平面向量的定义和表示方法

合集下载

平面向量知识点归纳

平面向量知识点归纳

平面向量知识点归纳
1.定义和表示:
o平面向量是具有大小和方向的量,通常用有向线段表示。

o平面向量可以由坐标表示为(a, b),其中a和b是平面上的两个分量。

2.向量运算:
o向量加法:将两个向量的对应分量相加,得到一个新的向量作为它们的和。

o向量减法:将两个向量的对应分量相减,得到一个新的向量作为它们的差。

o数量乘法:将一个向量的每个分量乘以一个标量,得到一个新的向量。

3.向量的模和单位向量:
o向量的模:向量的大小,可以用欧几里得范数或绝对值表示。

o单位向量:具有相同方向但模为1的向量。

4.向量的数量积:
o数量积(也称为点积或内积):两个向量的数量积是它们对应分量的乘积之和。

o数量积的性质:数量积满足交换律、分配律、与标量乘法结合。

5.向量的向量积:
o向量积(也称为叉积或外积):两个向量的向量积是一个与它们均垂直,并其模长等于由它们围成的平行四边形的面积的向量。

o向量积的性质:向量积与原向量的顺序相关,满足反交换律、非结合律,但满足分配律。

6.平面向量的坐标表示:
o平面向量可以表示为点P(x, y)和原点O之间的有向线段。

o平面向量的坐标形式是将点P的坐标与原点O的坐标相减得到的。

7.平面向量的共线与垂直关系:
o两个向量共线:当两个向量的方向相同或相反时,它们共线。

o两个向量垂直:当两个向量的数量积为0时,它们垂直。

8.平面向量的投影:
o向量在另一个向量上的投影是一个标量,表示向量在另一个向量方向上的投影长度。

平面向量的定义与运算规则

平面向量的定义与运算规则

平面向量的定义与运算规则在几何学中,平面向量是描述平面上移动、力、速度等物理量的重要工具。

平面向量具有方向和大小两个属性,通常用箭头表示。

本文将介绍平面向量的定义以及常用的运算规则。

一、平面向量的定义平面向量由两个点确定,这两个点称为向量的起点和终点。

起点为A,终点为B的平面向量常用符号表示为AB。

根据平面向量的定义,向量的大小用线段AB的长度来表示,记作|AB|或者AB。

二、平面向量的运算规则1. 向量的加法设有平面向量AB和CD,若从向量A到向量B的位移量与从向量C到向量D的位移量方向相同,则向量AB+CD的起点为A,终点为D。

即两个向量相加,其结果是由两个向量的位移量之和得到的新的位移量。

2. 向量的减法设有平面向量EF和GH,若从向量E到向量F的位移量与从向量G到向量H的位移量方向相反,则向量EF-GH的起点为E,终点为H。

即两个向量相减,其结果是由两个向量的位移量之差得到的新的位移量。

3. 向量的数量积(点乘)设有平面向量IJK和LMN,向量IJK与向量LMN的数量积记作IJK·LMN。

数量积的计算方法为:IJK·LMN=|IJK| × |LMN| × cosθ,其中θ为IJK与LMN之间的夹角。

数量积的结果是一个实数。

4. 向量的向量积(叉乘)设有平面向量PQR和STU,向量PQR与向量STU的向量积记作PQR×STU。

向量积的计算方法为:PQR×STU=|PQR| × |STU| × sinθ × n,其中θ为PQR与STU之间的夹角,n为一个垂直于平面的单位向量。

向量积的结果是一个向量,其大小为两个向量所组成的平行四边形的面积,方向垂直于所构成的平面。

5. 向量的数量积与向量积的关系对于平面向量ABC和DEF,有ABC·DEF=|ABC| × |DEF| × cosθ = 0,其中θ为ABC与DEF之间的夹角。

平面向量的平行和垂直判断

平面向量的平行和垂直判断

平面向量的平行和垂直判断平面向量是在平面上具有大小和方向的量,常用于解决平面上的几何问题。

在研究平面向量时,确定向量之间的关系是非常重要的,其中包括判断向量是否平行或垂直。

本文将介绍平面向量的平行和垂直判断方法。

一、平面向量的定义与表示平面向量是指在平面上具有大小和方向的量,可以用有向线段表示。

设有两个点A(x₁, y₁)和B(x₂, y₂),则点A到点B的有向线段所代表的平面向量可以用AB表示,即 AB = (x₂ - x₁)i + (y₂- y₁)j。

二、向量的平行判断两个向量平行的判断条件为它们的方向相同或相反。

设有两个平面向量AB = (a₁, a₂)和CD = (b₁, b₂),则向量AB与CD平行的判断方法如下:1. 首先,我们需要计算出两个向量AB和CD的方向,可以通过计算它们的方向角来得到。

设向量AB与坐标轴的夹角为θ₁,向量CD与坐标轴的夹角为θ₂,则有tan(θ₁) = a₂ / a₁tan(θ₂) = b₂ / b₁2. 如果两个向量AB和CD平行,则它们的方向角θ₁和θ₂相等或相差180°。

因此,我们可以通过计算两个方向角的差值来判断向量是否平行,即|θ₁ - θ₂| = 0°或 180°三、向量的垂直判断两个向量垂直的判断条件为它们的内积为零。

设有两个平面向量AB = (a₁, a₂)和CD = (b₁, b₂),则向量AB与CD垂直的判断方法如下:计算向量AB和CD的内积,即AB · CD = a₁ * b₁ + a₂ * b₂如果向量AB和CD垂直,则它们的内积AB · CD等于零,即 AB · CD = 0四、实例分析为了更好地理解平面向量的平行和垂直判断方法,我们来看一个具体的实例。

假设有两个向量AB = (4, 2)和CD = (-2, 4),我们来判断这两个向量是否平行和垂直。

1. 平行判断:首先,计算向量AB和CD的方向角:tan(θ₁) = 2 / 4 = 0.5tan(θ₂) = 4 / -2 = -2由于|θ₁ - θ₂| = |0.5 - (-2)| = 2.5 ≠ 0° 或 180°,因此向量AB和CD不平行。

第六章 平面向量及其应用(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第六章 平面向量及其应用(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第六章平面向量及其应用(公式、定理、结论图表)1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算3.向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa.4.平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.5.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=x21+y21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标;②设A(x1,y1),B(x2,y2),则AB→=(x2-x1,y2-y1),|AB→|=(x2-x1)2+(y2-y1)2.6.平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中b≠0,a∥b⇔x1y2-x2y1=0.7.向量的夹角(1)定义:已知两个非零向量a和b,作OA→=a,OB→=b,则∠AOB就是向量a与b的夹角.(2)范围:设θ是向量a与b的夹角,则0°≤θ≤180°.(3)共线与垂直:若θ=0°,则a与b同向;若θ=180°,则a与b反向;若θ=90°,则a与b垂直.8.平面向量的数量积定义设两个非零向量a,b的夹角为θ,则|a||b|·cos_θ叫做a与b的数量积,记作a·b投影|a|cos_θ叫做向量a在b方向上的投影,|b|cos_θ叫做向量b在a方向上的投影几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos_θ的乘积9.向量数量积的运算律(1)a·b=b·a.(2)(λa)·b=λ(a·b)=a·(λb).(3)(a+b)·c=a·c+b·c.10.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.结论几何表示坐标表示模|a|=a·a|a|=x21+y21夹角cosθ=a·b|a||b|cosθ=x1x2+y1y2x21+y21x22+y22a⊥b的充要条件a·b=0x1x2+y1y2=0<常用结论>1.五个特殊向量(1)要注意0与0的区别,0是一个实数,0是一个向量,且|0|=0.(2)单位向量有无数个,它们大小相等,但方向不一定相同.(3)任一组平行向量都可以平移到同一直线上,因此平行向量也叫做共线向量.2.五个常用结论(1)一般地,首尾顺次相接的多个向量的和等于从第一个向量的起点指向最后一个向量的终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n →=A 1A n →.特别地,一个封闭图形首尾连接而成的向量和为零向量.(3)若A ,B ,C 是平面内不共线的三点,则PA →+PB →+PC →=0⇔P 为△ABC 的重心.(4)在△ABC 中,AD ,BE ,CF 分别为三角形三边上的中线,它们交于点G (如图所示),易知G 为△ABC 的重心,则有如下结论:①GA →+GB →+GC →=0;(5)若OA →=λOB →+μOC →(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.3.基底需要的关注三点(1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底.(2)基底给定,同一向量的分解形式唯一.4.共线向量定理应关注的两点示为x 1y 2-x 2y 1=0.(2)判断三点是否共线,先求每两点对应的向量,然后按两向量共线进行判定.5.两个结论<解题方法与技巧>一、辨析向量有关概念的五个关键点(1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制.(3)相等向量的关键是方向相同且长度相等.(4)单位向量的关键是方向没有限制,但长度都是一个单位长度.(5)零向量的关键是方向没有限制,长度是0,规定零向量与任何向量共线.典例1:设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是()A .0B .1C .2D .3解析:选D.向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.典例2:设a ,b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是()A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a |=|b |解析:选C.因为向量a |a |的方向与向量a 相同,向量b |b |的方向与向量b 相同,且a |a |=b|b |,所以向量a 与向量b 方向相同,故可排除选项A ,B ,D.当a =2b 时,a |a |=2b |2b |=b |b |,故“a =2b ”是“a |a |=b|b |”成立的充分条件.典例3:给出下列命题:①若两个向量相等,则它们的起点相同,终点相同;②若|a |=|b |,则a =b 或a =-b ;③若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则ABCD 为平行四边形;④a =b 的充要条件是|a |=|b |且a ∥b ;⑤已知λ,μ为实数,若λa =μb ,则a 与b 共线.其中真命题的序号是________.解析:①是错误的,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点.②是错误的,|a |=|b |,但a ,b 方向不确定,所以a ,b 的方向不一定相等或相反.③是正确的,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →;又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形.④是错误的,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.⑤是错误的,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线.答案:③二、平面向量线性运算问题的常见类型及解题策略(1)向量加法或减法的几何意义:向量加法和减法均适合三角形法则.(2)求已知向量的和:一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.典例4:(1)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=()A.34AB →-14AC →B .14AB →-34AC→C.34AB →+14AC →D .14AB →+34AC→(2)在四边形ABCD 中,BC →=AD →,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,则()A.AF →=13AC →+23BD→B .AF →=23AC →+13BD→C.AF →=14AC →+23BD→D .AF →=23AC →+14BD→【解析】(1)法一:如图所示,EB →=ED →+DB →=12AD →+12→=12×12(AB →+AC →)+12(AB →-AC →)=34AB →-14AC →,故选A.法二:EB →=AB →-AE →=AB →-12AD →=AB →-12×12(AB →+AC →)=34AB →-14AC →,故选A.(2)在四边形ABCD 中,如图所示,因为BC →=AD →,所以四边形ABCD 为平行四边形.由已知得DE →=13EB →,由题意知△DEF ∽△BEA ,则DF →=13AB →,所以CF →=23CD →=23(OD →-OC →)=23×BD →-AC →2=BD →-AC →3,所以AF →=AC→+CF →=AC →+BD →-AC →3=23AC →+13BD →,故选B.【答案】(1)A(2)B典例5:如图,在直角梯形ABCD 中,DC →=14AB →,BE →=2EC →,且AE →=rAB →+sAD →,则2r +3s =()A .1B .2C .3D .4【解析】法一:由题图可得AE →=AB →+BE →=AB →+23BC →=AB →+23(BA →+AD →+DC →)=13AB →+23(AD →+DC →)=13AB→+23(AD →+14AB →)=12AB →+23AD →.因为AE →=rAB →+sAD →,所以r =1,s =23,则2r +3s =1+2=3.法二:因为BE →=2EC →,所以AE →-AB →=2(AC →-AE →),整理,得AE →=13AB →+23AC →=13AB →+23(AD →+DC →)=12AB →+23AD →,以下同法一.法三:如图,延长AD ,BC 交于点P ,则由DC →=14AB →得DC ∥AB ,且AB =4DC .又BE →=2EC →,所以E 为PB 的中点,且AP →=43AD →.于是,AE →=12(AB →+AP →)+43AD =12AB →+23AD →.以下同法一.法四:如图,建立平面直角坐标系xAy ,依题意可设点B (4m ,0),D (3m ,3h ),E (4m ,2h ),其中m >0,h >0.由AE →=rAB →+sAD →,得(4m ,2h )=r (4m ,0)+s (3m ,3h ),m =4mr +3ms ,h =3hs ,=12,=23,所以2r +3s =1+2=3.【答案】C三、共线向量定理的3个应用(1)证明向量共线:对于向量a ,b ,若存在实数λ,使a =λb (b ≠0),则a 与b 共线.(2)证明三点共线:若存在实数λ,使AB →=λAC →,则A ,B ,C 三点共线.(3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值.[注意]证明三点共线时,需说明共线的两向量有公共点.典例6:设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a k b 共线.【解】(1)证明:因为AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),所以BD →=BC →+CD →=2a +8b +3(a -b )=5(a +b )=5AB →,所以AB →,BD →共线,又它们有公共点B ,所以A ,B ,D 三点共线.(2)因为k a +b 与a +k b 共线,所以存在实数λ,使k a +b =λ(a +k b ),即(k -λ)a =(λk -1)b .又a ,b 是两个不共线的非零向量,所以k -λ=λk -1=0.所以k 2-1=0.所以k =±1.四、平面向量基本定理应用的实质和一般思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.[提醒]在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.典例7:如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC →=3EC →,F 为AE 的中点,则BF →=()A.23AB →-13AD →B .13AB →-23AD→C .-23AB →+13AD→D .-13AB →+23AD→(2)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM →+μAN →,则λ+μ=________.【解析】(1)法一:如图,取AB 的中点G ,连接DG ,CG ,则易知四边形DCBG 为平行四边形,所以BC →=GD →=AD →-AG →=AD →-12AB →,所以AE →=AB →+BE →=AB →+23BC →=AB →-12AB =23AB →+23AD →,于是BF →=AF →-AB →=12AE →-AB →+23AD AB →=-23AB →+13AD →,故选C.法二:BF →=BA →+AF →=BA →+12AE→=-AB →+12AB →+=-AB →+12AB →+13CB =-AB →+12AD →+14AB →+16(CD →+DA →+AB →)=-23AB →+13AD →.(2)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ=-45,μ=85,所以λ+μ=45.【答案】(1)C(2)45五、平面向量的坐标运算(1)向量坐标运算的策略①向量的坐标运算主要是利用加、减、数乘运算法则进行;②若已知有向线段两端点的坐标,则应先求出向量的坐标;③解题过程中要注意方程思想的运用及正确使用运算法则.(2)向量问题坐标化当题目条件中所给的几何图形方便建立平面直角坐标系(如矩形、等腰三角形等)时,可建立平面直角坐标系,将向量坐标化,将向量问题转化为代数问题,更便于计算求解.典例8:(1)已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =()A .(-23,-12)B .(23,12)C .(7,0)D .(-7,0)(2)平面直角坐标系xOy 中,已知A (1,0),B (0,1),C (-1,c )(c >0),且|OC →|=2,若OC →=λOA →+μOB →,则实数λ+μ的值为________.【解析】(1)3a -2b +c =(23+x ,12+y )=0,故x =-23,y =-12,故选A .(2)因为|OC →|=2,所以|OC →|2=1+c 2=4,因为c>0,所以c = 3.因为OC →=λOA →+μOB →,所以(-1,3)=λ(1,0)+μ(0,1),所以λ=-1,μ=3,所以λ+μ=3-1.【答案】(1)A(2)3-1典例9:(1)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.(2)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为________.【解析】(1)以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),所以a =AO →=(-1,1),b =OB →=(6,2),c =BC →=(-1,-3).因为c =λa +μb ,所以(-1,-3)=λ(-1,1)+μ(6,2),λ+6μ=-1,+2μ=-3,解得λ=-2,μ=-12,所以λμ=4.(2)以A 为坐标原点,AB ,AD 所在直线分别为x ,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为212+22=25,圆C :(x -1)2+(y -2)2=45,因为P 在圆C 上,所以P (1+255cos θ,2+255sin θ),AB →=(1,0),AD →=(0,2),AP →=λAB →+μAD →=(λ,2μ),1+255cos θ=λ,+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3,tan φ=2.【答案】(1)4(2)3六、平面向量共线的坐标表示(1)两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;②已知b ≠0,则a ∥b 的充要条件是a =λb (λ∈R ).(2)利用向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均为非零实数时,也可以利用坐标对应成比例来求解.典例10:(1)已知平面向量a ,b ,c ,a =(-1,1),b =(2,3),c =(-2,k ),若(a +b )∥c ,则实数k =________.(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.【解析】(1)由题意,得a +b =(1,4),由(a +b )∥c ,得1×k =4×(-2),解得k =-8.(2)因为在梯形ABCD 中,AB ∥CD ,DC =2AB ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x ,2-y ),AB →=(2,1)-(1,2)=(1,-1),所以(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),-x =2,-y =-2,=2,=4,故点D 的坐标为(2,4).【答案】(1)-8(2)(2,4)典例11:已知向量OA →=(k ,12),OB →=(4,5),OC →=(-k ,10),且A ,B ,C 三点共线,则k 的值是()A .-23B .43 C.12D .13【解析】AB →=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(-2k ,-2).因为A ,B ,C 三点共线,所以AB →,AC →共线,所以-2×(4-k )=-7×(-2k ),解得k =-23.【答案】A 七、平面向量数量积的三种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos 〈a ,b 〉.(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.(3)利用数量积的几何意义求解.[提醒]解决涉及几何图形的向量的数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简后再运算.但一定要注意向量的夹角与已知平面几何图形中的角的关系是相等还是互补.典例12:如图,在梯形ABCD 中,AB ∥CD ,CD =2,∠BAD =π4,若AB →·AC →=2AB →·AD →,则AD →·AC →=________.【解析】法一:因为AB →·AC →=2AB →·AD →,所以AB →·AC →-AB →·AD →=AB →·AD →,所以AB →·DC →=AB →·AD →.因为AB ∥CD ,CD =2,∠BAD =π4,所以2|AB →|=|AB →|·|AD →|cos π4,化简得|AD →|=22.故AD →·AC →=AD →·(AD →+DC →)=|AD →|2+AD →·DC →=(22)2+22×2cos π4=12.法二:如图,建立平面直角坐标系xAy .依题意,可设点D (m ,m ),C (m +2,m ),B (n ,0),其中m >0,n >0,则由AB →·AC →=2AB →·AD →,得(n ,0)·(m +2,m )=2(n ,0)·(m ,m ),所以n (m +2)=2nm ,化简得m =2.故AD →·AC →=(m ,m )·(m +2,m )=2m 2+2m =12.【答案】12八、求向量的模的方法(2)几何法:利用向量的几何意义,即利用向量加、减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.典例13:(1)已知平面向量a ,b 的夹角为π6,且|a |=3,|b |=2,在△ABC 中,AB →=2a +2b ,AC →=2a -6b ,D 为BC 的中点,则|AD →|等于()A .2B .4C .6D .8(2)已知在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA→+3PB →|的最小值为__________.【解析】(1)因为AD →=12(AB →+AC →)=12(2a +2b +2a -6b )=2a -2b ,所以|AD →|2=4(a -b )2=4(a 2-2b ·a +b 2)=4-2×2×3×cos π6+4,则|AD →|=2.(2)建立平面直角坐标系如图所示,则A (2,0),设P (0,y ),C (0,b ),则B (1,b ),则PA →+3PB →=(2,-y )+3(1,b -y )=(5,3b -4y ).所以|PA →+3PB →|=25+(3b -4y )2(0≤y ≤b ).当y =34b 时,|PA →+3PB →|min =5.【答案】(1)A (2)5九、平面向量的夹角(1)研究向量的夹角应注意“共起点”;两个非零共线向量的夹角可能是0°或180°;求角时,注意向求解.(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0说明不共线的两向量的夹角为钝角.典例14:(1)已知a ,b 为单位向量,且a ·b =0,若c =2a -5b ,则cos 〈a ,c 〉=________.(2)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.【解析】(1)设a =(1,0),b =(0,1),则c =(2,-5),所以cos 〈a ,c 〉=21×4+5=23.(2)因为2a -3b 与c 的夹角为钝角,所以(2a -3b )·c <0,即(2k -3,-6)·(2,1)<0,所以4k -6-6<0,所以k <3.【答案】(1)23(2)(-∞,3)十、两向量垂直问题(1)当向量a 与b 是坐标形式时,若证明a ⊥b ,则只需证明a ·b =0⇔x 1x 2+y 1y 2=0.(2)当向量a ,b 是非坐标形式时,要把a ,b 用已知的不共线向量作为基底来表示,且不共线的向量要知道其模与夹角,进行运算证明a ·b =0.(3)数量积的运算a ·b =0⇔a ⊥b 是对非零向量而言的,若a =0,虽然有a ·b =0,但不能说a ⊥b .典例15:(1)已知a =(1,1),b =(2,m ),a ⊥(a -b ),则|b |=()A .0B .1C.2D .2(2)已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.【解析】(1)由题意知a -b =(-1,1-m ).因为a ⊥(a -b ),所以a ·(a -b )=-1+1-m =0,所以m =0,所以b =(2,0),所以|b |=2.故选D.(2)因为AP →⊥BC →,所以AP →·BC →=0.又AP →=λAB →+AC →,BC →=AC →-AB →,所以(λAB →+AC →)·(AC →-AB →)=0,即(λ-1)AC →·AB →-λAB →2+AC →2=0,所以(λ-1)|AC →||AB →|cos 120°-9λ+4=0.所以(λ-1)×3×2×(-12)-9λ+4=0.解得λ=712.【答案】(1)D (2)712十一、平面向量与三角函数的综合问题(1)题目条件给出的向量坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.典例16:已知两个不共线的向量a ,b 满足a =(1,3),b =(cos θ,sin θ),θ∈R .(1)若2a -b 与a -7b 垂直,求|a +b |的值;(2)当θ∈0,π2时,若存在两个不同的θ,使得|a +3b |=|m a |成立,求正数m 的取值范围.【解】(1)由条件知|a |=2,|b |=1,又2a -b 与a -7b 垂直,所以(2a -b )·(a -7b )=8-15a ·b +7=0,所以a ·b =1.所以|a +b |2=|a |2+2a·b +|b |2=4+2+1=7,故|a +b |=7.(2)由|a +3b |=|m a |,得|a +3b |2=|m a |2.即|a |2+23a ·b +3|b |2=m 2|a |2,即4+23a ·b +3=4m 2,7+23(cos θ+3sin θ)=4m 2.所以43sin 4m 2-7.由θ∈0,π2,得θ+π6∈π6,2π3,因为存在两个不同的θ满足题意,所以数形结合知43sin[6,43),即6≤4m 2-7<43,即134≤m 2<7+434,又m >0,所以132≤m <2+32.即实数m 的取值范围为132,十二、向量与平面几何综合问题的解法(1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.典例17:(1)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA→+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的()A .内心B .外心C .重心D .垂心(2)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.【解析】(1)由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →=2AD →(D 为BC 的中点),所以点P 的轨迹必过△ABC 的重心.故选C.(2)在平行四边形ABCD 中,BE →=BC →+CE →=BC →+12CD →=AD →-12AB →,又因为AC →=AD →+AB →,所以AC →·BE →=(AD →+AB →)·(AD →-12AB →)=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×1×12|AB →|-12|AB →|2=1.|AB →|=0,又|AB →|≠0,所以|AB →|=12.【答案】(1)C (2)12十三、平面向量与函数、不等式的综合应用通过向量的数量积运算把向量运算转化为实数运算,再结合函数、不等式的知识解决,同时也要注意平面向量的坐标运算在这方面的应用.典例18:(1)设θ是两个非零向量a ,b 的夹角,若对任意实数t ,|a +t b |的最小值为1,则下列判断正确的是()A .若|a |确定,则θ唯一确定B .若|b |确定,则θ唯一确定C .若θ确定,则|b |唯一确定D .若θ确定,则|a |唯一确定(2)已知向量a ,b a ·b =-12,向量c 与a +b 共线,则|a +c |的最小值为________.【解析】(1)设g (t )=(a +t b )2=b 2t 2+2t a ·b +a 2,当且仅当t =-2a ·b 2b 2=-|a |cos θ|b |时,g (t )取得最小值1,所以b 2×|a |2cos 2θ|b |2-2a ·b ×|a |cos θ|b |+a 2=1,化简得a 2sin 2θ=1,所以当θ确定时,|a |唯一确定.(2)法一:因为向量c 与a +b 共线,所以可设c =t (a +b )(t ∈R ),所以a +c =(t +1)a +t b ,所以(a +c )2=(t +1)2a 2+2t (t +1)a ·b +t 2b 2,因为向量a ,b 为单位向量,且a ·b =-12,所以(a +c )2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,所以|a +c |≥32,所以|a +c |的最小值为32.法二:因为向量a ,b 为单位向量,且a ·b =-12,所以向量a ,b 的夹角为120°,在平面直角坐标系中,不妨设向量a =(1,0),b -12,则a +b 因为向量c 与a +b 共线,所以可设c =t ∈R ),所以a +c +t 2,所以|a +c |=t 2+t +1≥32,所以|a +c |的最小值为32.【答案】(1)D (2)32十四、平面向量与解三角形的综合应用(1)解决平面向量与三角函数的交汇问题,关键是准确利用向量的坐标运算化简已知条件,将其转化为三角函数中的有关问题解决.(2)还应熟练掌握向量数量积的坐标运算公式、几何意义、向量模、夹角的坐标运算公式以及三角恒等变换、正、余弦定理等知识.典例19:已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m ·n =sin 2C .(1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c .【解】(1)m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ),对于△ABC ,A +B =π-C ,0<C <π,所以sin(A +B )=sin C ,所以m ·n =sin C ,又m ·n =sin 2C ,所以sin 2C =sin C ,cos C =12,又因为C ∈(0,π),所以C =π3.(2)由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b .因为CA →·(AB →-AC →)=18,所以CA →·CB →=18,即ab cos C =18,ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab ,所以c 2=4c 2-3×36,c 2=36,所以c =6.十五、向量在解析几何中的2个作用典例20:(1)若点O 和点F 分别为椭圆x 4+y 3=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ·FP →的最大值为________.(2)已知F 为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,定点A 为双曲线虚轴的一个端点,过F ,A 两点的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若AB →=3FA →,则此双曲线的离心率为________.【解析】(1)由椭圆x 24+y 23=1可得F (-1,0),点O (0,0),设P (x ,y )(-2≤x ≤2),则OP →·FP →=x 2+x +y 2=x 2+x +=14x 2+x +3=14(x +2)2+2,-2≤x ≤2,当且仅当x =2时,OP →·FP →取得最大值6.(2)由F (-c ,0),A (0,b ),得直线AF 的方程为y =b cx +b .根据题意知,直线AF 与渐近线y =b ax 相交,=b c x +b ,=b a x ,消去x 得,y B =bc c -a .由AB →=3FA →,得y B =4b ,所以bc c -a=4b ,化简得3c =4a ,所以离心率e =43.【答案】(1)6(2)43。

平面向量课件

平面向量课件

04
平面向量的应用
向量在几何中的应用
向量在平面几何中的应用广泛,如证明平行 、垂直、等角等性质。
向量可以表示空间中的点、线、面等基本元 素,有助于解决空间几何问题。
利用向量的数量积和向量积,可以计算角度 、距离等几何量。
向量在物理中的应用
向量在物理中常用于描述物体的 运动状态和相互作用。
力的合成与分解:通过向量的加 减法,可以将多个力合成一个力 ,也可以将一个力分解成多个力
2. 向量减法的定义:同向、反向、共线 等条件下的两个向量的差,以线段为工 具进行求解。
详细描述
1. 向量加法的定义:同向、反向、共线 等条件下的两个向量的和,以线段为工 具进行求解。
例题二:向量的数乘与数量积
详细描述
2. 向量数量积的定义:两 个向量的数量积等于它们 对应分量乘积的和,结果
为一个标量。
平面向量课件
目录
CONTENTS
• 平面向量基本概念 • 平面向量的运算 • 平面向量的坐标表示 • 平面向量的应用 • 平面向量的扩展知识 • 平面向量综合例题
01
平面向量基本概念
向量的定义
既有大小又有方向的量称为向量
向量的表示方法:用有向线段表示,线段的长度表示向量的大小,箭头表示向量 的方向
向量的坐标运算
对于两个向量(x1,y1)和(x2,y2),它们的加法、减法、数乘和数量积等运算均可以通过对应坐标的 加法、减法、数乘和数量积来实现。
向量的模
向量的模的定义
向量(x,y)的模(或长度)可以用 sqrt(x²+y²) 来计算。
向量的模的性质
向量的模是非负实数,且对于任 意两个向量(x1,y1)和(x2,y2) ,满足|(x1,y1)| ≤ |(x2,y2)| 当 且仅当 x1 ≤ x2 且 y1 ≤ y2。

平面向量的定义和基本性质

平面向量的定义和基本性质

平面向量的定义和基本性质平面向量是指在平面上有大小和方向的向量。

它由起点和终点确定,并且可以用箭头表示。

平面向量常用字母加上一个右箭头来表示,例如AB→表示起点为A,终点为B的向量。

平面向量的定义:定义1:若平面上两个点A和B,可以唯一确定一个向量AB→。

其中向量AB→的起点为点A,终点为点B。

点A称为向量AB→的起点,点B称为向量AB→的终点。

向量AB→可以记作AB→或者→AB。

定义2:若平面上某个向量的起点是原点O,则称该向量为单位向量。

单位向量的长度为1,方向可以是任意的。

基本性质:性质1:平面向量相等的条件是它们的长度相等且方向相同。

对于平面上的两个向量→AB和→CD,当且仅当|→AB|=|→CD|且它们的方向相同时,向量→AB和向量→CD相等。

性质2:平面向量相反的条件是它们的长度相等且方向相反。

对于平面上的两个向量→AB和→CD,当且仅当|→AB|=|→CD|且它们的方向相反时,向量→AB和向量→CD互为相反向量。

性质3:平面向量的运算法则。

3.1 平面向量的加法:设→AB和→CD是平面上的两个向量,则向量→AB+→CD的终点是链接→AB和→CD的链条的终点。

3.2 平面向量的减法:设→AB和→CD是平面上的两个向量,则向量→AB-→CD的终点是链接→AB的起点与→CD的终点的链条的终点。

3.3 数乘:设k是一个实数,→AB是平面上的一个向量,则k→AB的长度是|k||→AB|,方向与→AB相同。

性质4:平面向量的共线性。

对于平面的两个非零向量→AB和→CD,若存在实数k,使得→CD=k→AB,则称向量→AB和→CD共线。

同样地,若存在实数k1和k2,使得→CD=k1→AB+k2→EF,则称向量→AB、→CD和→EF共线。

性质5:平面向量的数量积。

对于平面的两个向量→AB和→CD,它们的数量积定义为|→AB||→CD|cosθ,其中θ为→AB和→CD之间的夹角。

性质6:平面向量的数量积与夹角的关系。

平面向量基础知识

平面向量基础知识

平面向量一、平面向量的基本概念㈠、向量的概念:我们把既有大小又有方向的量叫向量1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性,不能比较大小.2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母AB 表示.(AB 的大小──长度称为向量的模,记作|AB|. )3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.4.向量与有向线段的区别:⑴向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;⑵有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.5、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.6、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行. 说明:⑴综合①、②才是平行向量的完整定义;⑵向量a、b、c平行,记作a∥b∥c.7、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:⑴向量a与b相等,记作a=b;⑵零向量与零向量相等;⑶任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关........... 8、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关..........). 说明:⑴平行向量可以在同一直线上,要区别于两平行线的位置关系;⑵共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.二、 向量的加法与减法1、位移问题:①某人从A 到B ,再从B 按原方向到C ,则两次的位移和:AB BC AC +=②某人从A 到B ,再从B 按反方向到C ,则两次的位移和:AB BC AC +=③某车从A 到B ,再从B 改变方向到C ,则两次的位移和:AB BC AC +=④船速为AB,水速为BC ,则船单位时间内的位移:AB BC AC +=2、向量的加法:求两个向量的和的运算,叫做向量的加法。

平面向量的定义与运算

平面向量的定义与运算

平面向量的定义与运算平面向量是解决平面上的几何问题中常用的一个概念。

它具有大小和方向,并可以用箭头来表示。

在平面几何中,平面向量的定义和运算是十分重要的基础知识。

本文将详细介绍平面向量的定义、基本性质和运算规则。

一、平面向量的定义在平面上,我们可以用两个有序实数对(x, y) 来表示一个平面点P。

如果点 P1 和点 P2 的坐标分别为 (x1, y1) 和 (x2, y2),那么它们之间的平面向量可以表示为:→P1P2 = (x2 - x1, y2 - y1)这样定义的平面向量可以有以下几个重要的性质:1. 同一平面上的两个向量可以进行相加和相减运算;2. 向量与一个实数的乘积仍然是一个向量;3. 向量之间可以进行数量积和向量积的运算。

二、平面向量的基本性质1. 平面向量的大小:平面向量的大小通常用向量的模进行表示,记作|→AB| 或||→AB||。

对于平面向量 (x, y),其模可以表示为:|→AB| = √(x^2 + y^2)2. 平面向量的方向:平面向量的方向由它与 x 轴之间的夹角(记作θ)来确定。

常用的表示方式有弧度制和角度制,表示如下:- 弧度制:向量的方向角是指向量与 x 轴正向的夹角,取值范围是 0 ≤ θ < 2π,其中0 ≤ θ < π/2 表示第一象限,π/2 ≤ θ < π 表示第二象限,π ≤ θ < 3π/2 表示第三象限,3π/2 ≤ θ < 2π 表示第四象限。

- 角度制:一般用度(°)来表示角度的大小,代表的是向量与 x 轴的夹角。

3. 平面向量的方向角和方位角的关系:平面向量 (x, y) 的方向角记作α,其中0 ≤ α < 2π。

方位角是指向量与 x 轴正向的夹角,范围为 -π≤ β ≤ π,表示如下:- β = α,当0 ≤ α < π;- β = α - 2π,当π ≤ α < 2π。

三、平面向量的运算规则1. 平面向量的加法:两个平面向量相加得到的结果是一个平面向量,其坐标分别是对应坐标相加的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量的定义和表示方法
平面向量在数学中具有重要的地位,它是向量的一种特殊形式,由
大小和方向组成。

本文将详细阐述平面向量的定义以及常用的表示方法。

一、平面向量的定义
平面向量是具有大小和方向的箭头,用于表示平面上两点之间的位移。

平面向量通常使用字母加上一个箭头来表示,例如:→AB。

其中,向量箭头的方向表示向量的方向,箭头的长度表示向量的大小。

平面向量的定义包括以下重要要素:
1. 大小:平面向量的大小可以通过向量的模或长度来表示,记作
|→AB|。

向量的模满足非负性、正定性和三角不等式。

2. 方向:平面向量的方向由向量箭头的方向指示,可以使用角度或
者其他表示方法来描述。

3. 起点和终点:平面向量的起点和终点分别表示向量的起始位置和
结束位置,通常用两个点来表示。

二、平面向量的表示方法
平面向量可以通过以下几种常用的表示方法来表示:
1. 分解表示法
分解表示法是将平面向量分解为两个已知向量之和的形式。

一般地,平面向量→AB可以表示为→AD + →DB,其中→AD和→DB是已知向量。

这种表示方法常用于解题中,可以简化向量的计算。

2. 坐标表示法
坐标表示法是将平面向量表示为其在坐标系中的坐标。

在平面直角
坐标系中,向量→AB的坐标表示为 (x,y),其中 x 表示向量在 x 轴上的分量,y 表示向量在 y 轴上的分量。

3. 单位向量表示法
单位向量是指模为 1 的向量,可以表示为平面上的一个点。

单位向
量通常用符号→u表示。

平面向量→AB可以通过除以其模得到单位向量,即→u = (1/|→AB|) × →AB。

单位向量在几何和物理中有广泛的应用,可以帮助求解方向和位移等问题。

4. 极坐标表示法
极坐标表示法是将平面向量表示为极坐标系中的一个点。

在极坐标
系中,向量→AB可以表示为(r,θ),其中 r 表示向量的长度,θ 表示向
量与极轴的夹角。

极坐标表示法适用于描述平面上的圆周运动和极坐
标系下的向量操作。

总结:
平面向量是具有大小和方向的箭头,用于表示平面上两点之间的位移。

其定义包括大小、方向、起点和终点。

常用的平面向量表示方法
包括分解表示法、坐标表示法、单位向量表示法和极坐标表示法。


些表示方法在几何、物理和数学问题中有着广泛的应用。

以上是关于平面向量的定义和表示方法的文章,希望对您有所帮助。

相关文档
最新文档