2022-2023学年沪科版七年级数学上册第三次月考测试题(附答案)
黑龙江省哈尔滨市2022-2023学年九年级数学上册第三次月考测试题(附答案)

2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(共30分)1.﹣2的相反数是()A.2B.﹣2C.D.2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b23.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图的几何体其左视图是()A.B.C.D.5.如图,已知AB为⊙O的直径,点C在⊙O上,∠BOC=60°,则∠C的度数为()A.15°B.30°C.45°D.60°6.已知抛物线的解析式为,则该抛物线的顶点坐标是()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(1,2)7.用150张铁皮做罐头盒,每张铁皮可制盒身15个或盒底45个,1个盒身与2个盒底配成一套罐头盒,为使制成的盒身与盒底恰好配套,可设用x张铁皮制盒底,则可列方程为()A.2×15x=45(150﹣x)B.15x=2×45(150﹣x)C.2×15(150﹣x)=45x D.15(150﹣x)=2×45x8.方程的解为()A.x=3B.x=4C.x=5D.x=﹣59.已知反比例函数y=(k≠0)经过点(2,5)和点(1,a),则a的值为()A.2B.5C.10D.10.如图,AB∥CD,AE∥FD,AE、FD分别交BC于点G、H,则下列结论中错误的是()A.B.C.D.二、填空题(共30分)11.将59800000用科学记数法表示为.12.函数y=的自变量x的取值范围是.13.分解因式:x3﹣2x2y+xy2=.14.不等式组的解集是.15.计算:=.16.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.17.如图,在△ABC中,∠ABC=60°,AB=6,BC=10,将△ABC绕点B顺时针旋转得到△A1BC1(点A的对应点是点A1,点C的对应点是点C1),A1落在边BC上,连接AC1,则AC1的长为.18.在△ABC中,AB=AC,∠B的角平分线与AC边所夹锐角为60°,则∠A的度数为.19.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为.20.如图,矩形ABCD中,E为BC边上一点,DE交AC于点F,若∠BAC=2∠DEC,CE =15,BE=9,则线段ED的长为.三、解答题(共60分)21.先化简,再求代数式的值,其中.22.如图,在小正方形的边长均为1的方格纸中,有线段AB,点A,B均在小正方形的顶点上.(1)在图中画出一个以线段AB为一边的等腰△ABC,且△ABC为钝角三角形;(2)在图中画一个△BCD,点D在小正方形的顶点上,tan∠CBD=,且△BCD的面积等于14;(3)连接AD,请直接写出AD的长.23.为了解学生线上学习的需求,某校随机对本校的部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果,绘制成如图两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对“在线阅读”最感兴趣的学生人数.24.已知,在平行四边形ABCD中,点E、F在分别边BC、AD上,且BE=DF,EH⊥CF 于点H,FG⊥AE于点G.(1)求证:GE=FH;(2)在不添加任何辅助线的情况下,请直接写出图中与∠AFG互余的所有角.25.某中学为了创建书香校园,去年购买了一批图书.其中故事书的单价比文学书的单价多4元,用1200元购买的故事书与用800元购买的文学书数量相等.(1)求去年购买的文学书和故事书的单价各是多少元?(2)若今年文学书的单价比去年提高了25%,故事书的单价与去年相同,这所中学今年计划再购买文学书和故事书共200本,且购买文学书和故事书的总费用不超过2120元,这所中学今年至少要购买多少本文学书?26.如图,AB为⊙O直径,弦CD交AB于点E,G为上一点,连接CG交AB于点F,交AD于点H,连接DG,且∠AFH﹣∠GDH=∠BAD.(1)如图1,求证:AB⊥CD;(2)如图2,若∠ADE=2∠ADG,求证:=;(3)如图3,在(2)的条件下,若AF=BF,AH=10,求⊙O的半径.27.如图1,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a(a<0)与x轴交于A、B两点(A左B右),与y轴交于点C,连接AC,tan∠CAO=2.(1)求抛物线的解析式;(2)点P为第一象限抛物线上一点,射线BP交y轴正半轴于点N,设点P的横坐标为t,线段ON的长为d,求d与t的函数解析式;(3)在(2)的条件下,过点P作PF⊥x轴于点F,过点F作直线FD⊥BP于点D,过点A作AH⊥x轴交直线DF于点H,连接PH交x轴于点E,点G为线段AC上一点,连接PG、GE,PG交y轴于点K,点M为PG延长线上一点,连接MH,延长HM、EG 交于点R,若PF=AH,MR=MG,HR=,求K点的坐标.参考答案一、选择题(共30分)1.解:﹣2的相反数是:﹣(﹣2)=2,故选:A.2.解:A、原式=a5,故A不符合题意.B、原式=a6,故B不符合题意.C、原式=a2+2ab+b2,故C不符合题意.D、原式=a2﹣b2,故D符合题意.故选:D.3.解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:A.4.解:从左面看,底层是两个小正方形,上层的左边是一个小正方形.故选:B.5.解:∠A=∠BOC=×60°=30°,∵OA=OC,∴∠C=∠A=30°.故选:B.6.解:由抛物线解析式可知,抛物线顶点坐标为(2,1),故选:A.7.解:设用x张铁皮制盒底,则把(150﹣x)张铁皮制盒身,根据题意得:2×15(150﹣x)=45x.故选:C.8.解:,方程两边都乘(3x﹣2)(x+1),得2(x+1)=3x﹣2,解得:x=4,检验:当x=4时,(3x﹣2)(x+1)≠0,所以x=4是原方程的解,即原方程的解是x=4,故选:B.9.解:∵反比例函数y=(k≠0)经过点(2,5)和点(1,a),∴k=2×5=a,解得:a=10.故选:C.10.解:A、∵AB∥CD,∴=,故本选项不符合题目要求;B、∵AE∥DF,∴△CEG∞△CDH,∴=,∴=,∵AB∥CD,∴=,∴=,∴=,∴=,故本选项不符合题目要求;∵AB∥CD,AE∥DF,∴四边形AEDF是平行四边形,∴AF=DE,∵AE∥DF,∴,∴=,故本选项不符合题目要求;D、∵AE∥DF,∴△BFH∞△BAG,∴,故本选项符合题目要求;故选:D.二、填空题(共30分)11.解:59800000=5.98×107.故答案为:5.98×107.12.解:由题意可知:x+2≠0,解得:x≠﹣2;所以,函数y=的自变量x的取值范围是x≠﹣2.13.解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故答案为:x(x﹣y)2.14.解:解不等式≤1,得:x≥1,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥1.故答案为:x≥1.15.解:原式=2×﹣2=﹣2=﹣.故答案为:﹣16.解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,解得:R=4,所以此扇形的面积为=6π(cm2),故答案为:6π.17.解:过C1作AB的垂线交AB延长线于C1,∵∠ABC=60°,AB=6,BC=10,∵BD=BC,由旋转性质得:BC=BC1,∴BD=5,AD=BD+AB=11,∴CD==5,∴AC1==14.故答案为:14.18.解:设∠B的角平分线交AC于点E,当∠BEC=60°时,如图1,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A),∴∠ABE=∠ABC=(180°﹣∠A),∵∠ABE+∠A=∠BEC,∴(180°﹣∠A)+∠A=60°,∴∠A=20°;当∠AEB=60°时,如图2,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A),∴∠ABE=∠ABC=(180°﹣∠A),∵∠ABE+∠A+∠BEC=180°,∴(180°﹣∠A)+∠A+60°=180°,∴∠A=100°,综上所述,∠A的度数为20°或100°.19.解:∵AD为BC边上的高,∴△ABD为Rt△ABD,在Rt△ABD中,∠ABC=60°,AD=6,∴BD===6,如图1所示,当点D在BC上时,BC=BD+CD=6+1=7,如图2所示,当点D在BC的延长线上时,BC=BD﹣CD=6﹣1=5,故答案为:7或5.20.解:延长DC至G,DC=CG,连接EG,作DH⊥EG,如图,,设AB=a,则DC=CG=a,∵DC=CG,CE⊥DG,∴∠GEC=∠DEC,EG=ED,∴∠BAC=∠GED,∵S,EG=ED,∴,在Rt△ECD中,DE=,在Rt△ABC中,sin∠BAC=,在Rt△EDH中,sin∠GED=,∵∠BAC=∠GED,∴sin∠BAC=sin∠GED,∴,化简整理得:a4﹣800a2﹣90000=0,解得:a=10,在Rt△ECD中,DE==5,故答案为5.三、解答题(共60分)21.解:==﹣==﹣,当=2×﹣2×=﹣2时,原式=﹣=﹣.22.解:(1)如图,△ABC即为所求.(2)如图,△BCD即为所求.(3)AD==4.23.解:(1)18÷20%=90(人),90﹣24﹣18﹣12=36(人),答:调查的学生总人数是90人,补全条形统计图如图所示:(2)360°×=48°,答:扇形统计图中“在线讨论”对应的扇形圆心角的度数为48°;(3)2100×=560(人),答:该校2100名学生中对“在线阅读”最感兴趣的大约有560人.24.(1)证明:∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC,∵BE=DF,∴AD:DF=BC:BE,∴AF=CE,AF∥CE,∴四边形AECF是平行四边形∴AE∥CF,∴∠AEH+∠FHE=180°,∵EH⊥CF,FG⊥AE,∴∠FGE=∠FHE=∠GEG=90°,∴四边形EHFG为矩形,∴GE=FH;(2)∵GF⊥AE,∴∠GAF+∠AFG=90°,∵AD∥BC,AE∥FC,∴∠AEB=∠GAF,∠HCE=∠CFD=∠GAF,与∠AFG互余的角有:∠F AG、∠AEB、∠DFC、∠FCB.25.解:(1)设去年文学书单价为x元,则故事书单价为(x+4)元,根据题意得:,解得:x=8,经检验x=8是原方程的解,当x=8时x+4=12,答:去年文学书单价为8元,则故事书单价为12元.(2)设这所学校今年购买y本文学书,根据题意得.8×(1+25%)y+12(200﹣y)≤2120,y≥140,∴y最小值是140;答:这所中学今年至少要购买140本文学书.26.(1)证明:如图(1),连接AC、AG,∵∠AFH﹣∠GDH=∠BAD,即∠AFH=∠BAD+∠GDH,∴∠AFH+∠BAD=2∠BAD+∠GDH,∵∠AFH+∠F AH=∠HGD+∠GDH,∴∠HGD=2∠BAD,∵∠HGD=∠CAD,∴2∠BAD=∠CAD,∴∠CAB=∠DAB,∴,∴AB⊥CD.(2)证明:由(1)得:,∴,∴∠ADE=∠ACD,∵∠ADE=2∠ADG,∴∠ACD=2∠ADG,∵∠ADG=∠ACG,∠ACD=∠ACG+∠GCD,∴∠ACD=∠GCD,∴.(3)解:连接AC、BC、BG、BD、AG,作HN⊥AG于点N,∵,,∴∠GCD=∠GBD=∠ABG=∠ADG,∠CGB=∠CDB=∠BAD=∠BGD,∴∠ABD=∠ACD=∠ADC=∠AGC,∵∠FCB=∠GCD+∠BCD,∠F AG=∠BAD+∠DAG,∠AFG=∠CFB=∠ABG+∠CGB,∴∠FCB=∠F AG=∠AFG=∠CFB,∴BF=BC,AG=FG,∵AF=BF,设AF=4k,BF=6k,则:AB=10k,BC=BF=BD=6k,∴AD=,∴tan∠ABD=,∴,∵BD=6k,ED2+EB2=DB2,∴ED=EC=,EB=,∴EF=,∴tan∠FCE=,∴tan∠NAH=,tan∠NGH=,∵AH=1,解直角三角形ANH和直角三角形GNH,得,AN=4,HN=2,NG=,∴AG=AN+NG=,∵tan∠ABG=tan∠FCE=,∴BG=11,∴AB2=AG2+BG2=()2+(11)2=,∴AB=,∴⊙O的半径为.27.解:(1)在y=ax2﹣3ax﹣4a(a<0)中,令y=0得x=﹣1或x=4,∴A(﹣1,0),B(4,0),∴OA=1,在直角△AOC中,tan∠CAO==2,∴OC=2,由已知a<0,∴C(0,2),代入y=ax2﹣3ax﹣4a得:﹣4a=2,∴a=﹣,∴抛物线的解析式为;(2)∵点P的横坐标为t,∴P纵坐标为﹣t2+t+2,设直线BP的解析式为y=mx+n,则,解得,∴直线BP的解析式为y=﹣x+2t+2,令x=0得y=2t+2,∴N(0,2t+2),∵线段ON的长为d,N在y轴正半轴,∴d=2t+2,(3)延长GE到G',使EG'=EG,连接HG',如图:设P(m,﹣m2+m+2),则F(m,0),∴PF=﹣m2+m+2,BF=4﹣m,AF=m+1,∵PF⊥x轴,FD⊥BP,AH⊥x轴,∴∠AFH=∠DFB=90°﹣∠PFD=∠FPB,∴tan∠AFH=tan∠FPB,∴=,∴=,∴AH=2,H(﹣1,﹣2),∴PF=AH=2,即y P=2,在中,令y=2得x=0(与C重合,舍去)或x=3,∴P(3,2),∵∠AEH=∠FEP,∠HAE=∠PFE=90°,AH=PF,∴△AEH≌△FEP(AAS),∴PE=HE,∵∠GEP=∠G'EH,GE=G'E,∴△GEP≌△G'EH(SAS),∴PG=G'H,∠G'=∠PGE,∵MR=MG,∴∠R=∠MGR,∴∠R=∠MGR=∠PGE=∠G',∴HR=G'H,∴PG=HR,∵HR=,∴PG=,由A(﹣1,0),C(0,2)可得直线AC解析式为y=2x+2,设G(n,2n+2),而P(3,2),∴(n﹣3)2+(2n+2﹣2)2=()2,解得n=﹣或n=(G在二象限,舍去),∴G(﹣,1),由P(3,2),G(﹣,1)得直线PG的解析式为,∵点K是直线PG和y轴的交点,当x=0时,y=,∴点K坐标为.。
2022—2023学年沪科版数学七年级上册第一月考测试卷含答案

22.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的,该市自来水收费标准(按月结算)如表所示:
每月用水量
单价
不超出6 的部分
2元/
超出6 不超出10 的部分
4元/
超出10 的部分
8元/
例如:若某户居民1月份用水8 ,则应收水费:2×6+4×(8﹣6)=20(元).
【点睛】考点:整式的加减—化简求值.
17.正数集合 , , , ;
负数集合 , , , , ;
整数集合 , , 8.(1)所捂的多项式为:(a2+4ab+4b2) (a2-4b2)
=a2+4ab+4b2 a2+4b2
=8b2+4ab.
(2)当a=1,b=-1时,
参考答案:
题号
1
2
3
4
5
6
7
8
9
10
答案
B
B
C
B
A
B
A
D
D
B
11.>
12.
13.
14.7
15.(1)原式 ,
,
;
(2)原式 ,
,
,
.
16.解:原式=2x2y+2xy2﹣2x2y+2x﹣2xy2﹣2y
=(2﹣2)x2y+(2﹣2)xy2+2x﹣2y
=2x﹣2y,
当x=﹣2,y=2时,原式=2×(﹣2)﹣2×2=﹣8.
则5⊗(−2)=(−2)⊗5,
故答案为:=;
(3)相等,理由如下:
a⊗b=ab−a−b+1,b⊗a=ab−b−a+1,
则a⊗b=b⊗a.
2022-2023学年七年级上学期数学:数据的表示(附答案解析)

2022-2023学年七年级上学期数学:数据的表示
一.选择题(共5小题)
1.某校模型社团制作建筑模型,为确保稳定性,模型高度的精度要求如下:
0<h≤3030<h≤6060<h≤90h>90设计高度h(单
位:cm)
±5±10±15±20允许偏差(单位:
mm)
社团成员对编号为甲,乙,丙,丁的四个模型进行测量,获得了以下数据:模型编号甲乙丙丁
30.032.074.095.0
设计高度h(单
位:cm)
29.632.072.897.1
实际高度(单位:
cm)
其中不符合精度要求的是()
A.甲B.乙C.丙D.丁
2.高速公路某收费站出城方向有编号为A,B,C,D,E的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如表:
收费出口编号A,B B,C C,D D,E E,A 通过小客车数量(辆)260330300360240在A,B,C,D,E五个收费出口中,每20分钟通过小客车数量最多的一个收费出口的编号是()
A.编号为B B.编号为C C.编号为D D.编号为E
3.某大米加工厂为选择一种大米包装的质量规格(即每包大米的质量,单位:千克/包),抽样调查了该大米散装销售时顾客购买的质量,并将收集的数据绘制成如图的频数分布直方图(每小组包括最小值,不包括最大值).根据调查结果,下列包装的质量规格中,较为合理的选择是()
第1页(共23页)。
沪科版2022-2023学年八年级数学上册第三次月考测试题(附答案)

2022-2023学年八年级数学上册第三次月考测试题(附答案)一、选择题(共50分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.如图,若△ABC与△A'B'C'关于直线MN对称,BB'交MN于点O,则下列说法中,不一定正确的是()A.AC=A'C'B.AB∥B'C'C.AA'⊥MN D.BO=B'O3.如图,一棵树在一次强台风中,从离地面5m处折断,倒下的部分与地面成30°角,如图所示,这棵树在折断前的高度是()A.10m B.15m C.5m D.20m4.如图,一艘轮船以每小时20海里的速度沿正北方航行,在A处测得灯塔C在北偏西30°方向上,轮船航行2小时后到达B处,在B处测得灯塔C在北偏西60°方向上,当轮船到达灯塔C的正东方向D处时,则轮船航程AD的距离是()A.20海里B.40海里C.60海里D.80海里5.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处6.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是()A.5cm B.4cm C.3cm D.2cm7.如图,在△ABC中,∠ABC和∠ACB的角平分线交于点E,过点E作MN∥BC交AB于点M,交AC于点N.若BM=2,CN=3,则MN的长为()A.10B.5.5C.6D.58.等腰三角形的一个内角是70°,则它顶角的度数是()A.70°B.70°或40°C.70°或50°D.40°9.如图所示,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,BE=6cm,则AC等于()A.6cm B.5cm C.4cm D.3cm10.已知,如图,等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下列结论:①AC平分∠P AD;②∠APO =∠DCO;③△OPC是等边三角形;④AC=AO+AP;其中正确的序号是()A.①③④B.②③C.①②④D.①③二、填空题(共20分)11.如图,点P到∠AOB两边的距离相等,若∠POB=30°,则∠AOB=度.12.如图,P为∠AOB内一点,分别画出点P关于OA,OB的对称点P1,P2,连接P1P2.交OA于点M,交OB于点N.若P1P2=5cm,则△PMN的周长为.13.如图,∠AOB=30°,OP平分∠AOB,PC∥OB交OA于C,PD⊥OB于D.如果PC =8,那么PD等于.14.如图,在△ABC中,AB=AC=5,S△ABC=12,AD⊥BC于点D,CE⊥AB于点E.若点P是AD上一动点,连接PE,PB,则PE+PB的最小值是.三、解答题(共80分)15.如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1(,),B1(,),C1(,);(2)画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是.16.如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.17.如图,△ABC中,点D在边AB上,AC=BC=BD,AD=CD,求∠A的度数.18.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF.求证:AD平分∠BAC.19.如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,求∠A的度数.20.如图,在△ABC中,AB=AC,点D为AC上一点,且满足AD=BD=BC.点E是AB 的中点,连接ED并延长,交BC的延长线于点F,连接AF.(1)求∠BAC和∠ACB的度数;(2)求证:△ACF是等腰三角形.21.如图所示,回答下列问题.(1)如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,EF=6cm,试判断△DEF的形状,并求出DE的长.参考答案一、选择题(共50分)1.解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.2.解:∵△ABC与△A'B'C'关于直线MN对称,∴AC=A′C′,AA′⊥MN,BO=OB′,故选项A,C,D正确,故选:B.3.解:如图,在Rt△ABC中,∠C=90°,CB=5,∠A=30°∴AB=10,∴大树的高度为10+5=15m.故选:B.4.解:由题意得∠CAB=30°,∠CBD=60°,∴∠ACB=30°,∴BC=BA=2×20=40,∵∠CDB=90°,∴BD=BC=20,∴AD=BD+AB=20+40=60,则轮船航程AD的距离是60海里.故选:C.5.解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则超市应建在AC,BC两边垂直平分线的交点处.故选:C.6.解:过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选:C.7.解:∵MN∥BC,∴∠MEB=∠CBE,∠NEC=∠BCE,∵在△ABC中,∠ABC和∠ACB的平分线交于点E,∴∠MBE=∠EBC,∠NCE=∠BCE,∴∠MEB=∠MBE,∠NEC=∠NCE,∴ME=MB,NE=NC,∴MN=ME+NE=BM+CN=2+3=5,故选:D.8.解:本题可分两种情况:①当70°角为底角时,顶角为180°﹣2×70°=40°;②70°角为等腰三角形的顶角;因此这个等腰三角形的顶角为40°或70°.故选:B.9.解:∵在△ABC中,∠ACB=90°,∠B=15°,∴∠BAC=90°﹣15°=75°,∵DE垂直平分AB,交BC于点E,BE=6cm,∴BE=AE=6cm,∴∠EAB=∠B=15°,∴∠EAC=75°﹣15°=60°,∵∠C=90°,∴∠AEC=30°,∴AC=AE=6cm=3cm,故选:D.10.解:①∵AB=AC,∠BAC=120°,AD⊥BC;∴∠CAD=∠BAC=60°,∠P AC=180°﹣∠CAB=60°,∴∠P AC=∠DAC,∴AC平分∠P AD,故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形;故③正确;④如图,在AC上截取AE=P A,∵∠P AE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=P A,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OP A和△CPE中,,∴△OP A≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP;故④正确.故选:A.二、填空题(共20分)11.解:∵点P到∠AOB两边的距离相等∴OP平分∠AOB∴∠AOB=2∠POB=60°.12.解:如图所示:∵P与P1关于OA对称,∴OA为线段PP1的垂直平分线.∴MP=MP1.同理可得:NP=NP2.∵P1P2=5cm,∴△PMN的周长=MP+MN+NP=P1M+MN+NP2=P1P2=5cm.故答案为5cm.13.解:如图,过P作PE⊥OA于点E,∵PD⊥OB,OP平分∠AOB,∴PD=PE,∵PC∥OB,∠AOB=30°∴∠ECP=∠AOB=30°在Rt△ECP中,PE=PC=4,∴PD=PE=4,故答案为:4.14.解:作点B关于AD的对称点B′,∵AB=AC=5,∴△ABC是等腰三角形,∴B′与点C重合,连接CE,则CE的长度即为PE与PB和的最小值,∵△ABC中,AB=AC=5,S△ABC=12,∴×5×CE=12,解得:CE=,故答案为:三、解答题(共80分)15.解:(1)如图所示,△A1B1C1即为所求.A1(﹣4,﹣1)B1(﹣3,﹣3),C1(﹣1,﹣2),故答案为:﹣4、﹣1、﹣3、﹣3、﹣1、﹣2;(2)如图所示,△CC1C2的面积是×2×4=4,故答案为:4.16.证明:如图,过点A作AP⊥BC于P.∵AB=AC,∴BP=PC;∵AD=AE,∴DP=PE,∴BP﹣DP=PC﹣PE,∴BD=CE.17.解:∵AC=BC,∴∠A=∠B,∵BC=BD,∴∠BCD=∠BDC,∵AD=CD,∴∠A=∠ACD,∵∠BDC=∠A+∠ACD=2∠A=2∠B,∴∠B+∠BDC+∠BCD=∠B+2∠B+2∠B=180°,∴∠B=36°,∴∠A=36°.18.证明:∵D是BC的中点,∴BD=CD,又∵BE=CF,DE⊥AB,DF⊥AC,∴Rt△BDE≌Rt△CDF,∴DE=DF,∴点D在∠BAC的平分线上,∴AD平分∠BAC.19.解:∵△ABO≌△CDO,∴OB=OD,∠ABO=∠D,∴∠OBD=∠D=(180°﹣∠BOD)=×(180°﹣30)=75°,∴∠ABC=180°﹣75°×2=30°,∵AO∥BC,20.解:(1)设∠BAC=x°,∵AD=BD,∴∠A=∠ABD=x°,∴∠BDC=2x°,∵BD=BC,∴∠BDC=∠BCD=2x°,∵AB=AC,∴∠ABC=∠ACB=2x°,由∠BAC+∠ABC+∠ACB=180°可得x+2x+2x=180,解得:x=36,则∠BAC=36°,∠ACB=72°;(2)∵E是AB的中点,AD=BD,∴DE⊥AB,即FE⊥AB;∴AF=BF,∴∠BAF=∠ABF,又∵∠ABD=∠BAD,∴∠F AD=∠FBD=36°,又∵∠ACB=72°,∴∠AFC=∠ACB﹣∠CAF=36°,∴∠CAF=∠AFC=36°,∴AC=CF,即△ACF为等腰三角形.21.(1)证明:如图1,∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:如图2,结论:DE=BD+CE成立.理由:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠DBA=∠CAE,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:如图3,结论:△DEF是等边三角形.由(2)可知,△ADB≌△CEA,∴BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠F AE,在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DF A+∠AFE=∠DF A+∠BFD=60°,∴△DEF为等边三角形,∴DE=EF=6(cm).。
2022-2023学年上学期七年级数学期末模拟测试卷(03)

2022-2023学年上学期七年级数学期末模拟测试卷(03)一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.﹣1的倒数是()A.B.﹣C.1D.﹣12.下列计算正确的是()A.x2y+2yx2=3x2y B.5xy﹣3xy=2C.x+y=xy D.4x2y+xy2=5x3y33.下列方程中,是一元一次方程的是()A.2x﹣3=﹣x B.x﹣=0C.x2﹣2x﹣1=0D.x+y=24.如图所示,A、B两个村庄在公路l(不计公路的宽度)的两侧,现要在公路l旁建一个货物中转站,使它到A、B两个村庄的距离之和最小.如图中所示的C点(l与AB的交点)即为所建的货物中转站的位置,则这样做的理由是()A.两直线相交只有一个交点B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线5.某种商品每件的标价是a元,按标价的八折销售时,仍可获利15%,则这种商品每件的进价为()A.0.8×(1﹣15%)a元B.元C.元D.0.8×(1+15%)a元6.实数a、b在数轴上的位置如图所示,则下列说法正确的是()A.a+b>0B.a﹣b>0C.ab>0D.|a|>|b|7.观察下列图形,其中是正方体的表面展开图的是()A.B.C.D.8.小文带了仅够买20个冰淇淋的钱去超市,到达超市后她发现冰淇淋正在促销,如果按原价买第一个冰淇淋,那么第二个可优惠原价的,则小文最多能买()个冰淇淋.A.20B.24C.28D.309.如图,从8点钟开始,过了20分钟后,分针与时针所夹的度数是()A.120°B.130°C.140°D.150°10.如图,已知直线AB和CD相交于点O,OE⊥AB,OF平分∠DOB.若∠EOF=107.5°,则∠1的度数为()A.70°B.65°C.55°D.45°二、填空题(本大题共8小题,每小题2分,共16分。
沪科版2022-2023学年九年级数学上册第三次月考测试题(附答案)

2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(满分40分)1.如果α是锐角,且cosα=,那么sinα的值是()A.B.C.D.22.下列判断正确的是()A.不全等的三角形一定不是相似三角形B.不相似的三角形一定不是全等三角形C.相似三角形一定不是全等三角形D.全等三角形不一定是相似三角形3.如图,点D在△ABC的边AC上,添加下列一个条件仍不能判断△ADB与△ABC相似的是()A.∠ABD=∠C B.∠ADB=∠ABC C.BC2=CD•AC D.AB2=AD•AC 4.若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数x1,x2,a,b 的大小关系为()A.x1<x2<a<b B.x1<a<x2<b C.x1<a<b<x2D.a<x1<b<x2 5.已知在△ABC中,∠C=90°且△ABC不是等腰直角三角形,设sin B=n,当∠B是最小的内角时,n的取值范围是()A.B.C.D.6.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=与一次函数y=bx﹣c 在同一坐标系内的图象大致是()A.B.C.D.7.如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连接AE,BD交于点F,则S△DEF:S△ADF:S△ABF等于()A.2:3:5B.4:9:25C.4:10:25D.2:5:258.如图,在△ABC中,CD平分∠ACB,过D作BC的平行线交AC于M,若BC=m,AC =n,则DM=()A.B.C.D.9.如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C 不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小10.如图,在梯形ABCD中,AB=BC=10cm,CD=6cm,∠C=∠D=90°,动点P、Q 同时以每秒1cm的速度从点B出发,点P沿BA、AD、DC运动,点Q沿BC、CD运动,P点与Q点相遇时停止,设P、Q同时从点B出发x秒时,P、Q经过的路径与线段PQ 围成的图形的面积为y(cm2),则y与x之间的函数关系的大致图象为()A.B.C.D.二、填空题(满分20分)11.若点A(2,m)在函数y=x2﹣1的图象上,则A点的坐标是.12.在△ABC中,若∠A=30°,∠B=45°,AC=,则BC=.13.如图所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上.设AB=xm,长方形的面积为ym2,要使长方形的面积最大,其边长x应为.14.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB 的面积记为S2;…,依此类推,则S n可表示为.(用含n的代数式表示,其中n 为正整数)三、解答题(满分90分)15.计算:+sin45°.16.已知线段a、b、c满足,且a+2b+c=26.(1)求a、b、c的值;(2)若线段x是线段a、b的比例中项,求x.17.如图,Rt△ABC中,斜边AB上一点M,MN⊥AB交AC于N,若AM=3cm,AB:AC =5:4,求MN的长.18.如图,在矩形ABCD中,E是AD边上的一点,BE⊥AC,垂足为点F.求证:△AEF ∽△CAB.19.如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m.AB和CD 之间有一景观池,小双在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°,点B、E、D在同一直线上.求两幢建筑物之间的距离BD.(结果精确到0.1m)【参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90】20.如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm).(1)写出▱ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围.(2)当x取什么值时,y的值最大?并求最大值.21.在△ABC中,点D、E分别在边AB、AC上,且AD:DB=3:2,AE:EC=1:2,直线ED和CB的延长线交于点F,求:FB:FC.22.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.23.问题提出:数学课本上有这样一道题目:如图①,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm.把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?初步思考:(1)试计算出正方形零件的边长;深入探究:(2)李华同学通过探究发现如果要把△ABC按照图②加工成三个相同大小的正方形零件,△ABC的边BC与高AD需要满足一定的数量关系.则这一数量关系是:.(直接写出结论,不用说明理由);(3)若△ABC可以按照图③加工成四个大小相同的正方形,且∠B=30°,求证:AB=BC.参考答案一、选择题(满分40分)1.解:∵sin2α+cos2α=1,∴sinα===.故选:C.2.解:A,不正确,两个相似的三角形相似但不全等;B,正确,因为全等三角形是特殊的相似三角形,不相似即不构成全等的前提;C,不正确,因为相似三角形可以是全等三角形,全等三角形是特殊的相似三角形;D,不正确,因为全等三角形一定是相似三角形;故选:B.3.解:∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似);故A与B正确;当=,即AB2=AC•AD时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似);故D正确;当=,即BC2=CD•AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误.故选:C.4.解:用作图法比较简单,首先作出y=(x﹣a)(x﹣b)图象,任意画一个(开口向上的,与x轴有两个交点),再向下平移一个单位,就是y=(x﹣a)(x﹣b)﹣1,这时与x轴的交点就是x1,x2,画在同一坐标系下,很容易发现:答案是:x1<a<b<x2.故选:C.5.解:根据题意,知0°<∠B<45°.又sin45°=,∴0<n<.故选:A.6.解:观察二次函数图象可得出:a>0,﹣>0,c>0,∴b<0.∴反比例函数y=的图象在第一、三象限,一次函数y=bx﹣c的图象经过第二、三、四象限.故选:A.7.解:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∵DE:CE=2:3,∴DE:AB=2:5,∵DC∥AB,∴△DEF∽△BAF,∴=()2=,==,∴===(等高的三角形的面积之比等于对应边之比),∴S△DEF:S△ADF:S△ABF等于4:10:25,故选:C.8.解:∵CD平分∠ACB,过D作BC的平行线交AC于M,∴∠MDC=∠MCD,∴DM=MC,∴AM=AC﹣MC=n﹣DM,又∵DM∥BC,∴,即,解得DM=.故选:C.9.解:∵BE⊥AD于E,CF⊥AD于F,∴CF∥BE,∴∠DCF=∠DBE,设∠DCF=∠DBE=α,∴CF=DC•cosα,BE=DB•cosα,∴BE+CF=(DB+DC)cosα=BC•cosα,∵∠ABC=90°,∴O<α<90°,当点D从B向C运动时,α是逐渐增大的,∴cosα的值是逐渐减小的,∴BE+CF=BC•cosα的值是逐渐减小的.故选C.面积法:S△ABC=•AD•CF+•AD•BE=•AD(CF+BE),∴CF+BE=,∵点D沿BC自B向C运动时,AD是增加的,∴CF+BE的值是逐渐减小.故选:C.10.解:过点P作PE⊥BC于E,设P、Q同时从点B出发x秒时,△BPQ的面积是y,∴PE=BP•sin B,∴当点P在AB上,即0<x≤10时,y=BQ•BP sin∠B=x2×=x2;∴当点P在AD上,即10≤x≤12时,y=梯形ABCD面积﹣△PDQ面积=36﹣PD•QD.而PD=12﹣x,QD=16﹣x,则y=﹣x2+14x﹣60;P到D之后,面积达到最大36cm2,且不变.故选:C.二、填空题(满分20分)11.解:把A(2,m)代入y=x2﹣1得m=4﹣1=3,所以A点坐标为(2,3).故答案为(2,3).12.解:作AB边的高CE.在Rt△ACE中,∵∠A=30°,AC=,∴CE=AC=.在等腰Rt△CBE中,BC=CE,故BC=.13.解:∵四边形ABCD为矩形,∴AD∥BC,∴△EAD∽△EBF,∴=,即=,解得,AD=12﹣x,∴y=x(12﹣x)=﹣x2+12x=﹣(x﹣)2+15,∴当x=时,长方形的面积最大,故答案为:.14.解:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=,∵==,∴=,∴S△ABM:S△ABE1=(n+1):(2n+1),∴S△ABM:=(n+1):(2n+1),∴S n=.故答案为:.三、解答题(满分90分)15.解:原式=+=1+=16.解:(1)设===k,则a=3k,b=2k,c=6k,所以,3k+2×2k+6k=26,解得k=2,所以,a=3×2=6,b=2×2=4,c=6×2=12;(2)∵线段x是线段a、b的比例中项,∴x2=ab=6×4=24,∴线段x=2.17.解:由题意得:△AMN∽△ACB∴AB:AC=AN:AM=5:4∴可知AN=,根据勾股定理得AM2+MN2=AN2∴MN=.18.证明:∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB.19.解:由题意得:∠AEB=42°,∠DEC=45°,∵AB⊥BD,CD⊥BD,∴在Rt△ABE中,∠ABE=90°,AB=15,∠AEB=42°,∴BE=≈15÷0.90=,在Rt△DEC中,∠CDE=90°,∠DEC=∠DCE=45°,CD=20,∴ED=CD=20,∴BD=BE+ED=+20≈36.7(m).答:两幢建筑物之间的距离BD约为36.7m.20.解:(1)过A作AE⊥BC于E,如图,∵∠B=30°,AB=x,∴AE=x,又∵平行四边形ABCD的周长为8cm,∴BC=4﹣x,∴y=AE•BC=x(4﹣x)=﹣x2+2x(0<x<4);(2)y=﹣x2+2x=﹣(x﹣2)2+2,∵a=﹣,∴当x=2时,y有最大值,其最大值为2.21.解:过B作BG∥AC交EF于G,∴△DBG∽△ADE,∴==,∵AE:EC=1:2,∴BG:CE=,∵BG∥AC,∴△BFG∽△CFE,22.解:①∵函数的图象与x轴相交于O,∴0=k+1,∴k=﹣1,∴y=x2﹣3x,②假设存在点B,过点B做BD⊥x轴于点D,∵△AOB的面积等于6,∴AO•BD=6,当0=x2﹣3x,x(x﹣3)=0,解得:x=0或3,∴AO=3,∴BD=4即4=x2﹣3x,解得:x=4或x=﹣1(舍去).又∵顶点坐标为:(1.5,﹣2.25).∵2.25<4,∴x轴下方不存在B点,∴点B的坐标为:(4,4);③∵点B的坐标为:(4,4),∴∠BOD=45°,BO==4,当∠POB=90°,∴∠POD=45°,设P点横坐标为:x,则纵坐标为:x2﹣3x,即﹣x=x2﹣3x,解得x=2 或x=0,∴在抛物线上仅存在一点P(2,﹣2).∴OP==2,使∠POB=90°,∴△POB的面积为:PO•BO=×4×2=8.23.解:(1)设正方形零件的边长为x mm,则KD=EF=x,AK=80﹣x,∵EF∥BC,∴△AEF∽△ABC,∵AD⊥BC,∴,∴,解得x=48.答:正方形零件的边长为48mm.(2)BC=AD,如图2由已知条件得:EF∥GH∥BC,在△GBN与△EGM中,,∴△GBN≌△EGM,∴EG=BG,∵△AEF∽△AGH,∴,∴AE=EG,∴AE=EG=GB,∴△AEF∽△ABC,∴,∵PD=2x,∴AD=3x,BC=3x,∴AD=BC,故答案为:AD=BC;(3)如图3,过点A作AD⊥BC于D,分别交EF、GH于点M、N,设每个正方形的边长为a,∵EF∥GH∥BC,∴△AEF∽△AGH∽△ABC,∴,∴,解得AD=2.5a,BC=5a,∴BC=2AD.∵∠B=30°,AD⊥BC,∴AB=2AD,∴AB=BC.。
苏科版2022-2023学年七年级数学上册第一次月考测试题(附答案)

2022-2023学年七年级数学上册第一次月考测试题(附答案)一、单选题(共18分)1.有理数﹣的倒数为()A.5B.C.D.﹣52.李明同学在“百度搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约6180万,这个数用科学记数法表示为()A.6.18×105B.6.18×106C.6.18×107D.6.18×1083.下列说法正确的是()A.倒数等于本身的数是±1B.有理数包括正有理数和负有理数C.没有最大的正数,但有最大的负数D.绝对值等于本身的数是正数4.下列各对数中,互为相反数的是()A.+(﹣2)和﹣(+2)B.﹣|﹣3|和+(﹣3)C.(﹣1)2和﹣12D.(﹣1)3和﹣135.如果a>0,b<0,a+b<0,那么下列各式中大小关系正确的是()A.﹣b<﹣a<b<a B.﹣a<b<a<﹣b C.b<﹣a<﹣b<a D.b<﹣a<a<﹣b 6.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2020次跳后它停的点所对应的数为()A.1B.2C.3D.5二、填空题(共24分)7.比较大小:(填“<”、“=”或“>”=).8.绝对值小于4而不小于1的正整数有.9.已知m、n互为相反数,a、b互为倒数,那么|m+n+ab﹣4|=.10.下列各数:10、(﹣2)2、、0、﹣(﹣8)、﹣|﹣2|、﹣42、|﹣4|中,正整数有个.11.数轴上一点A表示的数为﹣5,将点A先向右移2个单位,再向左移10个单位,则这个点表示的数是.12.在数轴上表示数a的点到表示﹣1的点的距离为3,则a=.13.若|a|=1,|b|=4,且ab<0,则a+b=.14.如图所示是计算机某计算程序,若开始输入x=2,则最后输出的结果是.15.如图所示,直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是.16.如图是按照一定规律画出的一列“树型”图.经观察可以发现:图2比图1多出2个“树枝”,图3比图2多出5个“树枝”,图4比图3多出10个“树枝”,照此规律,图6比图5多出个“树枝”.三、解答题(共78分)17.把下列各数分别填入相应的集合里:﹣2,,﹣5.,0,,3.1415926,,+10%,2.626626662 (2020)正数集合{…}.负数集合{…}.整数集合{…}.分数集合{…}.无理数集合{…}.18.在数轴上表示下列各数:﹣(﹣5),0,,﹣|﹣2.5|,(﹣1)2,﹣22,并用“<”将它们连接起来.19.计算:(1)3﹣(+1)﹣(﹣3)+1+(﹣4).(2).(3).(4)48÷[4×(﹣2)﹣(﹣4)].(5)2×(﹣3)2﹣5×(﹣2).(6).20.简便计算:(1).(2).21.对于有理数a、b,定义一种新的运算:a⊗b=a×b﹣a+b.例如:1⊗2=1×2﹣1+2.(1)计算(﹣3)⊗4的值.(2)计算[5⊗(﹣2)]⊗3的值.22.在抗洪抢险中,解放军战士的冲锋舟加满油,沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)救灾过程中,冲锋舟离出发点A最远处千米;(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?23.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负来表示,记录如下:﹣3﹣2﹣1.501 2.5与标准质量的差值(单位:千克)筐数142328(1)20筐白菜中,最重的一筐比最轻的一筐重千克;(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?24.观察下列等式:第一个等式:;第二个等式:;第三个等式:.按上述规律,回答下列问题:(1)请写出第四个等式:;(2)第n个等式为:;(3)计算:.25.图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图3中的圆圈共有13层.(1)我们自上往下,在每个圆圈中按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,﹣20,…,求最底层最右边圆圈内的数是;(3)求图4中所有圆圈中各数值之和.(写出计算过程)26.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=3时,甲小球到原点的距离=;乙小球到原点的距离=;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.参考答案一、单选题(共18分)1.解:根据倒数的定义可知:﹣的倒数为﹣5.故选:D.2.解:6180万=6.18×107.故选:C.3.解:A、倒数等于本身的数是±1,原说法正确,故此选项符合题意;B、有理数包括正有理数、负有理数和0,原说法错误,故此选项不符合题意;C、没有最大的正数,也没有最大的负数,原说法错误,故此选项不符合题意;D、绝对值等于本身的数是0和正数,原说法错误,故此选项不符合题意.故选:A.4.解:A、∵+(﹣2)=﹣2,﹣(+2)=﹣2,∴+(﹣2)和﹣(+2)相等,不互为相反数,故选项A不正确;B、∵﹣|﹣3|=﹣3,+(﹣3)=﹣3,∴﹣|﹣3|和+(﹣3)相等,不互为相反数,故选项B不正确;C、∵(﹣1)2=1,﹣12=﹣1,∴(﹣1)2和﹣12互为相反数,故选项C正确;D、∵(﹣1)2=1,13=1,∴(﹣1)2和13相等,不互为相反数,故选项D不正确;故选:C.5.解:∵a>0,b<0,∴a为正数,b为负数,∵a+b<0,∴负数b的绝对值较大,则a、b、﹣a、﹣b在数轴上的位置如图所示:,由数轴可得:b<﹣a<a<﹣b,故选:D.6.解:由题意得:青蛙第1次跳到的那个点是3,∵若青蛙停在奇数点上,则下一次沿顺时针方向跳两个点,∴青蛙第2次跳到的那个点是5,∴青蛙第3次跳到的那个点是2.∵若青蛙停在偶数点上,则下一次沿逆时针方向跳一个点,∴青蛙第4次跳到的那个点是1,∴青蛙第5次跳到的那个点是3;归纳类推得:青蛙跳后它停的点所对应的数是以3,5,2,1循环往复的,∵2020=4×505,∴经2020次跳后它停的点所对应的数与经4次跳后它停的点所对应的数相同,即为1,故选:A.二、填空题(共24分)7.解:因为,所以,故答案为:>8.解:因为正整数的绝对值等于它本身,所以只需求出小于4而不小于1的正整数即可,则符合条件的正整数有1,2,3,故答案为:1,2,3.9.解:∵m、n互为相反数,a、b互为倒数,∴m+n=0,ab=1,∴|m+n+ab﹣4|=|(m+n)+ab﹣4|=|0+1﹣4|=|﹣3|=3,故答案为:3.10.解:正整数有10、(﹣2)2=4、﹣(﹣8)=8、|﹣4|=4,一共有4个,故答案为:4.11.解:先设向右为正,向左为负,那么﹣5+2﹣10=﹣13,则这个点表示的数是﹣13故答案是:﹣13.12.解:当表示数a的点在表示﹣1的点的右侧时,则a>﹣1.∴表示﹣1的点向右移动3个单位长度可到达表示数a的点处.∴a=﹣1+3.∴a=2.当表示数a的点在表示﹣1的点的左侧时,则a<﹣1.∴表示﹣1的点向左移动3个单位长度可到达表示数a的点处.∴a=﹣1﹣3.∴a=﹣4.综上:a=2或﹣4.故答案为:2或﹣4.13.解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴①当a=1,b=﹣4时,a+b=1﹣4=﹣3,②当a=﹣1,b=4时,a+b=(﹣1)+4=3,故答案为±3.14.解:把x=2代入程序中得:2×4﹣2=8﹣2=6<10,把x=6代入程序中得:6×4﹣2=24﹣2=22>10,则最后输出的结果是22.故答案为:22.15.解:由题意可得:圆的周长为π,∵直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,∴A点表示的数是:1﹣π.故答案为:1﹣π.16.解:观察图可知,图(2)比图(1)多出“树枝”个数为2,图(3)比图(2)多出“树枝”个数为5=22+20,图(4)比图(3)多出“树枝”个数为10=23+21,图(5)比图(4)多出“树枝”个数为20=24+22,归纳类推得:图(n)比图(n﹣1)多出“树枝”个数为2n﹣1+2n﹣3,其中n≥3且为整数,则图(6)比图(5)多出“树枝”个数为26﹣1+26﹣3=32+8=40,故答案为:40.三、解答题(共78分)17.解:正数集合{,,3.1415926,+10%,2.626626662…,2020…};负数集合{﹣2,﹣5.,,…};整数集合{﹣2,0,2020…};分数集合{,﹣5.,3.1415926,,+10%…};无理数集合:{,2.626626662……}.故答案为:1,,3.1415926,+10%,2.626626662…,2020;﹣2,﹣5.,﹣;﹣2,0,2020;1,﹣5.,3.1415926,,+10%;,2.626626662….18.解:﹣(﹣5)=5,=3.5,﹣|﹣2.5|=﹣2.5,(﹣1)2=1,﹣22=﹣4,如图所示:用“<”把这些数连接起来为:﹣22<﹣|﹣2.5|<0<(﹣1)2<<﹣(﹣5).19.解:(1)3﹣(+1)﹣(﹣3)+1+(﹣4)=3+(﹣1)+3+1+(﹣4)=2;(2)===﹣10+17=7;(3)=﹣18÷(﹣2)×=9×=;(4)48÷[4×(﹣2)﹣(﹣4)]=48÷(﹣8+4)=48÷(﹣4)=﹣12;(5)2×(﹣3)2﹣5×(﹣2)=2×9﹣5×(﹣2)×(﹣2)=18﹣20=﹣2;(6)=﹣1﹣××(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.20.解:(1)=(﹣100)×5=×5﹣100×5=﹣500=;(2)=(﹣36)×(﹣)+(﹣36)×﹣(﹣36)×=16﹣30+21=7.21.解:(1)由题意可得,(﹣3)⊗4=(﹣3)×4﹣(﹣3)+4=﹣12+3+4=﹣5;(2)由题意可得,[5⊗(﹣2)]⊗3=[5×(﹣2)﹣5+(﹣2)]⊗3=(﹣10﹣5﹣2)⊗3=(﹣17)⊗3=(﹣17)×3﹣(﹣17)+3=﹣51+17+3=﹣31.22.解:(1)(+14)+(﹣9)+(+8)+(﹣7)+(+13)+(﹣6)+(+12)+(﹣5)=14﹣9+8﹣7+13﹣6+12﹣5=20(千米),答:B地位于A地的正东方向,距离A地20千米;(2)第1次记录时冲锋舟离出发点A的距离为|+14|=14千米,第2次记录时冲锋舟离出发点A的距离为|14+(﹣9)|=5千米,第3次记录时冲锋舟离出发点A的距离为|5+(+8)|=13千米,第4次记录时冲锋舟离出发点A的距离为|13+(﹣7)|=6千米,第5次记录时冲锋舟离出发点A的距离为|6+(+13)|=19千米,第6次记录时冲锋舟离出发点A的距离为|19+(﹣6)|=13千米,第7次记录时冲锋舟离出发点A的距离为|13+(+12)|=25千米,第8次记录时冲锋舟离出发点A的距离为|25+(﹣5)|=20千米,由此可知,救灾过程中,冲锋舟离出发点A最远处为25千米;故答案为:25;(3)冲锋舟当天航行总路程为:|+14|+|﹣9|+|+8|+|﹣7|+|+13|+|﹣6|+|+12|+|﹣5|=14+9+8+7+13+6+12+5=74(千米),则74×0.5﹣28=37﹣28=9(升),答:冲锋舟当天救灾过程中至少还需补充9升油.23.解:(1)2.5﹣(﹣3)=2.5+3=5.5(千克),故答案为:5.5;(2)﹣3×1+(﹣2)×4+(﹣1.5)×2+0×3+1×2+2.5×8=﹣3﹣8﹣3+0+2+20=8(千克),答:与标准重量比较,20筐白菜总计超过8千克;(3)这20筐白菜的总质量为25×20+8=508(千克),则508×2.6=1320.8(元),答:出售这20筐白菜可卖1320.8元.24.解:(1)观察三个等式可以看到:等式左边第一个数字都是1,第二个数字的分子都是1,分母为等式的序号加1的平方;等式的右边为两个分数的乘积,两个分数的分母均为等式的序号加1,分子分别为等式的序号和等式的序号加2.由此规律可得第四个等式为:1﹣=.故答案为:;(2)由(1)中的规律得第n个等式为:1﹣=.故答案为:1﹣=.(3)====;25.解:(1)当有13层时,图3中到第12层共有:1+2+3+…+11+12=78个圆圈,最底层最左边这个圆圈中的数是:78+1=79;(2)图4中所有圆圈中共有1+2+3+…+13==91个数,最底层最右边圆圈内的数是﹣23+91﹣1=67;(3)图4中共有91个数,其中23个负数,1个0,67个正数,所以图4中所有圆圈中各数的和为:﹣23﹣22﹣…﹣1+0+1+2+…+67=﹣(1+2+3+...+23)+(1+2+3+ (67)=﹣276+2278=2002.故答案为:(1)79;(2)67.26.解:(1)∵|a+2|+|b﹣4|=0;∴a=﹣2,b=4,∴点A表示的数为﹣2,点B表示的数为4,故答案为:﹣2,4;(2)①当t=1时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动1个单位,此时,甲小球到原点的距离=3,∵一小球乙从点B处以2个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动2个单位,此时,乙小球到原点的距离=4﹣2=2,故答案为:3,2;当t=3时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球3秒钟向左运动3个单位,此时,甲小球到原点的距离=5,∵一小球乙从点B处以2个单位/秒的速度也向左运动,∴乙小球2秒钟向左运动2个单位,此时,刚好碰到挡板,改变方向向右运动,再向右运动1秒钟,运动2个单位,∴乙小球到原点的距离=2.②当0<t≤2时,得t+2=4﹣2t,解得t=;当t>2时,得t+2=2t﹣4,解得t=6.故当t=秒或t=6秒时,甲乙两小球到原点的距离相等.故答案为:5,2.。
第1章有理数 期中复习综合测试题2022-2023学年沪科版七年级数学上册

2022-2023学年沪科版七年级数学上册《第1章有理数》期中复习综合测试题(附答案)一、选择题(共30分)1.计算﹣6÷|﹣2|的结果是()A.﹣3B.3C.12D.﹣82.把笔尖放在数轴的原点,沿数轴先向左(负方向)移动6个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是()A.6+3=9B.﹣6﹣3=﹣9C.6﹣3=3D.﹣6+3=﹣3 3.若﹣(﹣2)表示一个数的相反数,则这个数是()A.B.﹣C.2D.﹣24.下列各对数中数值相等的是()A.﹣12和(﹣1)2B.﹣(﹣3)和﹣|﹣3|C.(﹣2)3和﹣23D.﹣3×23和﹣(3×2)35.若ab<0,则的值()A.是正数B.是负数C.是非正数D.是非负数6.已知|x﹣3|+(2+y)2=0,则y x的值为()A.9B.﹣9C.﹣8D.87.有三个数,它们的绝对值分别为1,2,4,其中绝对值最小的数最大,绝对值最大的数最小,这三个数的和是()A.﹣5B.﹣7C.﹣5或﹣7D.18.在有理数:﹣(﹣2),﹣|﹣|,(﹣2)3,(﹣5)2,(﹣1)5,﹣22中,负数有()A.2个B.3个C.4个D.5个9.一根1m长的绳子,第一次剪去绳子的,第二次剪去剩下绳子的,如此剪下去,第100次剪完后剩下绳子的长度是()A.B.C.D.10.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0B.|b|<|c|C.|a|>|b|D.abc<0二、填空题(共18分)11.﹣的倒数是.12.如果规定a※b=+1,则2※(﹣3)的值为.13.已知|x|=3,y2=4,且xy<0,则x+y的值是.14.数轴上到表示数﹣4点距离为3的点所表示的数为.15.a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2011=.16.设[m)表示大于m的最小整数,如[5.5)=6,[﹣1.2)=﹣1,把下列正确结论的序号写在横线上.(1)[2)﹣2=1;(2)若[m)﹣m=0.5,则m=0.5;(3)[m)﹣m的最大值是1;(4)[m)﹣m的最小值是0.三、解答题(共72分)17.计算题(1)﹣(﹣3)﹣(+7)﹣|﹣8|;(2)(﹣0.5)+(﹣2)+2;(3)1﹣(1+﹣)×21;(4)(﹣27)÷2×÷(﹣24);(5)(﹣2)3+[(﹣3)3﹣(1﹣32)×2];(6)﹣32﹣[﹣5﹣0.2÷×(﹣2)2].18.以48.0千克为标准体重测量7名学生的体重,把超过标准体重的千克数记为正数,不足的千克数记为负数,将其体重记录如下表:学生1234567与标准体重之差(千克)﹣2.8+1.7+0.8﹣0.5﹣0.2+1.2+0.5(1)最接近标准体重的是学生(填序号).(2)最大体重与最小体重相差千克.(3)求7名学生的平均体重.19.已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求m2+a+b+(﹣cd)3的值.20.如果x n=y,那么我们记为:(x,y)=n.例如32=9,则(3,9)=2.(1)根据上述规定,填空:(2,8)=,=;(2)若(4,a)=2,(b,8)=3,求(b,a)的值.21.(8分)阅读理解并解答:为了求1+2+22+23+24+…+22019的值.可令S=1+2+22+23+24+…+22019则2S=2+22+23+24+…+22019+22020因此2S﹣S=(2+22+23+24+…+22019+22020)﹣(1+2+22+23+24+…+22019)=22020﹣1所以S=22020﹣1即1+2+22+23+24+…+22019=22020﹣1请依照此法,求:1+5+52+53+54+…+52020的值.22.结合数轴与绝对值的知识回答下列问题:(1)表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如果表示数a和﹣1的两点之间的距离是2,那么a=.(2)若数轴上表示数a的点位于﹣2与4之间,则|a﹣4|+|a+2|的值为.(3)利用数轴找出所有符合条件的整数点x,使得|x+2|+|x﹣5|=7,这些点表示的数的和是.(4)当a=时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是.参考答案一、选择题(共30分)1.解:﹣6÷|﹣2|=﹣6÷2=﹣3.故选:A.2.解:由题意可知:﹣6+3=﹣3,故选:D.3.解:﹣(﹣2)=2,2的相反数是:﹣2.故选:D.4.解:A、﹣12=﹣1,(﹣1)2=1,﹣1≠1,故A不符合题意;B、﹣(﹣3)=3,﹣|﹣3|=﹣3,3≠﹣3,故B不符合题意;C、(﹣2)3=﹣8,﹣23=﹣8,﹣8=﹣8,故C符合题意;D、﹣3×23=﹣24,﹣(3×2)3=﹣216,﹣24≠﹣216,故D不符合题意.故选:C.5.解:∵ab<0,∴a与b异号,∴的值是负数.故选:B.6.解:根据题意得,x﹣3=0,2+y=0,∴x=3,y=﹣2,∴y x=(﹣2)3=﹣8.故选:C.7.解:∵三个数的绝对值分别为1,2,4,∴这三个数可能是±1,±2,±4,∵绝对值最小的数最大,绝对值最大的数最小,∴最大的数是1或﹣1,最小的数是﹣4,当最大的数是﹣1时,﹣4<﹣2<﹣1,∴另一个数是﹣2,∴这三个数的和为:﹣4﹣2﹣1=﹣7,当最大的数是1时,﹣4<﹣2<1,∴另一个数也是﹣2,∴这三个数的和为:﹣4﹣2+1=﹣5,∴这三个数的和是﹣5或﹣7,故选:C.8.解:∵﹣(﹣2)=2,﹣|﹣|=﹣,(﹣2)3=﹣8,(﹣5)2=25,(﹣1)5=﹣1,﹣22=﹣4,∴负数有﹣|﹣,(﹣2)3,(﹣1)5,﹣22,一共4个,故选:C.9.解:∵第一次剪去绳子的,还剩m;第二次剪去剩下绳子的,还剩=m,……∴第100次剪去剩下绳子的后,剩下绳子的长度为()100m;故选:C.10.解:由数轴可得,a<b<c,∵ac<0,b+a<0,∴如果a=﹣2,b=0,c=2,则b+c>0,故选项A错误;如果a=﹣2,b=﹣1,c=0.9,则|b|>|c|,故选项B错误;如果a=﹣2,b=0,c=2,则abc=0,故选D错误;∵a<b,ac<0,b+a<0,∴a<0,c>0,|a|>|b|,故选项C正确;故选:C.二、填空题(共18分)11.解:﹣的倒数是﹣,故答案为:﹣12.解:2※(﹣3)==+1=7+1=8.故答案为:8.13.解:∵|x|=3,y2=4,xy<0,∴x=3时,y=﹣2,则x+y=3﹣2=1;x=﹣3时,y=2,则x+y=﹣3+2=﹣1,∴x+y的值是±1;故答案为:±1.14.解:距离点数﹣4为3个单位长度的点有两个,它们分别是﹣4+3=,﹣4﹣3=,故答案为﹣或.15.解:a1=﹣a2==;a3==4;a4==﹣,因而一下三个一次循环,故a2011=﹣.故答案是:﹣16.解:[m)表示大于m的最小整数,(1)[2)﹣2=3﹣2=1;(2)若[m)﹣m=0.5,则m不一定等于0.5;(3)[m)﹣m的最大值是1,正确;(4)[m)﹣m>0,但是取不到0.∴正确结论有(1)(3).故答案为:(1)(3).三、解答题(共72分)17.解:(1)原式=3﹣7﹣8=﹣4﹣8=﹣12;(2)原式=(﹣0.5)+[(﹣2)+2]=(﹣0.5)+(﹣)=﹣1;(3)原式=1﹣(1×21+×21﹣×21)=1﹣(21+7﹣3)=1﹣25=﹣24;(4)原式=27×××=;(5)原式=﹣8+[﹣27﹣(﹣8)×2]=﹣8+(﹣27+16)=﹣8+(﹣11)=﹣19;(6)原式=﹣9﹣(﹣5﹣××4)=﹣9﹣(﹣5﹣1)=﹣9﹣(﹣6)=﹣9+6=﹣3.18.解:(1)由表格可知,5号学生的体重与标准体重之差的绝对值最小,∴最接近标准体重的是5号学生.故答案为:5号;(2)由表格可知最高体重是第2名学生,最低体重是第1名学生,∴体重之差为:1.7﹣(﹣2.8)=1.7+2.8=4.5(千克)故答案为:4.5;(3)7名学生的平均体重=48+(﹣2.8+1.7+0.8﹣0.5﹣0.2+1.2+0.5)÷7=48.1(千克),∴7名学生的平均体重为48.1千克.19.解:∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1,m2=4,∴m2+a+b+(﹣cd)3=m2+(a+b)+(﹣cd)3=4+0+(﹣1)3=4+0+(﹣1)=3.20.解:(1)∵23=8,∴(2,8)=3;∵(﹣)4=,∴(﹣,)=4;故答案为:3,4;(2)∵a=42=16,b3=8,∴b=2,∴(b,a)=(2,16),∵24=16,∴(b,a)=4.21.解:设S=1+5+52+53+ (52020)则5S=5+52+53+54 (52021)两式相减得:5S﹣S=4S=52021﹣1,则S=.∴1+5+52+53+54+…+52020的值为.22.解:(1)表示﹣3和2两点之间的距离是5,|﹣3﹣2|=5;一般地,数轴上表示m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣1的两点之间的距离是2,则可记为:|a+1|=2,那么a=1或﹣3;故答案为:5,1或﹣3;(2)∵﹣2<a<4,∴|a﹣4|+|a+2|=4﹣a+2+a=6,故答案为:6;(3)当x>5时,|x+2|+|x﹣5|=x+2+x﹣5=2x﹣3>7,当﹣2≤x≤5时,|x+2|+|x﹣5|=x+2+5﹣x=7,当x<﹣2时,|x+2|+|x﹣5|=﹣x﹣2+5﹣x=﹣2x+3>7,∴使得|x+2|+|x﹣5|=7的所有整数为:﹣2,﹣1,0,1,2,3,4,5,∵﹣2+(﹣1)+0+1+2+3+4+5=12,故答案为:12;(4)当a>4时,|a+3|+|a﹣1|+|a﹣4|=a+3+a﹣1+a﹣4=3a﹣2>10,当1<a≤4时,|a+3|+|a﹣1|+|a﹣4|=a+3+a﹣1+4﹣a=6+a,则7<6+a≤10,当﹣3<a≤1时,|a+3|+|a﹣1|+|a﹣4|=a+3+1﹣a+4﹣a=8﹣a,则7≤8﹣a<11,当x≤﹣3时,|a+3|+|a﹣1|+|a﹣4|=﹣a﹣3+1﹣a+4﹣a=﹣3a+2≥11,由上可得,当a=1时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是7,故答案为:1;7.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2022-2023学年七年级数学上册第三次月考测试题(附答案)一、单选题(本大题共10小题,共40分)1.如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m2.下列各数中:﹣13.5,2,0,0.128,﹣2,+27,,﹣15%,,0.01,非负整数有()A.1个B.2个C.3个D.4个3.在﹣2.5,,0,这四个数中,最小的数是()A.﹣2.5B.C.0D.4.月球的半径约为1738000m,1738000这个数用科学记数法可表示为1.738×10n,则n的值是()A.6B.7C.8D.95.下列说法中,正确的是()A.不是整式B.3是单项式C.的系数是﹣3,次数是3D.多项式2x2y﹣xy是五次二项式6.当x=2时,多项式ax3﹣bx+5的值是4,求当x=﹣2时,多项式ax3﹣bx+5的是为()A.﹣4B.6C.5D.97.若方程3x+6=12的解也是方程6x+3a=24的解,则a的值为()A.B.4C.12D.28.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程t=,未知数系数化为1,得t=1D.方程﹣=1化成3x=69.我们常用的十进制数,如2639=2×103+6×102+3×101+9,我国古代《易经》一书记载,远古时期,人们通过在绳子上打结来记录数量.如图,一位母亲在从右东到左依次排列的绳子上打结,并采用七进制(如2513=2×73+5×72+1×71+3),用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.1326天B.510天C.336天D.84天10.今年某月的月历上圈出了相邻的三个数a、b、c,并求出了它们的和为39,这三个数在月历中的排布不可能是()A.B.C.D.二、填空题(本大题共6小题,共30分)11.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是.12.如图,|a+b|﹣|a﹣c|﹣|c﹣b|=.13.一个多项式与﹣x2﹣2x+11的和是3x﹣2,则这个多项式为.14.已知x+y=3,xy=1,则代数式(5x+3)﹣(2xy﹣5y)的值为.15.若单项式x m+1y2与﹣2x3y n﹣1的和仍是单项式,则(m﹣n)n的值为.16.现定义两种运算“⊕”“*”.对于任意两个整数,a⊕b=a+b﹣1,a*b=a×b﹣1,则6⊕[8*(x⊕3)]=52,则x的值为.三、解答题(本大题共7小题,共80分,)17.计算:(1)()20221-;(2)﹣14÷(﹣3)2×(﹣)﹣42÷|﹣4|.18.设A =x 3﹣2x 2+4x +3,B =x 2+2x ﹣6,C =x 3+2x ﹣3.当x =﹣2时,求A ﹣(B +C )的值.19.解方程(组):(1)﹣=1 (2)20.关于x 的方程x ﹣2m =﹣3x +4与2﹣m =x 的解互为相反数.(1)求m 的值; (2)求这两个方程的解.21.菏泽有20所学校入围“2022年全国青少年校园足球特色学校”,为了积极开展校园足球活动,某校计划为学校足球队购买一批A 、B 两种品牌足球.现购买4个A 品牌足球和2个B 品牌足球共需360元;已知A 品牌足球的单价比B 品牌足球的单价少60元.(1)求A ,B 两种品牌足球的单价;(2)求该校购买20个A 品牌的足球和2个B 品牌的足球的总费用.22.一艘快艇从A 码头到B 码头顺流行驶,同时一艘游船从B 码头出发逆流行驶.已知,A 、B 两码头相距140千米,快艇在静水中的平均速度为67千米/小时,游船在静水中的平均速度为27千米/小时,水流速度为3千米/小时.(1)请计算两船出发航行30分钟时相距多少千米?(2)如果快艇到达B 码头后立即返回,试求快艇在返回的过程中需航行多少时间两船恰好相距12千米?23.已知数轴上两点A 、B 对应的数分别为﹣1、3,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,点B 的距离相等,则点P 对应的数是 ;(2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为10?若存在,请求出x 的值;若不存在,说明理由;(3)现在点A ,点B 分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P 以3个单位长度/秒的速度同时从原点向左运动,当点A 与点B 之间的距离为2个单位长度时,求点P 所对应的数是多少?参考答案一、单选题(本大题共10小题,共40分)1.解:因为上升记为+,所以下降记为﹣,所以水位下降3m时水位变化记作﹣3m.故选:A.2.解:非负整数是2,0,27,一共有3个,故选:C.3.解:∵|﹣2.5|=2.5,|﹣1|=,∴﹣2.5<﹣1<0<,∴﹣2.5,,0,这四个数中,最小的数是﹣2.5;故选:A.4.解:1738000=1.738×106,则n=6,故选:A.5.解:A、是整式,错误;B、3是单项式,正确;C、的系数是,次数是3,错误;D、多项式2x2y﹣xy是三次二项式,错误;故选:B.6.解:把x=2代入ax3﹣bx+5=4,得8a﹣2b=﹣1,把x=﹣2代入ax3﹣bx+5,得﹣8a+2b+5=1+5=6.故选:B.7.解:3x+6=12,移项合并得:3x=6,解得:x=2,将x=2代入6x+3a=24中得:12+3a=24,解得:a=4.故选:B.8.解:A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,故本选项错误;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,故本选项错误;C、方程t=,未知数系数化为1,得t=,故本选项错误;D、方程﹣=1化成3x=6,故本选项正确.故选:D.9.解:1×73+3×72+2×7+6=1×343+3×49+2×7+6=343+147+14+6=510.故选:B.10.解:A、设最小的数是x.x+x+7+x+14=39,x=6,故本选项不符合题意;B、设最小的数是x.x+x+8+x+16=39,解得:x=5,故本选项不符合题意;C、设最小的数是x.x+x+6+x+7=39,x=.故本选项符合题意.D、设最小的数是x.x+x+7+x+8=39,x=8,故本选项不符合题意.故选:C.二、填空题(本大题共6小题每题3分,共30分)11.解:根据题意得:3x﹣2=127,解得:x=43,可得3x﹣2=43,解得:x=15,则输入的数是15,故答案为:1512.解:由图可知:b<a<﹣1<0<c<1,所以可得a+b<0,a﹣c<0,c﹣b>0,|a+b|﹣|a﹣c|﹣|c﹣b|=﹣a﹣b+a﹣c﹣c+b=﹣2c,故答案为:﹣2c .13.解:设此多项式为A ,∵A +(﹣x 2﹣2x +11)=3x ﹣2,∴A =(3x ﹣2)﹣(﹣x 2﹣2x +11)=x 2+5x ﹣13.故答案为:x 2+5x ﹣13.14.解:原式=5x +3﹣2xy +5y=5(x +y )﹣2xy +3当x +y =3,xy =1时,原式=15﹣2+3=16.故答案为:16.15.解:∵单项式x m +1y 2与﹣2x 3y n﹣1的和仍是单项式, ∴单项式x m +1y 2与﹣2x 3y n﹣1是同类项, ∴m +1=3,n ﹣1=2,解得,m =2,n =3,则(m ﹣n )n =(﹣1)3=﹣1,故答案为:﹣1.16.解:根据题中的新定义得:6⊕[8*(x +3﹣1)]=6⊕[8(x +2)﹣1]=6+8(x +2)﹣1﹣1,代入已知方程得:6+8(x +2)﹣2=52,整理得:x +2=6,解得:x =4.故答案为:4.三、解答题(本大题共7小题,共80分,)17.解:(1)原式=()20221-=1+(﹣5)×(﹣8+2)﹣16×(﹣2)=1+(﹣5)×(﹣6)+32=1+30+32=63;(2)原式===.18.解:A﹣(B+C)=x3﹣2x2+4x+3﹣(x2+2x﹣6+x3+2x﹣3)=x3﹣2x2+4x+3﹣x2﹣2x+6﹣x3﹣2x+3=﹣3x2+12,把x=﹣2代入上式,原式=﹣3×(﹣2)2+12=0.19.解:(1)﹣=1,5(x+1)﹣2(x+2)=10,5x+5﹣2x﹣4=10,3x=9,x=3;(2),化简得,②﹣①×2得3y=8,解得y=,把y=代入①得x﹣2×=﹣1,解得x=.故原方程组的解为.20.解:(1)由x﹣2m=﹣3x+4得:x=m+1,依题意有:m+1+2﹣m=0,解得:m=6;(2)由m=6,解得方程x﹣2m=﹣3x+4的解为x=×6+1=3+1=4,解得方程2﹣m=x的解为x=2﹣6=﹣4.21.解:(1)设A品牌足球的单价为x元/个,则B品牌足球单价为(x+60)元/个根据题意得:4x+2(x+60)=360解得:x=40,∴x+60=100.答:A品牌足球的单价为40元/个,B品牌足球的单价为100元/个.(2)20×40+2×100=1000(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用为1000元.22.解:(1)140﹣(67+3)×﹣(27﹣3)×=93(千米).即航行30分钟时两船相距93千米;(2)设快艇在返回的过程中需航行x小时两船恰好相距12千米.由快艇从A到达B码头时,用时140÷(67+3)=2(时),此时游艇行驶2×(27﹣3)=48(千米).且返回时快艇速度为67﹣3=64(千米/时).①快艇返回时,两船相遇前,相距12千米,则48+24x﹣64x=12,解得x=.②快艇返回时,两船相遇后,相距12千米.则64x﹣(48+24x)=12,解得x=.此时×64=96(千米),即快艇未到达A码头,符合题意.答:快艇在返回的过程中需航行或小时两船恰好相距12千米.23.解:(1)∵点P到点A、点B的距离相等,∴点P是线段AB的中点,∵点A、B对应的数分别为﹣1、3,∴点P对应的数是1.故答案是:1;(2)存在,理由如下:①当点P在A左边时,﹣1﹣x+3﹣x=10,解得:x=﹣4;②点P在B点右边时,x﹣3+x﹣(﹣1)=10,解得:x=6,即存在x的值,当x=﹣4或6时,满足点P到点A、点B的距离之和为10;(3)①当点A在点B左边两点相距2个单位时,此时需要的时间为t,则3+0.5t﹣(﹣1+2t)=2,解得:t=,则点P对应的数为:﹣3×=﹣4;②当点A在点B右边两点相距2个单位时,此时需要的时间为t,则﹣1+2t﹣(3+0.5t)=2,解得:t=4,则点P对应的数为:﹣3×4=﹣12.综上:当点A与点B之间的距离为2个单位长度时,点P所对应的数是﹣4或﹣12.。