3-1矩阵的可对角化
矩阵的对角化及其在高等数学中的应用

矩阵的对角化及其在高等数学中的应用矩阵是高等数学中的基础概念之一,它在解决线性方程组和矩阵变换问题中具有重要作用。
在实际问题中,矩阵常常需要进行对角化处理,以便更方便地求解问题。
本文将介绍矩阵的对角化及其在高等数学中的应用。
一、什么是矩阵的对角化对角化是指将一个矩阵变换为对角形式的过程,使得矩阵的主对角线上为非零元素,而其余元素均为零。
举个例子,一个2×2的矩阵A可以进行对角化,其对角化后的形式可以写成:> P^-1 * A * P = D其中P是一个可逆矩阵,D为对角矩阵。
对角矩阵只有主对角线上有非零元素,其他位置都为零。
通过对角化,矩阵变得更加简单,容易处理。
二、如何进行矩阵的对角化对于一个n×n的矩阵A,要进行对角化处理,需要满足以下条件:1.矩阵A必须有n个线性无关的特征向量,这些特征向量组成的矩阵可以写成P=[v1,v2,···,vn]。
2.对于对角矩阵D,其主对角线上的元素必须是矩阵A的n个特征值。
基于这些条件,可以得到矩阵A的对角化公式:> P^-1 * A * P = D其中P=[v1,v2,···,vn],D=[λ1,λ2,···,λn]为对角矩阵。
λ1、λ2···λn为A的特征值,v1、v2···vn为对应的特征向量。
三、高等数学中的应用在高等数学中,矩阵的对角化在求解一些实际问题中具有重要作用。
1. 矩阵的对角化在求解差分方程中的应用线性差分方程是数学中的一种经典问题。
对于一个n阶线性差分方程,其解法是先对其进行离散化处理,变成一个线性方程组。
接着,对该线性方程组进行矩阵形式的表示,就可以得到一个n×n矩阵。
通过矩阵的对角化,可以将线性方程组解放到主对角线上,从而得到差分方程的通解。
2. 矩阵的对角化在离散傅里叶变换中的应用离散傅里叶变换是一种将时域上信号变换为频域上信号的重要算法。
矩阵可逆的条件以及特征值,特征向量与可对角化条件

矩阵可逆的条件:
1 秩等于行数
2 行列式不为0,即|A|≠0
3 行向量(或列向量)是线性无关组
4 存在一个矩阵,与它的乘积是单位阵
5 齐次线性方程组AX=0 仅有零解
6 非齐次线性方程组AX=b 有唯一解
7 可以经过初等行变换化为单位矩阵,即该矩阵等价于n阶单位矩阵
8 它去左(右)乘另一个矩阵,秩不变
特征值、特征向量与可对角化条件:
定义:设A 是数域F 上n 阶矩阵,如果存在可逆阵P ,使P -1AP 为对角阵,那么A 称为可对角化矩阵。
并不是所有的n 阶矩阵都可对角化,例如,A= 就一定不可对角化,所以我们要首先讨论可对角化的条件。
数域F 上n 阶矩阵A 可对角化的充分必要条件为存在n 个数λ1 , λ2 , ... , λn F 及n 个线性无关的向量p1,p2,...,pn,
使APi = λiPi i=1,2, ...,n. 。
数域F 上n 阶矩阵A 可对角化的充分必要条件是A 有n 个线性无关的特征向量。
特征值与特征向量的性质:
(1 )相似矩阵有相同的特征多项式,从而有相同的特征值、相同的迹和相同的行列式。
(2 )如果λ是矩阵A 的一个特征值,是一个多项式,那么是矩阵多项式的一个特征值 .
(3 )如果A 是一个可逆阵,λ是A 的一个特征值,那么, 1 /λ 是A -1 的一个特征值 .
(4 )属于不同特征值的特征向量线性无关。
(5 )对矩阵A 的每个特征值,它的几何重数一定不超过代数重数。
(6 )如果A 是一个是对称矩阵,那么它的每个特征值的几何重数与代数重数相等,从而它有个线性无关的特征向量,他一定可以对角化。
矩阵对角化及应用论文

矩阵对角化及应用理学院 数学082 缪仁东 指导师:陈巧云摘 要:本文是关于矩阵对角化问题的初步研究,对矩阵对角化充要条件的归纳,总结,通过对实对称矩阵,循环矩阵,特殊矩阵对角化方法的计算和研究,让读者对矩阵对角化问题中求特征值、特征向量,求可逆矩阵,使对角化,提供了简便,快捷的求解途征.关键词:对角矩阵;矩阵对角化;实对称矩阵;特征值;特征向量.矩阵对角化是矩阵论的重要组成部分,在矩阵论中占有重要的作用,研究矩阵对角化问题很有实用价值,关于矩阵对角化问题的研究,这方面的资料和理论已经很多.但是他们研究的角度和方法只是某个方面的研究,没有进行系统的分类归纳和总结.因此,我就针对这方面进行系统的分类归纳和总结,对一些理论进行应用和举例,给出算法.特别给出了解题时方法的选择.1.矩阵对角化概念及其判定所有非主对角线元素全等于零的n 阶矩阵,称为对角矩阵或称为对角方阵.定义1.1 矩阵A 是数域P 上的一个n 级方阵. 如果存在一个P 上的n 级可逆矩阵X ,使1X AX - 为对角矩阵,则称矩阵A 可对角化.矩阵能否对角化与矩阵的特征值特征向量密切相关.定义 1.2 设A 是一个n 阶方阵,λ是一个数,如果方程组AX X λ= (1)存在非零解向量,则称λ为的A 一个特征值,相应的非零解向量X 称为属于特征值λ的特征向量.(1)式也可写成,()0E A X λ-= (2)这是n 个未知数n 个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式=0E A λ-, (3)即1112121222120n nn n nna a a a a a a a a λλλ------=---上式是以λ为未知数的一元n 次方程,称为方阵A 的特征方程. 其左端A E λ-是λ的n 次多项式,记作()f λ,称为方阵的特征多项式.111212122212()||n nA n n nna a a a a a f E A a a a λλλλλ------=-=---111n n n n a a a λλλ--=++++显然,A 的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,n 阶矩阵A 有n 个特征值.设n 阶矩阵()ij A a =的特征值为12,,n λλλ,由多项式的根与系数之间的关系,不难证明(ⅰ)121122n nn a a a λλλ+++=+++;(ⅱ)12n A λλλ=.若λ为A 的一个特征值,则λ一定是方程=0A E λ-的根, 因此又称特征根,若λ为方程=0A E λ-的i n 重根,则λ称为A 的i n 重特征根.方程 ()0A E X λ-=的每一个非零解向量都是相应于λ的特征向量,于是我们可以得到求矩阵A 的全部特征值和特征向量的方法如下: 第一步:计算A 的特征多项式E A λ-;第二步:求出特征方程=0E A λ-的全部根,即为A 的全部特征值;第三步:对于的每一个特征值λ,求出齐次线性方程组:()0E A X λ-= 的一个基础解系12,,,s ξξξ,则A 的属于特征值λ的全部特征向量是 1122s s k k k ξξξ+++(其中12,,,s k k k 是不全为零的任意实数).设P 是数域, Mn (P ) 是P 上n ×n 矩阵构成的线性空间, A ∈Mn (P ) , 1,2t ,,λλλ 为A 的t 个互不相同的特征值,高等代数第二版(北京大学数学系几何与代数教研室编)第四版(张和瑞、郝炳新编)课程中,我们学过了矩阵可对角化的若干充要条件如: (1) A 可对角化当且仅当A 有n 个线性无关的特征向量; (2) A 可对角化当且仅当特征子空间维数之和为n ; (3) A 可对角化当且仅当A 的初等因子是一次的; (4) A 可对角化当且仅当A 的最小多项式无重根我们知道线性变换A 的特征多项式为f (λ) ,它可分解成一次因式的乘积1212()()()()i r r r i f λλλλλλλ=---则V 可分解成不变子空间的直和其中i V = {ξ|iri 12-==s V V V V λ⊕⊕⊕(A E );ξ∈V}引理 1.1:设A, B 都是n 阶矩阵, 则秩( AB) ≥秩( A) + 秩( B) - n.定理 1.1:设A 是实数域F 上的一个n 阶矩阵, A 的特征根全在F 内, 若1λ, 2λ,...,K λ 是A 的全部不同的特征根, 其重数分别为1r , 2r ,... k r , 那么 (Ⅰ) 可对角化的充要条件是()i j i jE A r λ≠⎛⎫-= ⎪⎝⎭∏秩 j=1, 2,.......k(Ⅱ) 当( 1) 式成立时,()ii jE A λ≠-∏ 的列空间就是A 的属于特征根iλ的特征子子空间.证明: (Ⅰ) 设A 可对角化, 则存在可逆阵T, 使{}11122,,...,k K T AT diag E E E λλλ-=这里右边是分块对角矩阵, j E 为i r 阶单位阵, 于是有()()()11i i i i j i j i j E A T E A T E T AT λλλ--≠≠≠⎛⎫⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∏∏∏秩秩秩={}()122,,...,i K K i j E diag E E E λλλλ≠⎛⎫-⎪⎝⎭∏秩=()()(){}12,,...,,i j i j i j Ki j diag E E E λλλλλλ≠⎛⎫---⎪⎝⎭∏秩 =()0,0,...0,,0,0,...,0i j j j i jdiag E r λλ≠⎛⎫⎧⎫-= ⎪⎨⎬ ⎪⎩⎭⎝⎭∏秩 j=1,2, ......k.反之,若()()ijE A r λ-=∏秩i=1,2,.....k, 反复用引理可得()()()()()22i j i i i ji jE A E A K n n r k n λλ≠≠-≥---≥---∑∑∏秩r 秩 i j i jn r r ≠=-=∑ j=1,2,...,k.这里用到了齐次线性方程组()0i E A X λ-=的解空间的维数不大于i λ的重数不大于j r 这个结论.于是又()()iii j i jE A n r λ≠≠-=-∑∑秩从而()i iA n r λ-=-秩 i=1,2,......k. 这样的矩阵可以对角化.(Ⅱ)设( Ⅰ)式成立,则A 可对角化.故A 的最小多项式为()1kii x λ=-∏从而()10kii E A λ=-=∏ 即 ()()0i ii jE A E A λλ≠--=∏这就是说,列空间包含在i λ的特征子空间中,但是由(1), ()ii jE A λ≠-∏的列空间的维数是n,它正是j r 的特征子空间的维数,所以结论(Ⅱ) 成立.推论: 设A 为实数域F 上的n 阶矩阵,A 的特征根全为F 内,且1λ, 2λ 是A 的全部不同的特征根, 其维数分别为1r , 2r , 若秩()12E A r λ-=,秩()21E A r λ-=,则A 可以对角化,且()E A λ-的列向量组的极大无关组恰是属于2λ 的极大线性无关的特征向量组,2E A λ-的列向量组的极大无关组恰是属于1λ的极大无关的特征向量组.例1: 判断A=460350361⎛⎫⎪-- ⎪ ⎪-⎝⎭能否对角化,并求特征向量.解: 易知A 的特征根1λ =-2 , 2λ =1.1E A λ- =660350363--⎛⎫ ⎪ ⎪ ⎪--⎝⎭ 和2E A λ- =360360360--⎛⎫⎪⎪ ⎪⎝⎭的秩分别为2与1,故A 可对角化. 又因为可以选取001⎛⎫ ⎪ ⎪⎪⎝⎭和210-⎛⎫⎪⎪ ⎪⎝⎭为的列空间的一个基,111⎛⎫ ⎪- ⎪ ⎪-⎝⎭是属于1λ的特征向量.定理和推论把判断矩阵是否对角化的问题与求它的特征向量的问题联系起来,给出了一个不用解线性方程组而求得可对角化矩阵的特征向量的方法, 在矩阵的不同特征根较少时, 这个方法较方便.2.实对称矩阵对角化的计算方法我们知道任意实对称矩阵,总正交相似于一对角阵. 该对角阵的对角元即为实对称矩阵的特征值, 正交相似变换矩阵的各列构成相应的特征向量. 给定一实对称阵A ,如何求正交相似变换矩阵P ,使1T P AP PAP -=为对角阵. 理论上的解决方法为:首先利用特征方程: | λI - A | = 0 求出全部特征值,针对不同特征值求出相应的完全特征向量系,合在一起构成实对称阵A 的完全特征向量系. 再利用施密特正交化法得到 A 的规范化正交特征向量系. 以此作为列向量得到正交相似变换矩阵P , 1T PAP PAP -=为对角阵, 参见文献[5 ]. 此方法理论可行,但在具体操作时,由于要事先求出实对称阵A 的全部特征值,操作上有如下困难: (1) 特征方程: | λI- A | = 0 给出困难; (2) 特征方程求根困难(5 次以上的代数方程没有统一的求根公式) . 因此有必要寻求方法.定义2.1 (瑞雷商) 设A 为n 阶实对称阵,对于任一n 维非零列向量x ,称R ( x) =( A x , x)/( x , x) 为关于向量x 的瑞雷商.引理2.1 设A 为n 阶实对称阵, 1λ≥2λ≥......≥n λ 为A 的特征值.()()()()11/{0}/{0},,max ,min,,nnx R x R Ax x Ax x x x x x λλ∈∈== 定义2.2 设w 为n 维列向量,且T w w = 1 ,则n 阶矩阵H = I - 2Tww 称为Householder 阵.引理2.2 Householder 矩阵具有如下性质: (1) TH H =(2) T TH H HH I == ( H 是正交阵) .引理2.3 设x , y ∈nR , x ≠y , X Y =,则存在Householder 矩阵H, 使Hx = y. 其中()()22/TH I x y x y x y =----定理2.1 设A 是实对称矩阵,λ, x (2X= 1) 是A 的一个特征值和相应的特征向量,则存在P 为一个正交阵,使Px =1e = ()1,0,0 0. 且TPAP 的第一行和第一列的第一个元素为λ,其余元素均为零.证 设A 是实对称矩阵, 1λ≥ 2λ≥ ...≥ n λ为A 的特征值. 根据引理2.1 ,利用多元函数求极值的拉格朗日乘数法,可求得1λ 及相应的规范化特征向量1X . 不妨假设‖1X ‖ = 1 ,由引理2.3 ,存在1P 为一个正交阵,使11P X =1e =()1,0,0, 0.且TPAP 的第一行和第一列的第一个元素为1λ , 其余元素均为零. 设111100TP AP A λ⎛⎫=⎪⎝⎭, 为对称阵,故1A 也为对称阵,设2λ 及2X 为1A 最大特征值及相应的规范化特征向量,则根据引理2.3 ,存在2Q 为一个正交阵,使()2211,0,0, 0Q x e ==.且212T Q A Q 的第一行和第一列除2λ 外其余元素均为零. 令22100P Q ⎛⎫= ⎪⎝⎭,容易验证2P 亦为正交阵, 满足:1121122212200000000T TT P P AP P Q AQ A λλλ⎛⎫⎛⎫⎪==⎪ ⎪⎝⎭ ⎪⎝⎭依此类推, 存在正交阵1p ,2p , ⋯,1n p -, 使得1n p -...2p 1p 121...T T Tn Ap p p D -=,则T PAP =D,其中 D 为对角阵,令121P P P P n -=,则TPAP D =,P 即为将实对称阵对角化的正交相似变换矩阵.例2: 设矩阵210210582811A ⎛⎫⎪=- ⎪ ⎪-⎝⎭, 1λ≥2λ≥3λ为A 的特征值.按上面的算法进行对角化,求出正交矩阵P 及特征根和特征向量.解: (1)利用瑞雷商和多元函数求极值的拉格朗日乘数法,可求得1λ = 18 ,相应的特征向量为1122,,333Tx ⎛⎫=- ⎪⎝⎭(2) 计算正交矩1p =()()211112/Tp I x e x e x e =----=122333221333212333⎛⎫- ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪--- ⎪⎝⎭,满足()1111,0,0T p x e ==且111800090009TP AP ⎛⎫⎪=- ⎪ ⎪⎝⎭,至此已实现对角化. 借此可求得= 2λ=9 , 3λ = - 9. 相应的特征向量分别为2212,,333Tx ⎛⎫=--- ⎪⎝⎭,3221,,333Tx ⎛⎫=-- ⎪⎝⎭.3.循环矩阵对角化方法的研究在复数域 C 上,形如012110121230........................n n n a a a a a a a a A a a a a ---⎛⎫⎪⎪= ⎪⎪⎝⎭的矩阵,称关于元素列011,,...,n a a a -的循环矩阵.已知n 阶循环矩阵010 (00)01...0 (1)00...0K ⎛⎫⎪⎪= ⎪⎪⎝⎭,并令ii K K = (1,2,,)i n =,称121,,,....,n E K K K -为循环矩阵基本列(其中E = n K 为单位矩阵).循环矩阵基本列有如下特点: ①121,,,...,n E K K K -都是循环矩阵;②n i i K K += ,即n i iK K +=;③n 阶循环矩阵K 有n 个特征根: cossinm mx mxi n nλ=+ (0,1,,1)m n =-④关于元素列0121,,,...,n a a a a -的n 阶循环矩阵 A 可用循环矩阵基本列表示为210121...n n A a E a K a K a K --=++++,反之,能用循环矩阵基本列线性表示的矩阵,则一定是循环矩阵. 循环矩阵的性质性质1 同阶循环矩阵的和矩阵为循环矩阵. 性质2 同阶循环矩阵的乘积满足交换律.性质3 同阶循环矩阵的乘积为循环矩阵. 性质4 循环矩阵的逆矩阵为循环矩阵.n 阶矩阵A 关于多项式函数f (x) 生成的矩阵为f (A) ,A 的特征根与f (A) 的特征根有下面的结论:命题3.1 设f (x) 是一个n - 1 次多项式函数,若λ是矩阵A 的特征根,则 f (λ) 是矩阵f (A) 的特征根.命题3.2 设f (x) 是一个n - 1 次多项式函数,若矩阵A 相似于矩阵B , 则矩f (A) 相似于矩阵f (B) .考察n 阶循环矩阵K,K 的特征多项式为:()211,(n i njjnj E K ei πλλληη-=-=-=-==∏如果n 阶循环矩阵A 记为()210121...n A n A f K a E a K a K a K --==++++不难求得K 中与特征值j η相应的特征向量,记:()11...j j n x ηη-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, ()()22......11j j j j j j j j kx x ηηηηηη⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则由命题3.1得()()()()()jjj j A A Ax f K x f x η==,可以验证()()()()1111000,1,.11,1n n m kmkk k m xxm k mηη---==≠⎧==-=⎨=⎩∑∑.将这n 个两两正交的向量()j x 单位化,可得标准正交基()()()011,,...,n x x x -⎫⎬⎭,令矩阵()()()21011242(1)(1)2(1)(1)(1)111 (1)1...,,...,1..................1...n n n n n n n T x x ηηηηηηηηη-------⎛⎫ ⎪⎪⎫⎪==⎬⎪⎭⎪ ⎪⎝⎭则()()())0111',...n TT x x x --==命题 3.3 任意n 阶循环矩阵()A A f K = 在复数域 C 上都可对角化,即1T AT -=11[(0)(),...,()]n A A A diag f f f ηη-推论 n 阶循环矩阵A 可逆的充要条件是()0iA f η≠(i=0,1,...,n-1).例3:求四阶循环矩阵1234412334122341A ⎛⎫⎪⎪= ⎪⎪⎝⎭的特征根,并对角化.解: 令23()1234f x x x x =+++ 得 ()()A A f K =,0100001000011000K ⎛⎫⎪⎪= ⎪ ⎪⎝⎭由于2i nei πη==, 所以A 的特征根分别为:()()0A f η=10 , ()()1A f η=-2-2i, ()()2A f η=-2, ()()3A f η=-2+2i11111111111211i i T i i ⎛⎫ ⎪--- ⎪= ⎪-- ⎪---⎝⎭, 111111*********i i T i i -⎛⎫ ⎪--⎪= ⎪-- ⎪--⎝⎭4.特殊矩阵特殊对角化的研究前面对实对称矩阵循环矩阵的对角化问题作了研究,本部分主要讨论,当矩阵只有两个特征根时的对角化问题,方法简捷. 对于数域F 上的n 阶矩阵A ,若仅有的两个特征根都在F 内,并且可以对角化,不通过解线性方程组求特征向量,而用初等变换求出可逆矩阵T,使1T AT -为对角形矩阵.定理4.1 设数域F 上的n 阶矩阵A 可以对角化,其特征根为1λ,2λ,如果()10n s n n s B I A p I λ⨯⨯-⎛⎫-⎛⎫−−−−→ ⎪ ⎪ ⎪*⎝⎭⎝⎭初等变换P,B 为列满秩矩阵,那么(i) A 的属于1λ 的线性无关的特征向量为P 的n s -个列向量;A 的属于2λ的线性无关的特征向量为B 的s 个列向量.(ii) 令T = ( P ,B) ,则T 可逆,且有11122......T AT λλλλ-⎛⎫ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭其中1λ 有n s -个, 2λ有s 个.证 因为初等矩阵不改变矩阵的秩,且B 为列满秩,则()12s B I A λλ==-=秩秩的重数. (i )根据矩阵的初等变换和分块矩阵的运算性质,可得()())()(1,0n n s I A P B λ⨯--*=,从而()10I A P λ-= 因P 为列满秩矩阵,则P 的n s -个列向量为齐次线性方程组()10I A X λ-= 的基础解系,亦即P 的n s - 个列向量为A 的属于1λ的线性无关的特征向量. 又A 可以对角化,且2λ的重数为s ,则有可逆矩阵Q,使得11122......A Q Q λλλλ-⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 令1122......D λλλλ⎛⎫⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,则有()()()()111212I A I A I Q DQ I Q DQ λλλλ----=--=()()1112QI D QQ I D Q λλ----=()()112Q I D I D Q λλ--- = 10Q OQ -=由于B 的列向量为1I A λ- 的列空间的基,则B 的s 个列向量为齐次线性方程组()10I A X λ-=的基础解系, B 的s 个列向量为A 的属于2λ的线性无关的特征向量.(ii) 因矩阵A 的属于不同特征根的特征向量线性无关,且特征向量的个数之和等于A 的阶数n ,于是, 令 )(,T P B = 即有1T AT D -=例4:令矩阵001010100A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求可逆矩阵T,使得1T AT -为对角形式.解: 方法一,先求A 的特征根()0101010A f λλλλ-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭= ()()211λλ-+则1λ = 1 (二重) , 2λ = - 1. 可见,此例为定理所述的情况.对矩阵1I A I λ-⎛⎫⎪⎝⎭作初等列变换,即11011000000001011000100101010010001001I A B I P λ-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪ ⎪---⎛⎫⎛⎫=→= ⎪ ⎪ ⎪ ⎪*⎝⎭⎝⎭ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以,由定理4.1 知,A 的属于2λ = - 1 的线性无关的特征向量为()11,0,1Ta =-;A 的属于1λ = 1 的线性无关的特征向量为()20,1,0Ta = , ()31,0,1Ta =令011100011T ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则有1111T AT -⎛⎫⎪= ⎪ ⎪-⎝⎭. 这与[1 ]的结果一致.方法二 在矩阵()I A λ-中,亦可取21λ=-,这时1011000200201011000100101010010001001I A B I P ---⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪⎪ ⎪-----⎛⎫⎛⎫=→= ⎪ ⎪ ⎪ ⎪-*⎝⎭⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭则A 的属于1λ=1 的线性无关的特征向量为()11,0,1Ta =-- , ()20,2,0Ta =- ;A 的属于2λ=- 1 的线性无关的特征向量为()21,0,1Ta =-令101020101T --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,则有1111T AT -⎛⎫ ⎪= ⎪ ⎪-⎝⎭.5.常规矩阵对角化方法的新探众所周知,对数域P 上一个n 阶矩阵A 是否存在一个可逆矩阵T ,使得1T AT -为对角形矩阵,当这种矩阵存在时,如何去寻求它.一般有关教材中都是先计算一个行列式,求出A 的特征值,再利用线性方程组和特征向量的有关理论及求法解决此问题的.在这里利用矩阵的初等变换解决此问题的,它比教材中的常规方法简单一些,因为不必解若干的齐次线性方程组,有时也不必计算行列式.5.1理论依据为说话方便,我们规定如果数域P 上,对n 阶矩阵存在一个可逆矩T ,使得1T AT -为对角形矩阵, 则称矩阵在数域P 上可对角化.当可对角化时, 我们说将A 对角化,即指求矩阵T ,使1T AT -为对角形矩阵.若矩阵n 在数域P 上可对角化, 则有P 上可逆矩阵T ,使得1T AT B-=为对角形矩阵.于是B 的主对角线上的元素,即为A 的全体特征值, 并且可表示:12,...S T Q Q Q = 其中i Q 为初等矩阵,i=1,2,...,s,于是,1111112......SS S B QQ Q AQ Q Q ----=,又1i Q -也是初等矩阵, 由初等矩阵与矩阵的初等变换的关系, 即知11Q AQ - , 相当于对A 施行了一次初等行变换与一次初等列变换.这里, 我们称此种初等变换为对A 施行了一次相似变换.显见, 可对A 施行一系列的相似变换化为B .又由, 12...S T EQ Q Q =(E 此处表单位矩阵)可如下进行初等变换, 则可将A 化为对角形矩阵B , 且可求得T :A AB E T ⎛⎫⎛⎫−−−−−−−→ ⎪ ⎪⎝⎭⎝⎭对施行一系列相似变换,对E 只施行其中的初等列变换. 当A 不可对角化时, 也可经相似变换化简A 后, 求得其特征值, 判定它可否对角化. 类似地, 可由111111...S S TQ Q Q E -----=,做如下初等变换则可将A 化为对角形矩阵B,且可求得T 或由B 求A 的特征值, 判定可否对角化:()()A AE B T −−−−−−−→对施行一系列相似变换,对E 只施行其中的初等行变换.并且在施行相似变换时, 不必施行一次行变换后接着施行一次列变换这样进行, 可施行若干次行或列变换后再施行若干次相应的列或行变换, 只要保持变换后, 最后所得矩阵与A相似即可.5.2 应用举例为叙述简便,这里用i r 表示i 第行,i c 表示第i 列,i j r kr +表示用数k 乘第j 行后再加到第i 行上,i j c kc +表示用数k 乘第j 列后再加到第i 列上.例5 求如下矩阵的特征值, 并判定它们可否对角化,若可则将其对角化:(1)511602311A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭, (2)1111111111111111B ⎛⎫⎪-- ⎪= ⎪-- ⎪--⎝⎭. 解:(1)由31511`602202r r A +-⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭ 13411402002c c C --⎛⎫⎪−−−→= ⎪ ⎪⎝⎭,知A 与C 相似. 易得,C 的特征值为2,2,2,且2E-C 的秩为2,所以C 不能对角化,从而知A 的特征值为2,2,2且A 不可以对角化.(2)由1,2,3,41111111111112200111120201111200210001000010001000010001000010000i r r i +=⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪--⎪ ⎪−−−−→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1,2,3,4i c c i -=−−−−−→ 1111,2,3,4,2,3,4441112111222202000200002000200002000210001000110011001010101010011001i i r r i c c i -=+=⎛⎫--⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−−−−−→−−−−−→ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪- ⎪- ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭-⎝⎭20000200002000021111444311144413114441131444-⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪--- ⎪⎝⎭, 知B 可以对角化,B 的特征值为-2,2,2,2.令1111444311144413114441131444T ⎛⎫ ⎪⎪ ⎪--- ⎪=⎪ ⎪--- ⎪ ⎪ ---⎪⎝⎭, 则12000020000200002T AT --⎛⎫⎪⎪= ⎪⎪⎝⎭.当不易直接用相似变换化简判定时, 可先求出特征值, 再用相似变换.例6判定1200320000230043A -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭可否对角化,若可,则将其对角化. 解法1(教材中的方法)由120032000023043x x xE A x x ---=-- ()()()2461x x x =--+,知A 的特征值为4,6,-1,-1.解 齐次线性方程组()40E A X -=得一基础解系23100⎛⎫- ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭解 齐次线性方程组()60E A X -=得一基础解系00341⎛⎫ ⎪ ⎪⎪- ⎪ ⎪ ⎪⎝⎭解 齐次线性方程组()0E A X --=得一基础解系1100⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭,0011⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭于是可,A 可对角化,且取201031010*******01T ⎛⎫- ⎪⎪ ⎪=⎪- ⎪ ⎪ ⎪⎝⎭,则140060000100001T AT -⎛⎫⎪⎪= ⎪-⎪-⎝⎭.解法2由12003200002300431000010000100001-⎛⎫ ⎪- ⎪ ⎪- ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 2143,r r r r --−−−−→ 12,3412004400002300661000010000100001c c c c ++-⎛⎫ ⎪- ⎪ ⎪- ⎪- ⎪−−−−→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭12000400001300061000110000100011--⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭123423,57r r r r --−−−−−→2100504003001700061000110000100011⎛⎫-- ⎪⎪⎪⎪-- ⎪⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎝⎭214323,57c c c c --−−−−−→100004000010000621005310053001740017-⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭知,A 可对角化,且取.21005310053001740017T ⎛⎫- ⎪ ⎪⎪ ⎪= ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭,11000040000100006T AT --⎛⎫⎪⎪= ⎪- ⎪⎝⎭两法比较, 法2比法1简便, 因不必计算行列式和解几个线性方程组.上述内容为本人对各类基本常见的矩阵类型的对角化计算方法,计算技巧的一些探讨,比较传统的计算方法、计算技巧,有一些优越性.计算简便,步骤简单具体,有较强的实用性.参考文献:[1] 张禾瑞 赫炳新 高等代数[M] 第四版 北京 :高等教育出版社 1998.166-410[3] 毛纲源 线性代数[M] 解题方法与技巧归纳 第二版 华中科技大学出版社 1997,7.213-241. [4] 丘维声 抽象代数[M] 北京 :高等教育出版社 2003.160-190.[5] 王萼芳 石生明 高等代数[M] 北京 :高等教育出版社 1987.176-254. [6] 王萼芳 高等代数教程[M] 北京清华大学 1996.91-184.[7] 张爱萍 循环矩阵的性质及其对角化[J] 广西师范自然科学报,2000,12.No.8.168-170. [8] 高吉全 矩阵特征根与特征向量的同步求解方法探讨[J] 数学通报,1991.12.No.7.23-26. [9] 郭亚梅.最小多项式与矩阵的对角化[J]河南机电高等专科学校学报.2006.No.4.106-108. [10]张正成 可对角化矩阵的应用[J] 科技资讯.2007.No.24.252-253.[11]张学元 线性代数能力试题解题[M] 武汉:华中理工大学出版社, 2000.34-37 [12]向人晶 矩阵可对角化的简单判定[J] 数学通报,2003,3.No.12.13-15.[13]靳廷昌有两个特征根矩阵对角化[J] 数学通报,1997,11.No.23.53-57.[14]李世余代数学的发展和展望[J] 广西大学学报.1985.No.1.146-148.[15]周立仁矩阵同时对角化的条件讨论[J] 湖南理工学院学报.2007.Vol.20.No.1.8-10.致谢本论文是在指导师陈巧云老师细心指导下完成.陈老师认真、负责、真诚的做人态度和作为教师对学生不倦教诲的精神,令我很受触动.同时,在论文的选题、修改、定稿都凝聚了陈老师的大量心血.陈老师尽心的指导与严格的监督,促使我最终完成了论文.值此论文完成之际,我谨向陈老师致以深深的敬意和感谢!On the martix diagonatization and application College of science Mathematics 082 Miao Rendong Director:Chen QiaoyunAbstract:This paper initially studied about matrit diagonatization concluding and summarizing about the necessary condition of matrix diagonalization,Through caclulation and research on read synmetrices matrices,cycle matrix,and special matrix diagonalizational ways it proride simple and fast ways of solution on the question of matrix diagonalization in the characteristic root,charateristic rector,and reversible matrix.Key words:diagonal matrix; matrix diagonalizationv; real symmetric matrix;eigenvalue; eigenvectors。
03.1矩阵对角化

k1 x1 k2 x2 ks xs 0 由于 Axi i xi (i 1, 2, , s ) 用A左乘上式得 k11 x1 k2 2 x2 ks s xs 0 从上面两个等式中消去 xs ,得 k1 (1 s ) x1 k2 (2 s ) x2 ks 1 (s 1 s ) xs 1 0 由归纳假定x1 , x2 , , xs 1 线性无关,又i s 0(i 1, 2, , s 1) k1 k2 ks 1 0 进而得 k s 0 ,故 x1 , x2 , , xs 线性无关
– 对应 i 有 si 个线性无关的特征向量,则称i 的几何重数为 si
• 定理1.1 特征值的几何重数不超过它的代数重数:
1 si ri
• 特征值的几何重数的另一种定义
– (I A) x 0 的解空间称为A的属于特征值λ的特征子空间, 记为 V 。特征子空间的维数
dim V n rank(I A)
Slide8
1.1 特征值与特征向量
• 定义1.1 特征值与特征向量
– 设 AC
nn
n ,如果 F 和 0 x F ,使得
Ax x
成立,则称λ为A的特征值,称x为A的对应于特征值λ的特征向量
• 定义1.2 特征矩阵与特征多项式
– 设 A F nn,称
a11 a12 a21 a22 I A a an 2 n1
Slide6
逆矩阵和矩阵的逆
• 方阵的逆(Inverse)
对 A F nn ,若存在同阶方阵B,使得 AB = BA = I 1 则称A可逆,并称B为A的逆矩阵,简称为A的逆,记为 A
矩阵对角化

引言在高等代数中,我们为了方便线性方程组的运算引入了矩阵的概念. 在线性方程组的讨论中我们看到,线性方程组的系数矩阵和增广矩阵反应出线性方程组的一些重要性质,并且解方程组的过程也表现为变换这些矩阵的过程.除线性方程组之外,在二次型中我们用矩阵研究二次型的性质,引入了矩阵合同、正定、负定、半正定、半负定等概念及其判别方法.在线性空间中用矩阵研究线性变换的性质,引入矩阵相似的概念,这是一种等价关系,利用它我们把矩阵分类,其中与对角矩阵相似的矩阵引起的我们的注意,由此我们对线性变换归类,利用简单的矩阵研究复杂的,方便我们看待问题,进而又引入对角型矩阵、λ矩阵及若尔当标准型.基本概念定义定义1 常以n m P ⨯表示数域P 上n m ⨯矩阵的全体,用E 表示单位矩阵.定义2 n 阶方阵A 与B 是相似的,如果我们可以找到一个n 阶非奇异的方阵矩阵T n n P ⨯∈,使得AT T B 1−=或者BT T A 1−=.根据定义我们容易知道相似为矩阵间的一个等价关系:①反身性:AE E A 1−=; ②对称性:若A 相似于B ,则B 相似于A ; ③传递性:如果A 相似于B ,B 相似于C ,那么A 相似于C . 定义3 n 阶方阵A 与B 是合同的,如果我们可以找到一个n 阶非奇异方阵T n n P ⨯∈,使得B =T T AT 或者BT T A T =.根据定义我们容易知道合同也为矩阵间的一个等价联系:①反身性:A =AE E T ;②对称性:由AT T B T =即有11)(−−=BT T A T ;③传递性:由111AT T A T=和2122T A T A T =有)()(21212T T A T T A T =.定义4 式为⎪⎪⎪⎪⎪⎭⎫⎝⎛⋯⋯⋯m b b b 000000021的m 阶方阵叫对角矩阵,这里i b 是数(),2,1m i ⋯⋯=. 定义5 方阵A n n P ⨯∈,若BT T A 1−=,T 非奇异,B 是对角阵,则称A 可相似对角化. 定义6 方阵A n n P ⨯∈,若BT T A T =,T 非奇异,B 是对角阵,则称A 可合同对角化.定义7 矩阵的初等变换:⑴互换矩阵的第i 行(列)于j 行(列); ⑵用非零数c P ∈乘以矩阵第i 行(列);⑶把矩阵第j 行的t 倍加到第i 行.定义 8 由单位矩阵经过一次初等行(列)变换所得的矩阵称为初等矩阵. 共有三种初等矩阵:①单位矩阵经过初等变换⑴得),(j i P 且),(),(1j i P j i P =−;②单位矩阵经过初等变换⑵得))((t i P 且)/1(())((1t i P t i P =−;③单位矩阵经过初等变换⑶得))(,(t j i P 且))(,())(,(1t j i P t j i P −=− 定义9 设方阵n n P B ⨯∈,若E B =2,就称B 为对合矩阵。
第五章_矩阵的对角化(课件)

第五章 相似矩阵与矩阵的对角化
线性代数
由于 AT A E 与 AAT E 等价, 所以上述结论对 A 的行向 量组亦成立.
定理 2 n 阶矩阵 A 是正交阵的充分必要条件是 A 的 列(行)向量组是 R n 的一个规范正交基. 正交矩阵的性质:
(1) 若 A 为正交阵, 则 A 1;
则称其为V 的一个规范正交基(或标准正交基) .
例如, 例 1中的正交向量组 1 1 1 α1 1 , α2 2 , α3 0 1 1 1 就是 R3 的一个正交基, 但不是规范正交基.
Presented by Jianhua Zhang
(2)[ x , y ] [ x, y ]; (3)[ x y, z ] [ x , z ] [ y, z ]; (4)[ x , x ] 0, 且 [ x, x ] 0当且仅当 x 0.
[ x, y ]2 [ x, x ][ y, y] 施瓦茨( Schwarz )不等式:
线性代数
Step2 : 单位化 (正交基 规范正交基) β1 β2 βr e1 , e2 , , er , β1 β2 βr 则 e1 , e2 , , er 是 V 的一个规范正交基.
Presented by Jianhua Zhang
上页 下页 返回 结束
第五章 相似矩阵与矩阵的对角化
此时,定义向量 x , y 的夹角为 [ x, y] arccos (0 ). x y
Presented by Jianhua Zhang
上页 下页 返回 结束
第五章 相似矩阵与矩阵的对角化
线性代数
二、正交向量组和施密特正交化方法
定义 3 若 [ x , y ] 0, 则称向量 x 与 y 正交, 记作 x y.
第七章第五节对角矩阵
四、小结 五、作业 P321,21,23,2)利用2) 的计算结果判断是否可以对角化。
§7.5 对角矩阵
2 3
x2 x3
0 0
的一个基础解系: ( 1 , 2 ,1) 33
§7.5 对角矩阵
所以A可对角化.
令
T
2
1
0
1
0 1
1
3 2
3 1
2 0 0
则
T 1 AT
0 0
2 0
0 4
§7.5 对角矩阵
D
2
n
则 1) 的特征多项式就是
f ( ) 1 2 n
2)对角矩阵D主对角线上元素除排列次序外是唯一
确定的,它们就是 的全部特征根(重根按重数计算).
§7.5 对角矩阵
三、对角化的一般方法
设 为维线性空间V的一个线性变换,1, 2 , , n 为V的一组基, 在这组基下的矩阵为A.
则 可对角化 有 n个线性无关的特征向量.
§7.5 对角矩阵
2. (定理8)设 为n维线性空间V的一个线性变换,
如果1,2 , k分别是 的属于互不相同的特征值 1,2 , k 的特征向量,则1,2 , k 线性无关.
§7.5 对角矩阵
3. (推论1) 设 为n维线性空间V的一个线性变换,
如果 的特征多项式在数域 P中有n个不同特征值, 则 可对角化.
特别地,(推论2) 在复数域C上的线性空间中,
如果线性变换 的特征多项式没有重根,则 可
矩阵的可对角化及其应用
附件:分类号O15商洛学院学士学位论文矩阵的可对角化及其应用作者单位数学与计算科学系指导老师刘晓民作者姓名陈毕专业﹑班级数学与应用数学专业07级1班提交时间二0一一年五月矩阵的可对角化及其应用陈毕(数学与计算科学系2007级1班)指导老师刘晓民摘要:矩阵可对角化问题是矩阵理论中的一个重要问题,可对角化矩阵作为一类特殊的矩阵,在理论上和应用上有着十分重要的意义。
本文对可对角化矩阵做出了全面的概括和分析,并利用高等代数和线性代数的有关理论给出了矩阵可对角化的若干条件,同时也讨论了化矩阵为对角形的求解方法,最后总结出可对角化矩阵在求方阵的高次幂﹑利用特征值求行列式的值﹑由特征值和特征向量反求矩阵﹑判断矩阵是否相似﹑向量空间﹑线性变换等方面的应用.关键词:对角化;特征值;特征向量;相似;线性变换Matrix diagonolization and its applicationChen Bi(Class 1,Grade 2007,The Depart of Math and Calculation Science)Advisor:Lecturer Liu Xiao MinAbstract: Matrix diagonolization problem is an important problem in matrix theory diagonolization matrix, as a kind of special matrix, in theory and application has the extremely vital significance. This paper has made diagonolization matrix analysis and generalization, and using higher algebra and linear algebra are given the relevant theory of matrix several conditions diagonolization, also discussed the matrix of the diagonal shape of solving method, and finally summarized; diagonolization matrix in high power, the policy of using eigenvalue beg determinant by characteristic value and value, feature vector reverse matrix, judgment matrix is similar, vector Spaces, the application of linear transformation, etc.Key words: The diagonalization; Eigenvalue; Feature vector; Similar; Linear transformation引言所谓矩阵可对角化指的是矩阵与对角阵相似,而说线性变换是可对角化的指的是这个线性变换在某一组基下是对角阵(或者说线性变换在一组基下的矩阵是可对角化的),同样可以把问题归到矩阵是否可对角化。
对角化是什么意思
对角化是什么意思
理论上看,意义是明显的.相似是一种等价关系,对角化相当于对一类矩阵在相似意义下给出了一种简单的等价形式,这对理论分析是方便的.相似的矩阵拥有很多相同的性质,比如特征多项式,特征根,行列式……如果只关心这类性质,那么相似的矩阵可以看作没有区别的,这时研究一个一般的可对角化的矩阵,只要研究它的标准形式——一个对角矩阵就可以了.而对角矩阵是最简单的一类矩阵,研究起来非常方便.这个过程相当于在一个等价类中选取最顺眼的元素研究。
另外,对角化突出了矩阵的特征值,而过度矩阵T反映了特征向量的信息,对角化过程的直观意义还是很明显的.再结合正交矩阵的概念,可以得到一些不平凡的结论,例如实对称矩阵总可以对角化。
实践中的矩阵对角化作用也很大.别的不说,比如要算一个一般的3阶实对称矩阵A的n次幂,n较大时,按矩阵乘法定义去计算是相当繁琐的,计算复杂度呈指数型增长.但是如果把A可以对角化(实对称矩阵总是可以对角化的),写为=T^(-1)PT,P是对角阵.那么
A^n=T^(-1)P^nT,P^n的计算是很简单的,只要把各特征值^n即可,此时计算A^n的复杂度几乎与n无关。
线性变换可对角化的条件及对角化方法
邯郸学院本科毕业论文题目线性变换“可对角化”的条件及“对角化”方法学生苏成杰指导教师张素梅教授年级2006 级专业数学与应用数学二级学院数学系(系、部)邯郸学院数学系2010年5月郑重声明本人的毕业论文是在指导教师张素梅老师的指导下独立撰写完成的.如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督.特此郑重声明.毕业论文作者(签名):年月日摘要通过从特征值、特征向量、特征子空间、不变子空间、最小多项式、特征多项式以及线性变换矩阵本身的结构特点等七个不同的角度去分析线性变换可对角化的条件,总结出了七个充要条件和四个充分条件.第二部分给出了利用特征向量将线性变换对角化的一般方法并赋予了典型例题加以具体说明,同时又就以上某些条件的等价关系进行了说明.关键词线性变换对角化条件特征值特征向量Linear transformation’s “diagonalizable”conditions and“diagonalization” methods Su Chengjie Directed by Professor. ZhangSumeiAbstract According to the characteristic number, characteristic vector, subspace, invariant subspace, minimal polynomial, characteristic polynomial and the linear transformation matrix itself we get seven different sufficient conditions and four different necessary conditions. The second part of the text will show a common method to diagonalization the linear transformation with characteristic number and characteristic vector and also there will be an example to make it clear and then the construction of the above conditions are discussed on equivalence relation.Key words Linear transformation Diagonalization Condition Characteristic number Characteristic vector目录摘要 (Ⅰ)外文页 (Ⅱ)1 引言 (1)2 线性变换及其矩阵表示 (1)2.1 线性变换的定义 (1)2.2 线性变换矩阵的定义 (1)3 数域P上的n维线性空间V上的线性变换σ可对角化的充要条件 (2)4 数域P上的n维线性空间V上的线性变换σ可对角化的充分条件 (6)5 复数域P上的n维线性空间V上的线性变换σ可对角化的充要条件 (8)6 线性变换对角化方法介绍 (9)7 对各条件之间的联系进行分析和总结 (11)参考文献 (11)致谢 (12)线性变换“可对角化”的条件及“对角化”方法1 引言线性变换是线性空间中的重要研究内容之一,过去我们把对线性变换的研究转化为了对矩阵的研究,这样极大地丰富了线性变换的研究内容,线性变换的对角化问题就是其中一例.值得注意的是,并不是所有的线性变换都可以对角化,因此对线性变换可对角化的条件的研究是十分有价值的.本文从不同的角度分析了线性变换可对角化的条件并给出了相应的结论.2 线性变换及其矩阵表示2.1 线性变换的定义 定义2.1296]1[ 设V 是数域P 上的线性空间,若存在V 上的一个变换σ满足条件(1))()()(βαβασσσ+=+ V ∈∀βα, (2)αασσk k =)( V P k ∈∀∈∀α, 则称σ为V 的一个线性变换.2.2 线性变换矩阵的定义 定义2.2324]1[ 设n εεε,,,21Λ是数域P 上的n 维线性空间V 上的一组基,σ是V 中的线性变换,基向量的像可以被基线性表出:⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=.,,22112222112212211111n nn n n n nn n n a a a a a a a a a εεεεεεεεεεεεΛΛΛΛΛΛΛσσσ 用矩阵来表示就是A εεεεεεεεε),,,(),,,(),,,(212121n n n ΛΛΛ==σσσσ其中⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a aa a aa a a ΛM M M ΛΛ212222111211A , 则称A 为线性变换σ在基n ε,,ε,εΛ21下的矩阵.3 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充要条件命题3.1 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充要条件是V 中存在由σ的特征向量组成的一组基.证明 必要性 设线性变换σ在基n εεε,,,21Λ下具有对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n λλλO21A 即⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n n λλλσOΛΛ212121),,,(),,,(εεεεεε 这就是说n i i i i ,,2,1,Λ==εελσ.因此n εεε,,,21Λ就是σ的n 个线性无关的特征向量.充分性 如果V 中存在由σ的特征向量组成的一组基,显然在这组基下σ的矩阵是对角矩阵,即线性变换σ可以对角化.命题 3.2 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充要条件是V 可以分解成σ的n 个一维不变子空间的直和.引理3.2.1260]2[ 如果ξ是数域P 上的线性空间V 上的线性变换σ的一个特征向量,则ξ生成的子空间)(ξL 是σ的一维不变子空间.引理3.2.2 设σ是数域P 上的n 维线性空间V 上的线性变换,如果W 是σ的一维不变子空间,则W 中任何一个非零向量都是σ的特征向量.证明 设W 是σ的一维不变子空间,任取)(0αα≠∈W ,则α是W 的一组基.因为W 是σ的一维不变子空间所以W ∈ασ,从而αα0k =σ对某个P k ∈0成立,这表明α是σ的特征向量.下面证明命题3.2必要性 设σ可对角化,由命题3.1可知V 中存在由σ的特征向量组成的一组基n ααα,,,21Λ,因此)()()(21n L L L V ααα⊕⊕⊕=Λ.根据引理3.2.1有),,2,1)((n i L i Λ=α是σ的一维不变子空间.由此得线性空间V 可以分解成σ的n 个一维不变子空间的直和.充分性 设V 可以分解成σ的n 个一维不变子空间n W W W ,,,21Λ的直和n W W W V ⊕⊕⊕=Λ21在),,2,1(n i W i Λ=中取一组基i ε,据引理3.2.2得i ε是σ的特征向量.由于和n W W W ⊕⊕⊕Λ21是直和,所以n εεε,,,21Λ是n W W W V ⊕⊕⊕=Λ21的一组基,即线性空间V 中存在由线性变换σ的特征向量组成的一组基,由命题3.1可知线性变换σ可以对角化.命题3.3 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充要条件是σ的所有特征子空间的维数之和等于n .引理3.3.1251]2[ n 维线性空间V 上的线性变换σ的属于不同特征值m λλλ,,,21Λ的特征向量是线性无关的;线性变换σ的属于不同特征值m λλλ,,,21Λ的线性无关的特征向量组合在一起仍然线性无关.下面证明命题3.3必要性 设线性变换σ的所有不同特征值分别是m λλλ,,,21Λ,),,2,1(m i V i Λ=λ是属于特征值),,2,1(m i i Λ=λ的特征子空间,因为线性变换σ可对角化,由命题3.1知σ有n 个线性无关的特征向量,从而有m V V V V λλλ⊕⊕⊕=Λ21.所以)dim ()dim ()dim ()dim ()dim (2121m m V V V V V V V λλλλλλ+++=⊕⊕⊕=ΛΛ.其中)dim(V 表示线性空间V 的维数,下同.从上面的等式可以看出,线性变换σ的所有特征子空间的维数之和等于线性空间V 的维数n . 充分性 设线性变换σ的所有特征子空间的维数之和等于线性空间V 的维数n ,即∑===mi n V V i1)dim()dim(λ在m V V V λλλ,,,21Λ中各取一组基,把它们合起来供共有n 个向量.据引理3.3.1它们仍然线性无关,从而它们构成线性空间V 的一组基.换句话说,线性空间V 中存在由线性变换σ的特征向量构成的一组基,由命题3.1知线性变换σ可以对角化.命题3.4 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充要条件是线性变换σ在某一组基下的矩阵A 的最小多项式是P 上互素的一次因式的乘积.引理3.4.1 设A 是一个准对角矩阵⎪⎪⎭⎫⎝⎛=21A A A 并设1A 的最小多项式为1g (x ),2A 的最小多项式为2g (x ),那么A 的最小多项式为1g (x )和2g (x )的最小公倍式)](),([21x g x g .证明 记)](),([)(21x g x g x g =,首先0A A A =⎪⎪⎭⎫⎝⎛=)()()(21g g g 因此g(x )能被A 的最小多项式整除,其次,如果0A =)(h ,那么0A A A =⎪⎪⎭⎫ ⎝⎛=)()()(21h h h 所以0A 0A ==)(,)(21h h ,因而)(|)(),(|)(21x h x g x h x g .并由此得)(|)(x h x g .这样就证明了g(x )是A 的最小多项式.引理3.4.286]3[ 设n 维线性空间V 上的线性变换σ在某组基下的矩阵A 的最小多项式为)(x g ,它可以分解成一次因式的乘积s r s r r x x x x x x x g )()()()(2121---=Λ则V 可以分解成不变子空间的直和s V V V V ⊕⊕⊕=Λ21,其中},)(|{V x V i ri i ∈=-=ξ0ξE A ξ,s i ,,2,1Λ=.下证命题3.4根据引理3.4.1,条件的必要性是显然的,现在证明充分性.根据矩阵和线性变换之间的对应关系,定义任意线性变换σ的最小多项式为其对应矩阵A 的最小多项式.设线性变换σ的最小多项式为)(x g ,由)(x g 是数域P 上互素的一次因式的乘积,我们有∏=-=li i a x x g 1)()(由引理3.4.2可得l V V V V ⊕⊕⊕=Λ21其中},)(|{V a V i i ∈=-=ξ0ξE A ξ,这里E 表示单位矩阵.因此把l V V V ,,,21Λ各自的基合起来就是线性空间V 的基,而每个基向量都属于某个),,2,1(n i V i Λ=,因而是线性变换σ的特征向量.换句话说就是线性空间V 中存在由线性变换σ的特征向量构成的一组基,由命题3.1可得线性变换σ可对角化.命题3.5 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充要条件是对于线性变换σ的每个特征值λ都有等式:k r n =--)(A E λ(其中k 是λ的重数,A 表示线性变换σ在某一组基下的矩阵,)(A E -λr 表示矩阵A E -λ的秩,下同).证明 必要性 设λ是线性变换σ的任一特征值,且其重数为k ,由于σ可以对角化,所以属于特征值λ的线性无关的特征向量有k 个,从而齐次线性方程组0X A E =-)(λ的基础解系中含向量的个数为k .由参考文献[1]第142页定理8可知齐次线性方程组0X A E =-)(λ的基础解系中含向量的个数为)(A E --λr n所以有k r n =--)(A E λ.充分性 由于对线性变换σ的每个特征根λ有k r n =--)(A E λ (k 是λ的重数),所以齐次线性方程组0X A E =-)(λ的基础解系中含向量的个数为k ,即属于k 重特征值λ的线性无关的特征向量的个数为k ,从而线性变换σ共有n 个线性无关的特征向量,由命题3.1可知线性变换σ可以对角化.由上面的证明过程可知,条件:对于线性变换σ的每个特征值λ都有k r n =--)(A E λ(k 是λ的重数)也可改为线性变换σ的每个特征值λ的重数等于齐次线性方程组0X A E =-)(λ的基础解系所含向量的个数.或改为如果令r λλλ,,,21Λ是σ的所有不同特征值,则有n r n r i i =--∑=)]([1A E λ.或改为线性变换σ的每个特征值λ的特征子空间的维数等于λ的重数.4 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充分条件命题4.1 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充分条件是σ有n 个不同的特征值.证明 由于属于不同特征值的特征向量是线性无关的,且线性变换σ有n 个不同的特征值,所以线性变换σ有n 个线性无关的特征向量,它们构成V 的一组基,由命题3.1可知线性变换σ可对角化.命题4.2 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充分条件是σ在某组基下的矩阵A 的特征多项式在数域P 内有n 个单根.证明 由于矩阵A 的特征多项式||)(A E -=λλf在数域P 上有n 个单根,从而线性变换σ有n 个不同的特征值,由命题4.1得线性变换σ可对角化.命题4.3 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充分条件是σ在某组基下的矩阵A 为幂等矩阵)(2A A =.引理4.3.1130]3[ 幂等矩阵的特征根只能是0或1.下面证明命题4.3设线性变换σ在某组基下矩阵A 为幂等矩阵,且r r =)(A ,由引理4.3.1知线性变换σ的特征值是0或1,所以矩阵A 相似于对角矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=00110O OA 由于相似矩阵具有相同的秩,所以 )()(0A A r r =)()(0A E A E -=-r r又n r r =+-)()(00A A E ,所以rn r n r r -=-=+-)()()(A E A A E . 于是齐次线性方程组0X A E =-)(的基础解系所含向量的个数为n )(A E --r =r r n n =--)(.又因为r r =)(A ,故齐次线性方程组0AX X A E =-=-)0(的基础解系所含向量的个数为r n r n -=-)(A .于是线性变换σ共有n r n r =-+)(个线性无关的特征向量,它们构成V 的一组基,由命题3.1可得线性变换σ可对角化.另外,如果线性变换σ在某一组基下的矩阵A 满足E A =2或)(2P k k ∈=A A ,由以上的证明过程可知线性变σ同样可以对角化.命题4.4 数域P 上的n 维线性空间V 上的线性变换σ可对角化的充分条件是线性变换σ在某组基下矩阵A 为下三角矩阵,且),,2,1,,(n j i j i a a jj ii Λ=≠≠(其中ii a 为主对角线上元素).证明 因为A 是一个下三角矩阵,所以A 的特征多项式为|λA E -|=∏=-n i ii a1(λ),又由于),,2,1,,(n j i j i a a jj ii Λ=≠≠,从而A 的特征多项式有n 个不同的根),,2,1(n i a ii Λ=,即线性变换σ有n 个不同的特征值,由命题4.1可得线性变换σ可对角化.5 复数域P 上的n 维线性空间V 上的线性变换σ可对角化的充要条件命题5.1 复数域P 上的n 维线性空间V 上的线性变换σ可对角化的充要条件是σ在某组基下的矩阵A 的最小多项式无重根.证明 由命题3.4可知σ可对角化的等价条件是σ在某组基下的矩阵A 的最小多项式是P 上互素的一次因式的乘积,而当P 是复数域时这个条件就等价于A 的最小多项式无重根,从而命题成立.另外不难证明如果A 的特征多项式无重根,则线性变换σ可对角化.命题5.2 复数域P 上的n 维线性空间V 上的线性变换σ可对角化的充要条件是对σ的每个特征值i λ均有m i r r i i ,,2,1,)()(2Λ=-=-A E A E λλ.证明 必要性 因线性变换σ可对角化,故A 的最小多项式)(λf 无重根,即A 的任一特征根i λ只能是)(λf 的单根.于是)(λf 与(i λλ-2)的最大公因式是i λλ-,由最大公因式的性质知,有多项式][)(),(λλλP v u ∈使 EA E A A A A i i ii v f u v f u λλλλλλλλλ-=-+-=-+22))(()()())(()()(.因 0A =)(f ,故 E A E A A i i v λλ-=-2))((.所以r (E A i λ-)≤2)(E A i r λ-但2)(E A i r λ-≤)(E A i r λ-,故有)(E A i r λ-=m i r i ,,2,1,)(2Λ=-E A λ.充分性 由命题5.1知,只需证明A 的最小多项式无重根,用反证法.假设线性变换σ的某个特征根i λ是最小多项式)(λf 的重根,可设)()()(2λλλλg f i -=,因多项式)()(λλλg i -的次数低于)(λf 的次数,故0A E A ≠-)()(g i λ,但0A A E A ==-)()()(2f g i λ所以)(A g 中必存在非零的列向量0X 使0X E A 0X E A =-≠-020)()(i i λλ.这就是说,齐次线性方程组0X E A =-)(i λ与0X E A =-2)(i λ有不同解,故2)()(E A E A i i r r λλ-≠-.这与2)()(E A E A i i r r λλ-=-矛盾.故)(λf 无重根,从而线性变换σ可对角化.6 线性变换对角化方法介绍命题6.162]4[ 设数域P 上的n 维线性空间V 中的线性变换σ有m 个不同的特征值,它们分别为)(,,,21n m m ≤λλλΛ,且其对应有n 个线性无关的特征向量为n ααα,,,21Λ,A 为线性变换σ的矩阵.如果令),,,(21n αααP Λ=则有⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n λλλO 211AP P . 上述命题就是将一个线性变换的矩阵变成一个其主对角线上全为其特征值的对角矩阵的具体方法.例298]6[ 数域P 上的n 维线性空间V 中的线性变换σ在某组基下的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=533242111A试将其对角化.解 矩阵A 的特征多项式)6()2(533242111||)(2--=-----=-=λλλλλλλA E f 令 0)6()2()(2=--=λλλf得6,2321===λλλ.所以线性变换σ的特征值为6,2321===λλλ.当2=λ时,由,)2(0X A E =-求得属于特征值2=λ的线性无关的特征向量为T T )1,0,1(,)0,1,1(21=-=αα.当6=λ时,由,)6(0X A E =-求得属于特征值6=λ的线性无关的特征向量为T )3,2,1(3-=α.再令⎪⎪⎪⎭⎫ ⎝⎛--==310201111),,(321αααP可求得⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=-4141414143432121211P 则有⎪⎪⎪⎭⎫ ⎝⎛=-6221AP P .至此已将线性变换对角化,其对角化的矩阵为⎪⎪⎪⎭⎫ ⎝⎛=6220A .从上面的解题过程可以看出,线性变换对角化的过程实际上就是求解特征值与特征向量的过程.换句话说就是求得一组基,使线性变换在这组基下的矩阵为对角矩阵.显然这组基中的每一个向量都是线性变换的特征向量,而对角矩阵主对角线上元素都是其对应特征值.从而不难理解线性变换的矩阵对角化后并没有改变线性变换本身,它只是在另一组基下的矩阵.7 对各条件之间的联系进行分析和总结通过对以上各种条件进行分析和总结可以看出,线性变换可对角化的条件虽然有很多,但从本质上说它们其实是一致的.例如,线性变换σ可对角化的充要条件“σ有n 个线性无关的特征向量”与“线性空间V 上的线性变换σ的所有特征子空间的维数之和等于n ”其实就是同一问题的不同表述:有“线性变换σ有n 个线性无关的特征向量”就必然有“线性变换σ的所有特征子空间的维数之和等于n ”.反过来,如果“线性变换σ的所有特征子空间的维数之和等于n ”则必有“σ有n 个线性无关的特征向量”.所以,抓住问题的本质有助于真正理解和掌握线性变换可对角化的条件及对角化方法.参考文献:[1] 王萼芳 ,石生明.高等代数[M].北京:高等教育出版社,2005[2] 丘维声.高等代数[M].北京:高等教育出版社,2001[3] 钱芳华. 高等代数方法选讲[M].桂林:广西师范大学出版社,1991[4] 程云鹏 .矩阵论[M].西安:西北工业大学出版社,2001[5] 钱吉林.高等代数题解精粹[M].北京:中央民族大学出版社,2005[6] 唐忠明.高等代数[M].南京:南京大学出版社,2000[7] Y.Q.Guo,K.P.Shum and G.T.Xu.Linear Algebra[M].Beijing:Science Press ,2008致谢在此篇毕业论文划上句号之际,我郑重地向我的指导教师张素梅老师表示我最诚挚的感谢!衷心地感谢她的关心、指导和教诲.在张老师的精心引导下,几经修改和完善我终于完成了毕业论文,从她身上我获得了太多的文化和知识,更汲取了诸多纯朴而伟大的高尚品德.我在撰写毕业论文期间的工作自始至终都是在张老师的全面、具体指导下进行的.老师渊博的学识、民主而严谨的作风,使我受益匪浅.张老师谦逊的学术作风和高尚的人格品德将永远激励我前行!最后还要感谢我的同学和朋友四年来对我的关心和帮助.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= Pdiag (λ1 ,⋯ , λ1 , λ2 ,⋯ , λ2 , ⋯⋯ λσ , ⋯, λσ )
所以: 所以:
A = Pdiag (λ1 ,⋯ , λ1 , λ2 , ⋯, λ2 ,⋯⋯ λσ ,⋯ , λσ ) P −1
为单纯矩阵,充分性得证。 即 A 为单纯矩阵,充分性得证。
Department of Mathematics
A 所以, 至少有 所以, 关于特征值 λi 至少有 mi 个线性无关的特
征向量, 征向量,于是 ai ≥ mi 而有定理知: 而有定理知:ai ≤ mi ,所以 ai = mi 定理得证
Department of Mathematics
A ∈ C n×n ,则 A 为单纯矩阵的充分必要条 推论1: 推论 :设
设:
1 2 2 σ σ σ P = ( p1 , p1 ,⋯ , p11 , p12 , p2 , ⋯ , pa2 ,⋯ , p1 , p2 ,⋯ , paσ ) 2 a
则:
σ σ σ 1 2 2 AP = A( p1 , p1 , ⋯, p11 , p12 , p2 ,⋯ , pa2 ,⋯ , p1 , p2 ,⋯ , paσ ) 2 a
定理1(Schur引理 : 定理 引理): 引理 酉相似于一个上(下 三角矩阵 任何一个 n 阶复矩阵 A 酉相似于一个上 下)三角矩阵 即: n×n H
∃U ∈ U
, s.t
A = URU
其中: 其中: R 为上三角阵 证明:用数学归纳法。 A 的阶数为1时定理显然 成 证明:用数学归纳法。 的阶数为1时定理显然 时定理成立, 立。现设 A 的阶数为 k − 1 时定理成立, 时的情况。 考虑 A 的阶数为 k 时的情况。 取 k 阶矩阵 A 的一个特征值 λ1 ,对应的单位
Department of Mathematics
从前面的讨论可知,在有限维线性空间中,取 从前面的讨论可知,在有限维线性空间中, 定一个基后, 定一个基后,线性变换与矩阵之间存在着一一对应 关系。因此,利用矩阵来研究线性变换十分方便。 关系。因此,利用矩阵来研究线性变换十分方便。 对于每一个给定的线性变换,适当选择的一个基, 对于每一个给定的线性变换,适当选择的一个基, 使得该线性变换在此基下的矩阵最为简单, 使得该线性变换在此基下的矩阵最为简单,这是本 节结尾要讨论的问题。为此, 节结尾要讨论的问题。为此,我们引入特征值与特 征向量的概念。 征向量的概念。 特征值与特征向量的概念在实践中也有着广泛的 应用,大型建筑物与机械的振动, 应用,大型建筑物与机械的振动,机翼的颤振以及 调节系统的自振等都是常见的例子。 调节系统的自振等都是常见的例子。
n ×n
H ( A ∈ R n×n ) , 如果 A 满足 AA
= AH A
1 −1 1 1
为实正规矩阵
1 1 1 −1 2 0 = A A = AA = 1 1 0 2 − 1 1
H H
Department of Mathematics
特征向量为α 1,构造以 α 1 为第一列的 k 阶酉矩阵
对于特征值 λ2 = −6,
a2 = n − rank (λ2 I n − A) = 3 − rank (−6 I 3 − A) = 3− 2 =1
定理2: 定理 : λi ∈ C n×n , λi 的代数重复度为 mi ,几何重复度 设 A的几何重复度不大于它的代数重复度 几何重复度 则有: 为 ai ,则有: ai ≤ mi 则有
又因为: 又因为: det(λI n − A) = (λ − λi ) mi f (λ ) 所以: 所以: ai ≤ mi
Department of Mathematics
二 矩阵的相似与对角化
A ∈ C n× n , 若 定义: 定义:设
A 与对角阵相似,则称 A 是 与对角阵相似,
对角化;可对角化的矩阵称为单纯矩阵 单纯矩阵。 可对角化;可对角化的矩阵称为单纯矩阵。 定理3: 定理 :n 阶矩阵 A 可以对角化的充分必要条件是 每一个特征值的代数重数等于其几何重数。 每一个特征值的代数重数等于其几何重数。
n ×n
A = UBU H ( A = UBU T )
(或R
n ×n
U ∈ U n×n (或E n×n ) , ) ,若存在
使得: 使得 U H AU = U −1 AU = B(或U T AU = U −1 AU = B ) 酉相似(或正交相似)于 则称 A 酉相似 或正交相似 于 B
Department of Mathematics
i
定理1 定理 设 A ∈ C n×n , λi 的代数重复度为 mi ,几何重复度 几何重复度 则有: 为 ai ,则有: 则有
ai = n − rank (λi I n − A)
Vλi = {x Ax = λi x, x ∈ C n } ,所以: 证明: 所以: 证明 由于
ai = dim Vλi = dim N (λi I n − A) = n − dim R (λi I n − A) = n − rank (λi I n − A)
λi⋱Βιβλιοθήκη λi0 λi ∆ ∈ C ( n − ai )×( n − ai ) , B = 即:
其中
λi
⋱
λi
0
∗ ∆
AP = PB ⇒ B = P −1 AP
A 与 B 相似。 相似。
ai
det(λI n − A) = det(λI n − B) = (λ − λi ) det(λI n − ai − ∆)
i
AP = A(ε 1 , ε 2 , ⋯ , ε ai , ε ai +1 , ⋯ , ε n ) = (λiε 1 , λiε 2 , ⋯ , λiε ai , Aε ai +1 , ⋯ , Aε n ) λi = (ε 1 , ε 2 , ⋯ , ε ai , ε ai +1 , ⋯ , ε n ) Department of Mathematics ∗ = PB ∆
矩阵论电子教程
哈尔滨工程大学理学院应用数学系
Department of Mathematics
第 三 章
矩阵的对角化,若当标准型 矩阵的对角化,
Department of Mathematics
1,掌握矩阵相似对角化的判别方法; 掌握矩阵相似对角化的判别方法; 2,理解厄米特二次型的含义。 ,理解厄米特二次型的含义。 3,会求矩阵的约当标准形;会求史密斯标准形; ,会求矩阵的约当标准形;会求史密斯标准形; 4,会求若当标准型 重点: 厄米特二次型; 重点: 厄米特二次型 若当标准型 难点: 难点: 矩阵的约当标准形的求法
件是 A 有 n 个线性无关的特征向量 n× n 推论2: 个互不相同的特征值, 推论 :设 A ∈ C ,若 A 有 n 个互不相同的特征值, 则 A 为单纯矩阵 2: 例2:判断矩阵
3 −1 1 2 0 1 A= 1 −1 2
A
的特征值
是否可以对角化? 是否可以对角化?
4i −6 − 2i 4 + 3i (3) −4i 4 − 3i −2 − 6i 1 这是一个正规矩阵 6 + 2i −2 − 6i 这是一个正规矩阵.
(4) H-阵, 反H-阵, 正交矩阵, 酉矩阵, 阵 阵 正交矩阵 酉矩阵 对角矩阵都是正规矩阵. 对角矩阵都是正规矩阵 酉相似的定义 设 A, B ∈ C
m 证明: 的全部相异的特征值, 证明:设 λ1 , λ2 , ⋯ λσ 为 A 的全部相异的特征值, i , ai 分
i 代数和几何重复度, 别为 λi 代数和几何重复度, = 1,2, ⋯σ
σ
充分性: 充分性:因为
∑m
i =1
i
= n , ai = mi
所以
A 有n 个线性无关的特征向量,设特征向量为 个线性无关的特征向量,
Department of Mathematics
§3.1 矩阵的可对角化 一,特征值与特征向量 特征值与特征向量
设
A∈ F
n×n
∃λ∈F ∃0 ≠ x ∈F ∈
特征向量
n
Ax = λx
特征值
A∈F
n×n
特征矩阵
λ − a11 − a12 ⋯ − a1n λ − a22 ⋯ − a2n − a21A的不同特征值对应的特 λI − A = ⋮ 征向量是线性无关的 ⋮ ⋮ ⋱ −a − an2 ⋯ λ − ann n1
Department of Mathematics
2 −2 2 例 1: −2 −1 4 的谱 求矩阵 A = 2 4 −1
及相异特征值的代数重复度与几何重复度 解答: 解答:
λ −2 λI − A =
2 −2 = ( λ − 3)2 (λ + 6)
2
−2 −4
Department of Mathematics
1 2 2 σ σ σ p1 , p1 ,⋯ , p11 , p12 , p2 ,⋯ , pa2 ,⋯ , p1 , p2 ,⋯ , paσ 2 a i i p1i , p2 ,⋯ , pai 为 λi 对应的特征向量。i = 1,2,⋯σ ) ( 其中: 对应的特征向量。 其中:
Department of Mathematics
证明: 的几何重复度, 证明:因为ai 是 λi 的几何重复度,所以 A 对应于λi , 有 ai个线性无关的特征向量 ε 1 , ε 2 , ⋯ , ε ai ,是特征子
ε1 的基, 的基: 空间Vλ 的基,将其扩充为 Cn 的基:, ε 2 ,⋯ , ε ai , ε ai +1 , ⋯ , ε n 设 P = (ε 1 , ε 2 ,⋯ , ε ai , ε ai +1 , ⋯, ε n ) ,则: