广平县第八中学八年级数学下册第一章三角形的证明1等腰三角形第3课时等腰三角形的判定教案新版北师大版9

合集下载

北师版八年级数学下册课件 第1章 三角形的证明第1课时 等腰三角形的性质

北师版八年级数学下册课件 第1章 三角形的证明第1课时 等腰三角形的性质

∵AB=AC, AD⊥BC(已知), ∴BD=CD, ∠1=∠2(等腰三角形三线合一).
新课讲解
例1 如图,在△ABC中 ,AB=AC,点D在AC上, 且BD=BC=AD,求△ABC各角的度数.
分析:(1)找出图中所有相等的角;
∠A=∠ABD, ∠C=∠BDC=∠ABC;
(2)指出图中有几个等腰三角形? △ABC, △ABD, △BCD. B
∴ △BAD ≌ △CAD (SAS).
∴ ∠B= ∠C (全等三角形的对应角相等).
新课讲解
想一想:由△BAD≌ △CAD,除了可以得到∠B= ∠C之 外,你还可以得到那些相等的线段和相等的角?和你的 同伴交流一下,看看你有什么新的发现?
A
解:∵△BAD≌ △CAD,由全等三角形的
性质易得
BD=CD,∠ADB=∠ADC,∠BAD=∠CAD.
新课讲解
定理 两角分别相等且其中一组等角的对边相等的两 个三角形全等(AAS). 根据全等三角形的定义,我们可以得到: 全等三角形的对应边相等,对应角相等.
2 等腰三角形的性质及其推论
新课讲解
问题1:你还记得我们探索过的等腰三角形的性质吗?
定理:等腰三角形的两个底角相等.
推论:等腰三角形顶角的平分线,底边上的中线 底边 上的高互相重合(三线合一).
方法一:作底边上的中线
已知: 如图,在△ABC中,AB=AC. 求证: ∠B= ∠C.
证明: 取BC的中点D,连接AD.
新课讲解
A
在△BAD和△CAD中
AB=AC ( 已知 ), BD=CD ( 已作 ), AD=AD (公共边),
B DC
还有其他的 证法吗?
∴ △BAD≌ △CAD (SSS).

北师大版数学八年级下册 第一章 三角形的证明 1.1 等腰三角形 等腰三角形的判定 含答案

北师大版数学八年级下册 第一章  三角形的证明  1.1  等腰三角形   等腰三角形的判定 含答案

第一章三角形的证明 1.1 等腰三角形等腰三角形的判定一、单项选择题1. 下面几个三角形中,不可能是等腰三角形的是( )A. 有两个内角分别为110°和40°的三角形B. 有两个内角分别为75°,75°的三角形C.有一个外角为100°,一个内角为50°的三角形D.有一个外角为80°,一个内角为100°的三角形2. 下列能判定△ABC为等腰三角形的是( )A.∠A=30°,∠B=60° B.∠A=50°,∠B=80°C.∠A=2∠B=80° D.AB=3,BC=6,周长为133. 如图,在△ABC和△DCB中,∠A=∠D=72°,∠ACB=∠DBC=36°,则图中等腰三角形的个数是( )A.2 B.3 C.4 D.54. 在如图所示的三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是( )A.(1)(2)(3)B.(1)(2)(4)C.(2)(3)(4)D.(1)(3)(4)5. 如图所示的正方形网格中,网格线的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是( )A.6 B.7 C.8 D.96. 如图,四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是( )7. 如图,在△ABC中,BC=5 cm,BP,CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是( )A. 5cmB. 6cmC. 8cmD. 10cm二、填空题8. 如第1-2题图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.则图中等腰三角形有_____.9. 如第1-3题图,已知OC平分∠AOB,CD∥OB,则△COD是_____三角形.10.如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F 处,若∠B=50°,则∠BDF的度数是_____.11.如图,在△ABC中,BP平分∠CBA,AP平分∠CAB,且DE∥AB,若CB=12,AC=18,则△CDE的周长是_____.12. 如图,∠B=∠C=36°,∠ADE=∠AED=72°,则图中的等腰三角形的个数为个。

北师大版八年级数学下册第一章 三角形的证明 1.1 等腰三角形 第1课时课件 (共23张PPT)

北师大版八年级数学下册第一章 三角形的证明 1.1 等腰三角形 第1课时课件 (共23张PPT)

∴BD=CD
在△ABD和△ACD中: AB=AC
B DC
BD=CD AD=AD
AB还可以看作△ABC 的什么特殊线段?
∴△ABD≌△ACD (SSS) ∴ ∠B=∠C
新知归纳 等腰三角形的性质定理:
等腰三角形的两个底角相等。(等边对等角)
新知探究 Ⅲ、你能证明“等腰三角形的两个底角相等”吗?
已知:如图,在△ABC中,AB=AC。
两个三角形全等。(AAS)
合作交流
ⅰ、根据三角形全等的定义,对应的边、对应的 角有怎样的关系?
A
A1
B
C
AB=A1B1 AC=A1C1 BC=B1C1
B1
C1
∠A=∠A1 ∠B=∠B1 ∠C=∠C1
新知归纳 全等三角形的性质定理:
全等三角形的对应边相等,对应角相等。
合作交流 ⅱ、你还记得我们探索过的等腰三角形的性质吗?
A.1个
B.2个
C.3个
D.4个
【解析】选C.由已知条件可得△ACF≌△ABE,进而可 推理证得△MCD≌△NBD,得CD=DB,故②错,同 样的办法可证得①③④正确.
2.已知等腰三角形的两条边长分别是7和3,第三条边
的长是( )
A.8
B.7
C.4
D.3
【解析】选B.因为三角形是等腰三角形,所以第三条
课堂小结 1、定理:
两角分别相等且其中一组等角的对边相等的 两个三角形全等。(AAS)
2、全等三角形的性质定理:
全等三角形的对应边相等,对应角相等。 3、等腰三角形的性质定理:
等腰三角形的两个底角相等。(等边对等角) 4、推论:
等腰三角形顶角的平分线、底边上的中线及 底边上的高互相重合。(三线合一)

最新-北师大版八年级数学下册 第一章 三角形的证明 第一节 等腰三角形 课件(共18张PPT)-PPT文档资料

最新-北师大版八年级数学下册 第一章 三角形的证明 第一节 等腰三角形 课件(共18张PPT)-PPT文档资料

∴ ∠B=∠C (全等三角形的对应角相等)
等腰三角形的性质
定理: 等腰三角形的两个底角相等. (等边对等角) 已知:如图, 在△ABC中, AB=AC.
求证:∠B=∠C.
A
证法二: 证明:作△ABC顶角∠A的角平分线AD. B D C
在△ABD和△ACD中
∵ AB=AC, ∠BAD=∠CAD, AD=AD
A
C=__3_0_ __
(3)若BC=AC, __A___= ___B___.
2.
A
已知BAC
108 ,
AB

B
AC,
AD

C
BC
求 BAD 的度数。
54
B
D
C
1.本节课你学到了什么知识? 2.你学到什么数学思想方法? 3.小组活动中你有什么收获?
A.将本节课所学知识归纳整理在一张A4纸 上。
重合的三角形 边

SSS SAS ASA AAS
称为全等三角
形。 全等三角形对 全等三角形 基本事实 需要证明
应边相等。 对应角相等。无需证明
无需证明
由定义推出
推论 两角及其中一角的对边对应相等的两个三 角形全等.(AAS) 如何证明一个命题形式给出的结论?
一、画出图形。 二、写出已知和求证。 三、证明。
直。
4.两条直线被第三条直线所截,如果同位角相等,那么
这两条直线平行.
5.过直线外一点有且只有一条直线与这条直线平行.
6.两边及其夹角对应相等的两个三角形全等.(SAS)
7.两角及其夹边对应相等的两个三角形全等.(ASA)
8.三边对应相等的两个三角形全等.(SSS)
全等三角形

(八年级数学)第一章 三角形的证明 —— 等腰三角形(2)

(八年级数学)第一章 三角形的证明 —— 等腰三角形(2)

1.1等腰三角形(2)一、交流预习1、已知△ABC 和△DEF ,请按要求画图:(1)AB 和DE 边上的高; (2)BC 和EF 边上的中线;(3)∠C 和∠F 的平分线。

2、等腰△ABC 中,若有一个角等于50°,则其余两个角的度数分别是_________________。

二、互助探究1、如图,等腰△ABC 中,AB =AC 。

分别画出两个底角的平分线并量一量,然后完成证明。

证明:等腰三角形两个底角的平分线相等。

已知:如图,在△ABC 中,____________,BD 和CE 是△ABC 的_____________。

求证:__________________ 证明:请继续研究等腰三角形两腰上的中线、高分别有什么关系?请师友组之间交流证明方法。

2、已知:等腰三角形ABC ,AB =AC 。

求证:AB CAB C3、已知:等腰三角形ABC ,AB =AC 。

求证: 结论:4、等边三角形是_____的等腰三角形,它的三边______,三个内角______并且都等于_____。

已知:如图,在△ABC 中,AB =AC =BC 。

求证:∠A =∠B =∠C =600 证明:三、互助提高参考上面证明“等腰三角形两底角的平分线相等”的证明方法完成下面练习。

如图,在△ABC 中,AB =AC ,点D 、E 分别在边AC 和AB 上, (1)如果∠ABD =31∠ABC ,∠ACE =31∠ACB 。

求证:BD =CE 。

(2)如果AD =21AC ,AE =21AB 。

求证:BD =CE 。

ABCABC五、巩固练习1、求等边三角形两条中线相交所成锐角的度数。

已知:等边△ABC中,,求:的度数。

画图2、如图,在△ABC中,D,E是BC的三等分点,且△ADE是等边三角形,求∠BAC的度数。

1、如图,AB=AC,BD平分∠ABC,交AC于D。

若BD=BC,求∠A的度数,2、已知,在△ABC 中,AB =AC ,D 为BC 的中点,点E ,F 分别在AB 和AC 上,并且AE =AF ,求证:DE =DF 。

北师版八年级数学下册优秀作业课件(BS) 第一章 三角形的证明 第3课时 等腰三角形的判定与反证法

北师版八年级数学下册优秀作业课件(BS) 第一章 三角形的证明 第3课时 等腰三角形的判定与反证法


8.(8分)用反证法证明:等腰三角形的两底角必为锐角. 证明:假设等腰三角形的底角∠B,∠C都是大于等于90°的角, 则____∠__B__+__∠__C_≥_1_8_0_°________, 从而__∠__A_+__∠__B_+__∠__C_______>180°, 这与__三__角__形__内__角__和__为__1_8_0_°__矛盾. 则假设___不__成__立_____, 所以∠B,∠C只能为__锐__角. 故等腰三角形的两底角必为锐角.
6.(4 分)用反证法证明“ 5 是无理数”时,最恰当的证法是先假设 5 是( C ) A.分数 B.整数 C.有理数 D.实数
7.(4 分)(驻马店月考)在用反证法证明命题“在一个三角形中, 至少有一个内角大于或等于 60°”时, 应首先假设___在__一__个__三__角__形__中___,__三__个__内__角__都__小__于__6_0_°_________.
数学 八年级下册 北师版
第一章 三角形的证明
1.1 等腰三角形
第3课时 等腰三角形的判定与反证法
1.(4 分)在△ABC 中,已知∠B=∠C,则下列关系正确的是( B) A.AB=BC B.AB=AC C.BC=AC D.∠A=60° 2.(4 分)满足下列哪组条件可使△ABC 是等腰三角形( D ) A.∠A=50°,∠B=60° B.∠A=50°,∠B=100° C.∠A+∠B=90°
第10题图
11.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O.过点O作DE∥BC, 分别交AB,AC于点D,E.若AB=5,AC=4,则△ADE的周长是__9__.
第11题图
三、解答题(共36分) 12.(10分)如图,在四边形ABDC中,AB=AC,∠B=∠C,求证:BD=CD.

北师大版八年级数学下册《等腰三角形》三角形的证明PPT课件(第1课时)

北师大版八年级数学下册《等腰三角形》三角形的证明PPT课件(第1课时)

问题1、结论(2)用文字如何表述?
B
D
C
等腰三角形的两个底角相等(简写“等边对等角”)
问题2、结论(3)、(4)、(5)用一句话可以归纳为什 么?
讲授新课
性质一:
等腰三角形的两个底角相等 (简写成“等边对等角”).
A
几何书写:
∵AB=AC(已知) ∴ B= C(等边对角)
B
C
讲授新课
推论:
等腰三角形 顶角的平分线、底边上的
2、有哪些相等的角? ∠ABC=∠ACB=∠BDC ∠
3、A=这∠两A组BD相等的角之间还有什 么关系?
∠BDC=2∠ A
∠ABC+∠ACB+∠ A=180 °
课堂练习
6 已知:如图,房屋的顶角∠BAC=100 º, 过屋顶A的立柱
AD BC , 屋椽AB=AC. 求顶架上∠B、∠C、∠BAD、
∠CAD的度数.
A
解:在△ABC中
∵AB=AC,
∴∠B=∠C(等边对等角)
B
D
C
又∵∠BAC=100 º
∴∠B=∠C= 180°-∠BAC=40°(三角形内角和定理) 又∵AD⊥BC,
∴∠BAD=∠CAD(等腰三角形顶角的平分线与底边 上的高互相重合).
∴∠BAD=∠CAD=50°
课堂练习
(1)猜想一下,等腰三角形底边中点到两腰的距离
相等吗?如图将等腰三角形ABC沿对称轴折叠,观察
DE与DF的关系,并证明你的结论。
A
已知:在△ABC中,AB=AC.点D
是BC的中点,DE⊥AB于E,
DF⊥AC于F
E
F 求证:DE=DF
BD C
(2)如果DE、DF分别是AB,AC上的中线或∠ADB, ∠ADC的平分线,它们还相等吗?由等腰三角形是轴对

北师大初二数学8年级下册 第1章(三角形的证明)1.1 第1课时 等腰三角形的性质 课件(26张)

北师大初二数学8年级下册 第1章(三角形的证明)1.1 第1课时  等腰三角形的性质 课件(26张)
第一章 三角形的证明
1 第1课时 等腰三角形的性质
知识回顾
问题 在八上的“平行线的证明”这一章中,我们
学了哪8条基本事实? 1.两点确定一条直线; 2.两点之间线段最短; 3.同一平面内,过一点有且只有一条直线与已知直线垂直; 4.同位角相等,两直线平行; 5.过直线外一点有且只有一条直线与这条直线平行; 6.两边及其夹角分别相等的两个三角形全等; 7.两角及其夹边分别相等的两个三角形全等; 8.三边分别相等的两个三角形全等.
∴BD⊥AC( 垂直的定义 ).
课堂小结
等腰 三角 形的 性质
等边对等角 三线合一
注意是指同一个三角形中
注意是指顶角的平分线,底边 上的高和中线才有这一性质. 而腰上的高和中线与底角的 平分线不具有这一性质.
A
12 B DC
例题讲解
例2 如图①,点D、E在△ABC的边BC上,AB=AC. (1)若AD=AE,求证:BD=CE; (2)若BD=CE,F为DE的中点,如图②,求证:AF⊥BC.
证明:(1)如图①,过A作AG⊥BC于G.
A
∵AB=AC,AD=AE,
∴BG=CG,DG=EG, ∴BG-DG=CG-EG, ∴BD=CE;
AAS:两角分别相等且其中一组等角的对边相等的两个三角形全等.
你能运用基本事实及已经学过的定理证明上面的推论吗?
已知:如图,∠A=∠D,∠B=∠E,BC=EF.
A
D
求证:△ABC≌△DEF.
证明:∵∠A+∠B+∠C=180°,
B CE F
∠D+∠E+∠F=180°(三角形内角和等于180°),
∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3课时等腰三角形的判定1.探索等腰三角形的判定定理.2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.了解反证法的基本证明思路,并能简单应用.4.培养学生的逆向思维能力.重点掌握等腰三角形的判定定理,并会运用其进行简单的证明.难点理解和掌握反证法的证明方法.一、复习导入问题1:等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?问题2:我们是如何证明上述定理的?问题3:我们把性质定理的条件和结论反过来还成立吗?如果一个三角形有两个角相等,那么这两个角所对的边也相等吗?二、探究新知1.等腰三角形的判定定理师:你能证明“有两个角相等的三角形是等腰三角形”吗?并与同伴交流.处理方式:学生在练习本上画图,写出已知、求证;小组之间探究讨论多种证明方法.已知:如图,在△ABC中,∠B=∠C.求证:AB=AC.证法一:过点A作BC的垂线,垂足为D.∵AD⊥BC ,∴∠BDA=∠CDA= 90°.在△ABD和△ACD中,∵∠B=∠C, ∠BDA=∠CDA, AD=AD ,∴△ABD≌△ACD (AAS).∴ AB=AC (全等三角形的对应边相等).证法二:作∠BAC的角平分线,交BC于点D.∵AD平分∠BAC,∴∠BAD=∠CAD.在△ABD和△ACD中,∵∠B=∠C, ∠BAD=∠CAD, AD=AD,∴△ABD≌△ACD (AAS) .∴AB=AC(全等三角形的对应边相等).(教师引导学生类比“等边对等角”的证明方法正确地添加辅助线,规范地写出推理过程,鼓励学生一题多解.)师指出:作△ABC的边BC的中线,虽然把△ABC分成了两个三角形,这两个三角形对应两边及其一边的对角分别相等,这是“SSA”,是不能证明两个三角形全等的.因此,这种添加辅助线的方法是不可行的.引导学生归纳等腰三角形的判定定理:定理:有两个角相等的三角形是等腰三角形.简述为:等角对等边.2.反证法课件出示:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗?如果成立,你能证明它吗?处理方法:学生积极动脑思考,小组交流讨论.师引导:用综合法证明本结论是行不通的,因此,我们要探究一种新方法来完成它的证明,下面来看小明同学的想法:(课件出示)如图,在△ABC中,已知∠B≠∠C,此时AB与AC要么相等,要么不相等.假设AB=AC,那么根据“等边对等角”定理可得∠C=∠B,但已知条件是∠B≠∠C.这与已知条件∠B≠∠C相矛盾,因此AB≠AC.师:你能理解他的推理过程吗?师出示“反证法”的定义:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.三、举例分析例1 已知:如图,AB=DC,BD=CA,BD与CA相交于点E.求证:△AED是等腰三角形.证明:∵AB=DC,BD=CA,AD=DA ,∴△ABD≌△DCA.∴∠ADB=∠DAC(全等三角形的对应角相等).∴AE=DE(等角对等边).∴△AED是等腰三角形.例2 (课件出示教材第9页例3)处理方法:学生独立完成,教师点评.四、练习巩固1.如果三角形的一个外角是130°,且它恰好等于一个不相邻的内角的2倍,那么这个三角形是( )A.钝角三角形B.直角三角形C.等腰三角形D.等边三角形2.如图,在△ABC中,∠B=∠C=40°,D,E是BC上两点,且∠ADE=∠AED=80°,则图中共有等腰三角形( )A.6个B.5个C.4个D.3个,第2题图) ,第3题图) 3.如图,已知△ABC中,CD平分∠ACB交AB于点D,又DE∥BC,交AC于点E,若DE =4 cm,AE=5 cm,则AC等于( )A.5 cm B.4 cm C.9 cm D.1 cm五、课堂小结通过本节课的学习,你有什么收获?六、课外作业1.教材第9页“随堂练习”第1、2题.2.教材第9~10页习题1.3第1~4题.本节课的主要内容是探索等腰三角形的判定定理,在复习性质定理的基础上,引导学生反过来思考猜想新的命题,并进行证明.这样可以发展学生的逆向思维能力,同时引入反证法的基本证明思路,学习与运用反证法也成为本课时的教学任务之一.第4章一次函数一、选择题(共26小题)1.2017年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.B.C.D.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B.C.D.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是()A.B.C.D.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B.C.D.11.函数y=的图象为()A.B.C.D.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤314.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A. B.C. D.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B.C.D.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A. B.C.D.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟20.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米21.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时22.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A.B.C.D.23.若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或﹣24.已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.825.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B.1 C.2 D.326.如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降二、填空题(共4小题)27.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是℉.28.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.29.已知函数,那么= .30.如图,根据所示程序计算,若输入x=,则输出结果为.第4章一次函数参考答案与试题解析一、选择题(共26小题)1.2017年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【专题】动点型.【分析】根据在电脑上打字录入这篇文稿,录入字数增加,因事暂停,字数不变,继续录入并加快了录入速度,字数增加,变化快,可得答案.【解答】解:A.暂停后继续录入并加快了录入速度,字数增加,故A不符合题意;B.字数先增加再不变最后增加,故B不符合题意错误;C.开始字数增加的慢,暂停后再录入字数增加的快,故C符合题意;D.中间应有一段字数不变,不符合题意,故D错误;故选:C.【点评】本题考查了函数图象,字数先增加再不变最后增加的快是解题关键.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.B.C.D.【考点】函数的图象.【分析】根据匀速行驶,可得路程随时间匀速增加,根据原地休息,路程不变,根据加速返回,可得路程随时间逐渐减少,可得答案.【解答】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选:C.【点评】本意考查了函数图象,根据题意判断路程与时间的关系是解题关键,注意休息时路程不变.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.【考点】函数的图象.【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【解答】解:因为开始以正常速度匀速行驶﹣﹣﹣停下修车﹣﹣﹣加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选:D.【点评】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B.C.D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.【考点】函数的图象.【分析】根据函数图象的纵坐标,可得答案.【解答】解:由函数图象的纵坐标,得>>,故选:B.【点评】本题考查了函数图象,利用了有理数大大小比较.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟【考点】函数的图象.【分析】根据图象可以确定小强离公共汽车站2公里,步行用了多长时间,等公交车时间是多少,两人乘公交车运行的时间和对应的路程,然后确定各自的速度.【解答】解:A、依题意得小强从家到公共汽车步行了2公里,故选项正确;B、依题意得小强在公共汽车站等小明用了10分钟,故选项正确;C、公交车的速度为15÷=30公里/小时,故选项正确.D、小强和小明一起乘公共汽车,时间为30分钟,故选项错误;故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】根据出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米;经过三小时,货车到达乙地距离变为零,故而得出答案.【解答】解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C.【点评】本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】立方体的上下底面为正方形,立方体的高为x,则得出y﹣x=2x,再得出图象即可.【解答】解:正方形的边长为x,y﹣x=2x,∴y与x的函数关系式为y=x,故选:B.【点评】本题考查了一次函数的图象和综合运用,解题的关键是从y﹣x等于该立方体的上底面周长,从而得到关系式.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】生活中比较运动快慢通常有两种方法,即比较相同时间内通过的路程多少或通过相同路程所用时间的多少,但统一的方法是直接比较速度的大小.【解答】解:根据题中信息可知,相同的路程,跑步比漫步的速度快;在一定时间内没有移动距离,则速度为零.故小华的爷爷跑步到公园的速度最快,即单位时间内通过的路程最大,打太极的过程中没有移动距离,因此通过的路程为零,还要注意出去和回来时的方向不同,故B符合要求.故选B.【点评】此题考查函数图象问题,关键是根据速度的物理意义和比较物体运动快慢的基本方法.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】开始一段的弹簧称的读数保持不变,当铁块进入空气中的过程中,弹簧称的读数逐渐增大,直到全部进入空气,重量保持不变.【解答】解:根据铁块的一点过程可知,弹簧称的读数由保持不变﹣逐渐增大﹣保持不变.故选:A.【点评】本题考查了函数的概念及其图象.关键是根据弹簧称的读数变化情况得出函数的图象.11.函数y=的图象为()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】从x<0和x>0两种情况进行分析,先化简函数关系式再确定函数图象即可.【解答】解:当x<0时,函数解析式为:y=﹣x﹣2,函数图象为:B、D,当x>0时,函数解析式为:y=x+2,函数图象为:A、C、D,故选:D.【点评】本题考查的是函数图象,利用分情况讨论思想把函数关系式进行正确变形是解题的关键,要能够根据函数的系数确定函数的大致图象.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.【考点】函数的图象.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为C.故选C.【点评】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤3【考点】函数的图象.【分析】根据图象,找到y的最高点是(﹣2,3)及最低点是(1,0),确定函数值y的取值范围.【解答】解:∵图象的最高点是(﹣2,3),∴y的最大值是3,∵图象最低点是(1,0),∴y的最小值是0,∴函数值y的取值范围是0≤y≤3.故选:D.【点评】本题考查了函数的图象,解答本题的关键是会观察图象,找到y的最高点及最低点.14.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点【考点】函数的图象.【分析】根据给出的函数图象对每个选项进行分析即可.【解答】解:从图象可以看出,甲、乙两人进行1000米赛跑,A说法正确;甲先慢后快,乙先快后慢,B说法正确;比赛到2分钟时,甲跑了500米,乙跑了600米,甲、乙两人跑过的路程不相等,C说法不正确;甲先到达终点,D说法正确,故选:C.【点评】本题考查的是函数的图象,从函数图象获取正确的信息是解题的关键.15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A. B.C. D.【考点】函数的图象.【分析】根据容器内的水匀速流出,可得相同时间内流出的水相同,根据圆柱的直径越长,等体积的圆柱的高就越低,可得答案.【解答】解:圆柱的直径较长,圆柱的高较低,水流下降较慢;圆柱的直径变长,圆柱的高变低,水流下降变慢;圆柱的直径变短,圆柱的高变高,水流下降变快.故选:A.【点评】本题考查了函数图象,利用了圆柱的直径越长,等体积的圆柱的高就越低.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B.C.D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器容器最小,用时最短,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器较粗,那么用时较短.故选B.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A. B.C.D.【考点】函数的图象;中心投影.【专题】压轴题;数形结合.【分析】根据中心投影的性质得出小红在灯下走的过程中影长随路程之间的变化,进而得出符合要求的图象.【解答】解:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l 与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选:C.【点评】此题主要考查了函数图象以及中心投影的性质,得出l随S的变化规律是解决问题的关键.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程的增加幅度会变大一点.据此即可选择.【解答】解:由题意知,前1小时路程随时间增大而增大,1小时后路程的增加幅度会变大一点.故选:C.【点评】本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()。

相关文档
最新文档