3_第2节 匀变速直线运动的规律
匀变速直线运动的规律

§3.1匀变速直线运动的规律【教学目标】1、知识与技能:能根据加速度的概念,推导出匀变速直线运动的速度公式。
能根据平均速度的概念,推导出匀变速直线运动的位移公式。
会运用公式和图象等方法研究匀变速直线运动,了解微积分的思想。
会运用匀变速直线运动规律解决简单的实际问题。
2、过程与方法:通过对观测数据的分析,知道匀变速直线运动的物体在相等的时间内速度的变化相等(即加速度保持不变)从数值运算中的算术平均值运算条件出发,引导学生初步理解匀变速直线运动的平均速度公式。
3、情感态度与价值观:领略运动的艺术美,保持对运动世界的好奇心和探究欲。
【教学重点】重点:探究匀变速直线运动速度与位移的变化规律;难点:用匀变速直线运动的v-t图象求一段时间内的位移【教学仪器】直尺,多媒体【教学过程】(一)引入新课提出问题(实例):一辆小汽车以20m/s的速度行驶,前方50米处正好有一个行人以1.5m/s的速度横穿道路,设路宽6m,问行人会不会有危险?学生分析结果:汽车到达行人位置处只需2.5s,而行人穿越道路需4 s时间,存在相遇的危险。
为了安全,汽车司机应采取什么措施?(让汽车减速)。
在生产、生活中的物体运动较多的是作变速(加速、减速)运动,物体的速度变化存在规律吗?怎样探索运动的规律?这就是我们要探究的问题。
为了降低研究的难度,我们先从变速运动中最简单的匀变速直线运动开始研究。
(二)讲授新课1、匀变速直线运动特点(1)匀变速直线运动特点的介绍引导学生观察P31图3-3、表3-1中的实验数据,直观地得出小车沿直线作匀加速行驶过程中速度和位移随时间的变化情况。
学生交流观察结果(主要有以下几种):(1)小车的速度随时间增大,在相等的时间内速度的变化相等,每秒中速度增加2m/s。
(2)小车的位移随时间增大,后1秒内的位移比前1秒内的的位移大,说明汽车速度越来越大。
(注意:在这个环节中教师要还可提醒学生“相等的时间”可取每1秒为时间单位,也可以取每2秒、每3秒或每4秒等为时间单位,也可以取更短的时间为时间单位,得出的结论也是匀变速直线运动在相等的时间内速度的变化相等。
第2讲 匀变速直线运动的公式及推论

高三物理一轮复习体系建构及重难突破 第二讲 匀变速直线运动的公式及其推论应用知识点一:匀变速直线运动规律(一)规律:匀变速直线运动(1、直线;2、a 为恒量) 1.基本公式:(1)速度公式:Vt=V o+at (Vt Vo a t -=,Vt Vot a-=) (2)位移公式:S=V ot+12at 2(3)速度位移公式:Vt 2-V o 2=2aS (222Vt Vo a x -=,222Vt Vo x a-=)2.推论公式:(1)平均速度公式:2x Vo Vt V t +==(2)中间时刻速度:22t Vo VtV V +==(3)中间位置速度:2x V = (4)相等的时间间隔,相邻的位移差:2x aT =,2()m n x x m n aT -=-3.特殊规律:V o=0,则221,,22Vt at x at Vt ax === (1) 把时间等分:123:::X X X ……=1:4:9…… :::I II III X X X ……=1:3:5:…… 123:::V V V ……=1:2:3:……(2) 把位移等分: 123:::t t t ……=1……:::I II III t t t ……=1::……123:::V V V ……=1……重点突破一:基本公式的应用及技巧1.一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的 ( ) A .位移的大小可能小于3m B .位移的大小可能大于7m C .加速度的大小可能小于4m/s 2 D .加速度的大小可能大于10m/s 22.做匀变速度直线运动物体从A 点到B 点经过的时间t ,物体在A 、B 两点的速度分别为a v 和b v ,物体通过AB 中点的瞬时速度为1v ,物体在2t 时刻的瞬时速度为2v ,则( )A. 若做匀加速运动,则1v >2vB. 若做匀减速运动,则1v >2vC. 不论匀加速运动还是匀减速运动,则1v >2vD. 不论匀加速运动还是匀减速运动,则2v >1v3.在民航和火车站可以看到用于对行李进行安全检查的水平传送带。
匀变速直线运动的规律

1 2 1 s1 = v0t1 + at1 =10×3+ ×(−2)×32 m= 21 m 2 2
汽车只有前5s做匀减速运动,之后停止。 汽车只有前 做匀减速运动,之后停止。在6s内经过的位 做匀减速运动 内经过的位 移为
1 2 1 2 s2 = v0t2 + at2 =10×5+ ×(−2)×5 m= 25m 2 2
2 t 2 0
v0 + vt s= t 2
v0、v由基本公式导出 和 ,五个物理量,仅三个独立的, t、 a、 s和t,五个物理量,仅三个独立的, 在解题时可作为公式使用 已知其中三个即可求另两个 当题目的已知量和未知量都不涉及 加速度 时,应 时间 选择哪道公式? 选择哪道公式?
课本37页例题2 课本37页例题2: 37页例题
例2:一列火车以 :一列火车以30m/s的初速度匀加速从一长直斜坡 的初速度匀加速从一长直斜坡 驶下,经过700m的斜坡后速度达到 的斜坡后速度达到40m/s,求火车在 驶下,经过 的斜坡后速度达到 , 该段运动过程中加速度的大小。 该段运动过程中加速度的大小。 v0=30m/s 求a=? vt=40m/s s=700m 已知v0、vt和s,求a 已知 , 不涉及t 不涉及
下面是某位同学的求解过程: 下面是某位同学的求解过程:
1 2 1 s1 = v0t + at =10×3+ ×(−2)×9 = 21 m 2 2 1 2 1 s2 = v0t + at =10×12+ ×(−2)×144 = −22m 2 2
请同学们讨论这位同学做的是否正确? 请同学们讨论这位同学做的是否正确?
匀变速直线运动 的规律
第二章
知识回顾: 知识回顾:
匀变速直线运动的规律及应用

③
2
解①~③得:t=5 s,x=12.5 m.
答案:12.5 m
类型二:运动学常用的重要推论及其应用 【例 2】 一列火车做匀变速直线运动驶来,一人在轨 道旁边观察火车运动,发现在相邻的两个 10 s 内,火车 从他跟前分别驶过 8 节车厢和 6 节车厢,每节车厢长 8 m (连接处长度不计),求: (1)火车的加速度的大小; (2)人开始观察时火车速度的大小. 思路点拨:抓住相邻的两个 10 s,利用结论求解.
vt/2=v0-aT,
解得 v0=7.2 m/s.
答案:(1)0.16 m/s2 (2)7.2 m/s
方法技巧:正确分析题目中的条件,选择合适的公式或结
论求解是分析运动学问题的前提,再就是必要时要作出运
动草图帮助分析.
针对训练 2-1:两木块自左向右运动,现用高速摄影 机在同一底片上多次曝光,记录下木块每次曝光时的位 置,如图 1-2-3 所示,连续两次曝光的时间间隔是相等 的,由图可知( )
匀变速直线运动flash
2.匀变速直线运动中几个常用的结论
(1)Δx=aT2,即任意相邻相等时间内的位移之差相 等.可以推广到 xm-xn=(m-n)aT2.判断匀变速直线运动
的实验依据.
(2)vt/2= v0 v = x ,即某段时间中间时刻的瞬时
2 t
速度等于该段时间内的平均速度.
(3)某段位移中点的瞬时速度:v =
v=v gt,上升时间 t 上=v / g
0
0
h=v t 1 gt 2
2 0
v2-v02=
2gh,上升最大高度
Hmax=
v2 0
2g
下降过程:自由落体运动(a=g) v= gt
匀变速直线运动规律2

v +v = 5m/s 解:v 中 = 2
2 0 2 t
4
练习3: 练习 : v0=1m/s
a=2.5m/s2
有一个做匀变速直线运动的质点, 有一个做匀变速直线运动的质点, 它在相邻的相等时间内通过位移分别是 24m和64m,连续相等的时间为 ,求 和 ,连续相等的时间为4s, 质点的初速度和加速度大小。 质点的初速度和加速度大小。
练习2: 练习 : 做匀加速直线运动的列车出站时, 做匀加速直线运动的列车出站时,车 头经过站台上的某人时速度为1m/s,车 头经过站台上的某人时速度为 , 尾经过此人时速度为7m/s,若此人站着 尾经过此人时速度为 , 一直未动,则车身中部(中点) 一直未动,则车身中部(中点)经过此人 面前时的速度是多少? 面前时的速度是多少?
2
3.初速度为零的匀变速直线运动的 物体在连续相同时间内位移之比为 奇数比,即: …… s :s :s :
Ⅰ Ⅱ Ⅲ
=1: 3: 5:L L
4.速度为零的匀加速直线运动的物体经历连续相 . 同的位移所需时间之比, 同的位移所需时间之比,即 :
t1 : t2 : t3 :L=1: ( 2 −1 : ( 3 − 2) :L )
5.做匀变速直线运动的物体,在某 段时间中点时刻的瞬时速度等于物 体在这段时间的平均速度,即:
v0 +vt v时中 = =v 2
6.匀变速直线运动的物体,在某段位移中点位置 .匀变速直线运动的物体, 的瞬时速度等于这段位移始末瞬时速度的方均 根速度, 根速度,即:
v +v v位中 = 2
2 0
2 t
1.初速度为零的匀加速直线运动的物体的速度与 时间成正比, 时间成正比,即:
v1 : v2 : v3 :L n =1: 2: 3:Ln v
匀变速直线运动公式、推论推导、及规律总结

1.基本公式 (2)加速度 a = v - v初速度 v 0=0(5)位移公式 s = v t + 122推论 1 做匀变速直线运动的物体在中间时刻的即时速度等于这段时间的平均速度,即v= St 2⇒ v = v + v ⎪ t 2 ⎪ 2 ⎨ 2 ⎪v = v + a ⨯ t ⎪⎩ t2 ⎧2速度和位移关系公式 v 2 = v 2 + 2as 得: ⎪ 2⎪v 2 = v 2+ 2 a ⨯ S⎪⎩ t 22一.基本规律:(1)平均速度 v =stvt 0(1)加速度 a = ttt(3)平均速度 v = v 0 +v2t1(2)平均速度 v = v2 t(4)瞬时速度 v = v + at(3)瞬时速度 v = attt1at 2(4)位移公式 s = at 22.导出公式(6)位移公式 s = v + v v0 t t (5)位移公式 s = t t2 2(7)重要推论 2as = v 2 - v 2t(6)重要推论 2as = v 2t注意:基本公式中(1)式适用于一切变速运动,其余各式只适用于匀变速直线运动。
二.匀变速直线运动的推论及推理对匀变速直线运动公式作进一步的推论,是掌握基础知识、训练思维、提高能力的一个重要途径,掌握运用的这些推论是解决一些特殊问题的重要手段。
t v + v = 0t2推导:设时间为 t ,初速 v ,末速为 v ,加速度为 a ,根据匀变速直线运动的速度公式 v = v + at0 t得:推论 2 做匀变速直线运动的物体在一段位移的中点的即时速度v=sv 2 + v 20 t22推导:设位移为 S ,初速 v ,末速为 v ,加速度为 a ,根据匀变速直线运动的0 t⎪vs = v 0+ 2 a ⨯2t 0 ⎨ s 2 S⇒ v =s2v 2 + v 20 t2经过第二个时间 t 后的速度为 v =2v +at ,这段时间内的位移为 S = v t + at 2 = v t + at 22 2 经过第三个时间 t 后的速度为 v =3v +at ,这段时间内的位移为 S = v t + at 2 = v t+ at 2 2 2 2 2 3 2 32 2 2 2t推论 3 做匀变速直线运动的物体,如果在连续相等的时间间隔 t 内的位移分别为 S 、 S 、 S …… S123n ,加速度为 a,则 ∆S =S 2- S 1 = S 3 - S 2= …… = S n - S推导:设开始的速度是 vn -1= at2经过第一个时间 t 后的速度为 v = v + a t ,这一段时间内的位移为 S = v t + 1 0 1 0 1 2 at 2,1 32 0 2 1 0 1 52 032…………………经过第 n 个时间 t 后的速度为 v =nv +at ,这段时间内的位移为 S =v t +1 a t 2 =v t + n 0 n n -1 02n -1 2at 2则 ∆S = S 2 - S 1 = S 3 - S 2 = …… = S n - Sn -1= at 2点拨:只要是匀加速或匀减速运动,相邻的连续的相同的时间内的位移之差,是一个与加速度 a 与时间 “有关的恒量”.这也提供了一种加速度的测量的方法: 即 a =∆S,只要测出相邻的相同时间内的位移之差 ∆S 和 t ,就容易测出加速度 a 。
2022届高考物理一轮复习 第2讲 匀变速直线运动的规律 讲义
第2讲匀变速直线运动的规律双基知识:一、匀变速直线运动的规律1.基本公式(1)速度公式:v=v0+at。
(2)位移公式:x=v0t+12at2。
(3)速度—位移关系式:v2-v02=2ax。
2.重要推论(1)平均速度:v=v t2=v0+v2,即一段时间内的平均速度等于这段时间中间时刻的瞬时速度,也等于这段时间初、末时刻速度矢量和的一半。
(2)任意两个连续相等时间间隔(T)内的位移之差相等,即Δx=x2-x1=x3-x2=…=x n-x n-1=aT2。
此公式可以延伸为x m-x n=(m-n)aT2,常用于纸带或闪光照片逐差法求加速度。
(3)位移中点速度:v x2=v02+v t22。
[注2] 不论是匀加速直线运动还是匀减速直线运动,均有:v x2>v t2。
(4)初速度为零的匀加速直线运动的比例①1T末,2T末,3T末,…,nT末的瞬时速度之比:v1∶v2∶v3∶…∶v n=1∶2∶3∶…∶n。
②第1个T内,第2个T内,第3个T内,…,第n个T内的位移之比:x1∶x2∶x3∶…∶x n=1∶3∶5∶…∶(2n-1)。
③通过连续相等的位移所用时间之比:t1∶t2∶t3∶…∶t n=1∶(2-1)∶(3-2)∶…∶(n -n-1)。
三、自由落体运动和竖直上抛运动1.自由落体运动(1)条件:物体只受重力,从静止开始下落.(自由落体运动隐含两个条件:初速度为零,加速度为g。
)(2)基本规律 ①速度公式:v =gt . ②位移公式:x =12gt 2.③速度位移关系式:v 2=2gx . (3)伽利略对自由落体运动的研究①伽利略通过逻辑推理的方法推翻了亚里士多德的“重的物体比轻的物体下落快”的结论.②伽利略对自由落体运动的研究方法是逻辑推理―→猜想与假设―→实验验证―→合理外推.这种方法的核心是把实验和逻辑推理(包括数学演算)结合起来. 2.竖直上抛运动(1)运动特点:初速度方向竖直向上,加速度为g ,上升阶段做匀减速运动,下降阶段做自由落体运动. (2)运动性质:匀变速直线运动. (3)基本规律①速度公式:v =v 0-gt ; ②位移公式:x =v 0t -12gt 2.考点一 匀变速直线运动的基本规律及其应用1.解决匀变速直线运动问题的基本思路 画过程示意图→判断运动性质→选取正方向→选用公式列方程→解方程并加以讨论注意:x 、v 0、v 、a 均为矢量,所以解题时需要确定正方向,一般以v 0的方向为正方向.2.匀变速直线运动公式的选用一般问题用两个基本公式可以解决,以下特殊情况下用导出公式会提高解题的速度和准确率;(1)不涉及时间,选择v 2-v 02=2ax ;(2)不涉及加速度,用平均速度公式,比如纸带问题中运用2t v =v =x t 求瞬时速度;(3)处理纸带问题时用Δx =x 2-x 1=aT 2,x m -x n =(m -n )aT 2求加速度. 3.逆向思维法:对于末速度为零的匀减速运动,采用逆向思维法,倒过来看成初速度为零的匀加速直线运动.4.图像法:借助v-t 图像(斜率、面积)分析运动过程.例1我国首艘装有弹射系统的航母已完成了“J -15”型战斗机首次起降飞行训练并获得成功.已知“J -15”在水平跑道上加速时产生的最大加速度为5.0 m/s 2,起飞的最小速度为50 m/s.弹射系统能够使飞机获得的最大初速度为25 m/s ,设航母处于静止状态.求:(1)“J -15”在跑道上至少加速多长时间才能起飞; (2)“J -15”在跑道上至少加速多长距离才能起飞; 答案 (1)5 s (2)187.5 m解析 (1)根据匀变速直线运动的速度公式:v t =v 0+at 得t =v t -v 0a =50-255s =5 s(2)根据速度位移关系式:v t 2-v 02=2ax 得x =v t 2-v 022a =502-2522×5 m =187.5 m1.刹车类问题(1)其特点为匀减速到速度为零后即停止运动,加速度a 突然消失. (2)求解时要注意确定实际运动时间.(3)如果问题涉及最后阶段(到停止)的运动,可把该阶段看成反向的初速度为零的匀加速直线运动. 2.双向可逆类问题(1)示例:如沿光滑斜面上滑的小球,到最高点后仍能以原加速度匀加速下滑,全过程加速度大小、方向均不变.(2)注意:求解时可分过程列式也可对全过程列式,但必须注意x 、v 、a 等矢量的正负号及物理意义.例2汽车以20 m/s 的速度在平直公路上行驶,急刹车时的加速度大小为5 m/s 2,则自驾驶员急踩刹车开始,经过2 s 与5 s 汽车的位移之比为( ) A.5∶4 B.4∶5 C.3∶4 D.4∶3答案 C 解析 汽车速度减为零的时间为:t 0=Δva=0-20-5s =4 s ,2 s 时位移:x 1=v 0t +12at 2=20×2 m -12×5×4 m =30 m ,刹车5 s 内的位移等于刹车4 s 内的位移,为:x 2=0-v 022a =40 m ,所以经过2 s 与5 s 汽车的位移之比为3∶4,故选项C 正确.考点二 匀变速直线运动的推论及其应用1.六种思想方法2.方法选取技巧(1)平均速度法:若知道匀变速直线运动多个过程的运动时间及对应时间内位移,常用此法.(2)逆向思维法:匀减速到0的运动常用此法.例3中国自主研发的“暗剑”无人机,时速可超过2马赫.在某次试飞测试中,起飞前沿地面做匀加速直线运动,加速过程中连续经过两段均为120 m的测试距离,用时分别为2 s和1 s,则无人机的加速度大小是( )A.20 m/s2B.40 m/s2C.60 m/s2D.80 m/s2答案B解析第一段的平均速度v1=xt1=1202m/s=60 m/s;第二段的平均速度v 2=xt2=1201m/s=120 m/s,某段时间内的平均速度等于中间时刻的瞬时速度,两个中间时刻的时间间隔为Δt=t12+t22=1.5 s,则加速度为:a=v2-v1Δt=120-601.5m/s2=40 m/s2,故选B.例4取一根长2 m左右的细线,5个铁垫圈和一个金属盘.在线端系上第一个垫圈,隔12 cm再系一个,以后垫圈之间的距离分别为36 cm、60 cm、84 cm,如图2所示,站在椅子上,向上提起线的上端,让线自由垂下,且第一个垫圈紧靠放在地上的金属盘.松手后开始计时,若不计空气阻力,则第2、3、4、5个垫圈( )A.落到盘上的时间间隔越来越大B.落到盘上的时间间隔相等C.依次落到盘上的速率关系为1∶2∶3∶2D.依次落到盘上的时间关系为1∶(2-1)∶(3-2)∶(2-3) 答案 B考点三 自由落体运动与竖直上抛运动1.竖直上抛运动的重要特性 (1)对称性如图所示,物体以初速度v 0竖直上抛,A 、B 为途中的任意两点,C 为最高点,则:(2)多解性当物体经过抛出点上方某个位置时,可能处于上升阶段,也可能处于下降阶段,形成多解,在解决问题时要注意这个特性。
匀变速直线运动的规律和总结
公式选择的基本方法
题目中所涉及的物理 适宜选用公 没有涉及的
量
式
物理量
v0、v、a、t
v=v0+at
x
v0、a、t、x
x=v0t+at2
v
v0、v、a、x
v2-v=2ax
t
v0、v、t、x
x=
v0 v 2
t
a
例题1:某汽车由静止开始做匀加速直线运 动,其加速度为2m/s2,当汽车的速度变为 10m/s时,求汽车经过的位移?
线运动,都有:vt/2<vx/2
初速度为零的匀加速直线运动的五个推论
1.1T末、2T末、3T末……的速度之比 v1∶v2∶v3∶…vn=1∶2∶3∶…∶n
2.1T内、2T内、3T内……的位移之比 x1∶x2∶x3∶…∶xn=1∶22∶32∶…∶n2
3.第一个T内、第二个T内、第三个T内…的位移之比 xⅠ∶xⅡ∶xⅢ∶…∶xN=1∶3∶5∶…∶(2N-1)
制动后的匀减速运动
s1
发现紧急情况
. 解答3: v/m s-1
v0=30
s1 s2
s2
开始制动
停止
制动后,汽车做匀减速运动.滑行时间为
t2
vt
v0 a
0 30 5
6s
所以汽车行驶的安全车距为
o t1=1s
t2=6s
t/s
s 120m
练习2:汽车在高速公路行驶的速度为108 km/h,若驾
停止
解答2:
汽车原来的行驶速度: v0=108km/h=30m/s,
在反应时间t1=1s内,汽车的
位移
s1=v0t1=30×1m=30m
高三物理一轮 第一章 第二讲 匀变速直线运动的规律及应用课件
三、自由落体运动和竖直上抛运动
1.自由落体运动 (1)条件:物体只在_重__力__作用下,从_静__止__ 开始下落. (2)特点:初速度v0=0,加速度为重力加速 度g的_匀__变__速__直__线___运动.
(2)整个减速过程共用多少时间.
解析: (1)设质点做匀减速运动的加速度大小为 a,初速度为 v0.由于质点停止运动前的最后 1 s 内位移为 2 m,则 x2=12at22,所以 a=2tx222=2×12 2 m/s2=4 m/s2. 质点在第 1 s 内位移为 6 m,x1=v0t1-12at21, 所以 v0=2x12+t1at21=2×62+×41×12 m/s=8 m/s.
(3)基本规律:速度公式 v=__g_t_. 位移公式 h=___12_g_t_2 _. 2.竖直上抛运动规律 (1)特点:加速度为 g,上升阶段做匀__减__速__直__线__运 动,下降阶段做_自__由__落__体___运动. (2)基本规律 速度公式:v=__v__0-__g_t___.
位移公式:h=__v_0_t-__12_g_t_2 _. v20
(2)双向可逆类的运动 例如:一个小球沿光滑斜面以一定初速度 v0 向上运动,到达最高点后就会以原加速度匀加 速下滑,整个过程加速度的大小、方向不变, 所以该运动也是匀变速直线运动,因此求解时 可对全过程列方程,但必须注意在不同阶段 v、 x、a 等矢量的正负号.
二、对推论 Δx=aT2 的拓展 1.公式的适用条件 (1)匀变速直线运动. (2)Δx 为连续相等的相邻时间间隔 T 内的位移 差. 2.进一步的推论:xm-xn=(m-n)aT2 要注意此式的适用条件及 m、n、T 的含义.
匀变速直线运动公式规律总结
匀变速直线运动公式、规律总结一.基本规律:=ts 1. =t v v t 0-(1)加速度 =20t v v + at v v t +=0 2021at t v s +=2 t v v t 20+= t v t 22022v v as t -= 注意:基本公式中(1)式适用于一切变速运动,其余各式只适用于匀变速直线运动..................................。
二.匀变速直线运动的两个重要规律:1.匀变速直线运动中某段时间内中间时刻的瞬时速度等于这段时间内的平均速度: 即2tv =t s 20t v v + 2.匀变速直线运动中连续相等的时间间隔内的位移差是一个恒量:设时间间隔为T ,加速度为a ,连续相等的时间间隔内的位移分别为S 1,S 2,S 3,……S N ; 则S=S 2-S 1=S 3-S 2= …… =S N -S N -1=aT 2注意:设在匀变速直线运动中物体在某段位移中初速度为,末速度为,在位移中点的瞬时速度为2s v ,则中间位置的瞬时速度为2s v =2220t v v + 无论匀加速还是匀减速总有2t v ==20t v v +<2s v =2220t v v +三.自由落体运动和竖直上抛运动:=2tv2tv总结:自由落体运动就是初速度=0,加速度=的匀加速直线运动.(1)瞬时速度gtvt-2021gttvs-=(3)重要推论22vvt-=-总结:竖直上抛运动就是加速度ga-=的匀变速直线运动.四.初速度为零的匀加速直线运动规律:设T为时间单位,则有:(1)1s末、2s末、3s末、…… ns末的瞬时速度之比为:v1∶v2∶v3∶……:vn=1∶2∶3∶……∶n同理可得:1T末、2T末、3T末、…… nT末的瞬时速度之比为:v1∶v2∶v3∶……:vn=1∶2∶3∶……∶n(2)1s内、2s内、3s内……ns内位移之比为:S1∶S2∶S3∶……:S n=12∶22∶32∶……∶n2同理可得:1T内、2T内、3T内……nT内位移之比为:S1∶S2∶S3∶……:S n=12∶22∶32∶……∶n2(3)第一个1s内,第二个2s内,第三个3s内,……第n个1s内的位移之比为:SⅠ∶SⅡ∶SⅢ∶……:S N=1∶3∶5∶……∶(2n-1)同理可得:第一个T内,第二个T内,第三个T内,……第n个T内的位移之比为:SⅠ∶SⅡ∶SⅢ∶……:S N=1∶3∶5∶……∶(2n-1)(4)通过连续相等的位移所用时间之比为:t1∶t2∶t3∶……:t n=1∶(12-)∶(23-)∶………∶(1--nn)课时4:匀速直线运动、变速直线运动基本概念(例题)一.变速直线运动、平均速度、瞬时速度:例1:一汽车在一直线上沿同一方向运动,第一秒内通过5m,第二秒内通过10m,第三秒内通过20m,第四秒内通过5m,则最初两秒的平均速度是_________m/s,则最后两秒的平均速度是_________m/s,全部时间的平均速度是_________m/s.例2:做变速运动的物体,若前一半时间的平均速度为4m/s,后一半时间的平均速度为8m/s,则全程内的平均速度是_________m/s;若物体前一半位移的平均速度为4m/s,后一半位移的平均速度为8m/s,则全程内的平均速度是_________m/s.二.速度、速度变化量、加速度:提示:1、加速度:是表示速度改变快慢的物理量,是矢量。