排列组合及概率统计
概率统计公式大全(复习重点)汇总【范本模板】

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。
)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成.(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用ω来表示。
基本事件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的部分点(基本事件ω)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B.A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A—B,也可表示为A—AB或者BA,它表示A发生而B不发生的事件。
概率和统计公式大全

①可分离变量
②正概率密度区间为矩形
二维正态分布
=0
随机变量的函数
若X1,X2,…Xm,Xm+1,…Xn相互独立,h,g为连续函数,则:
h(X1,X2,…Xm)和g(Xm+1,…Xn)相互独立。
特例:若X与Y独立,则:h(X)和g(Y)独立。
例如:若X与Y独立,则:3X+1和5Y-2独立。
(17)伯努利概型
我们作了次试验,且满足
u每次试验只有两种可能结果,发生或不发生;
u次试验是重复进行的,即发生的概率每次均一样;
u每次试验是独立的,即每次试验发生与否与其他次试验发生与否是互不影响的.
这种试验称为伯努利概型,或称为重伯努利试验.
用表示每次试验发生的概率,则发生的概率为,用表示重伯努利试验中出现次的概率,
(8)二维均匀分布
设随机向量(X,Y)的分布密度函数为
其中SD为区域D的面积,则称(X,Y)服从D上的均匀分布,记为(X,Y)~U(D)。
例如图3.1、图3.2和图3。3。
y
1
D1
O1x
图3.1
y
D2
1
1
O2x
图3.2
y
D3
d
c
Oa bx
图3.3
(9)二维正态分布
设随机向量(X,Y)的分布密度函数为
,
Z=max,min(X1,X2,…Xn)
若相互独立,其分布函数分别为,则Z=max,min(X1,X2,…Xn)的分布函数为:
分布
设n个随机变量相互独立,且服从标准正态分布,可以证明它们的平方和
的分布密度为
我们称随机变量W服从自由度为n的分布,记为W~,其中
概率统计公式大全复习重点

第一章随机事件和概率1排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数;)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数;2加法和乘法原理加法原理两种方法均能完成此事:m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成;乘法原理两个步骤分别不能完成这件事:m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成;3一些常见排列重复排列和非重复排列有序对立事件至少有一个顺序问题4随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验;试验的可能结果称为随机事件;5基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的;这样一组事件中的每一个事件称为基本事件,用ω来表示;基本事件的全体,称为试验的样本空间,用Ω表示;一个事件就是由Ω中的部分点基本事件ω组成的集合;通常用大写字母A,B,C,…表示事件,它们是Ω的子集;Ω为必然事件,为不可能事件;不可能事件的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件Ω的概率为1,而概率为1的事件也不一定是必然事件;6事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,A发生必有事件B发生:BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B;A、B中至少有一个发生的事件:A B,或者A+B;属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件;A、B同时发生:A B,或者AB;A B=,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥;基本事件是互不相容的;Ω-A称为事件A的逆事件,或称A的对立事件,记为A;它表示A 不发生的事件;互斥未必对立;②运算:结合率:ABC=ABC A∪B∪C=A∪B∪C分配率:AB∪C=A∪C∩B∪C A∪B∩C=AC∪BC德摩根率:∞=∞==11iiii AABABA=,BABA=7概率的公理化定义设Ω为样本空间,A为事件,对每一个事件A都有一个实数PA,若满足下列三个条件:1° 0≤PA≤1,2° PΩ =13° 对于两两互不相容的事件1A,2A,…有常称为可列完全可加性;则称PA为事件A的概率;8古典概型1°{}nωωω21,=Ω,2°nPPPn1)()()(21===ωωω ;设任一事件A,它是由mωωω21,组成的,则有PA={})()()(21mωωω=)()()(21mPPPωωω+++9几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型;对任一事件A,)()()(Ω=LALAP;其中L为几何度量长度、面积、体积;10加法公式PA+B=PA+PB-PAB当PAB=0时,PA+B=PA+PB11减法公式PA-B=PA-PAB当B⊂A时,PA-B=PA-PB 当A=Ω时,P B=1- PB12条件概率定义设A、B是两个事件,且PA>0,则称)()(APABP为事件A发生条件下,事件B发生的条件概率,记为=)/(ABP)()(APABP;条件概率是概率的一种,所有概率的性质都适合于条件概率;例如PΩ/B=1⇒P B/A=1-PB/A13乘法公式乘法公式:)/()()(ABPAPABP=更一般地,对事件A1,A2,…An,若PA1A2…An-1>0,则有21(AAP…)n A)|()|()(213121AAAPAAPAP= (2)1|(AAAP n…)1-n A;14独立性①两个事件的独立性设事件A、B满足)()()(BPAPABP=,则称事件A、B是相互独立的;若事件A、B相互独立,且0)(>AP,则有若事件A、B相互独立,则可得到A与B、A与B、A与B也都相互独立;必然事件Ω和不可能事件与任何事件都相互独立;与任何事件都互斥;②多个事件的独立性设ABC是三个事件,如果满足两两独立的条件,PAB=PAPB;PBC=PBPC;PCA=PCPA并且同时满足PABC=PAPBPC那么A、B、C相互独立;对于n个事件类似;15全概公式设事件n BBB,,,21 满足1°n BBB,,,21 两两互不相容,),,2,1(0)(niBP i=>, 2°niiBA1=⊂,则有)|()()|()()|()()(2211nn BAPBPBAPBPBAPBPAP+++= ;16贝叶斯公式设事件1B,2B,…,n B及A满足1°1B,2B,…,n B两两互不相容,)(BiP>0,=i1,2,…,n, 2°niiBA1=⊂,0)(>AP,则∑==njjjiiiBAPBPBAPBPABP1)/()()/()()/(,i=1,2,…n;此公式即为贝叶斯公式;)(i B P ,1=i ,2,…,n ,通常叫先验概率;)/(A B P i ,1=i ,2,…,n ,通常称为后验概率;贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断;17伯努利概型我们作了n 次试验,且满足每次试验只有两种可能结果,A 发生或A 不发生; n 次试验是重复进行的,即A 发生的概率每次均一样;每次试验是独立的,即每次试验A 发生与否与其他次试验A 发生与否是互不影响的;这种试验称为伯努利概型,或称为n 重伯努利试验;用p 表示每次试验A 发生的概率,则A 发生的概率为q p =-1,用)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率,k n k kn n q p k P C -=)(,n k ,,2,1,0 =;第二章 随机变量及其分布第三章二维随机变量及其分布第四章随机变量的数字特征第五章大数定律和中心极限定理第六章样本及抽样分布第七章参数估计第八章假设检验单正态总体均值和方差的假设检验。
高中数学掌握概率统计的五大解题方法

高中数学掌握概率统计的五大解题方法概率统计是高中数学中的一个重要内容,也是考验学生解题能力和逻辑思维的关键之一。
在掌握概率统计的过程中,学生需要掌握一些解题方法来提高解题效率和准确性。
本文将介绍高中数学掌握概率统计的五大解题方法。
第一种解题方法是“排列组合法”。
排列组合是概率统计中常用的计数方法,用于确定事件发生的可能性。
在解题过程中,首先确定事件的基本单位,然后根据排列组合公式计算可能的情况数。
通过计算可能性数量,我们可以得到概率值,进而解决问题。
例如,有5个学生参加某项竞赛,问他们获奖的可能性有多大?我们可以利用排列组合公式计算出共有多少种可能性,再根据题目给出的条件计算出所需概率。
第二种解题方法是“事件的补集法”。
在概率统计中,我们可以通过求一个事件的补集来间接地计算概率。
补集是指与某一事件相对立的事件,其发生与原事件不发生是互相排斥的。
通过计算补集的概率,我们可以用1减去补集的概率得到原事件的概率。
例如,某班级男生占全班的60%,求女生占全班的概率。
我们可以通过求男生不占全班的概率来得到女生占全班的概率。
第三种解题方法是“条件概率法”。
条件概率是指在某一条件下,事件发生的可能性。
在解题过程中,我们需要根据题目给出的条件来确定事件发生的概率。
例如,某班级有40%的学生患有近视,已知该班级的男生患有近视的概率为30%,女生患有近视的概率为50%,求某个学生为女生的条件下,患有近视的概率。
通过条件概率的计算,我们可以得到所需概率值。
第四种解题方法是“贝叶斯定理”。
贝叶斯定理是概率统计中一个重要的公式,用于计算在已知某一条件下,另一事件发生的概率。
在解题过程中,我们需要利用已知的条件概率和事件的边际概率来计算所需概率。
例如,在某疾病流行的地区,已知某种疾病的发生率为1%,而某种药物的阳性率为95%,由此求某人得了这种疾病的概率。
我们可以利用贝叶斯定理来计算所需概率。
第五种解题方法是“期望值法”。
高考数学排列组合与概率统计专题卷

高考数学排列组合与概率统计专题卷一、单选题1.某汽车的使用年数x与所支出的维修费用y的统计数据如表:根据上表可得y关于x的线性回归方程= x﹣0.69,若该汽车维修总费用超过10万元就不再维修,直接报废,据此模型预测该汽车最多可使用()A. 8年B. 9年C. 10年D. 11年2.在5×5的棋盘中,放入3颗黑子和2颗白子,它们均不在同一行且不在同一列,则不同的排列方法种数为( )A. 150B. 200C. 600D. 12003.(x2+2)()5的展开式的常数项是()A. ﹣3B. ﹣2C. 2D. 34.的展开式中的常数项为()A. 12B. -12C. 6D. -65.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A. B. C. D.6.若,则的值为( )A. 2B. 0C. -1D. -27.二项式(x2﹣)11的展开式中,系数最大的项为()A. 第五项B. 第六项C. 第七项D. 第六和第七项8.从4男2女共6名学生中选派2人参加某项爱心活动,则所选2人中至少有1名女生的概率为()A. B. C. D.9.将个正整数1、2、3、…、()任意排成n行n列的数表.对于某一个数表,计算各行和各列中的任意两个数a、b(a>b)的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”最大值为( )A. B. C. 2 D. 310.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A. 26,16,8B. 25,17,8C. 25,16,9D. 24,17,911.下列四个命题中,正确的有( )①两个变量间的相关系数r越小,说明两变量间的线性相关程度越低;②命题p:“,”的否定:“,”;③用相关指数来刻画回归效果,若越大,则说明模型的拟合效果越好;④若,,,则c<a<b.A. ①③④B. ①④C. ③④D. ②③12.利用计算机在区间上产生两个随机数和,则方程有实根的概率为()A. B. C. D.二、填空题13.在一场比赛中,某篮球队的11名队员共有9名队员上场比赛,其得分的茎叶图如图所示.从上述得分超过10分的队员中任取2名,则这2名队员的得分之和超过35分的概率为________.14.已知、是互斥事件,,,则________15.已知一组样本数据按从小到大的顺序排列为-1,0,4. ,这组数据的平均数与中位数均为5,则其方差为________.16.某中学采用系统抽样方法,从该校高三年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是42,则在第1小组1~16中随机抽到的数是________.17.我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为“阳爻”和“阴爻”,如图就是重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是________.18.如果把四个面都是直角三角形的四面体称为“三节棍体”,那么从长方体八个顶点中任取四个顶点,则这四个顶点是“三节棍体”的四个顶点的概率为________.19.若的展开式中含有非零常数项,则正整数的最小值为________.20.若,则的值为________.三、解答题21.在一次射击考试中,编号分别为A 1 , A 2 , A 3 , A 4的四名男生的成绩依次为6,8,8,9环,编号分别为B 1 , B 2 , B 3的三名女生的成绩依次为7,6,10环,从这七名学生中随机选出二人. (1)用学生的编号列出所有的可能结果;(2)求这2人射击的环数之和小于15的概率.22.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米.(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率; (2)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.23.某企业有甲、乙两条生产线生产同一种产品,为了检测两条生产线产品的质量情况,随机从两条生产线生产的大量产品中各抽取了40件产品作为样本,检测某一项质量指标值 ,得到如图所示的频率分布直方图,若 ,亦则该产品为示合格产品,若,则该产品为二等品,若,则该产品为一等品.(1)用样本估计总体的思想,从甲、乙两条生产线中各随机抽取一件产品,试估计这两件产品中恰好一件为二等品,一件为一等品的概率;(2)根据图1和图2,对两条生产线从样本的平均值和方差方面进行比较,哪一条生产线更好; (3)从甲生产线的样本中,满足质量指标值 在的产品中随机选出3件,记为指标值 在中的件数,求的分布列和数学期望•24.在某单位的食堂中,食堂每天以10元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂购进了80斤米粉,以 (斤)(其中 )表示米粉的需求量,(元)表示利润.X 1 2 3 4 Y 51 48 45 42(1)估计该天食堂利润不少于760元的概率;(2)在直方图的需求量分组中,以区间中间值作为该区间的需求量,以需求量落入该区间的频率作为需求量在该区间的概率,求的分布列和数学期望.25.在高中学习过程中,同学们经常这样说:“如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:(参考公式:= ,= ﹣)参考数据:902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.(1)求数学成绩y关于物理成绩x的线性回归方程= x+ (精确到0.1),若某位学生的物理成绩为80分,预测他的数学成绩;(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.答案一、单选题1. D2. D3.D4. A5. D6.C7. C8.B9. A 10. B 11. C 12. A二、填空题13.14. 15.16. 10 17. 18.19.5 20.三、解答题21.解:(1){A1,A2},{A1,A3},{A1,A4},{A1,B1},{A1,B2},{A1,B3},{A2,A3},{A2,A4},{A2,B1},{A2,B2},{A2,B3},{A3,A4},{A3,B1},{A3,B2},{A3,B3},{A4,B1},{A4,B2},{A4,B3},{B1,B2},{B1,B3},{B2,B3}(2)以上21个结果对应的射击环数之和依次为14,14,15,13,12,16,16,17,15,14,18,17,15,14,18,16,15,19,13,17,16.其中环数之和小于15的结果为{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,B2},{A3,B2},{B1,B2}共7个所以这2人射击的环数之和小于15的概率为22.(1)解:所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为= ;(2)解:先求从所种作物中随机选取一株作物的年收获量为Y的分布列∵P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)∴只需求出P(X=k)(k=1,2,3,4)即可记n k为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3由P(X=k)= 得P(X=1)= ,P(X=2)= ,P(X=3)= = ,P(X=4)= =∴所求的分布列为数学期望为E(Y)=51× +48× +45× +42× =4623.(1)解:由频率分布直方图可知,甲生产线中二等品的概率为,—等品的概率为,乙生产线中二等品的概率为,一等品的概率为,所以两件产品中一件为二等品,一件为一等品的概率为.(2)解:设两条生产线样本的平均值分别为,则,,由频率分布直方图可知,甲生产线的数据较为分散,乙生产线的数据较为集中,所以甲生产线的数据方差大于乙生产线的数据方差,所以乙生产线更好.(3)解:甲生产线样本质量指标值在的件数为,质量指标值在的件数为,由题意可知的取值为0,1,2,3;所以,,,.所以的分布列为:的数学期望. 24.(1)解:一斤米粉的售价是元.当时,. 当时,.故设利润不少于760元为事件,利润不少于760元时,即.解得,即.由直方图可知,当时,.(2)解:当时,;当时,;当时,;当时,.所以可能的取值为460,660,860,960.,,,.故的分布列为25.(1)解:根据表中数据计算= ×(90+85+74+68+63)=76,= ×(130+125+110+95+90)=110,=902+852+742+682+632=29394,=90×130+85×125+74×110+68×95+63×90=42595,= = = ≈1.5,= ﹣=110﹣1.5×76=﹣4;∴x、y的线性回归方程是=1.5x﹣4,当x=80时,=1.5×80﹣4=116,即某位同学的物理成绩为80分,预测他的数学成绩是116(2)解:抽取的五位学生中成绩高于100分的有3人,X表示选中的同学中高于100分的人数,可以取1,2,3,P(X=1)= = ,P(X=2)= = ,P(X=3)= = ;故X的分布列为:X的数学期望值为E(X)=1× +2× +3× =1.8。
高中数学概率统计解题技巧

高中数学概率统计解题技巧概率统计是高中数学中的一门重要课程,也是考试中常见的题型。
掌握好解题技巧,能够帮助学生提高解题效率,更好地应对考试。
本文将从几个常见的概率统计题型入手,分析其考点和解题方法,帮助学生掌握解题技巧。
一、排列组合题排列组合是概率统计中常见的题型,它要求我们计算某种情况下的可能性。
例如,某班有10个学生,要从中选出3个学生组成一个小组,问有多少种不同的选法?这类题目的关键在于确定组合的方式。
对于上述问题,我们可以使用组合公式C(n,m) = n!/(m!(n-m)!)来计算。
其中,n表示总数,m表示选取的个数。
二、事件概率题事件概率题是概率统计中最基础的一类题型,它要求我们计算某个事件发生的概率。
例如,抛一枚骰子,问出现奇数的概率是多少?解决这类问题的关键在于确定样本空间和事件发生的可能性。
对于上述问题,骰子的样本空间为{1,2,3,4,5,6},而出现奇数的事件为{1,3,5},所以概率为3/6=1/2。
三、条件概率题条件概率题是概率统计中较为复杂的一类题型,它要求我们在给定某个条件下计算事件发生的概率。
例如,某班有30个学生,其中20个是男生,10个是女生。
从中随机选取一个学生,问选到女生的概率是多少?解决这类问题的关键在于确定条件下的样本空间和事件发生的可能性。
对于上述问题,在给定条件下,样本空间为{男生,女生},而选到女生的事件为{女生},所以概率为10/30=1/3。
四、独立事件题独立事件题是概率统计中常见的一类题型,它要求我们计算多个事件同时发生的概率。
例如,某班有30个学生,其中20个是男生,10个是女生。
从中随机选取两个学生,问选到两个女生的概率是多少?解决这类问题的关键在于确定事件的独立性和事件发生的可能性。
对于上述问题,选到第一个女生的概率为10/30=1/3,选到第二个女生的概率为9/29。
由于两个事件是相互独立的,所以选到两个女生的概率为(1/3)*(9/29)=3/29。
概率统计公式大全(复习重点)
第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。
)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事间和事件件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用ω来表示。
基本事件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的部分点(基本事件ω)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B 不发生的事件。
排列组合概率统计
1 高考数学140分专题讲解-排列组合、概率统计2013 张金星23 排列组合难题二十一种方法排列组合问题联系实际生动有趣但题型多样思路灵活因此解决排列组合问题首先要认真审题弄清楚是排列问题、组合问题还是排列与组合综合问题其次要抓住问题的本质特征采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理加法原理完成一件事有n类办法在第1类办法中有1m种不同的方法在第2类办法中有2m种不同的方法??在第n类办法中有nm种不同的方法那么完成这件事共有12nNmmm 种不同的方法2.分步计数原理乘法原理完成一件事需要分成n个步骤做第1步有1m种不同的方法做第2步有2m种不同的方法??做第n步有nm种不同的方法那么完成这件事共有12nNmmm 种不同的方法3.分类计数原理分步计数原理区别分类计数原理方法相互独立任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存每步中的方法完成事件的一个阶段不能完成整个事件解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事即采取分步还是分类或是分步与分类同时进行确定分多少步及多少类。
3.确定每一步或每一类是排列问题有序还是组合无序问题元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题往往类与步交叉因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由012345可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求应该优先安排以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288CCA 练习题:7种不同的花种在排成一列的花盆里若两种葵花不种在中间也不种在两端的花盆里问有多少不同的种法二.相邻元素捆绑策略例2. 7人站成一排其中甲乙相邻且丙丁相邻共有多少种不同的排法. 解可先将甲乙两元素捆绑成整体并看成一个复合元素同时丙丁也看成一个复合元素再与其它元素进行排列同时对相邻元素内部进行自排。
概率统计公式大全复习重点汇总
第一章随机事件和概率1排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数;)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数;2加法和乘法原理加法原理两种方法均能完成此事:m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成;乘法原理两个步骤分别不能完成这件事:m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成;3一些常见排列重复排列和非重复排列有序对立事件至少有一个顺序问题4随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验;试验的可能结果称为随机事件;5基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的;这样一组事件中的每一个事件称为基本事件,用ω来表示;基本事件的全体,称为试验的样本空间,用Ω表示;一个事件就是由Ω中的部分点基本事件ω组成的集合;通常用大写字母A,B,C,…表示事件,它们是Ω的子集;Ω为必然事件,为不可能事件;不可能事件的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件Ω的概率为1,而概率为1的事件也不一定是必然事件;6事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,A发生必有事件B发生:BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B;A、B中至少有一个发生的事件:A B,或者A+B;属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件;A、B同时发生:A B,或者AB;A B=,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥;基本事件是互不相容的;Ω-A称为事件A的逆事件,或称A的对立事件,记为A;它表示A不发生的事件;互斥未必对立;②运算:结合率:ABC=ABC A∪B∪C=A∪B∪C分配率:AB∪C=A∪C∩B∪C A∪B∩C=AC∪BC德摩根率:∞=∞==11iiii AABABA=,BABA=7概率的公理化定义设Ω为样本空间,A为事件,对每一个事件A都有一个实数PA,若满足下列三个条件:1° 0≤PA≤1,2° PΩ =13° 对于两两互不相容的事件1A,2A,…有常称为可列完全可加性;则称PA为事件A的概率;8古典概型1°{}nωωω21,=Ω,2°nPPPn1)()()(21===ωωω ;设任一事件A,它是由mωωω21,组成的,则有PA={})()()(21mωωω=)()()(21mPPPωωω+++9几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型;对任一事件A,)()()(Ω=LALAP;其中L为几何度量长度、面积、体积;10加法公式PA+B=PA+PB-PAB当PAB=0时,PA+B=PA+PB11减法公式PA-B=PA-PAB当B⊂A时,PA-B=PA-PB 当A=Ω时,P B=1- PB12条件概率定义设A、B是两个事件,且PA>0,则称)()(APABP为事件A发生条件下,事件B发生的条件概率,记为=)/(ABP)()(APABP;条件概率是概率的一种,所有概率的性质都适合于条件概率;例如PΩ/B=1⇒P B/A=1-PB/A13乘法公式乘法公式:)/()()(ABPAPABP=更一般地,对事件A1,A2,…A n,若PA1A2…A n-1>0,则有21(AAP…)n A)|()|()(213121AAAPAAPAP= (2)1|(AAAP n…)1-n A;14独立性①两个事件的独立性设事件A、B满足)()()(BPAPABP=,则称事件A、B是相互独立的;若事件A、B相互独立,且0)(>AP,则有若事件A、B相互独立,则可得到A与B、A与B、A与B也都相互独立;必然事件Ω和不可能事件与任何事件都相互独立;与任何事件都互斥;②多个事件的独立性设ABC是三个事件,如果满足两两独立的条件,PAB=PAPB;PBC=PBPC;PCA=PCPA并且同时满足PABC=PAPBPC那么A、B、C相互独立;对于n个事件类似;15全概公式设事件nBBB,,,21 满足1°nBBB,,,21 两两互不相容,),,2,1(0)(niBP i=>,2°niiBA1=⊂,则有)|()()|()()|()()(2211nn BAPBPBAPBPBAPBPAP+++= ;16贝叶斯公式设事件1B,2B,…,n B及A满足1°1B,2B,…,n B两两互不相容,)(BiP>0,=i1,2,…,n, 2°niiBA1=⊂,)(>AP,则∑==njjjiiiBAPBPBAPBPABP1)/()()/()()/(,i=1,2,…n;此公式即为贝叶斯公式;)(iBP,1=i,2,…,n,通常叫先验概率;)/(ABPi,1=i,2,…,n,通常称为后验概率;贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断;17伯努利概型我们作了n次试验,且满足◆每次试验只有两种可能结果,A发生或A不发生;◆n次试验是重复进行的,即A发生的概率每次均一样;◆每次试验是独立的,即每次试验A发生与否与其他次试验A发生与否是互不影响的;这种试验称为伯努利概型,或称为n重伯努利试验;用p表示每次试验A发生的概率,则A发生的概率为qp=-1,用)(kP n表示n 重伯努利试验中A出现)0(nkk≤≤次的概率,knkknn qpkP C-=)(,nk,,2,1,0=;第二章随机变量及其分布第三章二维随机变量及其分布第四章随机变量的数字特征第五章大数定律和中心极限定理第六章样本及抽样分布第七章参数估计第八章假设检验单正态总体均值和方差的假设检验。
排列组合、二项式定理与概率及统计
主讲人:黄冈中学高级教师汤彩仙一、复习策略排列与组合是高中数学中从内容到方法都比较独特的一个组成部分,是进一步学习概率论的基础知识,该部分内容,不论其思想方法和解题都有特殊性,概念性强,抽象性强,思维方法新颖,解题过程极易犯“重复”或“遗漏”的错误,并且结果数目较大,无法一一检验,因此给考生带来一定困难.解决问题的关键是加深对概念的理解,掌握知识的内在联系和区别,科学周全的思考、分析问题.二项式定理是进一步学习概率论和数理统计的基础知识,把握二项展开式及其通项公式的相互联系和应用是重点.概率则是概率论入门,目前的概率知识只是为进一步学习概率和统计打好基础,做好铺垫.学习中要注意基本概念的理解,要注意与其他数学知识的联系,要通过一些典型问题的分析,总结运用知识解决问题的思维规律.纵观近几年高考,排列、组合、二项式定理几乎每年必考,考题多以选择题、填空题出现,题小而灵活,涉及知识点都在两三个左右,综合运用排列组合知识,分类计数和分步计数原理;二项式定理及二项式系数的性质计算或论证一些较简单而有趣的小题也在高考题中常见,概率及概率统计的内容,从近几年新课程卷高考来看,每年都有一道解答题,占12分左右.排列与组合的应用题,是高考常见题型,其中主要考查有附加条件的应用问题.解决这类问题通常有三种途径:(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.(4)某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;(5)某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”;在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.二、典例剖析题型一:排列组合应用题解决此类问题的方法是:直接法,先考虑特殊元素(或特殊位置),再考虑其他元素(或位置);间接法,所有排法中减去不合要求的排法数;对于复杂的应用题,要合理设计解题步骤,一般是先分组,后分步,要求不重不漏,符合条件.例1、(08安徽理12)12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.B.C.D.解:从后排8人中选2人共种选法,这2人插入前排4人中且保证前排人的顺序不变,则先从4人中的5个空挡插入一人,有5种插法;余下的一人则要插入前排5人的空挡,有6种插法,故为;综上知选C.例2、(08湖北理6)将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为()A.540 B.300 C.180 D.150解:将5分成满足题意的3份有1,1,3与2,2,1两种,所以共有种方案,故D正确.例3、四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为()A.96 B.48 C.24 D.0解:由题意分析,如图,先把标号为1,2,3,4号化工产品分别放入①②③④4个仓库内共有种放法;再把标号为5,6,7,8号化工产品对应按要求安全存放:7放入①,8放入②,5放入③,6放入④;或者6放入①,7放入②,8放入③,5放入④;两种放法.综上所述:共有种放法.故选B.例4、在正方体中,过任意两个顶点的直线中成异面直线的有____________对.解法一:连成两条异面直线需要4个点,因此在正方体8个顶点中任取4个点有种取法.每4个点可分共面和不共面两种情况,共面的不符合条件得去掉.因为在6个表面和6个体对角面中都有四点共面,故有种.但不共面的4点可构成四面体,而每个四面体有3对异面直线,故共有对.解法二:一个正方体共有12条棱、12条面对角线、4条体对角线,计28条,任取两条有种情况,除去其中共面的情况:(1)6个表面,每个面上有6条线共面,共有条;(2)6个体对角面,每个面上也有6条线共面,共有条;(3)从同一顶点出发有3条面对角线,任意两条线都共面,共有,故共有异面直线---=174对.题型二:求展开式中的系数例5、(08广东理10)已知(是正整数)的展开式中,的系数小于120,则__________.解:按二项式定理展开的通项为,我们知道的系数为,即,也即,而是正整数,故只能取1.例6、若多项式,则a9等于()A.9 B.10 C.-9 D.-10解:=∴.例7、展开式中第6项与第7项的系数的绝对值相等,求展开式中系数最大的项和系数绝对值最大的项.解:,依题意有,∴n=8.则展开式中二项式系数最大的项为.设第r+1项系数的绝对值最大,则有.则系数绝对值最大项为.例8、求证:.证:(法一)倒序相加:设①又∵②∵,∴,由①+②得:,∴,即.(法二):左边各组合数的通项为,∴.(法三):题型三:求复杂事件的概率例9、(08福建理5)某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是()A.B.C.D.解:由.例10、甲、乙两个围棋队各5名队员按事先排好的顺序进行擂台赛,双方1号队员先赛,负者被淘汰,然后负方的队员2号再与对方的获胜队员再赛,负者又被淘汰,一直这样进行下去,直到有一方队员全被淘汰时,另一方获胜,假设每个队员的实力相当,则甲方有4名队员被淘汰,且最后战胜乙方的概率是多少?解:根据比赛规则可知,一共比赛了9场,并且最后一场是甲方的5号队员战胜乙方的5号队员,而甲方的前4名队员在前8场比赛中被淘汰,也就是在8次独立重复试验中该事件恰好发生4次的概率,可得,又第9场甲方的5号队员战胜乙方的5号队员的概率为,所以所求的概率为.题型四:求离散型随机变量的分布列、期望和方差例11、某先生居住在城镇的A处,准备开车到单位B处上班. 若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图.(例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为,路段CD发生堵车事件的概率为(1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;(2)若记路线A→C→F→B中遇到堵车次数为随机变量,求的数学期望解:(1)记路段MN发生堵车事件为MN.因为各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,所以路线A→C→D→B中遇到堵车的概率P1为=1-[1-P(AC)][1-P(CD)][1-P(DB)]=1-;同理:路线A→C→F→B中遇到堵车的概率P2为1-P((小于).路线A→E→F→B中遇到堵车的概率P3为1-P((小于).显然要使得由A到B的路线途中发生堵车事件的概率最小.只可能在以上三条路线中选择.因此选择路线A→C→F→B,可使得途中发生堵车事件的概率最小.(2)路线A→C→F→B中遇到堵车次数可取值为0,1,2,3.答:路线A→C→F→B中遇到堵车次数的数学期望为例12、如图所示,甲、乙两只小蚂蚁分别位于一个单位正方体的点和点,每只小蚂蚁都可以从每一个顶点处等可能地沿各条棱向各个方向移动,但不能按原线路返回.比如,甲在处时可以沿、、三个方向移动,概率都是;到达点时,可能沿、两个方向移动,概率都是,已知小蚂蚁每秒钟移动的距离为1个单位.(Ⅰ)若甲、乙两只小蚂蚁都移动1秒钟,则它们所走的路线是异面直线的概率是多少?它们之间的距离为的概率是多少?(Ⅱ)若乙蚂蚁不动,甲蚂蚁移动3秒钟后,甲、乙两只小蚂蚁之间的距离的期望值是多少?解:(Ⅰ)甲蚂蚁移动1秒可以有三种的走法:即沿、、三个方向,当沿方向时,要使所走的路线成异面直线,乙蚂蚁只能沿、C1C方向走,概率为,同理当甲蚂蚁沿方向走时,乙蚂蚁走、C1C,概率为,甲蚂蚁沿时,乙蚂蚁走、,概率为,因此他们所走路线为异面直线的概率为;甲蚂蚁移动1秒可以有三种走法:即沿、、三个方向,当甲沿方向时,要使他们之间的距离为,则乙应走,此时的概率为,同理,甲蚂蚁沿方向走时、甲蚂蚁沿方向走时,概率都为,所以距离为的概率为.(Ⅱ)若乙蚂蚁不动,甲蚂蚁移动3秒后,甲乙两个蚂蚁之间距离的取值有且只有两个:和,当时,甲是按以下路线中的一个走的:、、、、、,所以其概率为,当时,甲是按以下路线中的一个走的:、、、、、、所以其概率为,所以三秒后距离期望值为.例13、(08湖北理17)袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球.ξ表示所取球的标号.(Ⅰ)求ξ的分布列,期望和方差;(Ⅱ)若η=aξ-b,Eη=1,Dη=11,试求a,b的值.解:(1)的分布列为:0 1 2 3 4所以.(2)由,得,即,又,所以当时,由,得;当时,由,得.,或,即为所求.题型五:统计知识例14、(08广东)某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()一年级二年级三年级女生373男生377 370A.24 B.18 C.16 D.12解:依题意我们知道二年级的女生有380人,那么三年级的学生的人数应该是500,即总体中各个年级的人数比例为,故在分层抽样中应在三年级抽取的学生人数为.答案:C例15、在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布.已知成绩在90分以上(含90分)的学生有12名.(Ⅰ)试问此次参赛学生总数约为多少人?(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表.0 1 2 3 4 5 6 7 8 91.2 1.3 1.41.92.0 2.1 0.88490.90320.91920.97130.97720.98210.88690.90490.92070.97190.97780.98260.8880.90660.92220.97260.97830.98300.89070.90820.92360.97320.97880. 98340.89250.90990.92510.97380.97930.98380.89440.91150.92650.97440.97980.98420.89620.91310.92780.97500.98030.98460.89800.91470.92920.97560.98080.98500.89970.91620.93060.97620.98120.98540.90150.91770.93190.97670.98170.9857解:(Ⅰ)设参赛学生的分数为,因为~N(70,100),由条件知,P(≥90)=1-P(<90)=1-F(90)=1-=1-(2)=1-0.9772=0.0228.这说明成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28%,因此,参赛总人数约为≈526(人).(Ⅱ)假定设奖的分数线为x分,则P(≥x)=1-P(<x)=1-F(90)=1-==0.0951,即=0.9049,查表得≈1.31,解得x=83.1.故设奖的分数线约为83.1分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
►►► 第 10 讲 排列组合及概率统计基础
129 排列组合及概率统计基础
考纲解析 排列组合及概率论部分的内容是比较重要的,因为它很容易和别的部分的知识结合起来,例如条件概率或一些概率分布很容易运用在可靠性计算及图、路径和一些相应的算法问题上,所以在复习中一定要灵活掌握,从原理出发,活学活用,能够根据例题将知识运用到别的方面上。
资源链接
本讲对应CIU视频资源:概率论及数理统计.jbl。 本讲内容 10.1 排列组合基础 10.1.1 排列的基本概念及实例 从n个不同的元素中,任取m(m≤n)个元素(被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。如果元素和顺序至少有一个不同。则叫做不同的排列。元素和顺序都相同的排列则叫做相同的排列。排列数的计算公式为)1()2)(1(mnnnnAmn(其中m≤n,m,nZ)。
10.1 (1)7位同学站成一排,共有多少种不同的排法? 解:问题可以看作7个元素的全排列——77A = 5040。 (2)7位同学站成两排(前3后4),共有多少种不同的排法? 解:根据分步计数原理7×6×5×4×3×2×1 = 7!= 5040。 (3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法? 解:问题可以看作余下的6个元素的全排列——66A = 720。 (4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种? 解:根据分步计数原理,第一步,甲、乙站在两端有22A种;第二步,余下的5名同学进行全排列有55A种,则共有22A55A=240种排列方法。 (5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种? 解法一(直接法):第一步,从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有25A种方法;第二步,从余下的5位同学中选5位进行排列(全排列)有55A种方法,所以一共有22A55A=2400种排列方法。 解法二:(排除法)若甲站在排头有66A种方法;若乙站在排尾有66A种方法;若甲站在排
这类问题在各种考试中出现得都比较多,关键在于熟练,同时要注意审题,题意是可能设置陷阱的地方。
对于这类问题,要掌握常用的方法,对于“在”与“不在”的问题,常常直接使用“直接法”或“排除法”,对特殊元素可优先考虑。 软件设计师应试教程
◄◄◄
130 头,且乙站在排尾则有55A种方法。所以甲不能站在排头,乙不能排在排尾的排法共有77A-662A+55A=2400种。
10.2 7位同学站成一排。
(1)甲、乙两同学必须相邻的排法共有多少种? 解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有66A种方法;再将甲、乙两个同学“松绑”进行排列有22A种方法。所以这样的排法一共有66A22A=1440种。 (2)甲、乙和丙三个同学都相邻的排法共有多少种? 解:方法同上,一共有55A33A=720种。 (3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种? 解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有25A种方法;将剩下的4个元素进行全排列有44A种方法;最后将甲、乙两个同学“松绑”进行排列有22A种方法。所以这样的排法一共有25A44A22A=960种方法。 解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素, 若丙站在排头或排尾有255A种方法,所以丙不能站在排头和排尾的排法有960)2(225566AAA种方法。 解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有14A种方法,再将其余的5个元素进行全排列共有55A种方法,最后将甲、乙两同学“松绑”,所以这样的排法一共有14A55A22A= 960种方法。
10.1.2 组合的基本概念及实例 一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号mnC表示。组合数的计算公式为:
!)1()2)(1(mmnnnnAACmmmnmn
或!)(!!mnmnCmn (n,m N*,且m≤n)
组合数还具有下面的性质:mnnmnCC。一般地,从n个不同元素中取出m个元素后,剩下n m个元素。因为从n个不同元素中取出m个元素的每一个组合,与剩下的n m个元素的每一个组合一一对应,所以从n个不同元素中取出m个元素的组合数,等于从这n个
元素中取出n m个元素的组合数,即:mnnmnCC。在这里,主要体现:“取法”与“剩法”是“一一对应”的思想。 注:1.规定10nC。 2.等式特点:等式两边下标同,上标之和等于下标。 3.此性质作用:当2nm时,计算mnC可变为计算mnnC,能够使运算简化。
例如:20012002C=200120022002C=12002C=2002。
注意组合数的性质,在中往往可到简化计效果。 ►►► 第 10 讲 排列组合及概率统计基础
131 4.ynxnCCyx或nyx。 10.3 一个口袋内装有大小相同的7个白球和1个黑球。
(1)从口袋内取出3个球,共有多少种取法? (2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法? 解:(1)5638C (2)2127C (3)3537C 可发现:38C27C37C。因为从口袋内的8个球中所取出的3个球,可以分为两类:一类含有1个黑球,一类不含有黑球。因此根据分类计数原理,上述等式成立。 一般地,从121,,,naaa这n+1个不同元素中取出m个元素的组合数是mnC1,这些组合可以分为两类:一类含有元素a1,一类不含有a1。含有a1的组合是从132,,,naaa这n个元素中取出m 1个元素与a1组成的,共有1mnC个;不含有a1的组合是从132,,,naaa这n个元素中取出m个元素组成的,共有mnC个。
10.4 6本不同的书,按下列要求各有多少种不同的选法。
(1)分给甲、乙和丙三人,每人两本; (2)分为三份,每份两本; (3)分为三份,一份一本,一份两本,一份三本; (4)分给甲、乙和丙三人,一人一本,一人两本,一人三本; (5)分给甲、乙和丙三人,每人至少一本。 解:(1)根据分步计数原理得到90222426CCC种。 (2)分给甲、乙和丙三人,每人两本有222426CCC种方法。这个过程可以分两步完成:第一步分为三份,每份两本,设有x种方法;第二步再将这三份分给甲、乙和丙三名同学有33A
种方法。根据分步计数原理可得:33222426xCCCC,所以1533222426ACCCx。因此分为三份,每份两本一共有15种方法。 (3)这是“不均匀分组”问题,一共有60332516CCC种方法。
(4)在(3)的基础上再进行全排列,所以一共有36033332516ACCC种方法。 (5)可以分为三类情况:①“2、2、2型”即(1)中的分配情况,有90222426CCC种方法;②“1、2、3型”即(4)中的分配情况,有36033332516ACCC种方法;③“1、1、4型”,有903346AC种方法。所以一共有90+360+90 = 540种方法。 软件设计师应试教程
◄◄◄
132 10.2 概率论及应用数理统计基础 概率论作为一门数学分支,它所研究的内容一般包括随机事件的概率、统计独立性和更深层次上的规律性。概率是随机事件发生的可能性的数量指标。在独立随机事件中,如果某一事件在全部事件中出现的频率,在更大的范围内比较明显的稳定在某一固定常数附近。就可以认为这个事件发生的概率为这个常数。任何事件的概率值一定介于0和1之间。有一类随机事件,它具有两个特点:第一,只有有限个可能的结果;第二,各个结果发生的可能性相同。具有这两个特点的随机现象叫做“古典概型”。 在客观世界中,存在大量的随机现象,其产生的结果构成了随机事件。如果用变量来描述随机现象的各个结果,就叫做随机变量。随机变量分为有限和无限,一般又根据变量的取值情况分成离散型随机变量和非离散型随机变量。一切可能的取值能够按一定次序一一列举,这样的随机变量叫做离散型随机变量;如果可能的取值充满了一个区间,无法按次序一一列举,这种随机变量就叫做非离散型随机变量。 在离散型随机变量的概率分布中,比较简单而应用广泛的是二项式分布。如果随机变量是连续的,那么它有一个分布曲线,实践和理论都证明:有一种特殊而常用的分布,其分布曲线是有规律的,这就是正态分布。正态分布曲线取决于这个随机变量的一些表征数,其中最重要的是平均值和差异度。平均值也叫数学期望,差异度也叫标准方差。
10.2.1 古典概率 所谓事件A的概率是指事件A发生可能性程度的数值度量,记为P(A)。规定P(A)≥0,P(Ω) = 1。满足下列两条件的试验模型称为古典概型:(1)所有基本事件是有限个;(2)各基本事件发生的可能性相同。在古典概型中,设其样本空间Ω所含的样本点总数,即试验的基本事件总数为N,而事件A所含的样本数,即有利于事件A发生的基本事件数为NA,则
事件A的概率便定义为:基本事件总数包含基本事件数ANNAPA)(。
10.5 (取球问题)袋中有5个白球,3个黑球,分别按下列三种取法在袋中取球。
(1)有放回地取球:从袋中取三次球,每次取一个,看后放回袋中,再取下一个球。 (2)无放回地取球:从袋中取三次球,每次取一个,看后不再放回袋中,再取下一个球。 (3)一次取球:从袋中任取3个球。 在以上取法中均求A={恰好取得2个白球}的概率。 解:(1)有放回取球N = 8×8×8 = 83 = 512(袋中八个球,不论什么颜色,取到每个球
的概率相等)22535233552312AN(先从三个球里取两个白球,第一次取白球有5种情况,第二次取白球还有五种情况,第三次取黑球只有三种情况),44.0512225NNAPA。
(2)无放回取球N = 8 7 6 = 38A = 336,18023345231325AANA,故54.0336180NNAPA。