高中数学必修一高一数学第一章(第课时)四种命题(二)公开课教案课件课时训练练习教案课件

合集下载

高中数学必修一第一章 一公开课教案课件课时训练练习教案课件

高中数学必修一第一章 一公开课教案课件课时训练练习教案课件

1.2 函数及其表示 1.2.1 函数的概念[学习目标] 1.理解函数的概念,了解构成函数的三要素.2.能正确使用区间表示数集.3.会求一些简单函数的定义域、函数值.[知识链接]1.在初中,学习过正比例函数、反比例函数、一次函数、二次函数等,它们的表达形式分别为y =kx (k ≠0),y =kx (k ≠0),y =ax +b (a ≠0),y =ax 2+bx +c (a ≠0).2.反比例函数y =kx (k ≠0)在x =0时无意义.[预习导引] 1.函数的概念 (1)函数的定义:设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . (2)函数的定义域与值域:函数y =f (x )中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集. 2.区间概念(a ,b 为实数,且a <b )定义 名称 符号 数轴表示{x |a ≤x ≤b } 闭区间 [a ,b ] {x |a <x <b } 开区间 (a ,b ) {x |a ≤x <b } 半开半闭区间 [a ,b ) {x |a <x ≤b }半开半闭区间(a ,b ]3.定义 R {x |x ≥a } {x |x >a } {x |x ≤a } {x |x <a } 符号(-∞,+∞)[a ,+∞)(a ,+∞)(-∞,a ](-∞,a )4.函数相等如果两个函数定义域相同,并且对应关系完全一致,我们称这两个函数相等.要点一函数概念的应用例1设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N的函数关系的有()A.0个B.1个C.2个D.3个答案 B解析①错,x=2时,在N中无元素与之对应,不满足任意性.②对,同时满足任意性与唯一性.③错,x=2时,对应元素y=3∉N,不满足任意性.④错,x=1时,在N中有两个元素与之对应,不满足唯一性.规律方法 1.判断一个对应关系是不是函数关系的方法:(1)A,B必须都是非空数集;(2)A中任意一个数在B中必须有并且是唯一的实数和它对应.注意:A中元素无剩余,B中元素允许有剩余.2.函数的定义中“任意一个x”与“有唯一确定的y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”而不能是“一对多”.跟踪演练1下列对应或关系式中是A到B的函数的是()A.A∈R,B∈R,x2+y2=1B.A={1,2,3,4},B={0,1},对应关系如图:C.A=R,B=R,f:x→y=1 x-2D.A=Z,B=Z,f:x→y=2x-1答案 B解析对于A项,x2+y2=1可化为y=±1-x2,显然对任意x∈A,y值不唯一,故不符合.对于B项,符合函数的定义.对于C项,2∈A,但在集合B中找不到与之相对应的数,故不符合.对于D 项,-1∈A ,但在集合B 中找不到与之相对应的数,故不符合. 要点二 求函数的定义域 例2 求下列函数的定义域: (1)y =(x +1)2x +1-1-x ;(2)y =x +1|x |-x.解 (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧ x +1≠0,1-x ≥0,即⎩⎪⎨⎪⎧x ≠-1,x ≤1.所以函数的定义域为{x |x ≤1,且x ≠-1}. (2)要使函数有意义,必须满足|x |-x ≠0,即|x |≠x , ∴x <0.∴函数的定义域为{x |x <0}.规律方法 1.当函数是由解析式给出时,求函数的定义域就是求使解析式有意义的自变量的取值集合,必须考虑下列各种情形:(1)负数不能开偶次方,所以偶次根号下的式子大于或等于零;(2)分式中分母不能为0;(3)零次幂的底数不为0;(4)如果f (x )由几部分构成,那么函数的定义域是使各部分都有意义的实数的集合;(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况.2.求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示. 跟踪演练2 (1)y =(x +1)0x +2(2)y =2x +3-12-x +1x. 解 (1)由于00无意义, 故x +1≠0,即x ≠-1. 又x +2>0,x >-2, 所以x >-2且x ≠-1.所以函数y =(x +1)0x +2的定义域为{x |x >-2,且x ≠-1}.(2)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0,解得-32≤x <2,且x ≠0,所以函数y =2x +3-12-x +1x的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪-32≤x <2,且x ≠0. 要点三 求函数值例3 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f [g (3)]的值. 解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2, ∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f [g (3)]=f (11)=11+11=112.规律方法 求函数值时,首先要确定出函数的对应法则f 的具体含义,然后将变量代入解析式计算,对于f [g (x )]型的求值,按“由内到外”的顺序进行,要注意f [g (x )]与g [f (x )]的区别. 跟踪演练3 已知函数f (x )=x +1x +2. (1)求f (2);(2)求f [f (1)]. 解 ∵f (x )=x +1x +2,∴(1)f (2)=2+12+2=34.(2)f (1)=1+11+2=23,f [f (1)]=f ⎝⎛⎭⎫23=23+123+2=58.1.下列图形中,不可能是函数y =f (x )的图象的是( )答案 B解析 根据函数的存在性和唯一性(定义)可知,B 不正确.2.函数f (x )=x -1x -2的定义域为( ) A .[1,2)∪(2,+∞) B .(1,+∞) C .[1,2) D .[1,+∞) 答案 A解析 由题意可知,要使函数有意义,需满足⎩⎪⎨⎪⎧x -1≥0,x -2≠0,即x ≥1且x ≠2.3.已知f (x )=x 2+x +1,则f [f (1)]的值是( ) A .11 B .12 C .13 D .10 答案 C解析 f [f (1)]=f (3)=9+3+1=13.4.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )2答案 D解析 A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.5.集合{x |-1≤x <0,或1<x ≤2}用区间表示为________. 答案 [-1,0)∪(1,2]解析 结合区间的定义知,用区间表示为[-1,0)∪(1,2].1.对函数相等的概念的理解:(1)函数有三个要素:定义域、值域、对应关系.函数的定义域和对应关系共同确定函数的值域,因此当且仅当两个函数的定义域和对应关系都分别相同时,这两个函数才是同一个函数. (2)定义域和值域都分别相同的两个函数,它们不一定是同一函数,因为函数对应关系不一定相同.如y =x 与y =3x 的定义域和值域都是R ,但它们的对应关系不同,所以是两个不同的函数.2.区间实质上是数轴上某一线段或射线上的所有点所对应的实数的取值集合,即用端点所对应的数、“+∞”(正无穷大)、“-∞”(负无穷大)、方括号(包含端点)、小圆括号(不包含端点)等来表示的部分实数组成的集合.如{x |a <x ≤b }=(a ,b ],{x |x ≤b }=(-∞,b ]是数集描述法的变式.一、基础达标1.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了 答案 C解析 根据从集合A 到集合B 函数的定义可知,强调集合A 中元素的任意性和集合B 中对应元素的唯一性,所以集合A 中的多个元素可以对应集合B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,x ∈A ,还可以是x →x 2,x ∈A . 2.函数y =1-x +x 的定义域是( ) A .{x |x ≤1} B .{x |x ≥0}C .{x |x ≥1,或x ≤0}D .{x |0≤x ≤1} 答案 D解析 由⎩⎪⎨⎪⎧1-x ≥0,x ≥0,得0≤x ≤1.3.下列函数完全相同的是( ) A .f (x )=|x |,g (x )=(x )2 B .f (x )=|x |,g (x )=x 2 C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3答案 B解析 A 、C 、D 的定义域均不同. 4.函数y =x +1的值域为( ) A .[-1,+∞) B .[0,+∞) C .(-∞,0] D .(-∞,-1] 答案 B解析 由于x +1≥0,所以函数y =x +1的值域为[0,+∞). 5.已知函数f (x )=2x -1,则f (x +1)等于( ) A .2x -1 B .x +1 C .2x +1 D .1 答案 C解析 f (x +1)=2(x +1)-1=2x +1.6.设函数f (x )=41-x ,若f (a )=2,则实数a =________.答案 -1解析 由f (a )=2,得41-a =2,解得a =-1.7.求下列函数的定义域: (1)f (x )=1x +1; (2)y =x 2-1+1-x 2; (3)y =2x +3; (4)y =x +1x 2-1.解 (1)要使函数有意义,即分式有意义,则x +1≠0,x ≠-1.故函数的定义域为{x |x ≠-1}.(2)要使函数有意义,则⎩⎪⎨⎪⎧ x 2-1≥0,1-x 2≥0,即⎩⎪⎨⎪⎧x 2≥1,x 2≤1.所以x 2=1,从而函数的定义域为{x |x =±1}={1,-1}. (3)函数y =2x +3的定义域为{x |x ∈R }.(4)因为当x 2-1≠0,即x ≠±1时,x +1x 2-1有意义,所以原函数的定义域是{x |x ∈R ,且x ≠±1}.二、能力提升8.下列各组函数中,f (x )与g (x )表示同一函数的是( ) A .f (x )=x -1与g (x )=x 2-2x +1 B .f (x )=x 与g (x )=x 2xC .f (x )=x 与g (x )=3x 3 D .f (x )=x 2-4x -2与g (x )=x +2答案 C解析 A 选项中,f (x )与g (x )的对应关系不同,它们不表示同一函数;B 、D 选项中,f (x )与g (x )的定义域不同,它们不表示同一函数.9.已知函数f (x )的定义域为(-1,1),则函数g (x )=f ⎝⎛⎭⎫x 2+f (x -1)的定义域是________. 答案 (0,2)解析 由题意知⎩⎪⎨⎪⎧-1<x 2<1,-1<x -1<1,即⎩⎪⎨⎪⎧-2<x <2,0<x <2.∴0<x <2. 10.设f (x )=2x 2+2,g (x )=1x +2,则g [f (2)]=________. 答案112解析 ∵f (2)=2×22+2=10, ∴g [f (2)]=g (10)=110+2=112.11.已知f (x )=1x +2(x ≠-2,且x ∈R ),g (x )=x 2+1(x ∈R ).(1)求f (2),g (1)的值; (2)求f (g (2))的值; (3)求f (x ),g (x )的值域.解 (1)∵f (x )=1x +2,∴f (2)=12+2=14;又∵g (x )=x 2+1,∴g (1)=12+1=2. (2)f [g (2)]=f (22+1)=f (5)=15+2=17.(3)f (x )=1x +2的定义域为{x |x ∈R ,且x ≠-2}, 由函数图象知y ≠0,∴值域是(-∞,0)∪(0,+∞). g (x )=x 2+1的定义域是R , 由二次函数图象知最小值为1. ∴值域是[1,+∞). 三、探究与创新12.若f (x )的定义域为[-3,5],求φ(x )=f (-x )+f (x )的定义域.解 由f (x )的定义域为[-3,5],得φ(x )的定义域需满足⎩⎪⎨⎪⎧ -3≤-x ≤5-3≤x ≤5,即⎩⎪⎨⎪⎧-5≤x ≤3,-3≤x ≤5.解得-3≤x ≤3.所以函数φ(x )的定义域为[-3,3].13.已知函数f (x )=x 21+x 2.(1)求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13的值; (2)求证f (x )+f ⎝⎛⎭⎫1x 是定值. (1)解 ∵f (x )=x 21+x 2,∴f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1. f (3)+f ⎝⎛⎭⎫13=321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)证明 f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1.活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。

【2019版新教材】高中数学A版必修第一册第一章全章节教案教学设计+课后练习及答案(名师推荐精编版)

【2019版新教材】高中数学A版必修第一册第一章全章节教案教学设计+课后练习及答案(名师推荐精编版)

【新教材】人教统编版高中数学A版必修第一册第一章教案教学设计+课后练习及答案1.1 《集合的概念》教案教材分析集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础.许多重要的数学分支,都是建立在集合理论的基础上.此外,集合理论的应用也变得更加广泛.教学目标【知识与能力目标】1.通过实例,了解集合的含义,体会元素与集合的属于关系;2.知道常用数集及其专用记号;3.了解集合中元素的确定性、互异性、无序性;4.会用集合语言表示有关数学对象;5.培养学生抽象概括的能力.【过程与方法目标】1.让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.2.让学生归纳整理本节所学知识.【情感态度价值观目标】使学生感受学习集合的必要性和重要性,增加学生对数学学习的兴趣.教学重难点【教学重点】集合的含义与表示方法.【教学难点】对待不同问题,表示法的恰当选择.课前准备学生通过预习,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标.教学过程(一)创设情景,揭示课题请分析以下几个实例:1.正整数1,2,3,;2.中国古典四大名著;3.2018足球世界杯参赛队伍;4.《水浒》中梁山108 好汉;5.到线段两端距离相等的点.在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体.(二)研探新知1.集合的有关概念(1)一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集).思考:上述5 个实例能否构成集合?如果是集合,那么它的元素分别是什么?练习1:下列指定的对象,是否能构成一个集合?①很小的数②不超过30 的非负实数③直角坐标平面的横坐标与纵坐标相等的点④ 的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2 的整数⑧正三角形全体(2)关于集合的元素的特征(a)确定性:设A一个给定的集合,对于一个具体对象a,则a或者是集合A 的元素,或者不是集合 A 的元素,两种情况必有一种且只有一种成立.(b)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.一元素.(c)无序性:集合中的元素是没有顺序关系的,即只要构成两个集合的元素一样,我们称这两个集合是相等的,跟顺序无关.(3)思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题.答案:(a)把3-11内的每一个偶数作为元数,这些偶数全体就构成一个集合.(b)不能组成集合,因为组成它的元素是不确定的.( 4)元素与集合的关系;(a)如果a是集合A的元素,就说a属于(belongto) A,记作a € A(b)如果a不是集合A的元素,就说a不属于(not belong to) A,记作a A例如:A表示方程x2=1的解. 2 A, 1CA( 5)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合.(a)列举法:把集合中的元素一一列举出来,并用花括号”。

1.2.1命题(教学课件)——高一上学期数学湘教版(2019)必修第一册

1.2.1命题(教学课件)——高一上学期数学湘教版(2019)必修第一册
义更为清楚严谨后,叫作逻辑用语.
二 命题
这种判断可能成立,也可能不成立,两者必居其一且仅居其一的语句叫作命题.
成立的命题叫作真命题,不成立的命题叫作假命题.
数学中暂时不知道真假的命题可以叫作猜想.
高中数学
必修第一册
湖南教育版
即时巩固
1.给出下列语句,其中不是命题的是 (

① 是无限循环小数.②垂直于同一条直线的两条直线一定平行吗?③当 = 2时,3 > 0.
与¬是相互的,其中一个必为真,一个必为假.
名师点拨
写命题的否定时常用的否定词语
原词

大于(>)
小于(<)
等于(=)
否定词语
不是
不大于(≤)
不小于(≥)
不等于(≠)
切记:大于的否定不是小于;小于的否定不是大于.
即时巩固
命题“若 2 − 2 − 3=0, = 3或 = −1”的否定是( D)
第1章
1.2
常用逻辑用语
第1课时 命题
高中数学
必修第一册
湖南教育版
学习目标
1.了解逻辑用语的概念及其意义和用途.
2.了解命题的概念,会判断一些简单命题的真假.
3.理解命题的否定,能够对命题进行否定.
核心素养:逻辑推理、数学抽象
高中数学
必修第一册
湖南教育版
新知学习
一 逻辑用语
在数学乃至科学中常常用于引入概念、表述规律、推导定理法则或交流信息的词语,经过规范化使之意
2
取值范围.
解: 由
2a 1
2
1
≥ 0,解得 ≥ − 2 .
若关于的方程x2 + 2 − = 0有实数根,则Δ = (2)2 + 4 ≥ 0,

新版高一数学必修第一册第一章全部课件

新版高一数学必修第一册第一章全部课件
综上可知,a=0.
解题方法(根据集合中元素的特性求解字母取值(范围)的3个步骤)
自主预习,回答问题
阅读课本3-5页,思考并完成以下问题
1.集合有哪两种表示方法?它们如何定义?
2.它们各自有什么特点?
3.它们使用什么符号表示?
要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
知识清单
C.0
D.0 或 1


5
19
1 2
2





(2)设 ∈ x x -ax- =0 ,则集合 x x - x-a=0
2
2
2


中所有元素之积为________.
)



[ 解析]
(1)当 a=0 时,原方程变为 2x+1=0,
1
此时 x=- ,符合题意;
2
(2)坐标平面内第一象限的点的集合;
(3)大于 4 的所有偶数.
[ 解]
(1)根据被除数=商×除数+余数,可知此集合表示为{x|x
=3n+1,n∈N}.
(2)第一象限内的点的横、纵坐标均大于零,故此集合可表
示为{(x,y)|x>0,y>0}.
(3)偶数可表示为 2n,n∈Z,又因为大于 4,故 n≥3,从
∴a≠1;
当 a=-1 时,集合 A 含有两个元素 1,-1,符合元素的互
异性.∴a=-1.
[ 答案]
-1
[ 一题多变]
1.[ 变条件] 本例若将条件“1∈A”改为“2∈A”,其他条件不变,
求实数 a 的值.
解:若 2∈A,则 a=2 或 a2=2,即 a=2,或 a= 2,或 a

人教版高一数学 A版 必修1 第一章《1.2.1 函数的概念》教学课件

人教版高一数学 A版 必修1 第一章《1.2.1 函数的概念》教学课件

a2 1 a 1
注:f (a)表示当自变量的值x a时的函数值,
是一个常量.f (a)是f ( x)的一个特殊值
练习
求下列函数的定义域
(1) f ( x) 1 x2
(2) f ( x) x 3
(3) f ( x) x 20 (4) f ( x) x 3+ 1
x2
解:(1)由题意可得 x 2 0
的集合。
例2、下列函数中哪个与函数y x相等? (1) y ( x )2;(2)y 3 x3 ; (3) y x2;(4)y x2 ;
x
结论:若两个函数的定义域相同,且对应关系完全一致, 则两个函数相等。
五、课堂小结 1、函数的概念:
设A、B是非空数集,如果按照某种确定的对应关 系f,使对于集合A中的任意一个数x,在集合B中 都有唯一确定的数f(x)和它对应,就称 f: A→B为从集合A到集合B的一个函数,记作:
• [答案] (1)①③不是 ②④是 (2)①⑤
• [解析] (1)①A中的元素0在B中没有对应元 素,故不是A到B的函数;
• ②对于集合A中的任意一个整数x,按照对应 关系f:x→y=x2,在集合B中都有唯一一个 确定的整数x2与之对应,故是集合A到集合B 的函数;
• ③A中元素负整数没有平方根,故在B中没有 对应的元素,故此对应不是A到B的函数;
图象法
请仿照实例1、2描述恩格尔系数和时间(年)的关系。
A ={1991,1992,2993,1994,1995,1996,1997,1998,1999,2000,2001} B={53.8,52.9,50.1,49.9, 48.6,46.4,44.5,41.9,39.2,37.9}
问题数学意义:对于数集A中的任意一个时刻t,按照 表格,在数集B中都有唯一的恩格尔系数与之对应.

高一数学 1.7 四种命题(2)教案

高一数学 1.7 四种命题(2)教案

1.7 四种命题(2)教学目的:1.理解四种命题的关系,并能利用这个关系判断命题的真假2.理解反证法的基本原理;掌握运用反证法的一般步骤;并能用反证法证明一些命题;3.培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想教学重点:理解四种命题的关系教学难点:逆否命题的等价性授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:学生在初中数学中,学习过简单的命题(包括原命题与逆命题)知识,掌握了简单的推理方法(包括对反证法的了解).由此,这一大节首先讲述四种命题及其相互关系,并且在初中的基础上,结合四种命题的知识,进一步讲解反证法.然后,通过若干实例,讲述了充分条件、必要条件和充要条件的有关知识.这一大节的重点是充要条件.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.(初中数学中有关反证法的内容,要求比较低,并且基本没有涉及代数命题到高中数学学习的需要,结合四种命题及其关系进行讲授学习反证法,一是要注意加强对有关代数命题的训练,二是教学要求要适当,对反证法的掌握,还有待于随着学习的深入,逐步提高教科书中反证法涉及代数命题的例、习题,是属于初中范围的,比较简单.因此,这些题目都可以用直接的方法进行证明,不一定用反证法,选取这些题,主要是为了让学生熟悉反证法)反证法在初中教科书中指出:从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法教学过程:一、复习引入:四种命题及其形式原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互原命题:若p 则q ; 逆命题:若q 则p ;否命题:若−p 则−q ; 逆否命题:若−q 则−p.二、讲解新课:1.四种命题的相互关系互逆命题、互否命题与互为逆否命题都是说两个命题的关系,若把其中一个命题叫做原命题时,另一个命题就叫做原命题的逆命题、否命题与逆否命题.因此,四种命题之间的相互关系,可用右下图表示:2.四种命题的真假关系一个命题的真假与其他三个命题的真假有如下三条关系: ①、原命题为真,它的逆命题不一定为真 ②、原命题为真,它的否命题不一定为真 ③、原命题为真,它的逆否命题一定为真 3.反证法:要证明某一结论A 是正确的,但不直接证明,而是先去证明A 的反面(非A )是错误的,从而断定A 是正确的即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法4.反证法的步骤:(1)假设命题的结论不成立,即假设结论的反面成立(2)从这个假设出发,通过推理论证,得出矛盾(3)由矛盾判定假设不正确,从而肯定命题的结论正确注意:可能出现矛盾四种情况: ①与题设矛盾;②与反设矛盾;③与公理、定理矛盾④在证明过程中,推出自相矛盾的结论三、范例例1.判断以下四种命题的真假原命题:若四边形ABCD 为平行四边形,则对角线互相平分 真逆命题:若四边形ABCD 对角线互相平分,则它为平行四边形; 真 否命题:若四边形ABCD 不是为平行四边形,则对角线不平分; 真 逆否命题:若四边形ABCD 对角线不平分,则它不是平行四边形; 真 归纳小结:(学生回答,教师整理补充)(1)原命题为真,它的逆命题不一定为真;(2)原命题为真,它的否命题不一定为真;(3)原命题为真,它的逆否命题一定为真结论:两个互为逆否的命题同真或同假(如原命题和它的逆否命题,逆命题和否命题),其余情况则不一定同真或同假(如原命题和逆命题,否命题和逆否命题等),这时称互为逆否的两个命题等价,即原命题⇔逆否命题例2.(课本第32页例2)设原命题是“当c>0时,若a>b,则ac>bc”,写出它的逆命题、否命题与逆否命题,并分别判断它们的真假.分析:“当c>0时”是大前提,写其他命题时应该保留,原命题的条件是a>b,结论是ac>bc.解:逆命题:当c>0时,若ac>bc,则a>b.它是真命题;否命题:当c>0时,若a≤b,则ac≤bc.它是真命题;逆否命题:当c>0时,若ac≤bc,则a≤b.它是真命题.练习:课本第32页练习:1,2.答案:1.(1)正确;(2)正确.2.(1)逆命题:两个全等三角形的三边对应相等.逆命题为真;否命题:三边不对应相等的两个三角形不全等.否命题为真;逆否命题:两个不全等的三角形的三边不对应相等.逆否命题为真.(2) 逆命题:若a+c>b+c,则a>b.逆命题为真.否命题:若a≤b,则a+c≤b+c.否命题为真.逆否命题:若a+c≤b+c,则a≤b.逆否命题为真.a>.例3.(课本第32页例3)用反证法证明:如果a>b>0,那么b证明:假设a不大于b,则或者a<b,或者a=b.∵a>0,b>0,∴a<b⇒a a<b a,a b<b b⇒aba<,bab<⇒a<b;a>.a=b⇒a=b.这些都同已知条件a>b>0矛盾,∴b证法二(直接证法)()()b a b a b a -+=-, ∵a>b>0,∴a - b>0即()()0>-+b a b a ,∴0>-b a ∴b a >例4(课本第33页例4)用反证法证明:圆的两条不是直径的相交弦不能互相平分.已知:如图,在⊙O 中,弦AB 、CD 交于P ,且AB 、CD 不是直径.求证:弦AB 、CD 不被P 平分.分析:假设弦AB 、CD 被P 平分,连结OP 后,可推出AB 、CD 都与OP 垂直,则出现矛盾.证明:假设弦AB 、CD 被P 平分,由于P 点一定不是圆心O ,连结OP ,根据垂径定理的推论,有OP ⊥AB ,OP ⊥CD ,即过点P 有两条直线与OP 都垂直,这与垂线性质矛盾.∴弦AB 、CD 不被P 平分.四、小结:四种命题之间的相互关系和真假关系反证法的基本原理及其四个步骤五、练习:课本第33页 练习:1,2.提示:1.设b2-4ac ≤0,则方程没有实数根,或方程有两个相等的实数根,得出矛盾.2.设∠B ≥900,则∠C+∠B ≥1800,得出矛盾.补充题:1.命题“若 x = y 则 |x| = |y|”写出它的逆命题、否命题、逆否命题,并判断它的真假解:逆命题:若 |x| = |y| 则 x = y (假,如 x = 1, y = -1) 否命题:若 x ≠ y 则 |x| ≠|y| (假,如 x = 1, y = -1) 逆否命题:若 |x| ≠|y| 则 x ≠ y (真)2.写出命题:“若 xy = 6则 x = 3且 y = 2”的逆命题否命题逆否命题,并判断它们的真假解:逆命题:若 x = 3 且 y = 2 则 x + y = 5 (真)否命题:若 x + y ≠ 5 则 x ≠ 3且y≠2 (真)逆否命题:若 x ≠ 3 或y≠2 则 x + y ≠5 (假)六、作业:课本第33-34页习题1.7中3,4 ,5.补充题:1.若a2能被2整除,a是整数,求证:a也能被2整除.证:假设a不能被2整除,则a必为奇数,故可令a=2m+1(m为整数),由此得a2=(2m+1)2=4m2+4m+1=4m(m+1)+1,此结果表明a2是奇数,这与题中的已知条件(a2能被2整除)相矛盾,∴a能被2整除.七、板书设计(略)八、课后记:小故事:三个古希腊哲学家,由于争论和天气炎热感到疲倦了,于是在花园里的一棵大树下躺下来休息一会,结果都睡着了.这时一个爱开玩笑的人用炭涂黑了他们的前额.三个人醒来以后,彼此看了看,都笑了起来.但这并没引起他们之中任何一个人的担心,因为每个人都以为是其他两人在互相取笑.这时其中有一个突然不笑了,因为他发觉自己的前额也给涂黑了.那么他是怎样觉察到的呢?你能想出来吗?答案:为了方便,用甲、乙、丙分别代表三个科学家,并不妨设甲已发觉自己的脸给涂黑了.那么甲这样想:“我们三个人都可以认为自己的脸没被涂黑,如果我的脸没被涂黑,那么乙能看到(当然对于丙也是一样),乙既然看到了我的脸没给涂黑,同时他又认为他的脸也没给涂黑,那么乙就应该对丙的发笑而感到奇怪.因为在这种情况下(甲、乙的脸都是干净的),丙是没有可笑的理由了.然而现在的事实是乙对丙的发笑并不感到奇怪,可见乙是在认为丙在笑我.由此可知,我的脸也给涂黑了.这里应着重指出的是,甲并没有直接看到自己的脸是否给涂黑了,他是根据乙、丙两人的表情进行分析、思考,而说明了自己的脸给涂黑了.简单地说,甲是通过说明脸被涂黑了的反面—没被涂黑是错误的,从而觉察了自己的脸被涂黑了.因此这是一种间接的证明方法.显然这种证明方法也是不可缺少的.像这样,为了说明某一个结论是正确的,但不从正面直接说明,而是通过说明它的反面是错误的,从而断定它本身是正确的方法,就叫做“反证法“.。

人教A版高中数学高一《1.1命题及其关系》导学案

人教A版高中数学高一《1.1命题及其关系》导学案

§1.1命题及其关系(第1课时)[自学目标]:1.判断命题及命题真假。

2.能写出四种命题。

[重点]:四种命题[难点]:判断命题真假[教材助读]:1.命题:2.真命题:3.假命题:4所有的命题都具由和两部分构成,若p 则q通常,我们把这种形式的命题中的p叫做命题的 ,q叫做命题的 .[预习自测]1下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.2判断下列语句是否为命题?是真命题还是假命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.请你将预习中未能解决的问题和有疑惑的问题写下来,待课堂上与老师和同学探究解决。

[合作探究展示点评]探究一:若p 则q形式,命题真假1.指出下列命题中的条件p和结论q,并判断各命题的真假.(1)若整数a能被2整除,则a是偶数.(2)若四边行是菱形,则它的对角线互相垂直平分.(3)若a>0,b>0,则a+b>0.(4)若a>0,b>0,则a+b<0.(5)垂直于同一条直线的两个平面平行探究二:四种命题1.下列四个命题中,命题(1)与命题(2)、(3)、(4)的条件与结论之间分别有什么关系?(1)若f(x)是正弦函数,则f(x)是周期函数.(2)若f(x)是周期函数,则f(x)是正弦函数.(3)若f(x)不是正弦函数,则f(x)不是周期函数.(4)若f(x)不是周期函数,则f(x)不是正弦函数.2归纳:原命题:若P,则q.则:逆命题:否命题:逆否命题:[当堂检测]1.把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:(1)面积相等的两个三角形全等。

2021-2022年高一数学上 第一章:1.7.1四种命题优秀教案

2021-2022年高一数学上 第一章:1.7.1四种命题优秀教案

2021年高一数学上第一章:1.7.1四种命题优秀教案一、导入新课1、两个命题中, 如果第一个命题的条件(或题设) 是第二个命题的结论, 且第一个命题的结论是第二个命题的条件, 那么这两个命题叫做互逆命题;如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题。

例如, 如果原命题是(1)同位角相等,两直线平行;它的逆命题是(2)两直线平行, 同位角相等.命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?(1)同位角相等, 两直线平行;(2)两直线平行, 同位角相等.再看下面两个命题:(3)同位角不相等, 两直线不平行;(4)两直线不相等,同位角不平行.在命题(1)与命题(3)中,一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题.(1)同位角相等, 两直线平行;(4)两直线不相等, 同位角不平行.在命题(1)与命题(4)中,一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题;如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆否命题。

一般地, 用p和q分别表示原命题的条件和结论, 用﹁p和﹁q分别表示p和q的否定. 于是四种命题的形式就是:原命题若p则q;逆命题若q则p;否命题若﹁ p则﹁ q;逆否命题若﹁q 则﹁ p;例1 把下列命题改写成“若p则q”的形式,并写出它们们的逆命题、否命题与逆否命题:(1)负数的平方是正数;(2)正方形的四条边相等.分析:关键是找出原命题的条件p与结论q.解: (1) 原命题可以写成: 若一个数是负数,则它的平方是正数.逆命题 :若一个数的平方是正数,则它是负数否命题: 若一个数不是负数,则它的平方不是正数.逆否命题: 若一个数的平方不是正数, 则它不是负数.(2)正方形的四条边相等(2) 原命题可以写成: 若一个四边形是正方形,则它的四条边相等.逆命题 :若一个四边形的四条边相等, 则它是正方形.否命题: 若一个四边形不是正方形, 则它的四条边不相等.逆否命题: 若一个四边形的四条边不相等, 则它不是正方形.课堂练习: 课本第30页二、四种命题的关系画出关系图:(略)练习、写出下列各命题的逆命题、否命题、逆否命题,并判断真假.1、若 a = 0, 则 ab = 0 .2、负数的立方是负数.3、若 x<0,则x>1.4、质数一定是奇数.总结上例四种命题的真假关系原命题的真假与其他三种命题的真假有什么关系? 1.原命题为真,它的逆命题不一定为真.2.原命题为真,它的否命题不一定为真.3.原命题为真,它的逆否命题一定为真.四、四种命题与集合的联系命题:若x>1,则x>0. 语句p: x>1;语句q:x>0令A={x| x>1}; B={x| x>0};即 A={x| p(x)为真}; B={x| q(x)为真}集合A包含于集合B,集合B不包含于集合A,B的补集包含于A的补集,B的补集不包含于A的补集所以:“若p,则q” 为真命题;“若q ,则p”为假命题;“若﹁ p,则﹁q”为假命题;“若﹁q ,则﹁p”为真命题;课堂练习:课本P32习题1.7 第4题:写出下列命题的其它三种命题,并判断真假.(1)若a+5是无理数, 则a是无理数.(2)矩形的两条对角线相等.课堂小结:1、写出四种命题时,需准确找出原命题的因果关系,即找出条件与结论.将命题写成“若……,则……”的形式;2、互为逆否的两个命题的真假值相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:1.7 四种命题(2)教学目的:1.理解四种命题的关系,并能利用这个关系判断命题的真假2.理解反证法的基本原理;掌握运用反证法的一般步骤;并能用反证法证明一些命题;3.培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想教学重点:理解四种命题的关系教学难点:逆否命题的等价性授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:学生在初中数学中,学习过简单的命题(包括原命题与逆命题)知识,掌握了简单的推理方法(包括对反证法的了解).由此,这一大节首先讲述四种命题及其相互关系,并且在初中的基础上,结合四种命题的知识,进一步讲解反证法.然后,通过若干实例,讲述了充分条件、必要条件和充要条件的有关知识.这一大节的重点是充要条件.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.(初中数学中有关反证法的内容,要求比较低,并且基本没有涉及代数命题到高中数学学习的需要,结合四种命题及其关系进行讲授学习反证法,一是要注意加强对有关代数命题的训练,二是教学要求要适当,对反证法的掌握,还有待于随着学习的深入,逐步提高教科书中反证法涉及代数命题的例、习题,是属于初中范围的,比较简单.因此,这些题目都可以用直接的方法进行证明,不一定用反证法,选取这些题,主要是为了让学生熟悉反证法)反证法在初中教科书中指出:从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法教学过程:一、复习引入:四种命题及其形式原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互原命题:若p 则q ; 逆命题:若q 则p ;否命题:若−p 则−q ; 逆否命题:若−q 则−p.二、讲解新课:1.四种命题的相互关系互逆命题、互否命题与互为逆否命题都是说两个命题的关系,若把其中一个命题叫做原命题时,另一个命题就叫做原命题的逆命题、否命题与逆否命题.因此,四种命题之间的相互关系,可用右下图表示:2.四种命题的真假关系一个命题的真假与其他三个命题的真假有如下三条关系: ①、原命题为真,它的逆命题不一定为真 ②、原命题为真,它的否命题不一定为真 ③、原命题为真,它的逆否命题一定为真 3.反证法:要证明某一结论A 是正确的,但不直接证明,而是先去证明A 的反面(非A )是错误的,从而断定A 是正确的即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法4.反证法的步骤:(1)假设命题的结论不成立,即假设结论的反面成立(2)从这个假设出发,通过推理论证,得出矛盾(3)由矛盾判定假设不正确,从而肯定命题的结论正确注意:可能出现矛盾四种情况: ①与题设矛盾;②与反设矛盾;③与公理、定理矛盾④在证明过程中,推出自相矛盾的结论三、范例例1.判断以下四种命题的真假原命题:若四边形ABCD 为平行四边形,则对角线互相平分 真逆命题:若四边形ABCD 对角线互相平分,则它为平行四边形; 真 否命题:若四边形ABCD 不是为平行四边形,则对角线不平分; 真 逆否命题:若四边形ABCD 对角线不平分,则它不是平行四边形; 真 归纳小结:(学生回答,教师整理补充)(1)原命题为真,它的逆命题不一定为真;(2)原命题为真,它的否命题不一定为真;(3)原命题为真,它的逆否命题一定为真结论:两个互为逆否的命题同真或同假(如原命题和它的逆否命题,逆命题和否命题),其余情况则不一定同真或同假(如原命题和逆命题,否命题和逆否命题等),这时称互为逆否的两个命题等价,即原命题⇔逆否命题例2.(课本第32页例2)设原命题是“当c>0时,若a>b,则ac>bc”,写出它的逆命题、否命题与逆否命题,并分别判断它们的真假.分析:“当c>0时”是大前提,写其他命题时应该保留,原命题的条件是a>b,结论是ac>bc.解:逆命题:当c>0时,若ac>bc,则a>b.它是真命题;否命题:当c>0时,若a≤b,则ac≤bc.它是真命题;逆否命题:当c>0时,若ac≤bc,则a≤b.它是真命题.练习:课本第32页练习:1,2.答案:1.(1)正确;(2)正确.2.(1)逆命题:两个全等三角形的三边对应相等.逆命题为真;否命题:三边不对应相等的两个三角形不全等.否命题为真;逆否命题:两个不全等的三角形的三边不对应相等.逆否命题为真.(2) 逆命题:若a+c>b+c,则a>b.逆命题为真.否命题:若a≤b,则a+c≤b+c.否命题为真.逆否命题:若a+c≤b+c,则a≤b.逆否命题为真.a>.例3.(课本第32页例3)用反证法证明:如果a>b>0,那么b证明:假设a不大于b,则或者a<b,或者a=b.∵a>0,b>0,∴a<b⇒a a<b a,a b<b b⇒aba<,bab<⇒a<b;a>.a=b⇒a=b.这些都同已知条件a>b>0矛盾,∴b证法二(直接证法)()()b a b a b a -+=-, ∵a>b>0,∴a - b>0即()()0>-+b a b a ,∴0>-b a ∴b a >例4(课本第33页例4)用反证法证明:圆的两条不是直径的相交弦不能互相平分.已知:如图,在⊙O 中,弦AB 、CD 交于P ,且AB 、CD 不是直径.求证:弦AB 、CD 不被P 平分.分析:假设弦AB 、CD 被P 平分,连结OP 后,可推出AB 、CD 都与OP 垂直,则出现矛盾.证明:假设弦AB 、CD 被P 平分,由于P 点一定不是圆心O ,连结OP ,根据垂径定理的推论,有OP ⊥AB ,OP ⊥CD ,即过点P 有两条直线与OP 都垂直,这与垂线性质矛盾.∴弦AB 、CD 不被P 平分.四、小结:四种命题之间的相互关系和真假关系反证法的基本原理及其四个步骤五、练习:课本第33页 练习:1,2.提示:1.设b2-4ac ≤0,则方程没有实数根,或方程有两个相等的实数根,得出矛盾.2.设∠B ≥900,则∠C+∠B ≥1800,得出矛盾.补充题:1.命题“若 x = y 则 |x| = |y|”写出它的逆命题、否命题、逆否命题,并判断它的真假解:逆命题:若 |x| = |y| 则 x = y (假,如 x = 1, y = -1)否命题:若 x ≠ y 则 |x| ≠|y| (假,如 x = 1, y = -1)逆否命题:若 |x| ≠|y| 则 x ≠ y (真)2.写出命题:“若 xy = 6则 x = 3且 y = 2”的逆命题否命题逆否命题,并判断它们的真假解:逆命题:若x = 3 且y = 2 则x + y = 5 (真)否命题:若x + y ≠ 5 则x ≠ 3且y≠2 (真)逆否命题:若x ≠ 3 或y≠2 则x + y ≠5 (假)六、作业:课本第33-34页习题1.7中3,4 ,5.补充题:1.若a2能被2整除,a是整数,求证:a也能被2整除.证:假设a不能被2整除,则a必为奇数,故可令a=2m+1(m为整数),由此得a2=(2m+1)2=4m2+4m+1=4m(m+1)+1,此结果表明a2是奇数,这与题中的已知条件(a2能被2整除)相矛盾,∴a能被2整除.七、板书设计(略)八、课后记:小故事:三个古希腊哲学家,由于争论和天气炎热感到疲倦了,于是在花园里的一棵大树下躺下来休息一会,结果都睡着了.这时一个爱开玩笑的人用炭涂黑了他们的前额.三个人醒来以后,彼此看了看,都笑了起来.但这并没引起他们之中任何一个人的担心,因为每个人都以为是其他两人在互相取笑.这时其中有一个突然不笑了,因为他发觉自己的前额也给涂黑了.那么他是怎样觉察到的呢?你能想出来吗?答案:为了方便,用甲、乙、丙分别代表三个科学家,并不妨设甲已发觉自己的脸给涂黑了.那么甲这样想:“我们三个人都可以认为自己的脸没被涂黑,如果我的脸没被涂黑,那么乙能看到(当然对于丙也是一样),乙既然看到了我的脸没给涂黑,同时他又认为他的脸也没给涂黑,那么乙就应该对丙的发笑而感到奇怪.因为在这种情况下(甲、乙的脸都是干净的),丙是没有可笑的理由了.然而现在的事实是乙对丙的发笑并不感到奇怪,可见乙是在认为丙在笑我.由此可知,我的脸也给涂黑了.这里应着重指出的是,甲并没有直接看到自己的脸是否给涂黑了,他是根据乙、丙两人的表情进行分析、思考,而说明了自己的脸给涂黑了.简单地说,甲是通过说明脸被涂黑了的反面—没被涂黑是错误的,从而觉察了自己的脸被涂黑了.因此这是一种间接的证明方法.显然这种证明方法也是不可缺少的.像这样,为了说明某一个结论是正确的,但不从正面直接说明,而是通过说明它的反面是错误的,从而断定它本身是正确的方法,就叫做“反证法“.活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。

活动过程:1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”主持人口述谜语:“双手抓不起,一刀劈不开,煮饭和洗衣,都要请它来。

”主持人问:“谁知道这是什么?”生答:“水!”一生戴上水的头饰上场说:“我就是同学们猜到的水。

听大家说,我的用处可大了,是真的吗?”主持人:我宣布:“水”是万物之源主题班会现在开始。

水说:“同学们,你们知道我有多重要吗?”齐答:“知道。

”甲:如果没有水,我们人类就无法生存。

小熊说:我们动物可喜欢你了,没有水我们会死掉的。

花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。

主持人:下面请听快板《水的用处真叫大》竹板一敲来说话,水的用处真叫大;洗衣服,洗碗筷,洗脸洗手又洗脚,煮饭洗菜又沏茶,生活处处离不开它。

栽小树,种庄稼,农民伯伯把它夸;鱼儿河马大对虾,日日夜夜不离它;采煤发电要靠它,京城美化更要它。

主持人:同学们,听完了这个快板,你们说水的用处大不大?甲说:看了他们的快板表演,我知道日常生活种离不了水。

乙说:看了表演后,我知道水对庄稼、植物是非常重要的。

丙说:我还知道水对美化城市起很大作用。

2.主持人:水有这么多用处,你们该怎样做呢?(1)(生):我要节约用水,保护水源。

(2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。

(3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,很受教育,同学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。

相关文档
最新文档