等腰三角形存在性问题

合集下载

一次函数之等腰直角三角形的存在性 (讲义及答案)

一次函数之等腰直角三角形的存在性  (讲义及答案)

一次函数之等腰直角三角形的存在性(讲义及答案).1. 在正方形网格中,网格线交点称为格点。

已知A、B是两个格点,若点C也是格点且使△ABC为等腰直角三角形,则符合条件的点C只有一个。

2. 做讲义第一题时,先看知识点,再用铅笔计算并将演算保留在讲义上。

如果思路受阻(例如某个点做了2-3分钟),重复上述动作。

如果仍无法解决,重点听课堂讲解。

知识点:1. 解决存在性问题的处理思路①分析不变特征:分析所求图形中的定点、定线、定角等不变特征。

②分类、画图:结合所求图形的形成因素,依据其判定、定义等确定分类,并画出符合题意的图形。

通常先尝试画出其中一种情形,分析解决后,再类比解决其他情形。

③求解、验证:围绕不变特征、画图依据来设计方案进行求解。

验证时,要回归点的运动范围,画图或推理,判断是否符合题意。

注:复杂背景下的存在性问题往往需要研究背景图形,几何背景往往研究点、线、角;函数背景研究点坐标、表达式等。

2. 等腰直角三角形存在性的特征分析及操作要点:三角形的三个顶点分别为直角顶点进行分类,在直角的基础上,再考虑等腰。

通常借助构造弦图模型进行求解。

精讲精练:1. 如图,直线y=-2x+6与x轴、y轴分别交于点A、B。

点P是第一象限内的一个动点,若以A、B、P为顶点的三角形为等腰直角三角形,则点P的坐标为。

2. 如图,直线y=-x+b与x轴、y轴分别交于点A、B。

点C在直线y=-x+b上,且其纵坐标为1。

△___的面积为。

(1)求直线y=-x+b的表达式及点C的坐标。

(2)点P是第二象限内的一个动点,若△ACP是等腰直角三角形,则点P的坐标为。

3. 如图,在平面直角坐标系中,点A的坐标为(2,0)。

点P是y轴正半轴上的一个动点,Q是直线x=3上的一个动点。

若△APQ为等腰直角三角形,则点P的坐标为。

4. 如图,直线y=3x+4与y轴交于点A,点P是直线x=6上的一个动点,点Q是直线y=3x+4上的一个动点,且点Q在第一象限。

第3讲专题1(学生)等腰三角形的存在性问题解题策略

第3讲专题1(学生)等腰三角形的存在性问题解题策略

第3讲等腰三角形存在性问题典例精析例1解题方法:先分类、再画图、后计算,等腰三角形分类方法:按腰和底分类,按哪两条边相等分类例2、在菱形ABCD中,对角线AC,BD相交于点O,且AC=12,BD=16,E为AD的中点,点P在BD上移动,若△POE为等腰三角形,则所有符合条件的点P共有______个.C课堂练习1、如图,平面直角坐标系中,四边形OABC 为矩形,点A,B 的坐标分别为(4,0),(4,3),动点M,N 分别从O,B 同时出发,以每秒1个单位的速度运动.其中,点M 沿OA 向终点A 运动,点N 沿BC 向终点C 运动,过点M 作MP ⊥OA,交AC 于P,连结NP,已知动点运动了x 秒.(1)P 点的坐标为( , )(用含x 的代数式表示); (2)试求△NPC 面积S 的表达式;(3)当x 为何值时,△NPC2.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长;(3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长. 解:3.如图,AB=AC=10cm,BC=12cm,BF∥AC,点P、Q均以1cm/s的速度同时分别从C、A出发沿CA,AB的方向运动(当P到达A点时,点P、Q均停止运动),过点P作PE∥BC,分别交AB、BF于点G、E,设运动时间为ts.(1)直接判断并填写:经过t秒,线段AP=cm(用含t的代数式表示),线段QE QP(用“>、<、=、≥、≤”符号表示);(2)四边形EBPA的面积会变化吗?请说明理由:(3)当0<t<5时,求出四边形EBPA的面积S与t的函数关系式;4.已知:如图,直角梯形ABCD中,AD∥BC,∠A=90°,AB=6,BC=8,AD=14.E为AB上一点,BE=2,点F在BC边上运动,以FE为一边作菱形FEHG,使点H落在AD边上,点G落在梯形ABCD内或其边上.若BF=x,△FCG的面积为y.(1)当x=4时,四边形FEHG为正方形;(2)求y与x的函数关系式;(不要求写出自变量的取值范围)(3)在备用图中分别画出△FCG的面积取得最大值和最小值时相应的图形(不要求尺规作图,不要求写画法),并求△FCG面积的最大值和最小值;(计算过程可简要书写)(4)△FOG的面积由最大值变到最小值时,点G运动的路线长为12﹣2.5.如图1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=CD=4,BC=3.点M从点D出发以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)填空:AM=,AP=.(用含t的代数式表示)(2)t取何值时,梯形ABNM面积等于梯形ABCD面积的一半;(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,使四边形AQMK为正方形?并说明理由6.已知:四边形ABCD中,AD∥BC,AB=AD=DC,∠BAD=∠ADC,点E在CD边上运动(点E与点C、D两点不重合),△AEP为,直角三角形,∠AEP=90°,∠P=30°,过点E 作EM∥BC交AF于点M.(1)若∠BAD=120°(如图1),求证:BF+DE=EM;(2)若∠BAD=90°(如图2),则线段BF、DE、EM的数量关系为;(3)在(1)的条件下,若AD:BF=3:2,EM=7,求CE的长.7.如图1,在平面直角坐标系中,直线y=﹣x+4分别交x轴、y轴于A、B两点,直线BD 平分∠OBA,交x轴于D点.(1)连接AB的中点M交BD于N,求证:ON=OD.(2)如图2,过点A作AE⊥BD,垂足为E,猜想AE与BD间的数量关系,并证明你的猜想;(3)如图3,在x轴上有一个动点P(在A点的右侧),连接PB,并作等腰直角三角形BPF,其中∠BPF=90°,连接FA并延长交y轴于G点,当P点在运动时,OG的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.。

二次函数等腰三角形与直角三角形存在性问题(有答案)

二次函数等腰三角形与直角三角形存在性问题(有答案)

等腰三角形直角三角形存在性问题典例1,如图,二次函数的图象与x轴交于点A、B两点,且A 点坐标为,与y轴交于点.(1)求出这个二次函数的解析式;(2)直接写出点B的坐标为(3)在x轴是否存在一点P,使是等腰三角形?假设存在,求出满足条件的P 点坐标;假设不存在,请说明理由;(4)在第一象限中的抛物线上是否存在一点Q,使得四边形ABQC的面积最大?假设存在,请求出Q点坐标及面积的最大值;假设不存在,请说明理由.答案详解解:(1)的图象经过,,,,所求解析式为:,答:这个二次函数的解析式是.(2)解:,故答案为:.(3)解:在中,,,,,①当时在x轴的负半轴),;②当时在x轴的正半轴),;③当时在x轴的正半轴),;④当时在x轴的正半轴),在中,设,那么解得:,;答:在x轴存在一点P,使是等腰三角形,满足条件的P点坐标是或或或.(4)解:如图,设Q点坐标为,因为点Q在上,即:Q点坐标为,连接OQ,,,,,Q点坐标为,答:在第一象限中的抛物线上存在一点Q,使得四边形ABQC的面积最大,Q点坐标是,面积的最大值是.解析:(1)因为的图象经过,,代入求出c、a的值,即可得到答案;(2)把代入求出x的值,即可得到答案;(3)在中根据勾股定理求出AC,根据等腰三角形的性质求出,①当时在x轴的负半轴),;②当时在x轴的正半轴),;③当时在x轴的正半轴),;④当时在x 轴的正半轴),,即可得出答案;(4)设Q点坐标为,因为点Q在上,得出Q点坐标为,连接OQ,根据,代入求出即可.此题主要考察对用待定系数法求二次函数的解析式,等腰三角形的判定,三角形的面积,二次函数图象上点的坐标特征,二次函数的最值等知识点的理解和掌握,综合运用这些性质进展计算是解此题的关键.题型较好,综合性强.练习:如图,抛物线与x轴交于点和点,与y 轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使为等腰三角形?假设存在,请求出符合条件的点P的坐标;假设不存在,请说明理由.答案详解解:(1)由题知:解得:所求抛物线解析式为:;(2)抛物线解析式为:,其对称轴为,设P点坐标为,当时,,,①当时,,解得,点坐标为:;②当时,,解得,点坐标为:或;③当时,由勾股定理得:,解得,点坐标为:综上所述存在符合条件的点P,其坐标为或或或;解析:(1)抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y 轴的交点,因此C的坐标为,根据M、C的坐标可求出CM的距离.然后分三种情况进展讨论:①当时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过P作轴于Q,如果设,那么直角三角形CPQ中,OM的长,可根据M的坐标得出,,因此可根据勾股定理求出x的值,P点的横坐标与M的横坐标一样,纵坐标为x,由此可得出P的坐标.②当时,根据CM的长即可求出P的纵坐标,也就得出了P的坐标(要注意分上下两点).③当时,因为C的坐标为,那么直线必垂直平分PM,因此P的纵坐标是6,由此可得出P的坐标;此题主要考察了二次函数的综合知识,要注意的是(2)中,不确定等腰三角形哪条边是底边的情况下,要分类进展求解,不要漏解.典例2,练习:如图,在平面直角坐标系中,抛物线〔〕与轴相交于,两点,与轴相交于点,直线〔〕经过,两点,,,且。

专题一等腰三角形的存在性问题解题策略

专题一等腰三角形的存在性问题解题策略

..教案课时等腰三角形的存在性问题解题策略专题一课题目授教师日年3月72015课日期授娜柳学生 1 时 00 分时学课授学科组长复习课型课娜柳师生活动一、要点归纳等腰三角形的存在性问题是中考数学的热点问题.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.二、课前热身厘米的等腰三角形?这样的等腰三角形有多少个?怎样画腰长为5 厘米的等腰三角形?这样的等腰三角形有多少个?怎样画底边长为5三、例题讲解轴(如//x),4,直线CM0为原点,点A的坐标为(1,),点C的坐标为(01.在平面直角坐标系内,O,DCM相交于点经过点b为常数)B,且与直线by与点所示)图1.点BA关于原点对称,直线=x+(OD.联结的坐标;的值和点)求bD(1 的坐标;是等腰三角形,求点x轴的正半轴上,若△PODP在)设点(2P1图;...、不与DAAB、AC上的两个动点(,BC=6,D、E分别是边=如图2.1,在△ABC中,AB=AC5 DEFG.DE为边,在点A的异侧作正方形B重合),且保持DE//BC,以ABC的面积;(1)试求△DEFG的边长;与BC重合时,求正方形(2)当边FG的函数关系式,并写x,试求y 关于,△ABC与正方形DEFG重叠部分的面积为y3()设AD=x 出定义域;的长.是等腰三角形时,请直接写出AD(4)当△BDG1图)m的中点.P(0,、y轴的正半轴上,M是BCxA的边长为3.如图,已知正方形OABC2,顶点、C 分别在D.PM交AB的延长线于点点除外)是线段OC上一动点(C,直线;m的代数式表示)D(1)求点的坐标(用含的值;APD是等腰三角形时,求m)当△(2;...并延长交射上,联结EME在线段AB4,M是AD的中点,动点4.如图1,正方形ABCD的边长为.EG、FGEF的垂线交射线BC于G,联结F线CD于,过M作是等腰三角形;1)求证:△GEF(的取值范围;x的函数关系式,并写出自变量xGEF的面积为y,求y关于(2)设AE=x,△能否成为等边三角形?请说明理由.E运动的过程中,△GEF(3)在点1 图AB和射线分别为线段AC,点M、N(6, 0),B(0, 8),C(-4, 0)5.如图1,在直角坐标平面内有点A 秒的速度个单位长度/方向作匀速运动,点N以5以2个单位长度/秒的速度自C向AM上的动点,点P.MN交OB于点自A向B方向作匀速运动,NP为定值;(1)求证:MN∶CM的长.△BNP 是等腰三角形,求(2)若1图B从都是斜边AB上的动点,点P6=,AC=8,点P、QABC6.如图1,Rt△中,∠C=90°,BC 为对称中Q、P、DE分别是点A、B以向A向运动(不与点B重合),点Q从AB运动,BP=AQ.点的长为同时停止运动,设BP到达顶点A时,P、QQ心的对称点,HQ⊥AB于,交AC于点H,当点E.x,△HDE的面积为y;)求证:△DHQ∽△ABC1(x为何值时,△HDE为等腰三角形?2()当2图1 图;...针对训练轴正半轴上的一个动点,如x,点P是中,已知点D在坐标为(3,4)xOy1.如图,在平面直角坐标系的坐标.DOP是等腰三角形,求点P果△C向点出发,沿AC2个单位/秒的速度从点AAB=6,BC=8,动点P以2.如图,在矩形ABCD 中,、两点中其中一点到PQCB向点B移动,当移动,同时动点Q以1个单位/秒的速度从点C 出发,沿、t的值.Q两点移动过程中,当△PQC达终点时则停止运动.在P为等腰三角形时,求PQ是x轴正半轴上的一个动点,直线,与y轴交于点B,点P23.如图,直线y=2x+与x轴交于点A是等腰三角形,求点P的坐标.y轴于点Q,如果△APQAB与直线垂直,交°至OB的位置.4,将线段OA绕点O顺时针旋转120在4.如图,点Ax轴上,OA=B的坐标;(1)求点B的抛物线的解析式;2)求经过A、O、(为顶点的三角形是等腰三角形?若存B,使得以点P、O、(3)在此抛物线的对称轴上,是否存在点P的坐标;若不存在,请说明理由.在,求点P;...)(0,mBC的中点.P分别在x、y轴的正半轴上,M是5.如图1,已知正方形OABC的边长为2,顶点A、C D.交AB的延长线于点OC上一动点(C点除外),直线PM是线段的代数式表示);D的坐标(用含m(1)求点的值;m)当△APD是等腰三角形时,求(2(如图H作直线ME的垂线,垂足为三点的抛物线与x轴正半轴交于点E,过点O(3)设过P、M、B.也随之运动.请直接写出点H所经过的路长(不必写解答过程)从O向C运动时,点H2).当点P2 图图1C、上的动点(不与B,E为线段BC(m是大于0的常数),BC=8m6.如图,在矩形ABCD中,AB=y.x,BF=CE,EF与射线BA交于点F,设=重合).连结DE,作EF⊥DE的函数关系式;)求y关于x(1 y的值最大,最大值是多少?8,求x为何值时,(2)若m=12 m的值应为多少?,要使△DEF)若(3为等腰三角形,?ym以每BCB开始)沿DE(端点D从点,BC=16,DE=4.动线段107.如图,在△ABC中,AB=AC=(当于点FAC交AB//到达点C时运动停止.过点E作EFE秒1个单位长度的速度向点C运动,当端点.≥0),联结重合)DF,设运动的时间为t秒(tE点与点C重合时,EF与CA的长;、EFBE(1)直接写出用含t的代数式表示线段的值;若不能,请说明理由;能否为等腰三角形?若能,请求出t(2)在这个运动过程中,△DEF MN所扫过的面积.DF、EF的中点,求整个运动过程中,M(3)设、N分别是;...23,直线y3,BC=ABCD的边AB在x轴上,且AB=.8 如图,在平面直角坐标系xoy中,矩形3x?23经过点C,交=y轴于点G.(1)点C、D的坐标分别是C(),D();3x?23上且经过点=C、D的抛物线的解析式;(2)求顶点在直线y3x?23平移,平移后的抛物线交y轴于点F,顶点为点E(3)将(2)中的抛物线沿直线y=(顶点在y轴右侧).平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.9.如图,已知△ABC中,AB=AC=6,BC=8,点D是BC边上的一个动点,点E在AC边上,∠ADE=∠B.设BD的长为x,CE的长为y.(1)当D为BC的中点时,求CE的长;(2)求y关于x的函数关系式,并写出x的取值范围;(3)如果△ADE为等腰三角形,求x的值.备用图备用图学科组长审核签字:;...□部分能接受、学生接受程度:□完全能接受1 能总结当堂学习所得,或提;.。

等腰直角三角形存在性问题

等腰直角三角形存在性问题

等腰直角三角形存在性问题一、复习回顾二次函数存在性问题中等腰三角形的存在性、直角三角形存在性问题,等腰三角形的存在性问题有两种思路:①两圆一线确定点的位置,结合图形特点解决问题;②不考虑点的位置,利用两点间距离公式表示线段长构建方程求解;直角三角形的存在性问题有两种思路:①两线一圆构图,“改斜归正”转化横平竖直线段长,②不考虑点的位置,利用两点间距离公式表示线段长构建方程求解。

二、特殊三角形之等腰直角三角形存在性问题如图,抛物线y=x2-2x-3与x轴交于A、B两点,(点A在点B的左侧),与y轴交于点C,点P是抛物线上一动点,点Q在直线x=-3上,是否存在以点P为顶点的等腰直角三角形△PBQ,若存在,求出点P的横坐标,若不存在说明理由。

解法分析:通过读题,不难求得A、B、C三点坐标,点P、Q是两个动点,位置不确定,如何确定它们的位置是解决问题的一个难点。

此时不妨通过草图分析,大体分两种情况:①直角顶点在BQ下方,②直角点P在BQ上方,结合上辑课讲到的直角三角形存在性问题的处理思路,容易考虑使用“改斜归正”的处理办法结合等腰直角三角形的特点构造一线三等角全等模型,从而顺利转化线段长建立等量。

三、练习1.(本小题25分)如图,抛物线y=x2-4x+3交x轴于A,C两点(点A在点C的右侧),交y 轴于点B.点D的坐标为(-1,0),若在直线AB上存在点P,使得以A,D,P为顶点的三角形是等腰直角三角形,则点P的坐标为()A.(-1,4) 或(1/2,5/2)B. (-1,3)或(1,2)C. (-1,4)或(1,2)D. (-1,4),(1,2)或(5,-2)2.如图,抛物线与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.P是线段AC上的一个动点(不与点A,C重合),过点P作平行于x轴的直线l,交BC于点Q,若在x轴上存在点R,使得△PQR是等腰直角三角形,则点R的坐标为() A.(1,4/3)或(3/2,1) B.(-1/3,4/3)或(-1/2,1) C.(1,0)或(-1/3,0)或(1/2,0) D.(1,0)或(-1/3,0)或(4/3,0)3.如图,二次函数的图象与x轴交于A,B两点(点A在点B的左侧),以AB为边在x轴上方作正方形ABCD,P是x轴上的一动点(不与点A重合),连接DP,过点P作PE⊥DP交y轴于点E.当△PED是等腰直角三角形时,点P的横坐标为()A. -4B. -3C. -3或-4D. -4或44.如图,在平面直角坐标系xOy中,直线y=x+4与x轴、y轴分别交于点A,B,D为线段AB上一动点,过点D作x轴的垂线,垂足为点C,CD的延长线交抛物线y=-x2-3x+4于点E,连接BE.若△DBE为等腰直角三角形,则点D的坐标为()A. (-2,2)B. (-2,6)C. (-3,4)或(-2,6)D. (-3,1)或(-2,2)5.如图,抛物线y=-x2+4x经过A(4,0),B(1,3)两点,点C与点B关于抛物线的对称轴对称,过点B作直线BH△x轴于点H,点M在直线BH上运动,点N在x轴上运动,是否存在以点C、M、N为顶点的三角形为等腰直角三角形时,若存在,求出点M坐标,若不存在说明理由。

二次函数中等腰三角形的存在问题

二次函数中等腰三角形的存在问题

零点是函数图像与x轴相交的点,用于解方程 和确定函数的根。
二次函数的最值是函数图像的最高点(最大 值)或最低点(最小值),在寻求极值时非 常重要。Leabharlann II. 等腰三角形的性质定义
等腰三角形是一种具有两条边相等的三角形, 拥有一些特殊的性质和几何关系。
面积
等腰三角形的面积可以通过底边的长度和高度 来计算,其中高度与等边的长度有关。
2. Johnson, L. (2019). "Exploring the Existence of Isosceles Triangles in Quadratic Functions." Geometrical Review, 30(4), 267-286.
3. Wang, Y. (2018). "Applications of Isosceles Triangles in Quadratic Function Analysis." Mathematica, 55(3), 189-205.
二次函数中等腰三角形的 存在问题
本演示将探讨二次函数中等腰三角形的存在问题。我们将介绍二次函数和等 腰三角形的基本概念,并深入研究二次函数中等腰三角形的性质及其应用。
I. 介绍
二次函数
二次函数是一个具有二次方的多项式函数,可呈现多种形态和特征。
等腰三角形
等腰三角形是一种具有两条边相等的三角形,具有一些特殊的几何性质。
周长
等腰三角形的周长可以通过两条等边的长度和 第三条边的长度来计算。
内角
等腰三角形的内角具有特定的测量值,其中包 括基角、等边角和顶角。
IV. 二次函数中等腰三角形的探讨
1
确定三角形三个顶点坐标

一次函数与等腰三角形存在性问题

一次函数与等腰三角形存在性问题

每日一题 079一次函数与等腰三角形武穴市百汇学校徐国纲解题技巧如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线.如图,已知线段AB作等腰三角形,则符合要求的点都在以A、B为圆心,AB长为半径的圆和AB的垂直平分线上,这就是传说中的“两圆一线”.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.代数法一般也分三步:表示三边长,分类列方程,解方程并检验.例题解析例❶ 如图1-1,在平面直角坐标系xOy中,已知点D的坐标为(3, 4),点P是x轴正半轴上的一个动点,如果△DOP是等腰三角形,求点P的坐标.图1-1【解析】分三种情况讨论等腰三角形△DOP:①DO=DP,②OD=OP,③PO=PD.①当DO=DP时,以D为圆心、DO为半径画圆,与x轴的正半轴交于点P,此时点D 在OP的垂直平分线上,所以点P的坐标为(6, 0)(如图1-2).②当OD=OP=5时,以O为圆心、OD为半径画圆,与x轴的正半轴交于点P(5, 0) (如图1-3).③当PO=PD时,画OD的垂直平分线与x轴的正半轴交于点P,设垂足为E(如图1-4).可求325:48PEl y x=-+,∴25(,0)6P.图1-2 图1-3 图1-4上面是几何法的解题过程,我们可以看到,画图可以帮助我们快速找到目标P ,其中①和②画好图就知道答案了,只需要对③进行计算.代数法先设点P 的坐标为(x , 0),其中x >0,然后表达△DOP 的三边长(的平方). DO 2=52,OP 2=x 2,PD 2=(x -3)2+42.①当DO =DP 时,52=(x -3)2+42.解得x =6,或x =0.当x =0时既不符合点P 在x 轴的正半轴上,也不存在△DOP .②当OD =OP 时,52=x 2.解得x =±5.当x =-5时等腰三角形DOP 是存在的,但是点P 此时不在x 轴的正半轴上(如图1-5).③当PO =PD 时,x 2=(x -3)2+42.这是一个一元一次方程,有唯一解,它的几何意义是两条直线(x 轴和OD 的垂直平分线)有且只有一个交点.代数法不需要画三种情况的示意图,但是计算量比较大,而且要进行检验.图1-5例❷ 如图2-1,直线3y x =+与y 、x 轴相交于点A 、C ,动点P 以1个单位/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1个单位/秒的速度从点C 出发,沿CO 向点O 移动,当P 、Q 两点中其中一点到达终点时则停止运动.在P 、Q 两点移动的过程中,当△PCQ 为等腰三角形时,求t 的值.图2-1【解析】在P 、Q 两点移动的过程中,△PCQ 的6个元素(3个角和3条边)中,唯一不变的就是∠PCQ 的大小,夹∠PCQ 的两条边CQ =t ,CP =6-t .因此△PQC 符合“边角边”的解题条件,我们只需要在∠PCQ 的边上取点P 或Q 画圆.图2-2 图2-3 图2-4①如图2-2,当CP =CQ 时,t =6-t ,解得3t =(秒).②如图2-3,当QP =QC 时,过点Q 作QM ⊥AC 于M ,则CM 1622t PC -==. 在Rt △QMC 中,∵30PCQ =︒∠,∴2CQ =,62tt -=,解得3t =-(秒). ③如图2-4,当PQ =PC 时,过点P 作PN ⊥BC 于N ,则1122CN CQ t ==. 在Rt △PNC 中,∵30PCQ =︒∠,∴2CP =,62tt -=,解得9t =-秒).例❸ 如图3-1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P(0, m)是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .当△APD 是等腰三角形时,求m 的值.图3-1【解析】点P(0, m)在运动的过程中,△APD 的三个角都在变化,因此不符合几何法“边角边”的解题条件,我们用代数法来解.因为PC//DB ,M 是BC 的中点,所以BD =CP =2-m .所以D(2, 4-m).于是我们可以表达出△APD 的三边长(的平方):22(4)AD m =-,224AP m =+,2222(42)PD m =+-.①当AP =AD 时,22(4)4m m -=+.解得32m =(如图3-2). ②当P A =PD 时,22242(42)m m +=+-. 解得43m =(如图3-3)或4m =(不合题意,舍去). ③当DA =DP 时,222(4)2(42)m m -=+-.解得23m=(如图3-4)或2m=(不合题意,舍去).综上所述,当△APD为等腰三角形时,m的值为32,43或23.图3-2 图3-3 图3-4其实①、②两种情况,可以用几何说理的方法,计算更简单:①如图3-2,当AP=AD时,AM垂直平分PD,那么△PCM∽△MBA.所以12PC MBCM BA==.因此12PC=,32m=.②如图3-3,当P A=PD时,P在AD的垂直平分线上.所以DA=2PO.因此42m m-=.解得43m=.小结:1、等腰三角形的存在性问题,又可以细分为两个定点一个动点,或一个定点一个定角,或只有一个定点,甚至三个点都是动点等几种类型;2、当条件中有定线段时,可以利用“两圆一线”来画图,再计算;在有定角时,可以借助特殊三角形三边比的特征或相似来建立方程;对于既无定线又无定角的问题,可以用代数法来解,即先表达三边,再分类列方程求解,要注意根据题目条件进行检验.对于不同类型的等腰三角形,我们可以灵活选用几何法或代数法,有时候将两种方法结合起来使用,可以使得解题又快又好;3、在进行有关等腰三角形的计算时,常用到勾股定理、三线合一、特殊角的三角函数、相似、一元二次方程等知识;在这个过程中,贯穿了分类讨论、数形结合、方程等数学思想方法.。

勾股定理专题---等腰三角形存在性问题

勾股定理专题---等腰三角形存在性问题
大连市第十九中学——八年级数学导学案
勾股定理专题----等腰三角形存在性问题
【学习目标】
1.会求平面直角坐标系中两点间的距离 2.运用勾股定理解决等腰三角形存在性问题,体会分类讨论的数学思想
一.【问题引入】 如图,在 5×5 的正方形网格中,每个小正方形的边长均为 1,线段的端点在格点上。 (1)图 1 中以 AB 为腰的等腰三角形有____个,画出相应图形 (2)图 2 中以 AB 为底边的等腰三角形有____个,画出相应图形. 经验积累: ________________________________________________________________________________________ ________________________________________________________________________________________ 三、巩固练习 如图在平面直角坐标系中 A(0,3),B(4,0) y A (1) AB=_________ (2) 在 x 轴上找到一点 C,使△ABC 是以 AB 为边的等腰三角形, 并写出 C 点的坐标。
O B x
二.【典例分析】 如图,已知平面直角坐标中,A(0,3),∠ABO=30º,回答下列问题: (1)B(_______);AB=_______ (2)在坐标轴上找到一点 C,使△ABC 是以 AB 为边的等腰三角形, 并写出 C 点的坐标。
四、作业 1.计算
3 48 - 9
2 1 ( 48 + 20)( - 12 - 5 ) (3 2 -2 3 ) ; + 3 12 ; 3
2.如图,已知△DEF 中,DE=17 ㎝,EF=30 ㎝,EF 边上的中线 DG=8 ㎝.求证:△DEF 是等腰三
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形存在性问题
图形存在性问题在各地中考中屡见不鲜.这类问题常常以图形的变化或图形
上点的运动为主线,要求我们判断和说明符合某一结论的现象是否存在.解答这
类问题,可首先假设这种现象存在,再考虑利用化“动”为“静”的策略,构造
方程关系式或函数关系式,进行判断和求解.下面举例说明如何二圆一线模型法
破解等腰三角形存在性问题。

模型:已知点A(0,4),B(3, 0)在x轴上找一点C,使△ABC为等腰三角形。
思路点拨:分别以点A和点B为圆心,AB的长为半径画圆,与x轴相 交于
c1,c2,c3;画AB的中垂线与x轴相交于c4;即c1,c2,c3,c4就是所求的。

例1: 抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线
l
是 抛物线的对称轴.

(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出
所有符合条件的点M的坐标;若不存在,请说明理由.

思路点拨
1.第(2)题是典型的“牛喝水”问题,点P在线段BC上时△PAC的周长最
小.

2.第(3)题分三种情况列方程讨论等腰三角形的存在性.
满分解答
(1)因为抛物线与x轴交于A(-1,0)、B(3, 0)两点,设y=a(x+1)(x-
3),
代入点C(0 ,3),得-3a=3.解得a=-1.
所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3.
(2) 抛物线的对称轴是直线x=1.
当点P落在线段BC上时,PA+PC最小,△PAC的周长最小.
设抛物线的对称轴与x轴的交点为H.

由 ,BO=CO,得PH=BH=2.
所以点P的坐标为(1, 2).
(3)点M的坐标为(1, 1)、(1, )、(1, )或(1,0).
考点伸展
第(3)题的解题过程是这样的:
设点M的坐标为(1,m).
在△MAC中,AC2=10,MC2=1+(m-3)2,MA2=4+m2.
1.
当MA=MC时,MA2=MC2.解方程4+m2=1+(m-3)2,得m=1.

此时点M的坐标为(1, 1).
1.
当AM=AC时,AM2=AC2.解方程4+m2=10,得 .

此时点M的坐标为(1, )或(1, ).
1.
当CM=CA时,CM2=CA2.解方程1+(m-3)2=10,得m=0或6.
当M(1, 6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0).
例2:如图1,已知一次函数y=-x+7与正比例函数 的图象交于点A,
且与x轴交于点B.

(1)求点A和点B的坐标;
( 2)过点A作AC⊥y轴于点C,过点B作直线l//
y
轴.动点P从点O出发,以每秒1个单位长的速度,沿O—
C—A的路线向点A运动;同时直线l从点B
出发,以相同

速度向左平移,在平移过程中,直线l交x轴于点R,交线
段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动
过程中,设动点P运动的时间为t秒.

①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;
若不存在,请说明理由.

图1
思路点拨
1.把图1复制若干个,在每一个图形中解决一个问题.
2.求△APR的面积等于8,按照点P的位置分两种情况讨论.事实上,P在
CA
上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.

3.讨论等腰三角形APQ,按照点P的位置分两种情况讨论,点P的每一种位
置又要讨论三种情况.

相关文档
最新文档