管线钢分类、发展

管线钢分类、发展
管线钢分类、发展

管线钢分类、发展

管线钢是指用于输送石油、天然气等管道所用的一类具有特殊要求的钢种,根据厚度和后续形成等方面的不同,可由热连轧机组、炉卷轧机或中厚板轧机生产,经螺旋焊接或UOE直缝焊接形成大口径钢管。下面随小编去了解下管线钢。

一、管线钢分类

1、铁索体-珠光体管线钢

铁素体一珠光体管线钢是20世纪60年代以前开发的管线钢所具有的基本组织形态,X52以及低于这种强度级别的管线钢均属于铁素体一珠光体,其基本成分是碳和锰,通常碳含量(质量分数,下同)为0.10%一0.20%,锰含量为1.30%~1.70%,一般采用热轧或正火热处理工艺生产。当要求较高强度时,可取碳含量上限,或在锰系的基础上添加微量铌和钒。通常认为,铁素体一珠光体管线钢具有晶粒尺寸约为7μm的多边形铁素体和体积分数约30%的珠光体。常见的铁素体一珠光体管线钢有5LB、X42、X52、X60、X60和X70。

2、针状铁素体管线钢

针状铁素体管线钢的研究始于20世纪60年代末,并于70年代初投入工业生产。当时,在锰一铌系基础E发展起来的低碳.锰一钼一铌系微合金管线钢,通过钼的加入,降低相变温度以抑制多边形铁素体的形成,促进针状铁素体转变,并提高碳、氮化铌的沉淀强化效果,因而在提高钢强度的同时,降低了韧脆转变温度。这种钼合金化技术已有近40年的生产实践。近年来,另一种获取针状铁素体的高温工艺技术正在兴起,它通过应用高铌合金化技术,可在较高的轧制温度条件下获取针状铁素体。常见的针状铁素体管线钢有X70、X80。

3、贝氏体一马氏体管线钢

随着高压、大流量天然气管线钢的发展和对降低管线建没成本的追求,针状铁素体组织已不能满足要求。20世纪后期,一种超高强度管线钢应运而生。其典型钢种为X100和X120。1988年日本SMI公司首先报道了,X100的研究成果。经历了,多年的研究和开发,X100钢管于2002年首次投入工程试验段的敷设。美国ExxonMobil公司于1993年着手X120管线钢的研究,并于1996年与日本SMI公司和NSC公司合作,共同推进X120的研究进程,2004年X120钢首次投人丁程试验段的敷设。

贝氏体一马氏体管线钢在成分设计上,选择了碳一锰—铜—镍—钼—铌—钒—钛—硼的最佳配合。这种合金设计思想充分利用了硼在相变动力学上的重要特征。加入微量的硼(ωB=0.0005%~0.003%),可明显抑制铁素体在奥氏体晶界上形核,使铁素体曲线明显右移。同时使贝氏体转变曲线变得扁平,即使在超低碳(ωC=0.003%)情况下,通过在TMCP中降低终冷温度(<300℃)和提高冷却速度(>20℃/s),也能获得下贝氏体一板条马氏体组织。常见的贝氏体—马氏体(B—M)管线钢有X100、X120。

4、回火索氏体管线钢

随着社会的发展,需要管线钢具有更高的强韧性,如果控轧控冷技术满足不了这种要求,可以采刚淬火+回火的热处理工艺,通过形成回火索氏体组织来满足厚壁、高强度、足够韧性的综合要求。在管线钢中,这种同火索氏体也称为同火马氏体,是超高强度管线钢X120的一种组织形态。

二、管线钢发展

早期管道离中心城市较近,地理环境和社会依托条件都较优越。如今,新发现的油、气田大都在边远地区和地理、气候条件恶劣的地带,如向西欧市场供气的阿尔及利亚气田,可向远东市场供气的西伯利亚气田,可向美国市场供气的北阿拉斯加气田和我国东部、西北部油气田等。随着边远油气田、极地油气田、海上油气田和酸性油气田等恶劣环境油气田的开发,油气管道工程面临着高压输送和低温、大位移、深海、酸性介质等恶劣环境的挑战。为保证管道建设和运行的积极性和安全性,管线钢的基本要求和发展趋势是高强度、高韧性、大变形性、厚壁化、高腐蚀性和好的焊接性。

更多管线钢的相关资讯,请持续关注变宝网资讯中心。

本文摘自变宝网-废金属_废塑料_废纸_废品回收_再生资源B2B交易平台网站;

变宝网官网:https://www.360docs.net/doc/de7402705.html,/?cjq

买卖废品废料,再生料就上变宝网,什么废料都有!

钢材的用途分类

我国在此是以钢材的用途分类作为表示方法分类的基础: 1)碳素结构钢: 表示方法:Q+数字+(质量等级符号)+(脱氧方法符号)+(专门用途的符号) ①钢号冠以“Q”,代表钢材的屈服点; ②“Q”后面的数字表示屈服点数值,单位是MPa。例如Q235表示屈服点(σs)为235MPa的碳素结构钢; ③必要时钢号后面可标出表示质量等级和脱氧方法的符号。 质量等级符号分别为A、B、C、D。 脱氧方法符号:F表示沸腾钢;b表示半镇静钢:Z表示镇静钢;TZ表示特殊镇静钢,镇静钢可不标符号,即Z和TZ都可不标。例如Q235-AF表示A级沸腾钢。 专门用途的碳素钢:例如桥梁钢、船用钢等,基本上采用碳素结构钢的表示方法,但在钢号最后附加表示用途的字母。 2)优质碳素结构钢 表示方法:数字+(元素符号)+(脱氧方法符号)+(专门用途的符号) ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.45%的钢,钢号为“45”,它不是顺序号,所以不能读成45号钢。 ②锰含量较高的优质碳素结构钢,应将锰元素标出,例如50Mn。 ③沸腾钢、半镇静钢及专门用途的优质碳素结构钢应在钢号最后特别标出,例如平均碳含量为0.1%的半镇静钢,其钢号为10b。 3)碳素工具钢 表示方法:字母T+数字+(元素符号)+(质量等级符号) ①钢号冠以“T”,以免与其他钢类相混。 ②钢号中的数字表示碳含量,以平均碳含量的千分之几表示。例如“T8”表示平均碳含量为0.8%。 ③锰含量较高者,在钢号最后标出“Mn”,例如“T8Mn”。 ④高级优质碳素工具钢的磷、硫含量,比一般优质碳素工具钢低,在钢号最后加注字母“A”,以示区别,例如“T8MnA”。 4)易切削钢 表示方法:字母Y+数字+(元素符号) ①钢号冠以“Y”,以区别于优质碳素结构钢。 ②字母“Y”后的数字表示碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.3%的易切削钢,其钢号为“Y30”。 ③锰含量较高者,亦在钢号后标出“Mn”,例如“Y40Mn”。 5)合金结构钢 表示方法:(专门用途符号)+数字+主要合金元素符号和数字+微量合金元素符号+(质量等级符号)+(专门用途符号) ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,如 40Cr。

(完整版)钢结构发展历程

钢结构发展历程 从铁被人们发现开始,铁就与建筑有着紧密的关系,在人类建筑史上铁发挥着重要的作用。但是,大规模的运用钢铁作为建筑材料还是从近200年开始的。 我国古代有许多运用铁构件建造的建筑,如公元694年在洛阳建成的“天枢”和公元1061年在湖北荆州玉泉寺建成的13层铁塔等。欧美等国在1840年之前多采用铸铁建造拱桥。在1840年后,随着铆钉连接和锻铁技术的发展,铸铁结构逐渐被锻铁结构取代,1846年到1850年英国人在威尔士修建的布里塔尼亚桥就是这方面的代表。该桥共有4跨,每跨均为箱型梁式结构,由锻铁型板和角铁经铆钉连接而成。直到1870年成功轧制出工字钢后,形成了工业化大批量生产钢材的能力,强度高韧性好的钢材才逐渐在建筑领域代替锻铁材料。20世纪初焊接技术和高强度螺栓的接连出现,极大的促进了钢结构的发展,除了欧洲和北美外,钢结构在前苏联和日本也获得了广泛应用,逐渐成为全世界所接受的重要的结构体系。 中国虽然早期在铁结构方面有卓越的成就,但由于2000 多年的封建制度的束缚,科学不发达,因此,长期停留于铁制建筑物的水平。直到19 世纪末,我国才开始采用现代化钢结构。新中国成立后,钢结构的应用有了很大的发展,不论在数量上或质量上都远远超过了过去。在设计、制造和安装等技术方面都达到了较高的水平,掌握了各种复杂建筑物的设计和施工技术,在全国各地已经建造了许多规模巨大而I 结构复杂的钢结构厂房、大跨度钢结构民用建筑及铁路桥梁等,我国的人民大会堂钢屋架,北京和1海等地的体育馆的钢网架,陕西秦始皇兵马佣陈列馆的三铰钢拱架和北京的鸟巢等。轻钢结构的楼面由冷弯薄壁型钢架或组合梁、楼面OSB 结构板,支撑、连接件等组成。所用的材料是定向刨花板,水泥纤维板,以及胶合板。在这些轻质楼迈特建筑轻钢结构住宅面上每平方米可承受316~365 公斤的荷载。的楼面结构体系重量仅为国内传统的混凝土楼板体系的四分之一到六分之一,但其楼面的结构高度将比普通混凝土板高100~120 毫米。 钢结构建筑的多少,标志着一个国家或一个地区的经济实力和经济发达程度。进入2000 年以后,我国国民经济显著增长,因力明显增强,钢产量成为世界大因,在建筑中提出了要“积极、合理地用钢”,从此甩掉了“限制用钢”的束缚,

石油管线钢市场分析

石油管线钢市场分析 一、概况 1、简介 石油管线钢主要指用于制造输送石油的大口径焊接钢管用热轧卷板或宽厚板。国际多采用美国石油协会规范(API5L),通用为X系列,级别越高表示其强度及抗压性越大,如X42、X46为低强度管线钢,X52、X56为中强度管线钢,X60、X65、X70为高强度管线钢,X80、X100、X110为超高强度管线钢。不过管线钢强度级别的提高不是依靠C、Mn的提高来实现的,而是依靠轧制时的控轧控冷来实现的,通过控轧控冷得到超细晶粒的钢,强度级别高的钢种,需要添加微量元素,如Nb、V、B、Ti、Mo等,目前管线钢已成为低合金高强度和微合金钢领域内富有活力的一个重要分支。 石油输送管线管多由石油管线钢经过深加工(压力加工、焊接、热处理、机加工、表面处理、无损检测等)而成,一般板卷用于生产直缝电阻焊管(ERW)或埋弧螺旋焊管(SSAW),中厚板制成厚壁直缝焊管(LSAW)。用无缝钢管作为输送油管的数量相对较少。 图 1 输油管线用(钢)管 目前我国石油输送管线钢屈服强度多为306—450MPa(约相当于X52~X65),但随着石油需求量的不断增加,管道的输送压力和管径也不断地增大以增加其输送效率,考虑到管道的结构稳定性和安全性,还需增加管壁厚度和进步管材的强度,因此用作石油输送管的管线钢都向着厚规格和高强度方向发展。

2、使用标准 目前在我国使用的油气输送管线(钢)管的主要技术标准有API SPEC 5L、GB/T 9711、ISO 3183。除对管线钢化学成分、冶金质量、力学性能、残余应力、可焊性等有严格的要求外,对成品的几何形状和尺寸例如外径、内径、壁厚、圆度、直度等结构完整性也都有要求。 表 1 输油管线(钢)管使用标准 上大多数石油公司都习惯采用API SPEC 5L规范作为管线钢管采购的基础规范,国内1985年才开始按API标准生产。不过API SPEC 5L是一个通用标准,技术要求显得比较松,而世界各地地理、气候等自然条件差别很大,输送介质的性质也不尽相同,因此,很多石油公司将API SPEC 5L视为一个基础标准,在该标准基础上,根据当地实际情况或管线的具体要求,制订质量技术补充技术规范(技术条件)。 (2)ISO 3183—l(—2、—3)(石油天然气工业输送钢管交货技术条件第一部分:A级钢管/第二部分:B级钢管/第三部分:C级钢管)是国际标准化组织制定的关于油气输送钢管交货条件的标准,根据钢管不同的服役条件,分成A、B、C三个级别。 (3)GB/T 9711.1(一2)是中国标准化委员会管材专标委等同采用IS03183—l(—2)标准制定的石油工业用输送钢管交货技术条件。对钢管的化学成分、力学性能、止裂韧性、焊接性能等提出要求。 (4)DNV OS—F101(海底管线系统)是挪威船级社专门针对海底管线而制定的规范。涉及内容很广泛,包括管线设计、材料、制造、安装、检测、运行、维护等各方面。单就对钢管的技术要求,通常比API 5L要严格。

第七章--工业用钢习题参考答案

第七章工业用钢 习题参考答案 一、解释下列名词 1、非合金钢(或碳素钢简称碳钢):是指含碳量在0.0218%~2.11%之间并含有少量Si、Mn、P、S等杂质元素的铁碳合金。 低合金钢:加入的合金元素总含量小于5%的合金钢。 合金钢:在碳素钢的基础上,特意加入某些合金元素而得到的钢种。 合金元素:为改善钢的力学性能或获得某些特殊性能,有目的地在冶炼过程中加入的一些化学元素。 2、合金结构钢:在碳素结构钢的基础上,特意加入某些合金元素而得到的结构钢。 合金工具钢:在碳素工具钢的基础上,特意加入某些合金元素而得到的工具钢。 轴承钢:用来制造滚动轴承的内圈、外圈和滚动体的专用钢。 不锈钢:具有耐大气、酸、碱、盐等介质腐蚀作用的合金钢。 耐热钢:在高温下具有高的热化学稳定性和热强性的特殊性能钢。 3、热硬性(或称红硬性):钢在高温下保持高硬度的能力。 回火稳定性:淬火钢在回火时抵抗软化的能力。 二次硬化:含W、Mo、V、Cr 等元素的高合金钢,在回火的冷却过程中,残余奥氏体转变为马氏体,淬火钢的硬度上升的现象。 二、填空题 1、Ni、Mn、C、N、Cu 等元素能扩大Fe-Fe3C 相图的γ区,使临界点A4_上升__,A3_下降_。 2、W18Cr4V钢是高速钢,W的主要作用是提高回火稳定性,Cr的主要作用是提高淬透性,V 的主要作用是细化晶粒,最终热处理工艺是高温回火;预热的目的是将合金元素全部,高温淬火的目的是使大量的难溶碳化物溶于奥氏体中,三次回火的目的是减少钢中的残余奥氏体。 3、含Cr、Mn 的合金结构钢淬火后在550~600℃回火后,将出现第二类回火脆性。 4、易切削钢中常用的附加元素有__P__、__S__、_Pb_、_Ca_,这类元素在钢中的主要作用是形成夹杂物,降低材料塑性,改善钢的切削性能。 5、对40Cr 钢制零件进行调质处理时,在高温回火后应水中冷却,目的是防止第二类回火脆性。

常用钢材的分类及用途汇总(超全面)

常用钢材的分类和用途 1、钢材的概念:钢材是钢锭、钢坯或钢材通过压力加工制成我们所需要的各种形状、尺寸和性能的材料。 钢材是国家建设和实现四化必不可少的重要物资,应用广泛、品种繁多,根据断面形状的不同、钢材一般分为型材、板材、管材和金属制品四大类、为了便于组织钢材的生产、订货供应和搞好经营管理工作,又分为重轨、轻轨、大型型钢、中型型钢、小型型钢、钢材冷弯型钢,优质型钢、线材、中厚钢板、薄钢板、电工用硅钢片、带钢、无缝钢管钢材、焊接钢管、金属制品等品种。 2、钢材的生产方法 大部分钢材加工都是钢材通过压力加工,使被加工的钢(坯、锭等)产生塑性变形。根据钢材加工温度不钢材同以分冷加工和热加工两种。钢材的主要加工方法有: 轧制:将钢材金属坯料通过一对旋转轧辊的间隙(各种形状),因受轧辊的压缩使材料截面减小,长度增加的压力加工方法,这是生产钢材最常用的生产方式,主要用来生产钢材型材、板材、管材。分冷轧、热轧。锻造钢材:利用锻锤的往复冲击力或压力机的压力使坯料改变成我们所需的形状和尺寸的一种压力加工方法。一般分为自由锻和模锻,常用作生产大型材、开坯等截面尺钢材寸较大的材料。 拉拨钢材:是将已经轧制的金属坯料(型、管、制品等)通过模孔拉拨成截面减小长度增加的加工方法大多用作冷加工。 挤压:是钢材将金属放在密闭的挤压简内,一端施加压力,使金属从规定的模孔中挤出而得到有同形状和尺寸的成品的加工方法,多用于生产有色金属材钢材 一、黑色金属、钢和有色金属在介绍钢的分类之前先简单介绍一下黑色金属、钢材钢与有色金属的基本概念。 1、黑色金属是指铁和铁的合金。如钢、生铁、铁合金、铸铁等。钢和生铁都是以铁钢材为基础,以碳为主要添加元素的合金,统称为铁碳合金。 生铁是指把铁矿石放到高炉中冶炼而成的产品,主要用来炼钢和钢材制造铸件。把铸造生铁放在熔铁炉中熔炼,即得到铸铁(液状),把液状铸铁浇铸成铸件钢材,这种铸铁叫铸铁件。 铁合金是由铁与硅、锰、铬、钛等元素组成的合金,铁合金是炼钢的原料之一,在钢材炼钢时做钢的脱氧剂和合金元素添加剂用。 2、把炼钢用生铁放到炼钢炉内按一定工艺熔炼,即得到钢。钢的产品有钢锭、连铸坯和直钢材接铸成各种钢铸件等。通常所讲的钢,一般是指轧制成各种钢材的钢。钢材钢属于黑色金属但钢

工业用钢习题集参考材料标准答案.docx

^. 第七章工业用钢 习题参考答案 一、解释下列名词 1、非合金钢 ( 或碳素钢简称碳钢 ) :是指含碳量在 0.0218%~ 2.11%之间并含有少量 Si 、Mn、P、 S等杂质元素的铁碳合金。 低合金钢:加入的合金元素总含量小于5%的合金钢。 合金钢:在碳素钢的基础上,特意加入某些合金元素而得到的钢种。 合金元素:为改善钢的力学性能或获得某些特殊性能,有目的地在冶炼过程中加入的一 些化学元素。 2、合金结构钢:在碳素结构钢的基础上,特意加入某些合金元素而得到的结构钢。 合金工具钢:在碳素工具钢的基础上,特意加入某些合金元素而得到的工具钢。 轴承钢:用来制造滚动轴承的内圈、外圈和滚动体的专用钢。 不锈钢:具有耐大气、酸、碱、盐等介质腐蚀作用的合金钢。 耐热钢:在高温下具有高的热化学稳定性和热强性的特殊性能钢。 3、热硬性 ( 或称红硬性 ) :钢在高温下保持高硬度的能力。 回火稳定性:淬火钢在回火时抵抗软化的能力。 二次硬化:含 W、 Mo、 V、Cr 等元素的高合金钢,在回火的冷却过程中,残余奥氏体 转变为马氏体,淬火钢的硬度上升的现象。 二、填空题 1、Ni 、Mn、C、N、Cu 等元素能扩大 3 A4_上升 __,A3_ Fe-Fe C 相图的γ区,使临界点 下降 _ 。 2、W18Cr4V钢是高速钢,W的主要作用是提高回火稳定性,Cr的主要作用是提高淬透性,V 的主要作用是细化晶粒,最终热处理工艺是高温回火;预热的目的是将合金元素全部,高温淬火的目的是使大量的难溶碳化物溶于奥氏体中,三次回火的目的是减少钢中的残余 奥氏体。 3、含 Cr、 Mn 的合金结构钢淬火后在550~600℃回火后,将出现第二类回火脆性。 4、易切削钢中常用的附加元素有__P__、 __S__、_Pb_、 _Ca_,这类元素在钢中的主要 作用是形成夹杂物,降低材料塑性,改善钢的切削性能。 5、对 40Cr 钢制零件进行调质处理时,在高温回火后应水中冷却,目的是防止第二类 回火脆性。

国外钢结构建筑的发展历史

国内外钢结构建筑的发展历史 一、国外钢结构建筑的发展历史 最早在建造房屋中使用的金属结构可以追溯到18世纪未的英国。由于当时棉纺厂经常发生火灾,因而在厂房结构中采用了铁框架。100年后,美国的芝加哥学派建造了一批钢结构摩天大楼,法国工程师埃菲尔建造了著名的铁塔,金属建筑从此进入了第一个光辉时代。在那个时代,人们也建造金属结构的独户住宅,有些金属住宅,至今状态良好。 在以后的半个多世纪里,钢筋混凝土结构兴起,金属在建筑领域里失去了它的名声和魅力,主要用于建造工厂、飞机库等。 钢结构建筑在20世纪60年代再次开始新发展。建筑钢材获得了突破性进展,计算机也开始早期应用,金属建筑的各种结构体系日趋成熟。70年代法国蓬皮杜文化中心建成,高科技潮流开始出现;到80、90年代,雷诺汽车零件配送中心、香港汇丰银行、法国里昂机场TGV铁路客运站、日本关西国际机场等则把钢结构推向了一个新的高度。与此同时,建筑师们在中小型项目中,也把钢结构技艺发挥得淋漓尽致,如FRANCE建筑工作室设计的大学生餐厅、儒勒. 瓦尔纳中学、美国ABC公司制造的住宅等。特别值得指出的是,西方发达国家已提出预工程化金属建筑概念,预工程化金属建筑是指将建筑结构分成若干模块在工厂加工完成,从而使钢结构建筑的设计、加工和安装得以一体化,这就大大降低了建筑成本(比传统结构型式低10 ~20%),缩短了施工周期,使钢结构的综合优势更加明显。

在新结构方面,许多国家都加大了研究力度,现在人类已具有建造跨度超过1000m的超大型穹顶与高度超过1000m最高至4000m 的超高层建筑的能力。大跨度开合空间钢结构亦有较大的进展,1989年建成的加拿大多伦多天空穹顶体育馆,跨度205m,能容纳7万人,屋盖关合后可做全封闭有空气调节的体育场。1993年建成的日本福冈室内体育场,直径222m,是当代世界上最大的开合空间钢结构。膜结构的发展亦令人瞩目,1992年在美国亚特兰大建成的奥运会主馆“佐治亚穹顶”,平面尺寸为240m×193m,是世界上最大跨度的索网与膜杂交结构屋顶。 由于科技之发展及钢材品质之进步,钢结构之重要性被先进国家所肯定,在欧洲、美洲、日本、台湾等地,厂房之兴建全部采用钢结构。而在一些先进城市,大楼、桥梁、大型公共工程,亦多采用钢结构建筑。最近10年,在美国,大约70% 的非民居和两层及以下的建筑均采用了轻钢刚架体系。 二、钢结构建筑的主要优点 1.强度高、刚度大、自重轻。大体而言钢结构与钢筋混凝土自重之比约为1:1 .6,而地震力=质量*地震加速度,故重量愈轻,地震力也减少。钢结构若以适当处理,对耐地震力更有效。同时还可以减少基础工程量和基础造价。 2.钢结构件及其配套技术相应部件绝大部分可以实现工厂化制作,使质量容易保证,便于标准化及推广使用。

国内管线钢标准应用现状分析

收稿日期:2005-11-10 作者简介:潘丽梅(1977~),女,助理工程师,从事板带钢生产技术研究工作。 国内管线钢标准应用现状分析 潘丽梅 谢艳峰  (首钢技术研究院 北京 100041) (冶金工业信息标准研究院 北京 100730) 吴建伟 (中国标准出版社秦皇岛标准资料发行所 河北秦皇岛 066001) 摘 要:简要介绍了国内管线钢的组织分类及其特性要求,并对国内管线钢目前应用标准情况进行了分析研究。 关键词:管线钢;特性;标准应用 中图分类号:TG 335.7 文献标识码:B 文章编号:1003-0514(2005)06-0030-03 The actuality analyses about internal pipeline steel standard application PAN Li -mei (Shougang Research Institute of T echnology ,Beijing 100041,China ) XIE Y an -feng (China Metallurgical In formation &S tandardization Research Institute ,Beijing 100730,China ) W U Jian -wei (S tandards Press of China ,Qinhuangdao S tandards Fiter Issue Depantment ,Qinhuangdao 66001,China ) Abstract :Introduce the internal pipeline steel structure and characteristic ,and analysis the present situation about the inter 2nal pipeline steel standard. K ey w ords :pipeline steel ;characteristic ;standard application 在我国管道建设的不同阶段,管线钢的发展变化 非常迅速。20世纪50~70年代管线钢主要采用A3钢和16Mn 钢;70年代后期和80年代采用从日本进口的TS52K 钢(相当于X52级钢);90年代,管线钢主要采用的X52、X60、X65级热轧板卷大多数由宝钢和武钢生产供应。“八五”期间成功研制和开发了X52-X70级高韧性管线钢,并逐步得到广泛应用。西气东输工程采用了X70级管线钢。目前针对X80高钢级管材的研究和应用,石油部门与冶金部门联合开展了10余项国家基础攻关、应用基础研究和技术开发项目,其中包括国家“973”项目“高强度管线钢的重大工艺基础研究”,中油集团技术开发项目“X80管线钢管的开发与应用”,“X80管线钢的焊接及高韧性焊材选择”等等。本文针对目前国内管线钢标准应用现状 进行了系统研究。 1 管线钢的组织分类及其特性 随着合金设计、冶炼水平和轧制工艺的发展,具 有不同特性,适用于多种条件的管线钢已经生产,它应用了微合金钢发展的一切成果。铁素体-珠光体组织为第一代微合金管线钢,强度级别X42-X70;针状铁素体管线钢为第二代微合金管线钢,强度级别范围可覆盖X60-X90。其中管线钢的组织结构是决定其使用性能和安全服役的内部根据。目前,按照组织形态归类,管线钢具有以下3种典型的类型:1.1 铁素体-珠光体钢和少珠光体钢 60年代后期在国外发展起来的第一代管线系列钢(X52-X70强度级),称为铁素体-珠光体管线钢。 03冶金标准化与质量 第43卷

碳钢的分类、牌号及用途

碳钢的分类、牌号及用途 一、碳钢的分类 1、按碳的质量百分数分: 低碳钢(C:≤0.25%)又称软钢,低碳钢易于接受各种加工如锻造,焊接和切削,常用于制造链条,铆钉,螺栓,轴等。 中碳钢(C:0.25%<C ≤0.6%)有镇静钢、半镇静钢、沸腾钢等多种产品。除碳外还可含有少量锰(0.70%~1.20%)。按产品质量分为普通碳素结构钢和优质碳素结构钢。热加工及切削性能良好,焊接性能较差。强度、硬度比低碳钢高,而塑性和韧性低于低碳钢。可不经热处理,直接使用热轧材、冷拉材,亦可经热处理后使用。淬火、回火后的中碳钢具有良好的综合力学性能。能够达到的最高硬度约为HB538,抗拉强度σb为600~1100MPa。所以在中等强度水平的各种用途中,中碳钢得到最广泛的应用,除作为建筑材料外,还大量用于制造各种机械零件。 高碳钢(C:>0.6%)常称工具钢,含碳量从大于0.60%至1.70%,可以淬硬和回火。锤,撬棍等由含碳量0.75%的钢制造;切削工具如钻头,丝攻,铰刀等由含碳量0.90% 至1.00% 的钢制造。 含碳量越高,硬度、强度越大,但塑性降低 (另外,含碳量2.1%~4.5%铁碳合金一般称为铸铁。) 2、按钢的质量分(主要是杂质硫、磷的含量): 普通碳素钢(S ≤0.055%,P ≤0.045%) 优质碳素钢(S ≤0.040%,P ≤0.040%) 高级优质碳素钢(S ≤0.030%,P ≤0.035%) 3、按用途分: 碳素结构钢:主要用于桥梁、船舶、建筑构件、机器零件等 碳素工具钢:主要用于刀具、模具、量具等 二、碳钢的牌号与用途 1、普通碳素结构钢:碳素结构钢按照钢材屈服强度分为5个牌号:Q195、Q215、Q235、Q255、Q275 。每个牌号由于质量不同分为A、B、C、D等级,Q195、Q215、Q235塑性好,可轧制成钢板、钢筋、钢管等;Q255、Q275可轧制成型钢、钢板等。 2、优质碳素结构钢:钢号以碳的平均质量万分数表示。如20#、45#等。20#表示含C:0.20%(万分之20)。用途:主要用于制造各种机器零件 3、碳素工具钢:钢号以碳的平均质量千分数表示,并在前冠以T。如T9、T12等。T9表示含C:0.9%(千分之9)。用途:主要用于制造各种刀具、量具、模具等 4、铸钢:铸钢牌号是在数字前冠以ZG,数字代表钢中平均质量分数(以万分数表示)。如ZG25,表示含C:0.25%。用途:主要用于制造形状复杂并需要一定强度、塑性和韧性的零件,如齿轮、联轴器等。

钢结构200年发展历程

钢结构200年发展历程 从铁被人们发现开始,铁就与建筑有着紧密的关系,在人类建筑史上铁发挥着重要的作用。但是,大规模的运用钢铁作为建筑材料还是从近200年开始的。 我国古代有许多运用铁构件建造的建筑,如公元694年在洛阳建成的“天枢”和公元1061年在湖北荆州玉泉寺建成的13层铁塔等。欧美等国在1840年之前多采用铸铁建造拱桥。在1840年后,随着铆钉连接和锻铁技术的发展,铸铁结构逐渐被锻铁结构取代,1846年 到1850年英国人在威尔士修建的布里塔尼亚桥就是这方面的代表。 该桥共有4跨,每跨均为箱型梁式结构,由锻铁型板和角铁经铆钉连接而成。直到1870年成功轧制出工字钢后,形成了工业化大批量生 产钢材的能力,强度高韧性好的钢材才逐渐在建筑领域代替锻铁材料。20世纪初焊接技术和高强度螺栓的接连出现,极大的促进了钢结构 的发展,除了欧洲和北美外,钢结构在前苏联和日本也获得了广泛应用,逐渐成为全世界所接受的重要的结构体系。 在新中国成立后,随着经济的发展,钢结构曾起过重要作用,但由于钢产量的制约,一定程度上影响了我国钢结构的发展。自1978 年改革开放后,随着经济的迅速发展,我国的钢产量也快速增加。随着钢材供不应求的局面得到改变,我国的钢结构技术政策也从“限制

使用”到积极推广应用。自1988年发布的《钢结构设计规范》并不 断改进后,钢结构在我国的带领快速发展。 与其他材料相比,钢结构性能出众,特点明显。如: 1.强度高,重量轻。钢材与砖石、混凝土相比,虽然密度较大,但强度更高,承受相同的荷载时,钢结构比其他结构更轻。以同样的跨度承受同样的荷载,钢屋架的质量最多不过钢筋混凝土的1/4~1/3,冷弯薄壁型钢屋架甚至接近1/10. 2.材质均匀且塑性韧性好,和力学计算的假定比较符合。钢材属单一材料,生产过程质量控制严格,因此组织构造比较均匀,弹性模量高,正常使用时具有良好的延性,可简化为理想弹塑性体,符合一般工程力学中的假设,计算结果也比较可靠。 3.具有良好的加工和焊接性能。便于在金属结构厂大规模生产精度较高的构件,然后运至工地进行拼接和组装。 4.钢材耐热但不耐火。钢材长期经受100℃辐射热时,强度没有 多大变化。但温度达150℃以上时,就必须用隔热层加以保护。 5.钢材耐腐蚀性差。钢材耐腐蚀性能比较差,必须对结构注意防护。尤其是暴露在大气中的结构如桥梁,更应特别注意。 6.密封性好,可重复使用等。 随着经济和技术的不断发展,钢结构的运用范围也在不断的扩大。从技术角度看,钢结构的合理应用范围包括以下几个方面: 1.大跨度结构。如我国衔接镇江扬州两地的润扬大桥,它由悬索桥和斜拉桥结合而成,跨江长度7.3公里,总长35.66公里。刷新了

管线钢综述

综述 管线钢指用于输送石油、天然气等的大口径焊接钢管用热轧卷板或宽厚板。管线钢在使用过程中,除要求具有较高的耐压强度外,还要求具有较高的低温韧性和优良的焊接性能。随着石油、天然气消费量的增长,其输送的重要性显越发突出,尤其是长距离输送。而提高输送效率,提高输送的经济效益就要通过加大输送管道口径,提高输送压力来解决。从而提高了对高级别、高性能管线钢的需求。 国外高级别管线钢呈现强劲的发展趋势,从20世纪70年代初期X65管线钢开始投入使用,80年代X70级管线钢逐渐被引入工程建设,1985年API标准中增加了X80钢级,随后X80开始部分在一些管线工程中使用,并很快就投入到X100和X120管线钢的开发试制工作。有关X100最早的研究报告发表于1988年,通过大量工作已形成很好的技术体系。高级别管线钢概述我国管道建设正处于大力发展阶段,因此管线钢的发展也非常迅速。20世纪50~70年代管线钢主要采用A3钢和16Mn钢;70年代后期和80年代采用从日本进口的TS52K钢(相当于X52级钢);90年代,管线钢主要采用的X52、X60、X65级热轧板卷主要由宝钢和武钢生产供应。“八五”期间成功研制和开发了X52~X70级高韧性管线钢,并逐步得到广泛应用。西气东输工程采用了X70级管线钢并逐渐向X80过度。国内管线钢生产技术现状分析由于市场要求单管输气量不断提高。我国早期四川、西北地区的天然气管道采用X52及以下钢级、426mm以下管径的管线钢管,设计年输气量在10亿m3/a以下;陕京一线第一次采用了X60钢级、

D660mm管线钢管设计年输量提高到33亿m3/a;西气东输一线采用X70钢级、D1016mm管线钢管,设计年输量提高到170亿m3/a;最近建设的西气东输二线管道,采用X80钢级、D1219 mm管线钢管,设计年输量提高到300亿m3/a。 这种单管输气量不断提高的趋势仍在持续。当前国际上新一轮巨型天然气长输管道,单管输气量将达到450亿-500亿m3/a的水平。干线一般采用X80钢级,具有输送距离长、采用更高工作压力和大管径输送的特点。 一个具有代表性的项目是正在建设的俄罗斯巴甫年科沃-乌恰天然气管道。管线长度1100km,采用1420mm管径和K65(类似于X80)钢级,输送压力11.8MPa,单管设计输气量约500亿m3/a,计划于2012年第三季度进行系统调试。 另一个有代表性的项目是拟在北美建设的阿拉斯加北坡天然气外输管道,管道的输送能力约465亿m3/a,管线长度2737km,采用1219mm管径和X80钢级,将阿拉斯加北坡丰富的天然气资源输送到加拿大和北美市场。 我国也已在规划研究未来多条西气东输管道(西三线~西八线)的方案。包括将单管输气量提高到400亿~500亿m3/a的多种方案都在研究之中。 由于西气东输二线采用的X80钢级、管径1219mm,12MPa工作压力的方案只能达到300亿m3/a的输气能力,要将输气能力进一步提高到400亿-500亿m3/a,只能进一步提高输送压力和管径。

钢材主要分类与用途

钢材主要是5种类型:建材、板材、管材、型材和原材料。建材又分为两种:螺纹钢、线材 1.定义:热轧带肋钢筋的牌号由HRB和牌号的屈服点的最小值构成。 2.分类:钢筋混凝土用钢筋按外形分为:光圆钢筋和变形钢筋,按交货状态分为:直条和盘圆。 光圆钢筋实际上就是普通低碳钢的小圆钢和盘钢。变形钢筋是表面带肋的钢筋,带有两道纵肋和沿长度方向分布的横肋,横肋的形状有人字形,月牙形,螺旋形。 3.规格:8.10.12.1 4.16.18.20.22.2 5.28.32.3 6.40.50mm 4.含钒新三级螺纹钢的优点:经济,强度高、韧性好,易焊接,抗震,施工方便。 5.交货定尺:9米和12米定尺。 二、线材 圆钢 1.定义:截面呈圆形的实心长条钢铁。 2.分类:热轧,锻制,冷拉 3.规格:10.12.1 4.16.18.20.22.2 5.28.30.32.34.35.3 6.38.40.42mm 4.钢种:Q215,Q235 线材 1.定义:直径5-10mm的热轧圆钢和10mm以内的螺纹钢统称为线材。 2.分类:普通低碳钢轧盘条,电焊盘条,爆破线用盘条,调制螺纹盘条,优质盘条。 3.用途:钢筋混凝土的配筋和焊接构件或再加工原料,螺栓,螺钉等。 普线

1.定义:普通低碳钢热轧圆盘条 2.规格:普线的规格:6.5mm,8mm,10mm 盘螺:6mm,8mm,10mm 3.普线与高线的区别: 高线是采用高速线材轧机进行轧制,生产节奏快,速度在80-160米/秒,盘重大,包装比较紧匝,漂亮,表面光洁度好,一捆线材只有一个接头,一捆线材是整的没有断开。 普线在普通轧机上轧制,速度在20-60米/秒,一捆线材有4-6个接头,包装较松,凌乱。 优质线材 1.定义:优质碳素结构钢热轧盘条。 2.规格:08f、10、35mn、50mn、65、75mn 钢绞线 1.材质:SWRS82B 2.分类:镀锌钢绞线,预应力钢绞线 3.用途:镀锌钢绞线主要能用于承力索,拉线,加强芯等。 预应力钢绞线主要用于铁路轨枕,高速公路,桥梁,城市立交等。 硬线:含碳量较高的优质碳素钢盘条 1.材质:45#.50# 2.用途:主要用于生产碳素结构钢丝,胎圈钢丝,钢丝绳等。 齿轮钢:材质:20CrMnTi 用途:生产各种齿轮和机械零件 轴承钢:

钢结构发展历程

钢结构发展历程

钢结构发展历程 从铁被人们发现开始,铁就与建筑有着紧密的关系,在人类建筑史上铁发挥着重要的作用。但是,大规模的运用钢铁作为建筑材料还是从近200年开始的。 我国古代有许多运用铁构件建造的建筑,如公元694年在洛阳建成的“天枢”和公元1061年在湖北荆州玉泉寺建成的13层铁塔等。欧美等国在1840年之前多采用铸铁建造拱桥。在1840年后,随着铆钉连接和锻铁技术的发展,铸铁结构逐渐被锻铁结构取代,1846年到1850年英国人在威尔士修建的布里塔尼亚桥就是这方面的代表。该桥共有4跨,每跨均为箱型梁式结构,由锻铁型板和角铁经铆钉连接而成。直到1870年成功轧制出工字钢后,形成了工业化大批量生产钢材的能力,强度高韧性好的钢材才逐渐在建筑领域代替锻铁材料。20世纪初焊接技术和高强度螺栓的接连出现,极大的促进了钢结构的发展,除了欧洲和北美外,钢结构在前苏联和日本也获得了广泛应用,逐渐成为全世界所接受的重要的结构体系。 中国虽然早期在铁结构方面有卓越的成就,但由于2000 多年的封建制度的束缚,科学不发达,因此,长期停留于铁制建筑物的水平。直到19 世纪末,我国才开始采用现代化钢结构。新中国成立后,钢结构的应用有了很大的发展,不论在数量上或质量上都远远超过了过去。在设计、制造和安装等技术方面都达到了较高的水平,掌握了各种复杂建筑物的设计和施工技术,在全国各地已经建造了许多规模巨大而I 结构复杂的钢结构厂房、大跨度钢结构民用建筑及铁路桥梁等,我国的人民大会堂钢屋架,北京和1海等地的体育馆的钢网架,陕西秦始皇兵马佣陈列馆的三铰钢拱架和北京的鸟巢等。轻钢结构的楼面由冷弯薄壁型钢架或组合梁、楼面OSB 结构板,支撑、连接件等组成。所用的材料是定向刨花板,水泥纤维板,以及胶合板。在这些轻质楼迈特建筑轻钢结构住宅面上每平方米可承受316~365 公斤的荷载。的楼面结构体系重量仅为国内传统的混凝土楼板体系的四分之一到六分之一,但其楼面的结构高度将比普通混凝土板高100~120 毫米。 钢结构建筑的多少,标志着一个国家或一个地区的经济实力和经济发达程度。进入2000 年以后,我国国民经济显著增长,因力明显增强,钢产量成为世

管线钢综述

管线钢综述 欧阳高凤 摘要:本文对管线钢的大概发展历程、成分冶金、显微组织、力学性能、轧制工艺、焊接性及焊接工艺进行了论述,从而能够了解管线钢的发展,为课题研究打下基础。 关键词:管线钢成分显微组织力学性能生产工艺焊接工艺发展 1 管线钢的大概发展历程 半个多世纪以来,随着石油和天然气的开发和需求量的增加,从而带动了管线钢的发展。由于管道运输具有经济、方便、安全等特点,进入二十一世纪以来,管线钢呈现蓬勃发展的趋势。我国管线钢的应用和起步较晚,过去已铺设的油、气管线大部分采用Q235和16Mn钢。我国开始按照API标准研制X60、X65管线钢,并成功地与进口钢管一起用于管线铺设。90年代初宝钢、武钢又相继开发了高强高韧性的X70管线钢,随后成功研制了X80管线钢,X70和X80管线钢已大量应用于油气管道运输中。近几年开发的高强韧的X100和X120管线钢还处在试验阶段,应用方面还比较少。 在我国,石油、天然气的运输基本上已经实现了管道运输。但是与世界上工业发达国家相比,国内的管道运输在质量上和数量上都存在很大差距。中国虽然为世界的主要石油出产国之一,但输油输气的管道不足世界管线总长度的百分之一,而且普遍存在输送压力低、管径小的缺点。随着我国油气资源的进一步开发利用,西气东输的工程实施,油气管线向长距离、大口径发展是必然趋势。下面从管线钢的冶金成分、显微组织、力学性能、生产工艺及焊接工艺等方面,进一步较详细的介绍管线钢的发展。 2 管线钢的冶金成分的发展 管线钢和其他的微合金钢一样,都是在传统的C-Mn钢的基础上加上合金元素。合金元素主要以Nb、Ti、V或少量的Mo、Cu、Ni、Cr及B为主,以这些合金元素来对管线钢进行合金设计,以达到不同的强度等级及性能要求。 管线钢的冶金成分的发展大致经历三个阶段。第一阶段为1950年以前,是以C-Mn和C-Mn-Si钢为主的普通碳钢,强度级别在X52以下。第二阶段为1950-1972年,在C-Mn钢的基础上引入微量的Nb、Ti、V,通过相应的热轧和轧后处理工艺,提高了钢的综合性能,生产出X60及X65级别的钢。第三阶段为1972年至今,这一阶段合金化的发展特点为微合金的多元化,相继又加入少量的Mo、Cu、Ni、Cr及B,结合控轧控冷的新工艺,生产出综合性能优异的管线钢,主要以X70和X80管线钢为主,X100和X120管线钢在试验研究阶段。 下面具体论述以下管线钢中这些合金元素或微合金元素的作用及添加量。2.1 碳 碳是最传统的合金元素、强化元素,而且也是最经济的元素,但它对钢的可焊性影响很大。碳是影响焊接性能最敏感的一个元素,所以20多年来管线钢的碳含量是逐步趋向于低碳或超低碳方向发展。而且随着含碳量的增加,韧性下降,偏析加剧,抗HIC和SSC的能力下降。因此,随着管线钢级别的提高,碳含量应逐渐降低。管线钢的含碳量从开始的1.0%左右逐步降低,最低可达到0.01%。

中国钢结构发展历史的详细解析

中国钢结构发展历史的详细解析 中国钢结构的发展史,清晰地记录了国家从限制用钢到鼓励用钢政策的调整,这也为钢结构行业发展奠定了良好的物质基础和政策环境。钢结构行业包括设计与施工(制造、安装),其中设计居于首要位置。钢构设计的第一步是正确选择结构方案,方案选择正确,钢结构才会更好地具有建筑节地、节能、节材、经济、适用、美观等优势。 未来十年将是世界钢结构行业调整格局和进一步发展的时期,也是我国实现世界钢结构大国和强国宏伟目标的关键时期。在钢铁、船舶制造,高铁建设中,我国已跃居世界第一,正在努力向钢结构第一大国前行。我国经济已进入一个非常重要的转型时期,这个时期可以从两个方面进行理解。一方面,从现在到2020年,这一时期可以被看作中国的战略机遇期。从长远来看,国际经济大势对中国国力的增强是有益的。另一方面,这一时期也可以被看作中国的战略转型期。中国经济体制各方面的转型都将在这一时期内更加深化。经济发展方式将会发生系统的、根本的转变。衡量经济发展的标准将不再单纯围绕GDP,而是要综合生产方式、创新成果、研发能力、运行方式等多方面的因素加以衡量。 一、钢结构产业发展应上升为国家战略 在经济发展方式转变过程中,作为产业结构战略调整,应制定国家“钢结构产业振兴规划”。首先,国家应加大政策支持力度。当前,我国钢结构产业发展正处于关键时期,国家应继续加大产业支持力度,增

加研发资金投入,加紧出台、落实税收和金融优惠政策,鼓励采用钢结构建筑产品,例如:超高层大跨度建筑、大型桥梁等。大力提倡学校、医院、机场、车站、体育场馆等建筑钢结构化,并将以上建筑用钢列入国家储备用钢。呼吁政府部门给予中国钢结构相关单位和企业更多施展的机会,使大多数企业可以参与各类钢结构工程,充分发挥钢结构节能的作用。 二、钢结构产业的企业战略 设计层面:改革开放以来,我国钢结构产业进入科学、跨越发展的新局面,钢结构建筑越来越高,规模跨度越来越大,造型越来越新。钢结构设计者应遵循少费多用的结构哲理,以最少的结构提供最大承载力。结构设计者应把建设结构用钢视为设计水平的最高境界。我国近年来的一些建筑追求怪异,实际做出来不但水平不高,而且浪费大量的人力、物力和财力。最好的钢构往往构件布局简明、传立路径短捷、结点小型化,展现现代钢结构的魅力。面对愈演愈烈的国际化竞争,加强总体设计能力建设,包括引进国际化设计团队在内的企业设计实力的提升就显得尤为重要,对此,我们的方案是——国际化的思维、国际化的眼光、国际化的视野。希望国家尽快成立具有世界级水平的钢结构设计院所,满足我国迅速发展的钢结构产业需求。将“绿色、低碳、节约用钢”的设计理念贯彻在设计的全过程中。在过去,用专业眼光看待建筑设计,它是一门高深的技术和学问。但是,在科技日新月异的今天,建筑领域越来越凸显艺术与建筑的高度融合。并且,建筑外型的优雅与内部结构的精密也互为表里,映衬着一个国家

钢筋常用的型号及分类

钢筋常用的型号及分类 钢筋种类很多,通常按化学成分、生产工艺、轧制外形、供应形式、直径大小,以及在结构中的用途进行分类: (一)按轧制外形分 (1)光面钢筋:I级钢筋(Q235钢钢筋)均轧制为光面圆形截面,供应形式有盘圆,直径不大于10mm,长度为6m~12m。 (2)带肋钢筋:有螺旋形、人字形和月牙形三种,一般Ⅱ、Ⅲ级钢筋轧制成人字形,Ⅳ级钢筋轧制成螺旋形及月牙形。 (3)钢线(分低碳钢丝和碳素钢丝两种)及钢绞线。 (4)冷轧扭钢筋:经冷轧并冷扭成型。 (二)按直径大小分 钢丝(直径3~5mm)、细钢筋(直径6~10mm)、粗钢筋(直径大于22mm)。(三)按力学性能分 Ⅰ级钢筋(235/370级);Ⅱ级钢筋(335/510级);Ⅲ级钢筋(370/570)和Ⅳ级钢筋(540/835) (四)按生产工艺分 热轧、冷轧、冷拉的钢筋,还有以Ⅳ级钢筋经热处理而成的热处理钢筋,强度比前者更高。 (五)按在结构中的作用分:受压钢筋、受拉钢筋、架立钢筋、分布钢筋、箍筋等 2:钢筋的规格(建筑用钢筋)一般元钢筋直径有4#、6#、6.5#、8#、10#、12#、14#、16#等;螺纹钢筋有直径10#以上到32#、40#等 圆钢规格重量表 规格截面面积重量(kg/m) Ф3.5 9.62 0.075 Ф4 12.57 0.098 Ф5 19.63 0.154 Ф5.5 23.76 0.187 Ф5.6 24.63 0.193 Ф6 28.27 0.222 Ф6.3 31.17 0.245 Ф6.5 33.18 0.260 Ф7 38.48 0.302 Ф7.5 44.18 0.347 Ф8 50.27 0.395 Ф9 63.63 0.499 Ф10 78.54 0.617 Ф11 95.03 0.746 Ф12 113.10 0.888 Ф13 132.70 1.04 Ф14 153.90 1.21 Ф15 176.70 1.39 Ф16 201.10 1.58 Ф17 227.00 1.78

我国钢结构建筑发展历史

我国钢结构建筑发展历史 钢结构包括房屋钢结构、桥梁、塔桅、容器及水工钢结构等多领域。本文仅谈房屋钢结构的60年发展历程。 房屋钢结构发展可分为四个阶段:初盛阶段(上世纪50年代至60年代)、低潮阶段(上世纪60年代中后期至70年代)、发展时期(上世纪80年代至90年代)、强盛阶段(2000年至2010年)。 初盛阶段(上世纪50年代至60年代) 1949年新中国刚成立,百废待兴,当时钢产量很低,每年仅135万吨(现已达5亿吨以上)。钢结构建设只有依靠苏联经济及技术援助,当时苏联援建156项重型工业工厂,包括冶金、重型机械、飞机汽车等工业,如鞍山钢铁厂,武汉钢铁厂、大连造船厂、哈尔滨飞机制造厂等。当时还派来一大批苏联专家指导工作。与此同时还在北京、沈阳、华东、华南、中南、西南、西北等地成立6大工业设计院,在北京、武汉、鞍山、重庆、包头、上海成立了6个钢铁设计院,先后成立了22个冶金建设部门及钢结构制造安装公司等。短短几年建设了不少钢结构工业厂房(钢柱、钢屋架、吊车梁),培养一大批设计、制造、安装方面的人才,为今后发展打下了坚实基础。当时,民用建筑钢结构工程不多,值得提出的有:1954年北京体育馆(57米跨两铰落地拱)、1954年重庆人民礼堂(40.6米肋环形钢穹顶)、1956年天津体育馆(50米柱面联方钢网壳)、1959年北京人民大会万人礼堂(60.9米大钢桁架)等。当今的日本教授首创的弦支梁、弦支桁架以及弦支穹顶等,这种弦支概念在上世纪50年代就已经有了,如大跨度下撑式吊车梁以及预应力输煤栈桥等。 低潮阶段(上世纪60年代中后期至70年代) 这个时期国家各部门钢材需求量增大了,但钢产量仍然不多,每年也只有2000万吨,国家提出节约钢材的政策,当时有人片面理解为不用钢结构,于是钢结构工程数量少了。在文化大革命时期更是一切都停了下来。通过教授及工程技术人员的积极努力,才把使用多年的1955年版《钢结构规范》用自己编写的1974年版《钢结构规范》代替。同时,也建造了一些大型的钢结构工程,当然和当前相比数量少多了。在提倡节约钢材的同时,国家又提出取消肥梁、胖柱、深基础的方针,于是出现了一批冷弯薄壁型钢的工程:如上海、韶关、桂林、十堰等地建造了数十万平方米的厂房、仓库等。由于节约钢材政策,平板网架工程得到了推广应用,特别是焊接空心球节点研究成功,全国各地中小跨度的焊接球节点平板网架比比皆是,与此同时,螺栓球节点钢结构网架也推广起来了。

相关文档
最新文档