两种产品的件数分别为m、n,月工资额为w,根据题意得:,即,因为m,n为非负整数,所以0≤m≤800,故当m=0时,w有最大值为1240,当m=800时,w有最小值为1000,则小王每月工资额最少1000元,每月工资额最多1240元.【点评】此题考查了一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,列出方程组,再求解.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.【考点】平行线的判定.【专题】证明题.【分析】先由∠AGD=90°,根据三角形内角和定理得出∠A+∠D=90°,再由∠1=∠D,∠ABF=∠1+∠D,得出∠ABF=2∠D,同理得出∠DCE=2∠A,那么∠DCE+∠ABF=2(∠A+∠D)=180°,根据邻补角定义得出∠ABF+∠DBF=180°,由同角的补角相等得到∠DCE=∠DBF,根据同位角相等,两直线平行得出FB∥EC.【解答】证明:∵∠AGD=90°,∴∠A+∠D=90°,∵∠1=∠D,∠ABF=∠1+∠D,∴∠ABF=2∠D,同理:∠DCE=2∠A,∴∠DCE+∠ABF=2(∠A+∠D)=180°,又∵∠ABF+∠DBF=180°,∴∠DCE=∠DBF,∴FB∥EC.【点评】本题考查了平行线的判定,三角形内角和定理,三角形外角的性质,邻补角定义,补角的性质,根据条件得出∠DCE=∠DBF是解题的关键.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距80千米,客车的速度是80千米/时;(2)小亮在丙地停留48分钟,公交车速度是40千米/时;(3)求两人何时相距28千米?【考点】一次函数的应用;一次函数的图象;待定系数法求一次函数解析式.【专题】数形结合;分类讨论;函数思想;待定系数法;一次函数及其应用.【分析】(1)结合图象知,小明乘客车从丙地到乙地用时30分钟,行驶40千米可得客车速度,小明从甲到乙行驶1小时,可得甲乙间距离;(2)小亮在x=30到达丙地,x=78离开丙地,可得停留时间,根据小亮从丙地返回到甲地用时可得公交车速度;(3)两人相距28千米,即y=28,求出AB、DE函数解析式,令y=28可求得.【解答】解:(1)根据题意可知,当x=30时小明、小亮同时到达丙地,小亮停留在丙地;当x=60时y=40,即小明到达乙地,此时两人间的距离为40千米,∴小明乘客车从丙地到乙地用时30分钟,行驶40千米,∴客车的速度为:40÷0.5=80(千米/小时),∵小明乘客车从甲地到乙地用时60分钟,速度为80千米/小时,∴甲、乙两地相距80千米.(2)当x=78时小亮从丙地出发返回甲地,当x=138时小亮乘公交车从丙地出发返回到甲地,∴小亮在丙地停留78﹣30=48(分钟),公交车的速度为:40÷1=40(千米/小时).(3)①设AB关系式为:y1=k1x+b1由图象可得A(30,0)、B(60,40),代入得:则,解得,所以AB关系式为:(30≤x≤60),令y1=28,有,∴x=51.②设DE关系式为:y2=k2x+b2,∵(千米),∴D(90,48),由图象可得E(138,0),所以,解得:,所以DE关系式为:y2=﹣x+138 (90≤x≤138),令y2=28,有﹣x+138=28,∴x=110.所以两人在9:51和10:50相距28千米.故答案为:(1)80,80;(2)48,40.【点评】本题主要考查一次函数图象及待定系数法求一次函数解析式的能力,读懂函数图象各分段实际意义是关键,属中档题.25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD 的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.【考点】全等三角形的判定与性质;勾股定理.【分析】(1)根据平行线的性质和角平分线的定义求得∠EHF=∠EFH,证得EF=EH,根据∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,得出∠EFG=∠EGF,根据等角对等边求得EG=EF,即可证得EH=EG,即E为HG的中点;(2)连接PH,根据垂直平分线的性质得出PG=PH,在Rt△PFH中,根据勾股定理得:PH2=PF2+HF2,即可得到GP2=PF2+HF2;(3)延长PE,使PE=EM,连接MH,MF,易证得△GPE≌△HME,从而得出GP=MH,∠1=∠2,进而证得EF垂直平分PM,根据垂直平分线的性质得出PF=MF,在RT△MHF中,MF2=MH2+FH2,即可得到PF2=GP2+FH2.【解答】(1)证明:∵AB∥CD,∴∠EHF=∠HFD,∵FH平分∠EFD,∴∠EFH=∠HFD,∴∠EHF=∠EFH,∴EF=EH,∵∠GFH=90°,∴∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,∴∠EFG=∠EGF,∴EG=EF,∴EH=EG,∴E为HG的中点;(2)连接PH,如图②:∵EP⊥AB,又∵E是GH中点,∴PE垂直平分GH,∴PG=PH,在Rt△PFH中,∠PFH=90°,由勾股定理得:PH2=PF2+HF2,∴GP2=PF2+HF2;(3)如图③,延长PE,使PE=EM,连接MH,MF,在△GPE和△HME中,,∴△GPE≌△HME(SAS),∴GP=MH,∠1=∠2,∵GF⊥FH,∴∠1+∠3=90°,∴∠2+∠3=90°,∵EF⊥PM,PE=EM,∴PF=MF,在RT△MHF中,MF2=MH2+FH2,∴PF2=GP2+FH2.【点评】本题考查了全等三角形的判定和性质,线段的垂直平分线的性质,等腰三角形的判定和性质,勾股定理的应用等,找出辅助线,构建等腰三角形是解题的关键.。

2013-20141年度八年级上期期末数学考试(新人教)

2013-2014学年度上期七年级期末调研考试数学试卷考试形式;闭卷 考试时间100分 分值120分一、选择题(每题3分,共18分)1.下列运算正确的是…………………………………………………………( )A. 3412a a a ⋅=B. 3362a a a +=C.320a a ÷=D.2353515x x x ⋅=2.若分式2xx y+中的x , y 都扩大3倍,则分式的值是…………………………( ) A. 不变 B 扩大3倍 C 缩小3倍 D. 扩大9倍3已知(x+m )与(x+3)的乘积中不含x 的一次项,则m 的值是………………( ) A. -3 B . 3 C. 0 D. 14.如图1,P 点在三角形纸片ABC 边上,将点A 折至点P 时,出现折线BD ,其点D 在AC 边上,如图2所示,若△ABC 的面积为8,△DBC 的面积为5,则BP 与PC 的长度之比是( )A. 3:2B. 5:3C. 3: 5D. 13:85.如图,∠MON=40°,P 为∠MON 内一点,A 为OM 上一点,B 为ON 上一点,则当△PAB 的周长取最小值时,∠APB 的度数是………………………………………………………………………( ) A .80° B .100° C . 110° D .120°6.某班同学学习整式乘除这一章后,要带领本组的成员共同研究课题学习,现在全组同学有4个能够完全重合的长方形,长,宽分别为a,b ,在研究的过程中,一位同学用这4个长方形摆成了一个大的正方形,如图所示,由左图至右图,利用其面积的不同表示方法写出一个代数恒等式( ) A 2222=)a ab b a b +++( B. 224()()ab a b a b =+-- C. 2222()a ab b a b -+=- D 22()()=a b a b a b +--.题号 一 二 三总分 16 17 18 19 20 21 22 23得分得 分 评卷人图1 BACPP CA图2OB PANM第4题图第5题图B D学校___________ 班级_____________ 姓名___________ 考试号___________………………………………密…………封…………线…………内…………不…………得…………答…………题………………………………7.如图,是一台球桌面的示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,再经桌边反弹,最后进入球洞的序号是…………………………( )A.1 B .2 C . 5 D. 68.甲做360个零件与乙做480个零件所用的时间相同,已知两个人每天共做140个零件,若设甲 每天做x 个零件,则可列方程……………………………………………………( )A.360480140x x =- B.360480140x x =- C. 360480140x x += D.360480140x x-=二.填空题(每小题3分,共21分)9. 0.00000000098用科学计数法表示为_________________.10.计算:(23)(23)x x +-+= __________________; 11. 已知113x y -=,则2322x xy yx xy y+---= ___________ 12. 若225(3)9a k a +-+是一个完全平方式,则k 的值是_____________________13.某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转。

初中2013-2014学年八年级上期末考试数学试卷及答案

四川省初中2013-2014学年上学期期末考试八年级数学试卷说明:1. 本试卷分为第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷1~2页,第Ⅱ卷3~8页. 请将第Ⅰ卷的正确选项用2B 铅笔填涂在机读答题卡上;第Ⅱ卷用蓝、黑色的钢笔或签字笔解答在试卷上,其中的解答题都应按要求写出必要的解答过程.2. 本试卷满分为100分,答题时间为120分钟.3. 不使用计算器解题.第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,满分36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1. 下列等式成立的是 A. 229)3)(3(y x y x y x -=-+ B. 222)(b a b a +=+C. 1)1)(2(2-+=-+x x x xD. 222)(b a b a -=-2. 下面的五边形、正方形等图形是轴对称图形,且对称轴条数最多的是3. 若一个多边形的外角和与它的内角和相等,则这个多边形是A. 三角形B. 五边形C. 四边形D. 六边形4. 如图,在△ABC 中,AB=AC ,D 是BC 的中点,下列结论不正确的是 A. AD ⊥BC B. ∠B=∠CC. AB=2BDD. AD 平分∠BAC5. 下列等式成立的是 A.9)3(2-=--B. 91)3(2=--C. 14212)(a a=-D. 42221)(b a b a -=----6. 如图,是三条直线表示三条相互交叉的公路,现要建一个中转站,要求它到三条公路的距离相等,则 可供选择的地址有 A. 一处 B. 两处C. 三处D. 四处7. 如图,若△ABC ≌△AEF ,则对于结论:⑴AC=AF; ⑵∠FAB=∠EAB ;⑶ EF=BC; ⑷∠EAB=∠FAC. 其中正确的个数是A. 一个B. 2个C. 3个D. 4个8. 已知a 、b 、c 是三角形的三边,则代数式a 2-2ab +b 2-c 2的值A. 不能确定B. 大于0C. 等于0D. 小于09. 若xy=x -y ≠0,则分式y1-x 1= A.xy1B. y -xC. 1D. -110. 如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若AE=2,当EF+CF 取 最小值时,则∠ECF 的度数为A. 30°B. 22.5°C. 15°D. 45°11. 关于x 的方程112=-+x ax 的解是正数,则a 的取值范围是 A. a >-1B. a <-1且a ≠-2C. a <-1D. a >-1且a ≠012. 如图,△MNP 中,∠P =60°,MN =NP ,MQ ⊥PN 于Q ,延长MN 至G ,取NG=NQ. 若△MNP 的周长为12,MQ=a ,则△MGQ 的周长为 A. 6+2a B. 8+aC. 6+aD. 8+2a中江县初中2013年秋季八年级期末考试数 学 试 题第Ⅱ卷总分表第Ⅱ卷 非选择题(64分)二、填空题(本大题共8个小题,每小题3分,满分24分)只要求填写最后结果.13. 计算:32)2(a -= .14. 当x = 时,分式112+-x x 的值为0.15. 化简:x 1-11-x = . 16. 如图,已知AB =AE ,∠BAD =∠CAE ,要使△ABC ≌△AED ,还需添加一个条件,这个条件可以是 . 17. 如图,在△ABC 中,AB =AC ,∠BAC =120°,D 是BC 的中点,DE ⊥AC. 则AB : AE = . 18. 如图,AB ∥CD ,AO 平分∠BAC ,CO 平分∠ACD ,OE ⊥AC 于点E ,且OE =2. 则AB 与CD 间的距离 为 .19. 已知点M( 2a +1,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是 . 20. 已知a ≠0,S 1=3a ,S 2=13S ,S 3=23S ,…… S 2013=20123S ,则S 2013=. 三、解答题(满分16分)21.(1)计算:2202)21()12(----+;(2)化简:)12(12mmm m m m --÷-+;(3)先化简,再求值:122)12143(22+-+÷---+x x x x x x ,其中x 是不等式组⎩⎨⎧++15<2x >04x 的整数解;(4)已知,21111--+=++n n m m ,且m -n +2≠0 ,试求 mn -m +n 的值.四、解答题(本大题共2个题,其中第22题5分,第23题6分,满分11分)22. 解分式方程:xxx --=+-32431.23. 我市某校为了创建书香校园,去年购进一批图书. 经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.今年文学书和科普书的单价和去年相比保持不变. 该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后最多还能购进多少本科普书?五、解答题(本大题满分6分)24. 如图,在△ABC中,∠BAC=110°,点E、G分别是AB、AC的中点,DE⊥AB交BC于D,FG⊥AC交BC于F,连接AD、AF. 试求∠DAF的度数.六、几何证明题(本大题满分7分)25. 如图,AB =AC ,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE 与CD 相交于点O. ⑴求证:AD =AE ;⑵试猜想:OA 与BC 的位置关系,并加以证明.数学试题参考答案及评分标准一、选择题(本大题共12个小题,每小题3分,满分36分)二、填空题(本大题共8个小题,每小题3分,满分24分) 13. -8a 614. 115. )1(1--x x 或x x --21或21x x -16. 不唯一,如AC=AD 或∠C =∠D 或∠B =∠E (答对一个就给3分)17. 4 : 118. 419. 21-<a <2320. 3a三、解答题(本大题满分16分)21.(每小题4分)计算:(1)2202)21()12(----+ 解原式=1-41-41(注:每项1分) …………………………3分 =21. …………………………………………………………4分 (2)化简:)12(12mmm m m m --÷-+ 解:原式=mm m m m m ---÷-+11)1(2………………………………………………2分=)1(11)1(m m mm m m +-⨯-+-………………………………………………3分=-1. ………………………………………………………………………4分 (3)先化简再求122)12143(22+-+÷---+x x x x x x ,其中x 是不等式组⎩⎨⎧++15<2x >04x 的整数解; 解:原式=[]2)1()1)(1()1(2)1)(1(432+-⋅-++--++x x x x x x x x ……………………1分 =2)1()1)(1(22+-⋅-++x x x x x =11+-x x . …………………………………2分 不等式组⎩⎨⎧++1 5<2x >04x 的解集为-4<x <-2,其整数解为x =-3. …3分当x =-3时,原式=11+-x x =1313+---=2. ……………………………4分 (4)已知,21111--+=++n n m m ,且m -n +2≠0 ,试求 mn -m +n 的值. 解:由已知得:m -n +2=11-n -11+m =)1)(1(2-++-n m n m , …………………2分 ∵m -n +2≠0, ∴1=11-+-n m mn , ……………………………………………………………3分∴ mn -m +n -1=1,∴mn -m +n =2. ………………………………………………………………………4分 四、解答题(本大题共2个题,其中第22题5分,第23题6分,满分11分) 22. 解分式方程:x xx --=+-32431 解:32431--=+-x x x , ………………………………………………………2分 1+4(x -3)=x -2,∴ x =3. ………………………………………………………………………………3分检验:当x =3时,x -3=0. ∴x =3不是原方程的解,∴原方程无实数解. …5分 23. 解:设去年文学书的单价为x 元,则科普书的单价为(x +4)元. 由题意得方程:412000+x =x8000, ……………………………………………2分 解之得: x =8, ………………………………………………………………3分 经检验, x =8是原方程的解,且符合题意. ∴x +4=12,∴去年购进的文学书和科普书的单价分别为8元和12元. ……………………4分 设购进文学书550本后,最多还能购进y 本科普书.由题意得:550×8+12y ≤10000, ………………………………………………5分 ∴y ≤466.66667.由题意,y 取最大整数,∴y =466.答:购进文学书550本后最多还能购进466 本科普书. ………………………6分 五、解答题(本大题满分6分)24. 解:在△ABC 中,∵∠BAC =110°,∴∠B +∠C =180°-110°=70°. ……1分 ∵E 、G 分别是AB 、AC 的中点,又DE ⊥AB ,FG ⊥AC ,∴AD =BD ,AF =CF , ……………………3分 ∴∠BAD =∠B ,∠CAF =∠C , …………4分 ∴∠DAF =∠BAC -(∠BAD +∠CAF)=∠BAC -(∠B +∠C)=110°-70°=40°. ……………………6分注:解法不唯一,参照给分。

华师大版2013-2014学年八年级上数学期末测试卷7

word格式-可编辑-感谢下载支持 八年级上学期期末检测

一、选择题(30103) 1、( )4平方根是

A、2 B、±2 C、2 D、±2 2、( )计算25-38的结果是 A、3 B、7 C、-3 D、7 3、( )分解因式x3-x的结果是 A、x(x2-1) B、x(x-1)2 C、x(x+1)2 D、x(x+1)(x-1) 4、( )在实数4,0,722,3125.0,0.1010010001…,3,2中无理数有 A、0个 B、1个 C、2个 D、3个 5、( )如果nxmx中不含x的项,则m、n满足 0.,.,0.,.nDnmCmBnmA 6、( )如图所示:求黑色部分(长方形)的面积为 A、24 B、30 C、48 D、18 7、( )设三角形的三边分别是下列各组数,则不是直角三角形的一组是 A、3,4,5; B、6,8,10; C、5,12,13; D、5,6,8; 8 ( ).一个等腰三角形的一个角是300,它的一腰上的高与底边的夹角是( ) A、150 B、600 C、 50或600 D、 不确定. 9 ( ) 如图,已知AB=AC,BE=CE,延长AE交BC于D,则图中全等三角形共有 A 1对 B 2对 C、 3对 D、 4对 10.( )如图,在⊿ABC中,AB=AC,且BE=CD,BD=CF,则∠EDF的值是( ) A.180°-2∠B B. 180°-∠B C.∠B D.90°-∠B

第6题 第9题 第10题 二、填空题(30103) 11 计算2(93)(3)xxx 12、若a、b、c是△ABC的三边,且a = 3cm,b = 4 cm,c=5cm ,则△ABC最大边上的高是__________

ABCD

12word格式-可编辑-感谢下载支持 13、用简便方法计算20082-4016×2007+20072的结果是 ____ _.

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识像烛光,能照亮一个人,也能照亮无数的人。--培根
1 / 6
知识像烛光,能照亮一个人,也能照亮无数的人。--培根

2 / 6
知识像烛光,能照亮一个人,也能照亮无数的人。--培根

3 / 6
知识像烛光,能照亮一个人,也能照亮无数的人。--培根

4 / 6
知识像烛光,能照亮一个人,也能照亮无数的人。--培根

5 / 6
知识像烛光,能照亮一个人,也能照亮无数的人。--培根

6 / 6

相关文档
最新文档