塞曼效应 实验报告

塞曼效应 实验报告
塞曼效应 实验报告

塞曼效应

田卫芳

201411142023

(北京师范大学物理系 2014 级)

指导教师:王海燕

实验时间: 2016.9.22

摘要本实验利用法布里-珀罗标准具研究汞绿线(546.1nm)和汞黄线的塞曼分裂现象,实验过程中首先测量了电磁铁的B-I曲线,测量和计算出了法布里-珀罗标准具的自由光谱区对应的?D2,观察汞绿线在磁场中谱线分裂图像及其偏振特性,利用汞绿线在磁场中分裂谱线图像测出B’,绘制B’-I曲线,与B-I 曲线进行比较。此外通过观察汞黄线的分裂现象和偏振特性,与汞绿线进行对比,更深一步去了解这个伟大的实验。

关键词塞曼效应、法布里—珀罗标准具、能级测量、分裂间距、偏振特性

1.引言

如果把光源置于足够强的磁场中,则光源发出的大部分单色光都分裂为若干条偏振的谱线,分裂的条数随能级的类别而不同。这种现象被称为塞曼效应。塞曼效应是1896年荷兰物理学家塞曼发现的,洛伦兹对此作出了令人满意的解释。塞曼效应的发现及其解释在物理学史上具有很大的意义,对研究原子中电子的角动量和反映角动量耦合作用的朗德因子等原子结构信息有重要的作用,因此,两人于1902年获得了诺贝尔物理学奖。

本实验主要利用法布里-珀罗标准具来研究汞绿线(546.1nm)和汞黄线(579.0nm)的塞曼分裂现象。

2.实验原理

2.1塞曼效应实验原理

按照半经典模型,质量为m,电量为e的电子绕原子核转动,因此,原子具有一定的磁矩,它在外磁场B中会获得一定的磁相互作用能△E

ΔE =?μJ B cos α=?g e

2m P J

B cos α (1) 其中α是磁矩与外加磁场的夹角,g 为朗德因子。由于电子角动量空间取向的量子化,这种磁相互作用能只能取有限个分立的值,且电子的磁矩与总角动量的方向相反,因此在外磁场方向上有

?P J cos α=M

h 2π

, M=J ,J-1,······-J

(2)

式中h 是普朗克常数,J 是电子的总角动量,M 是磁量子数。

设:μB =

he 4πm

,称为玻尔磁子,E 0为未加磁场时原子的能量,则原子在外

在磁场中的总能量为:

E =E 0+ΔE =E 0+Mg μB B (3)

在L-S 耦合的情况下,可得到总电子磁矩和总轨道角动量的关系:

μJ =μL cos αLJ +μS cos αSJ

=(1+

P J 2?P L 2+P S 2

2P J 2

)

e 2m

P J =g

e

2m P J

(4)

其中 g =1+

J (J+1)?L (L+1)+S (S+1)

2J (J+1)

(5)

原子能级产生磁分裂后,各磁能级之间的跃迁要遵守下列选择定则:

ΔJ =0,±1(J =0到J =0禁戒) ΔM =0,±1(J =0时M =0到M =0禁戒)

ΔM =0时,在垂直于磁场方向上,可观察到电矢量平行于磁场方向的线偏振光;在平行于磁场方向上,则观察不到谱线。这一辐射分量被称为π线。

ΔM =±1时,在垂直于磁场方向观察到的都是电矢量垂直于磁场的线偏振光,在平行于磁场方向上观察到的都是圆偏振光。这两个辐射分量被称为σ线。并且,当ΔM =+1时,迎着或逆着磁场方向分别观察到右旋或左旋前进的圆偏振光(σ+

线);当ΔM =?1时,迎着或逆着磁场方向分别观察到左旋或右旋前

进的圆偏振光(σ?

线)。

能级跃迁发生赛曼分裂后,各跃迁辐射与无磁场时跃迁辐射波数之差为

?υ?

=eB 4πmc (g 1M 1

?g 2M 2)

=L

?[(g 1?g 2)M 1?g 2(M 2?M 1)] (6) 其中 0.4674eB

L B mc

π=

= (7) 习惯上 L ?单位为cm -1,磁感应强度B 的单位为特斯拉(T )

2.2法布里-珀罗标准具的原理和应用

法布里—珀罗标准具是由平行放置的两块平面玻璃和夹在中间的一个间隔圈组成。内表面上镀有高反射膜,膜的反射率高于90%,间隔圈用膨胀系数很小的石英材料制作,精加工成有一定的厚度,用来保证两块平面玻璃板之间有很高的平行度和稳定的间距。

当单色平行光束以某一小角度入射到标准具的M 平面上时,光束发生多次反射和透射,分别形成一系列相互平行的反射光束及透射光束。任何相邻光束之间有相等的光程差2nd cos θ,其中d 为两平行板之间的距离(d=2mm )

θ为光束折射角,n 为两平行板之间介质的折射率。 这一系列互相平行并有一定光程差的光束经会聚透镜在焦平面上发生干涉。当光程差为波长的整数倍产生相长干涉,得到光强极大值:

2nd cos θ=Kλ (8)

K 为干涉序。 波数表示为:

?υ?=1

2d (9)

用焦距为f 的透镜使法布里-珀罗标准具的干涉条纹成像在焦平面上这时靠近中央各花纹的入射角θ与直径D 有如下关系:

cos θ=

≈1?D 2

8f 2 (10)

代入式8得

2d (1?D 28f 2)=Kλ (11)

可以求得同一波长相邻两序K 和K-1花纹的直径平方差

?D 2

=

D K?1

2?

D K

2=

4f 2λd

(12)

测量时通常可以只利用在中央附近的K 序干涉花纹。考虑到标准具间隔圈的厚度比波长大得多,中心花纹的干涉序是很大的。因此,用中心花纹干涉序代替被测花纹的干涉叙所引入的误差可以忽略不计,即

K =

2d λ

(13)

又得到:

λa ?λb =λ2

2d ×D b 2?D a 2D K?12

?D K

2

(14)

用波数表示:

υ?a ?υ?b =

λ22d

×

D b 2?D a

2D K?12?D K

2=

12d

×

?D ab 2?D 2

(15)

3. 实验内容 3.1实验仪器

塞曼效应实验仪主要有控制主机、笔形汞灯、毫特斯拉计探头、电磁铁、会聚透镜、干涉滤光片、法布里-珀罗标准具、偏振片、成像透镜、测微目镜、光学导轨及滑块、CCD 摄像器件。F-P 标准的中心间隔 2mm ,成像透镜焦距约为 157mm 。 3.2实验内容

(1)计算法布里-珀罗标准具的自由光谱区,设 B=1T ,比较自由光谱区与谱线分裂间距的关系,并思考用此 F-P 腔研究汞绿线能使用的最大磁场为多少

(2)标定磁场的B-I 曲线

①电流上升和下降时各标定一次,电流的取值范围是0-5A ②画出实验的B-I 曲线。 (3)调节光路

图3-2-3 电路图

1、电磁铁

2、笔形汞灯

3、会聚透镜

4、干涉滤色片

5、偏振片

6、F-P

标准具 7、小孔光阑 8、成像透镜 9、测微目镜

使所有元件等高共轴,当在目镜中观察到清晰的圆环状干涉条纹时,说明光路已满足要求。

(4)汞绿线塞曼分裂光谱测量

①设计测量表格

②磁场为零时,测量F-P腔自由光谱区对应的?D2

③加磁场,观察谱线的分裂,确定电磁铁电流的取值范围

④观察偏振特性,记录偏振角

⑤选取3-5个磁场电流值,利用软件测量汞绿线的塞曼分裂间距,并计算

磁场强度B′

⑥做B′-I图,并与磁场的标定曲线比较并分别分析产生误差的因素。

(5)换上黄色滤光片,观察汞黄线在磁场的分裂现象以及偏振特性,并与汞绿线比较

4.实验结果与分析

4.1标定磁场的B-I曲线

表4-1-1上升

表4-1-2下降

表4-1-3平均

结合电流上升和下降的B-I曲线,得出最后平均拟合直线公式为y = 273.66x + 70.477

4.2测量F-P腔自由光谱区对应的?D2

(1)F-P自由光谱区理论值

已知d=2mm,λ=546.1nm,f=157mm,

计算得自由光谱区?υ?=1

2d =0.25mm?1,分裂波数差?υ?=L?

2

=0.02335mm?1,两

者相比可得自由光谱区最多可容纳10个汞绿线赛曼分裂间距,则汞绿线最多分裂9个赛曼分裂间距。

则:?D2=4λf^2

d =4×546.1×175^2

2

mm2=26.922mm2

(2)自由光谱区测量值

调节光路,在目镜中观察到如图干涉条纹,

图4-2-1 干涉条纹

表4-2磁场为零时的测量值

图4-2-2 干涉条纹

理论与测量值对比计算得相对误差为11.2%,误差较大,原因分析如下:1.干涉环有一定的厚度,拟合过程中与实际谱线相差较多;2.外圈干涉环较为模糊,测量偏差较大;3.系统误差:仪器的精密度对测量结果也有一定的影响。

4.3加磁场,观察谱线的分裂,确定电磁铁电流的取值范围

加磁场可以发现当电流增大到一定值时谱线发生分裂,谱线条数随着电流的增大而增多,最多增加到九条,观察电磁铁电流取值最大为4.90A。

4.4观察偏振特性,记录偏振角

在光路中加入偏振片后,旋转偏振片可以观察π线和σ线交替出现,记录

偏振片角度如下:

表4-4偏振片角度

由表中数据计算知,交替出现的角度大致为90度,推测线和线偏振方向相互垂直。

分析:由实验原理中σ线和π线的特点可知:当偏振片的偏振方向与磁场平行时,振动方向与磁场平行的π线才能通过偏振片,每级谱线分裂成三条。当偏振片偏振方向调整到与磁场垂直时,与磁场垂直的σ线才能通过偏振片,每级谱线分裂成六条。

4.5测量分裂间距,计算磁场强度B’,作出B’-I曲线,与B-I曲线对比

表4-5 分裂间距

图4-5

B-I

曲线比较

由曲线对比可知:在B ’-I 曲线中 电流I=3.5A 时误差较大,此点没有意义应舍去,由于数据点选取较少,加之误差偏大,拟合度较低,与B-I 曲线的比较难以得到有效的结论。

误差分析:1.用于拟合的干涉环与实际谱线有偏离,导致测量值误差较大 2.谱线的清晰程度有限,在拟合过程中也有较大偏差 3.数据点选取较少,两者的线性拟合相似度不高 4.系统误差,仪器的精确度也会影响到实验结果 4.6汞黄线分裂现象

图4-6-1 汞黄线分裂(1) 图4-6-2 汞黄线分裂(2)

两图对比可知:汞黄线在磁场中分裂为3条谱线。对于偏振特性,在旋转偏振片360度的过程中,和汞绿线相似,可以看到π线和σ线交替出现,并且角度相差大约也是90度。但是由于多次调试后观察到的图案清晰度依旧不太高,没能留下清晰的图像资料。

5.实验总结与反思

总结:本实验利用法布里-珀罗标准具观察和研究了汞绿线和汞黄线的塞曼分裂现象,实验过程中通过测量电磁铁的B-I曲线,计算出法布里-珀罗标准具的自由光谱区对应的?D2=26.922mm2,观察汞绿线在磁场中谱线分裂图像及其偏振特性,发现σ线和π线交替出现具有周期性,角度大致为90度,推测偏振方向相互垂直。利用汞绿线在磁场中分裂谱线图像测出B’,绘制B’-I曲线,与B-I曲线进行比较,但是由于实验数据选取较少,两曲线的拟合程度较低。另外通过观察汞黄线的分裂现象和偏振特性,发现与汞绿线相似,π线和σ线周期性地90度交替出现,

反思:在实验过程中应严格保持光路等高共轴,尽可能调整保证图案清晰度,以便于观察和测量,减少实验误差。同时在数据点的选取过程中要尽可能的多一些,考虑到有误差较大点存在的可能性,有利于实验的完成和结果的分析。实验过程中为保护眼睛,尽可能佩戴护目镜进行实验。

参考文献

[1]北京师范大学物理实验教学中心. 近代物理实验讲义[Z]. 北京: 北京师范大学物理学系,2016.

[2]姚启钧. 光学[M]. 北京:高等教育出版社, 2002.

[3]杨福家. 原子物理学[M]. 北京:高等教育出版社, 2000.

最新霍尔效应实验报告96288资料

南昌大学物理实验报告 课程名称: _____________ 普通物理实验(2) ________________ 实验名称: ___________________ 霍尔效应_____________________ 学院: ___________ 专业班级: ____________ 学生姓名: _______ 学号: _________________ 实验地点: __________ 座位号:_________ 实验时间: ______________________ 一、实验目的: 1、了解霍尔效应法测磁感应强度 X的原理和方法; 2、学会用霍尔元件测量通电螺线管轴向磁场分布的基本方法;

实验仪器: 霍尔元件测螺线管轴向磁场装置、多量程电流表2只、电势差计、滑动变阻 器、双路直流稳压电源、双刀双掷开关、连接导线15根。 三、实验原理: 1、霍尔效应 霍尔效应本质上是运动的带电粒子在磁场中受洛仑磁力作用而引起的偏转。 当带电粒子(电子或空穴)被约束在固体材料中,这种偏转导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横加电场,即霍尔电场I E H . 如果血<0,贝U说明载流子为电子,则为n型试样;如果血>0,贝U说明载流子为空穴,即为p型试样。 显然霍尔电场旦是阻止载流子继续向侧面偏移,当载流子所受的横向电场 力e E H与洛仑磁力levB相等,样品两侧电荷的积累就达到动态平衡,故有:

e E H =-|evB, 其中E H为霍尔电场,W是载流子在电流方向上的平均速度。若试样的宽 度为b,厚度为d,载流子浓度为n,贝U I = nevbd 由上面两式可得: 即霍尔电压V H (上下两端之间的电压)与|I s B乘积成正比与试样厚度d成反比。 |R H二-称为霍尔系数,它是反应材料霍尔效应强弱的重要参量。只要 比列系数 测出V H以及知道LS、B和d可按下式计算L R±: R H诒1°4 2、霍尔系数R H与其他参量间的关系 根据 R H可进一步确定以下参量: (1) 由应的符号(或霍尔电压的正负)判断样品的导电类型。判别方法是电 间有如下关系 3、霍尔效应与材料性能的关系 由上述可知,要得到大的霍尔电压,关键是选择霍尔系数大(即迁移率高、电阻率也较高)的材料。因||R H|」P|,金属导体門和巴都很低;而不良导体已虽高,但巴极小,所以这两种材料的霍尔系数都很小,不能用来制造霍尔器件。半导体巴高,日适中,是制造霍尔元件较为理想的材料,由于电子的迁移率比空穴迁移率大,所以霍尔元件多采用n型材料,其次霍尔电压的大 1 I s B c I s B V H = Ewb = --------- =R H ne d d (3) 压为负, R H为负,样品属于n型;反之则为p型。 (2)由应求载流子浓度n.即n = |只]这个关系式是假定所有载流子都具有 相同的漂移速度得到的。 (3)结合电导率的测量, 求载流子的迁移率已与载流子浓度n以及迁移率巴之 a=ne^ 即門=R H。,测出冋值即可求門。

西安交大《塞曼效应实验报告》

应物31 吕博成学号:10

塞曼效应 1896年,荷兰物理学家塞曼()在实验中发现,当光源放在足够强的磁场中时,原来的一条光谱线会分裂成几条光谱线,分裂的条数随能级类别的不同而不同,且分裂的谱线是偏振光。这种效应被称为塞曼效应。 需要首先指出的是,由于实验先后以及实验条件的缘故,我们把分裂成三条谱线,裂距按波数计算正好等于一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位 mc eB L π4=)。而实际上大多数谱线的塞曼分裂谱线多于三条,谱线的裂距可以大于也可 以小于一个洛伦兹单位,人们称这类现象为反常塞曼效应。反常塞曼效应是电子自旋假设的有力证据之一。通过进一步研究塞曼效应,我们可以从中得到有关能级分裂的数据,如通过能级分裂的条数可以知道能级的J 值;通过能级的裂距可以知道g 因子。 塞曼效应至今仍然是研究原子能级结构的重要方法之一,通过它可以精确测定电子的荷质比。 一.实验目的 1.学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2.观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3.利用塞曼分裂的裂距,计算电子的荷质比e m e 数值。 二.实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为0E ,相应的总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。当原子处于磁感应强度为B 的外磁场中时,这一原子能级将分裂为12+J 层。各层能量为 B Mg E E B μ+=0 (1) 其中M 为磁量子数,它的取值为J ,1-J ,...,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(m hc B πμ4= );B 为磁感应强度。 对于S L -耦合 ) () ()()(121111++++-++ =J J S S L L J J g (2) 假设在无外磁场时,光源某条光谱线的波数为 )(010201~E E hc -=γ (3) 式中 h 为普朗克常数;c 为光速。

塞曼效应实验报告

塞曼效应实验报告 一、实验目的与实验仪器 1. 实验目的 (1)学习观察塞曼效应的方法,通过塞曼效应测量磁感应强度的大小。 (2)学习一种测量电子荷质比的方法。 2.实验仪器 笔形汞灯+电磁铁装置,聚光透镜,偏振片,546nm滤光片,F-P标准具,标准具间距(d=2mm),成像物镜与测微目镜组合而成的测量望远镜。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 1.塞曼效应 (1)原子磁矩和角动量关系 用角动量来描述电子的轨道运动和自旋运动,原子中各电子轨道运动角动量的矢量和即原子的轨道角动量L,考虑L-S耦合(轨道-自旋耦合),原子的角动量J =L +S。量子力学理论给出各磁矩与角动量的关系: L = - L,L = S = - S,S = 由上式可知,原子总磁矩和总角动量不共线。则原子总磁矩在总角动量方向上的分量 为: J = g J,J = J L为表示原子的轨道角量子数,取值:0,1,2… S为原子的自旋角量子数,取值:0,1/2,1,3/2,2,5/2… J为原子的总角量子数,取值:0,1/2,1,3/2… 式中,g=1+为朗德因子。 (2)原子在外磁场中的能级分裂 外磁场存在时,与角动量平行的磁矩分量J与磁场有相互作用,与角动量垂直的磁矩分量与磁场无相互作用。由于角动量的取向是量子化的,J在任意方向的投影(如z方向)为: = M,M=-J,-(J-1),-(J-2),…,J-2,J-1,J 因此,原子磁矩也是量子化的,在任意方向的投影(如z方向)为: =-Mg 式中,玻尔磁子μB =,M为磁量子数。

具有磁矩为J的原子,在外磁场中具有的势能(原子在外磁场中获得的附加能量): ΔE = -J·=Mg B 则根据M的取值规律,磁矩在空间有几个量子化取值,则在外场中每一个能级都分裂为等间隔的(2J+1)个塞曼子能级。原子发光过程中,原来两能级之间电子跃迁产生的一条光谱线也分裂成几条光谱线。这个现象叫塞曼效应。 2.塞曼子能级跃迁选择定则 (1)选择定则 未加磁场前,能级E2和E1之间跃迁光谱满足: hν = E2 - E1 加上磁场后,新谱线频率与能级之间关系满足: hν’= (E2+ΔE2) – (E1+ΔE1) 则频率差:hΔν= ΔE2-ΔE1= M2g2 B -M1g1B= (M2g2- M1g1)B 跃迁选择定则必须满足: ΔM = 0,±1 (2)偏振定则 当△M=0时,产生π线,为振动方向平行于磁场的线偏振光,可在垂直磁场方向看到。 当△M=±1时,产生σ谱线,为圆偏振光。迎着磁场方向观察时,△M=1的σ线为左旋圆偏振光,△M=-1的σ线为右旋圆偏振光。在垂直于磁场方向观察σ线时,为振动方向垂直于磁场的线偏振光。 3. 能级3S13P2 L01 S11 J12 g23/2 M10-1210-1-2 Mg20-233/20-3/2-3汞原子的绿光谱线波长为,是由高能级{6s7s}S1到低能级{6s6p}P2能级之间的跃迁,其上下能级有关的量子数值列在表1。3S1、3P2表示汞的原子态,S、P分别表示原子轨道量子数L=0和1,左上角数字由自旋量子数S决定,为(2S+1),右下角数字表示原子的总角动量量子数J。 在外磁场中能级分裂如图所示。外磁场为0时,只有的一条谱线。在外场的作用下,上能级分裂为3条,下能级分裂为5条。在外磁场中,跃迁的选择定则对磁量子数M的要求为:△M=0,±1,因此,原先的一条谱线,在外磁场中分裂为9条谱线。 9条谱线的偏振态,量子力学理论可以给出:在垂直于磁场方向观察,9条分裂谱线的强度(以中心谱线的强度为100)随频率增加分别为,,75,75,100,75,75,,. 标准具 本实验通过干涉装置进行塞曼效应的观察。我们选择法布里-珀罗标准具(F-P标准具)作为干涉元件。F-P标准具基本组成:两块平行玻璃板,在两板相对的表面镀有较高反射率的薄膜。 多光束干涉条纹的形成

多普勒综合试验仪

ZKY-DPL-2 多普勒效应综合实验仪实验指导说明书

多普勒效应综合实验 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①自由落体运动,并由V-t关系直线的斜率求重力加速度。 ②简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 ③匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ④其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f0(u+V1cosα1)/(u–V2cosα2)(1) 式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为: f = f0(1+V/u)(2) 当接收器向着声源运动时,V取正,反之取负。 若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u,由此可计算出声速u=f0/k 。 由(2)式可解出: V = u(f/f0– 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 2、超声的红外调制与接收 早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。新仪器对接收到的超声信号采用了无线的红外调制-发射-接收方式。即用超声接收器信号对红外波进行调制后发射,固定在运动导轨一端的红外接收端接收红外信号后,再将超声信号解调出来。由于红外发射/接收的过程中信号的传输是光速,远远大于声速,它引起的多谱勒效应可忽略不计。采用此技术将实验中运动部分的导线去掉,使得测量更准确,操作更方便。信号的调制-发射-接收-解调,在信号的无线传输过程中是一种常用的技术。

霍尔效应实验方法

实验: 霍尔效应与应用设计 [教学目标] 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 [实验仪器] 1.TH -H 型霍尔效应实验仪,主要由规格为>2500GS/A 电磁铁、N 型半导体硅单晶切薄片式样、样品架、I S 和I M 换向开关、V H 和V σ(即V AC )测量选择开关组成。 2.TH -H 型霍尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。 [教学重点] 1. 霍尔效应基本原理; 2. 测量半导体材料的霍尔系数的实验方法; 3. “对称测量法”消除副效应所产生的系统误差的实验方法。 [教学难点] 1. 霍尔效应基本原理及霍尔电压结论的电磁学解释与推导; 2. 各种副效应来源、性质及消除或减小的实验方法; 3. 用最小二乘法处理相关数据得出结论。 [教学过程] (一)讲授内容: (1)霍尔效应的发现: 1879,霍尔在研究关于载流导体在磁场中的受力性质时发现: “电流通过金属,在磁场作用下产生横向电动势” 。这种效应被称为霍尔效应。 结论:d B I ne V S H ?=1 (2)霍尔效应的解释: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。当载

流子所受的横电场力H e eE f =与洛仑兹力evB f m =相等时,样品两侧电荷的积累就达到平衡, B e eE H v = (1) bd ne I S v = (2) 由 (1)、(2)两式可得: d B I R d B I ne b E V S H S H H =?= ?=1 (3) 比例系数ne R H 1=称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, (3) 霍尔效应在理论研究方面的进展 1、量子霍尔效应(Quantum Hall Effect) 1980年,德国物理学家冯?克利青观察到在超强磁场(18T )和极低 温(1.5K )条件下,霍尔电压 UH 与B 之间的关系不再是线性的,出现一 系列量子化平台。 量子霍尔电阻 获1985年诺贝尔物理学奖! 2、分数量子霍尔效应 1、1982年,美国AT&T 贝尔实验室的崔琦和 斯特默发现:“极纯的半导体材料在超低温(0.5K) 和超强磁场(25T)下,一种以分数形态出现的量子电 阻平台”。 2、1983 年,同实验室的劳克林提出准粒子理 论模型,解释这一现象。 获1998年诺贝尔物理学奖 i e h I U R H H H 1 2?==3,2,1=i

塞曼效应实验资料报告材料完整版

学生: 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 塞曼效应 一、实验目的 1.观察塞曼效应现象,把实验结果与理论结果进行比较。 2.学习观测塞曼效应的实验方法。 3.计算电子核质比。 二、实验仪器 WPZ —Ⅲ型塞曼效应实验仪 三、实验原理 塞曼效应:在外磁场作用下,由于原子磁矩与磁场相互作用,使原子能级产 生分裂。垂直于磁场观察时,产生线偏振光(π线和σ线);平行于磁场观察时, 产生圆偏振光(左旋、右旋)。 按照半经典模型,质量为m ,电量为e 的电子绕原子核转动,因此,原子具 有一定的磁矩,它在外磁场B 中会获得一定的磁相互作用能E ?,由于原子的磁 矩J μ与总角动量J P 的关系为 2J J e g P m μ=(1) 其中g 为朗德因子,与原子中所有电子德轨道和自旋角动量如何耦合成整个 原子态的角动量密切相关。因此, cos cos 2J J e E B g P B m μαα?=-=-(2) 其中α是磁矩与外加磁场的夹角。又由于电子角动量空间取向的量子化,这 种磁相互作用能只能取有限个分立的值,且电子的磁矩与总角动量的方向相反, 因此在外磁场方向上, cos ,,1,,2J h P M M J J J απ-==--(3)

学生: 惠文 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 式中h 是普朗克常量,J 是电子的总角动量,M 是磁量子数。设:4B he m μπ=,称为玻尔磁子,0E 为未加磁场时原子的能量,则原子在外在磁场中的总能量为 00B E E E E Mg B μ=+?=+(4) 由于朗德因子g 与原子中所有电子角动量的耦合有关,因此,不同的角动量 耦合方式其表达式和数值完全不同。在L S -耦合的情况下,设原子中电子轨道 运动和自旋运动的总磁矩、总角动量及其量子数分别为L μ、L P 、L 和S μ、S P 、 S ,它们的关系为 2L L e P m μ==(5) S S e P m μ==(6) 设J P 与L P 和S P 的夹角分别为LJ α和SJ α,根据矢量合成原理,只要将二者在 J μ方向的投影相加即可得到形如(1)式的总电子磁矩和总轨道角动量的关系: 2222222222cos cos (cos 2cos )2(2)222(1)222J L LJ S SJ L LJ S SJ J L S J L S J J J L S J J J e P P m P P P P P P e m P P P P P e P P m e g P m μμαμααα=+= ++--+=+-+=+=(7) 其中朗德因子为 (1)(1)(1)1.2(1) J J L L S S g J J +-+++=++(8) 由(*)式中可以看出,由于M 共有(2J +1)个值,所以原子的这个能级在

霍尔效应实验报告

南昌大学物理实验报告 课程名称:普通物理实验( 2) 实验名称:霍尔效应 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:

一、实验目的: 1、了解霍尔效应法测磁感应强度I S的原理和方法; 2、学会用霍尔元件测量通电螺线管轴向磁场分布的基本方法; 二、实验仪器: 霍尔元件测螺线管轴向磁场装置、多量程电流表 2 只、电势差计、滑动变阻器、双路直流稳压电源、双刀双掷开关、连接导线15 根。 三、实验原理: 1、霍尔效应 霍尔效应本质上是运动的带电粒子在磁场中受洛仑磁力作用而引起的偏转。 当带电粒子(电子或空穴)被约束在固体材料中,这种偏转导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横加电场,即霍尔电场E H . 如果 E H <0,则说明载流子为电子,则为n 型试样;如果 E H >0,则说明载流子为空穴,即为p 型试样。 显然霍尔电场 E H是阻止载流子继续向侧面偏移,当载流子所受的横向电场 力 e E H与洛仑磁力 evB 相等,样品两侧电荷的积累就达到动态平衡,故有:

e E H =- evB 其中 E H为霍尔电场, v 是载流子在电流方向上的平均速度。若试样的宽 度为 b,厚度为 d,载流子浓度为n,则I nevbd 由上面两式可得: 1 I S B I S B V H E H b R H(3) ne d d 即霍尔电压 V H(上下两端之间的电压)与I S B乘积成正比与试样厚度 d 成反比。 1 称为霍尔系数,它是反应材料霍尔效应强弱的重要参量。只要比列系数 R H ne 测出 V H以及知道I S、 B 和 d 可按下式计算 R H : R H V H d10 4 I S B 2、霍尔系数 R H与其他参量间的关系 根据 R H可进一步确定以下参量: ( 1)由 R H的符号(或霍尔电压的正负)判断样品的导电类型。判别方法是电压为负, R H为负,样品属于n 型;反之则为 p 型。 ( 2)由 R H求载流子浓度 n.即n1这个关系式是假定所有载流子都具有相 R H e 同的漂移速度得到的。 ( 3)结合电导率的测量,求载流子的迁移率与载流子浓度n以及迁移率之间有如下关系 ne即= R H,测出值即可求。 3、霍尔效应与材料性能的关系 由上述可知,要得到大的霍尔电压,关键是选择霍尔系数大(即迁移率高、

塞曼效应实验报告

近代物理实验报告 塞曼效应实验 学院 班级 姓名 学号 时间 2014年3月16日

塞曼效应实验实验报告 【摘要】: 本实验通过塞曼效应仪与一些观察装置观察汞(Hg)546.1nm谱线(3S1→3P2跃迁)的塞曼分裂,从理论上解释、分析实验现象,而后给出横效应塞满分裂线的波数增量,最后得出荷 质比。 【关键词】:塞曼效应、汞546.1nm、横效应、塞满分裂线、荷质比 【引言】: 塞曼效应是原子的光谱线在外磁场中出现分裂的现象,是1896年由荷兰物理学家塞曼发现的。首先他发现,原子光谱线在外磁场发生了分裂;随后洛仑兹在理论上解释了谱线分裂成 3条的原因,这种现象称为“塞曼效应”。在后来进一步研究发现,很多原子的光谱在磁场中 的分裂情况有别于前面的分裂情况,更为复杂,称为反常塞曼效应。 塞曼效应的发现使人们对物质光谱、原子、分子有更多了解,塞曼效应证实了原子磁矩的 空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体 的磁场。本实验采取Fabry-Perot(以下简称F-P)标准具观察Hg的546.1nm谱线的塞曼效应,同时利用塞满效应测量电子的荷质比。 【正文】: 一、塞曼分裂谱线与原谱线关系 1、磁矩在外磁场中受到的作用 (1)原子总磁矩在外磁场中受到力矩的作用: 其效果是磁矩绕磁场方向旋进,也就是总角动量(P J)绕磁场方向旋进。 (2)磁矩在外磁场中的磁能:

由于或在磁场中的取向量子化,所以其在磁场方向分量也量子化: ∴原子受磁场作用而旋进引起的附加能量 M为磁量子数 g为朗道因子,表征原子总磁矩和总角动量的关系,g随耦合类型不同(LS耦合和jj耦合)有两种解法。在LS耦合下: 其中: L为总轨道角动量量子数 S为总自旋角动量量子数 J为总角动量量子数 M只能取J,J-1,J-2 …… -J(共2J+1)个值,即ΔE有(2J+1)个可能值。 无外磁场时的一个能级,在外磁场作用下将分裂成(2J+1)个能级,其分裂的能级是等间隔的,且能级间隔 2、塞曼分裂谱线与原谱线关系: (1) 基本出发点:

大学物理实验多普勒效应

多普勒效应实验报告 学院化学与生物工程学院班级化学1701 学号姓名 一、实验目的与实验仪器 实验目的 1、了解多普勒效应原理,并研究相对运动的速度与接收到的频率之间的关系。 2、利用多普勒效应,研究做变速运动的物体其运动速度随时间的变化关系,以及机械 能转化的规律。 实验仪器 ZKY-DPL-3多普勒效应综合实验仪、电子天平、钩码等。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 1、声波的多普勒效应 当声源相对介质静止不动时,声波的频率f0,波长λ0以及波速U0表示为 f0=U0/λ0 则观测频率f、观测波长λ和观测波速U的关系 f=U/λ 当接收器以一定的速率向声源移动时U=U0+V0,则 f=(U0+V0)/λ0 联立,得f=(U0+V0)/λ0=(f0λ0)/λ0=(1+V/U0)f0 当声源以一定的速率向接收器移动时V =U0-V0,则 f’=U’/λ’=U0/( U0-V0)/T= U0/( U0-V0) f 当声源与接收器运动如图时 f=(U0+V1COSθ1)/( U0-V2 COSθ2) 2、马赫锥 a=arcsin(U0/V0)=arcsin(1/M) U0为波速,V为飞行器速率,a为马赫角,M为V/U0马赫数

3、天文学中的多普勒效应 观察两波面的时间 t=(λc/(C+Vc))/(1/(1-V2c/C2c)1/2) =(1-V2c/C2c)1/2/((1+Vc/Cc)fc) 三、实验步骤 (要求与提示:限400字以内) 1、超声波的多普勒效应 (1)、组装仪器 (2)、打开实验控制箱,调至室温,记录共振频率f0 (3)、选择多普勒效应验证实验 (4)、修改测试总数 (5)、为仪器充电,确定失锁指示灯处于灯灭状态 (6)、选定滑车速率,开始测试 (7)、选择存入或者重测 (8)、重新选择速度,重复(6)、(7) (9)、记录实验数据 2、用多普勒效应研究恒力下物体的运动规律 (1)、测量钩码质量和滑车质量 (2)、连接仪器 (3)、选中变速运动测量 (4)、修改测量总次数 (5)、选中开始测试,立即松开钩码 (6)、记录测量数据 (7)、改变砝码质量,重复(1)到(6) 四、数据处理 (要求与提示:对于必要的数据处理过程要贴手算照片) 表4.12-1 多普勒效应的验证与声速的测量 t c = 24 ℃f0 = 40001 Hz 次数i 1 2 3 4 5 v/(m/s) 0.41 0.59 0.75 0.87 0.98 Fi/Hz 40049 40070 40089 40103 40116

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学得迅速发展,霍尔系数与电导率得测量已成为研究半导体材料得主要方法之一。本文主要通过实验测量半导体材料得霍尔系数与电导率可以判断材料得导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中得载流体,如果电流方向与磁场垂直,则在垂直于电流与磁场得方向会产生一附加得横向电场,称为霍尔效应。 如今,霍尔效应不但就是测定半导体材料电学参数得主要手段,而且随着电子技术得发展,利用该效应制成得霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制与信息处理等方面. 【实验目得】 1.通过实验掌握霍尔效应基本原理,了解霍尔元件得基本结构; 2.学会测量半导体材料得霍尔系数、电导率、迁移率等参数得实验方法与技术; 3.学会用“对称测量法"消除副效应所产生得系统误差得实验方法。 4.学习利用霍尔效应测量磁感应强度B及磁场分布. 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲就是运动得带电粒子在磁场中受洛仑兹力作用而引起得偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流与磁场得方向上产生正负电荷得聚积,从而形成附加得横向电场。如图1所示.当载流子所受得横电场力与洛仑兹力相等时,样品两侧电荷得积累就达到平衡,故有

? 其中EH 称为霍尔电场,就是载流子在电流方向上得平均漂移速度。设试样得宽度为b,厚度为d,载流子浓度为n ,则 ? ? ? 比例系数R H=1/n e称为霍尔系数. 1. 由RH 得符号(或霍尔电压得正负)判断样品得导电类型。 2. 由R H求载流子浓度n ,即 (4) 3. 结合电导率得测量,求载流子得迁移率. 电导率σ与载流子浓度n 以及迁移率之间有如下关系 (5) 即,测出值即可求。 电导率可以通过在零磁场下,测量B 、C 电极间得电位差为VBC ,由下式求得。 (6) 二、实验中得副效应及其消除方法: 在产生霍尔效应得同时,因伴随着多种副效应,以致实验测得得霍尔电极A 、A′之间得电压为V H 与各副效应电压得叠加值,因此必须设法消除。 (1)不等势电压降V 0 图1、 霍尔效应原理示意图,a)为N 型(电子) b)为P 型(孔穴)

塞曼效应实验报告

1、前言和实验目的 1.了解和掌握WPZ-Ⅲ型塞曼效应仪和利用其研究谱线的精细结构。 2.了解法布里-珀罗干涉仪的的结构和原理及利用它测量微小波长差值。 3.观察汞546.1nm (绿色)光谱线的塞曼效应,测量它分裂的波长差,并计算电子的荷质比的实验值和标准值比较。 2、实验原理 处于磁场中的原子,由于电子的j m 不同而引起能级的分裂,导致跃迁时发出的光子的频率产生分裂的现象就成为塞曼效应。下面具体给出公式推导处于弱磁场作用下的电子跃迁所带来的能级分裂大小。 总磁矩为 J μ 的原子体系,在外磁场为B 中具有的附加能为: E ?= -J μ *B 由于我们考虑的是反常塞曼效应,即磁场为弱磁场,认为不足以破坏电子的轨道-自旋耦合。则我们有: E ?= -z μB =B g m B J J μ 其中z μ为J μ 在z 方向投影,J m 为角动量J 在z 方向投影的磁量子数,有12+J 个值,B μ= e m eh π4称为玻尔磁子,J g 为朗德因子,其值为 J g =) 1(2) 1()1()1(1++++-++ J J S S L L J J 由于J m 有12+J 个值,所以处于磁场中将分裂为12+J 个能级,能级间隔为B g B J μ。当没有磁场时,能级处于简并态,电子的态由n,l,j (n,l,s )确定,跃迁的选择定则为Δs=0, Δl=1±.而处于磁场中时,电子的态由n,l,j,J m ,选择定则为Δs=0,Δl=1±,1±=?j m 。 磁场作用下能级之间的跃迁发出的谱线频率变为: )()(1122' E E E E hv ?+-?+==h ν+(1122g m g m -)B μB 分裂的谱线与原谱线的频率差ν?为: ν?=' ν-ν=h B g m g m B /)(1122μ-、 λ?= c ν λ?2 =2λ (1122g m g m -)B μB /hc =2 λ (1122g m g m -)L ~

塞曼效应实验报告

塞曼效应实验 实验原理 1、磁矩在外磁场中受到的作用 (1)原子总磁矩在外磁场中受到力矩的作用: 其效果是磁矩绕磁场方向旋进,也就是总角动量(PJ)绕磁场方向旋进。 (2)磁矩在外磁场中的磁能: 由于或在磁场中的取向量子化,所以其在磁场方向分量也量子化: ∴原子受磁场作用而旋进引起的附加能量 M为磁量子数 g为朗道因子,表征原子总磁矩和总角动量的关系,g随耦合类型不同(LS耦合和jj耦合)有两种解法。在LS耦合下:

2、塞曼分裂谱线与原谱线关系: (1) 基本出发点: ∴分裂后谱线与原谱线频率差 由于 定义为洛仑兹单位: 3、谱线的偏振特征: 塞曼跃迁的选择定则为:ΔM=0 时为π成份(π型偏振)是振动方向平行于磁场的线偏振光,只有在垂直于磁场方向才能观察到,平行于磁场方向观察不到;但当ΔJ=0时,M2=0到M1=0的跃迁被禁止。

当ΔM=±1时,为σ成份,σ型偏振垂直于磁场,观察时为振动垂直于磁场的线偏振光。 平行于磁场观察时,其偏振性与磁场方向及观察方向都有关:沿磁场正向观察时(即磁场方向离开观察者:) ΔM= +1为右旋圆偏振光(σ+偏振) ΔM= -1为左旋圆偏振光(σ-偏振) 也即,磁场指向观察者时:⊙ ΔM= +1为左旋圆偏振光 ΔM= -1为右旋圆偏振光 分析的总思路和总原则: 在辐射的过程中,原子和发出的光子作为整体的角动量是守恒的。 原子在磁场方向角动量为 ∴在磁场指向观察者时:⊙B 当ΔM= +1时,光子角动量为,与同向 电磁波电矢量绕逆时针方向转动,在光学上称为左旋圆偏振光。 ΔM= -1时,光子角动量为,与反向 电磁波电矢量绕顺时针方向转动,在光学上称为右旋圆偏振光。

多普勒声速实验--实验报告

DH-DPL系列多普勒效应及声速综合实验 实验报告 一:实验目的 多普勒效应是一种与波动紧密相关的物理现象.利用多普勒效应可以测量运动物体的速度,但目前许多高校使用的多普勒效应实验仪集成化和智能化程度太高,实验时需要学生动手操作的环节太少;信号的转换、传输和处理过程不透明,不利于学生在实验过程中细致观察各种物理现象,分析测量误差的来源等,难以满足深入培养学生自主动手能力和观察分析能力的需要.本实验以商用超声多普勒实验系统(杭州大华DH -DPL1)的导轨模块作为开发平台,以模拟乘法器作为测量系统的核心单元;实验过程中学生需自行搭建信号拾取和处理电路,并利用示波器观察各个环节的信号波形,有助于培养学生得动手能力,并加深对多普勒效应及对模拟电子实验的理解。 二:实验原理 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器收到的信号频率f为: f = f0 (u + v1 cosα1 ) / (u - v2 cosα2 ) (1) 式中f0为声源发射频率, u为声速, v1 为接收器运动速率, v2 为声源运动速率,α1 是声源与接收器连线与接收器运动方向之间的夹角,α2 是声源与接收器连线与声源运动方向之间的夹角. 在实验过程中,声源保持不动,接收换能器在导轨上沿声源与接收换能器连线方向上运动,则从式(1)可以得到接收换能器上得到的信号频率为: f = f0 (1 + v/u) (2) 式中v为接收换能器的运动速度,当向着声源运动时, v取正,反之取负.利用式(2)可以得到接收换能器的运动速度为:

v = u(f - f0 ) /f0 = uΔf/f0 ………..(3) 式中Δf = f - f0为多普勒频移. 在本研究中,采用的信号处理电路如图1所示, 其中模拟乘法器采用了AD633,其信号的输入输出 关系为: W =(x1 - x2 ) (y1 - y2 )/10+ z (4) 若输入到AD633的信号为x1 = E1 cos(2πf0 t +φ1 ) , y1 = E2 cos(2πft +φ2 ) , x2、y2 以及z均接地,则AD633的输出为: W =E1 E2{cos[2π(f + f0 ) t +φ2 +φ1 ] /20+cos[2π(f - f0 ) t +φ2 -φ1 ]} (5) 其中包含了两路信号的和频分量与差频分量. 利用低通滤波器可以提取出其中的差频分量,即多普勒频移,从而计算出接收换能器的运动速度. 在实际测量过程中,由于接收换能器与声源(发射换能器)的距离在不断变化过程中,因此接收换能器输出信号的幅度不是恒定值. 为了保证乘法器的输出信号幅度稳定,本研究中采用OA1组成的限幅放大电路,使输入到乘法器的信号幅度保持恒定值,以便于观察.因为本实验中只关心输出信号的频率,因此对接收换能器输出信号幅度的处理不会影响到实验结果.利用OA2构建的有源低通滤波器,可以有效提取出多普勒频移信号.

西安交大《塞曼效应实验报告》(资料参考)

塞 曼 效 应 实 验 报 告 应物31 吕博成学号:2120903010

塞曼效应 1896年,荷兰物理学家塞曼(P.Zeeman )在实验中发现,当光源放在足够强的磁场中时,原来的一条光谱线会分裂成几条光谱线,分裂的条数随能级类别的不同而不同,且分裂的谱线是偏振光。这种效应被称为塞曼效应。 需要首先指出的是,由于实验先后以及实验条件的缘故,我们把分裂成三条谱线,裂距按波数计算正好等于一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位 mc eB L π4=)。而实际上大多数谱线的塞曼分裂谱线多于三条,谱线的裂距可以大于也可 以小于一个洛伦兹单位,人们称这类现象为反常塞曼效应。反常塞曼效应是电子自旋假设的有力证据之一。通过进一步研究塞曼效应,我们可以从中得到有关能级分裂的数据,如通过能级分裂的条数可以知道能级的J 值;通过能级的裂距可以知道g 因子。 塞曼效应至今仍然是研究原子能级结构的重要方法之一,通过它可以精确测定电子的荷质比。 一.实验目的 1.学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2.观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3.利用塞曼分裂的裂距,计算电子的荷质比e m e 数值。 二.实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为0E ,相应的总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。当原子处于磁感应强度为B 的外磁场中时,这一原子能级将分裂为12+J 层。各层能量为 B Mg E E B μ+=0 (1) 其中M 为磁量子数,它的取值为J ,1-J ,...,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(m hc B πμ4= );B 为磁感应强度。 对于S L -耦合 ) () ()()(121111++++-++ =J J S S L L J J g (2) 假设在无外磁场时,光源某条光谱线的波数为

霍尔效应实验报告[共8篇]

篇一:霍尔效应实验报告 大学 本(专)科实验报告 课程名称:姓名:学院: 系: 专业:年级:学号: 指导教师:成绩:年月日 (实验报告目录) 实验名称 一、实验目的和要求二、实验原理三、主要实验仪器 四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议 霍尔效应实验 一.实验目的和要求: 1、了解霍尔效应原理及测量霍尔元件有关参数. 2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。 3、学习利用霍尔效应测量磁感应强度b及磁场分布。 4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。 5、学习用“对称交换测量法”消除负效应产生的系统误差。 二.实验原理: 1、霍尔效应 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔 效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴) 被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的 聚积,从而形成附加的横向电场。 如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流 is(称为控制电流或工作电流),假设载流子为电子(n型 半导体材料),它沿着与电流is相反的x负向运动。 由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并 使b侧形成电子积累,而相对的a侧形成正电荷积累。与此同时运动的电子还受到由于两种 积累的异种电荷形成的反向电场力fe的作用。随着电荷积累量的增加,fe增大,当两力大 小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。这时在a、b两端面之间建立 的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。 设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为 fl=-eb 式中e为电子电量,为电子漂移平均速度,b为磁感应强度。 同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为 霍尔电压,l为霍尔元件宽度 当达到动态平衡时,fl??fe ?vh/l (1) 设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl? ib1isb ?rhs (3) nedd

塞曼效应实验报告完整版

学生姓名: 学号: 39 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 塞曼效应 一、实验目的 1.观察塞曼效应现象,把实验结果与理论结果进行比较。 2.学习观测塞曼效应的实验方法。 3.计算电子核质比。 二、实验仪器 WPZ —Ⅲ型塞曼效应实验仪 三、实验原理 塞曼效应:在外磁场作用下,由于原子磁矩与磁场相互作用,使原子能级产生分裂。垂直于磁场观察时,产生线偏振光(π线和σ线);平行于磁场观察时,产生圆偏振光(左旋、右旋)。 按照半经典模型,质量为m ,电量为e 的电子绕原子核转动,因此,原子具有一定的磁矩,它在外磁场B 中会获得一定的磁相互作用能E ?,由于原子的磁矩J μ与总角动量J P 的关系为 2J J e g P m μ=(1) 其中g 为朗德因子,与原子中所有电子德轨道和自旋角动量如何耦合成整个原子态的角动量密切相关。因此, cos cos 2J J e E B g P B m μαα?=-=-(2) 其中α是磁矩与外加磁场的夹角。又由于电子角动量空间取向的量子化,这种磁相互作用能只能取有限个分立的值,且电子的磁矩与总角动量的方向相反,因此在外磁场方向上, cos ,,1,,2J h P M M J J J απ -==--L (3)

学生姓名: 刘惠文 学号: 39 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 式中h 是普朗克常量,J 是电子的总角动量,M 是磁量子数。设:4B he m μπ=,称为玻尔磁子,0E 为未加磁场时原子的能量,则原子在外在磁场中的总能量为 00B E E E E Mg B μ=+?=+(4) 由于朗德因子g 与原子中所有电子角动量的耦合有关,因此,不同的角动量 耦合方式其表达式和数值完全不同。在L S -耦合的情况下,设原子中电子轨道运动和自旋运动的总磁矩、总角动量及其量子数分别为L μ、L P 、L 和S μ、S P 、S ,它们的关系为 2L L e P m μ==(5) S S e P m μ==(6) 设J P 与L P 和S P 的夹角分别为LJ α和SJ α,根据矢量合成原理,只要将二者在 J μ方向的投影相加即可得到形如(1)式的总电子磁矩和总轨道角动量的关系: 2222222222cos cos (cos 2cos )2(2)222(1)222J L LJ S SJ L LJ S SJ J L S J L S J J J L S J J J e P P m P P P P P P e m P P P P P e P P m e g P m μμαμααα=+= ++--+=+-+=+=(7) 其中朗德因子为 (1)(1)(1)1.2(1) J J L L S S g J J +-+++=++(8) 由(*)式中可以看出,由于M 共有(2J +1)个值,所以原子的这个能级在

多普勒效应综合实验报告及数据处理图

多普勒效应综合实验 (附数据处理图) (注:由于上传后文库中数据图看不清楚,须下载后才能看清楚) 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ②自由落体运动,并由V-t关系直线的斜率求重力加速度。 ③简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 ④其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f0(u+V1cosα1)/(u–V2cosα2)(1) 式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为: f = f0(1+V/u)(2) 当接收器向着声源运动时,V取正,反之取负。 若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u,由此可计算出声速u=f0/k 。 由(2)式可解出: V = u(f/f0– 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f 采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 2、超声的红外调制与接收 早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。新仪器对接收到的超声信号采用了无线的红外调制-发射-接收方式。即用超声接收器信号对红外波进行调制后发射,固定在运动导轨一端的红外接收端接收红外信号后,再将超声信号解调出来。由于红外发射/接收的过程中信号的传输是光速,远远大于声速,它引起的多谱勒效应可忽

相关文档
最新文档