湖南省长沙市九年级(下)第一次月考数学试卷(3月)
2023年湖南省永州市冷水滩区京华中学九年级下学期3月第一次月考数学试卷

2023年湖南省永州市冷水滩区京华中学九年级下学期3月第一次月考数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图, 已知O e 的圆心角80AOB ∠=o , 则圆周角ACB ∠的度数等于( )A .160oB .100oC .80oD .40o 2.下列几何体的左视图为长方形的是( )A .B .C .D . 3.如图,AB 是⊙O 直径,过⊙O 上的点C 作⊙O 切线,交AB 的延长线于点D ,若∠D =40°,则∠A 大小是( )A .20°B .25°C .30°D .35° 4.如图,AB 是O e 的直径,弦CD 交AB 于点P ,3AP =,7BP =,30APC ∠=︒,则CD 的长为( )A .B .CD .85.已知A (4,y 1),B (1,y 2),C (﹣3,y 3)在函数y =﹣3(x ﹣2)2+m (m 为常数)的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3<y 1<y 2B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 1<y 2<y 3 6.下列说法正确的是( )A .对角线相等的四边形一定是矩形B .任意掷一枚质地均匀的硬币10次,一定有5次正面向上C .如果有一组数据为5,3,6,4,2,那么它的中位数是6D .“用长分别为5cm 、12cm 、6cm 的三条线段可以围成三角形”这一事件是不可能事件 7.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误的是( )A .图象关于直线x =1对称B .函数y =ax 2+bx +c (a ≠0)的最小值是﹣4C .﹣1和3是方程ax 2+bx +c (a ≠0)=0的两个根D .当x <1时,y 随x 的增大而增大8.已知正多边形的边心距与边长的比为12,则此正多边形为( ) A .正三角形 B .正方形 C .正六边形 D .正十二边形 9.在平面直角坐标系中,已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列5个结论:①0abc >;②20a b -=;③930a b c ++>;④24b ac >;⑤a c b +<.其中正确的有( )A .1个B .2个C .3个D .4个 10.已知二次函数()()2y a x h k a 0=-+≠的图象与一次函数()0y mx n m =+≠的图象交于(x 1,1y )和(x 2,2y )两点,( )A .若a<0,0m <,则122x x h +> B .若0a >,0m <,则122x x h +> C .若122x x h +>,则0a >,0m > D .若122x x h +<,则0a >,0m <二、填空题11.写出一个y 关于x 的二次函数的解析式,且它的图象的顶点在x 轴上:______. 12.如图,一块飞镖游戏板是33⨯的正方形网格,假设飞镖击中每块小正方形是等可能的(若没有击中游戏板,则重投一次).任意投掷飞镖一次,击中阴影部分的概率是______.13.某中学开展劳动实习,学生到教具加工厂制作圆锥,他们制作的圆锥,母线长为30cm ,底面圆的半径为10 cm ,这种圆锥的侧面展开图的圆心角度数是_____. 14.已知二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的y 与x 的部分对应值如表.当2x =时,函数值为______.15.将抛物线23y x =-先向右平移2个单位,再向下平移3个单位得到的抛物线所对应的函数表达式为_____________.16.一个几何体的三视图如图所示,这个几何体的侧面积为_____.17.如图,二次函数21y ax bx c =++与一次函数2y kx =的图象交于点A 和原点O ,点A 的横坐标为4-,点A 和点B 关于抛物线的对称轴对称,点B 的横坐标为1,则满足120y y <<的x 的取值范围是___________.18.如图,点P 在以MN 为直径的半圆上运动,(点P 与M ,N 不重合),PQ MN NE ⊥平分MNP ∠,交PM 于点E ,交PQ 于点F . (1) PF PE PQ PM+=___________________. (2)若2PN PM MN =⋅,则MQ NQ=___________________.三、解答题19.已知二次函数245y x x =--.(1)把这个二次函数化成()2y a x h =-的形式;(2)写出二次函数的对称轴和顶点坐标;(3)求二次函数与x 轴的交点坐标.20.防疫期间,全市所有学校都严格落实测温进校的防控要求.我校开设了A 、B 、C 三个测温通道,每名师生进入每个通道的机会均等.某天早晨,小颖和小明将随机通过测温通道进入校园.(1)小颖通过A 通道进入校园的概率是 ;(2)利用画树状图或列表的方法,求小颖和小明通过不同通道进入校园的概率. 21.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),求W 与x 之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?22.如图,O e 是ABC V 的外接圆,AB 是O e 的直径,过O 作OD AC ⊥于点E ,延长OE 至点D ,连结CD ,使D A ∠=∠.(1)求证:CD 是O e 的切线;(2)若AB CD ==AC 的长.23.如图所示,以40/m s 的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有关系式.2205h t t =-(0)t ≥解答以下问题:(1)球的飞行高度能否达到15m ?如能,需要飞行多少时间?(2)球飞行到最高点时的高度是多少m ?24.如图,△ABC 的点A ,C 在⊙O 上,⊙O 与AB 相交于点D ,连接CD ,∠A =30°,DC(1)求圆心O 到弦DC 的距离;(2)若∠ACB +∠ADC =180°,求证:BC 是⊙O 的切线.25.如图,△ABC 中,∠C =90°,AC =3,AB =5,点O 在BC 边的中线AD 上,⊙O 与BC 相切于点E ,且∠OBA =∠OBC .(1)求证:AB 为⊙O 的切线;(2)求⊙O 的半径;(3)求tan ∠BAD .26.综合与探究如图,在平面直角坐标系xOy 中,抛物线24y ax bx =++交x 轴于A ,B 两点(点B 在点A 的左边),交y 轴于点C ,其中()1,0A ,2OB OA =.(1)求抛物线的函数表达式;(2)连接BC ,点P 为线段BC 上一个动点,过点P 作//PD y 轴交抛物线于点D ,当线段PD 的值最大时,求点P 的坐标;(3)在(2)的条件下,是否在y 轴上存在点Q ,使CPQ V 与BOC V相似?若存在,请直接写出点Q 的坐标;若不存在,说明理由.。
湖南省长沙市立信中学2023-2024学年九年级下学期第一次月考数学试题(无答案)

长沙市立信中学2023-2024学年第二学期第一次核心素养初三数学学科试卷时量:120分钟 总分:120分注意事项:1.答题前,请先将自己的姓名、班级、考场号、座位号填写清楚;2.必须在答卷上答题,在草稿纸、试题卷上答题无效;3.请注意卷面,保持字体工整、笔迹清晰、卷面清洁;4.答卷上不准使用涂改液、涂改胶和贴纸一、单选题(在下列各题的四个选项中,只有一项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共10小题,每小题3分,共30分)1.春节期间,贴春联、送祝福一直是我们的优良传统,下列用篆书书写的春联中“五福临门”四个字,其中可以看成中心对称图形的是()A .B .C .D .2.下列运算结果正确的是( )A .B .C .D .3.如图的几何体,从左面看,得到的平面图是()A .B .C .D .4.在党的二十大报告中总结了新时代十年的非凡成就,包括我国建成世界上规模最大的社会保障体系,基本养老保险覆盖亿人,其中亿用科学记数法可表示为( )A .B .C .D .5.如图,直线l 1∥l 2,l 3与l 1、l 2分别相交于A 、C 两点,BC ⊥l 3交l 1于点B ,若,则∠2的度数为( )A .20°B .30°C .40°D .50°6.如图,将△ABC 绕点A 逆时针旋转角α()得到△ADE ,点B的对应点D 恰好落在BC 边上,左面正面326a a a⋅=()32628aa =()211a a a +=+()32a a a a +÷=10.410.4810.410⨯910.410⨯81.0410⨯91.0410⨯170∠=︒0180α<<︒2C BAl 3l 2l 1若DE ⊥AC ,,则旋转角α的度数是( )A .40°B .50°C .60°D .70°(第6题图)(第9题图)(第10题图)7.2023年9月5日是第八个“中华慈善日”,主题为“携手参与慈善,共创美好生活”.某校为了响应中华慈善总会的号召,举行捐款活动。
湖南省长沙市长郡教育集团2020-2021学年度九年级第一学期第一次月考数学试卷 解析版

湖南省长沙市长郡教育集团2020-2021学年度初三年级第一学期第一次月考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.﹣的绝对值是()A.﹣2020B.﹣C.D.20202.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列计算正确的是()A.﹣2(a﹣b)=﹣2a+b B.2c2﹣c2=2C.x2y﹣4yx2=﹣3x2y D.3a+2b=5ab4.对于二次函数y=﹣2(x+3)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=﹣3C.顶点坐标为(﹣3,0)D.当x<﹣3 时,y随x的增大而减小5.如图,某石油公司计划在三条公路围成的一块平地上建一个加油站,综合各种因素,要求这个加油站到三条公路的距离相等,则应建在()A.△ABC的三条内角平分线的交点处B.△ABC的三条高线的交点处C.△ABC三边的中垂线的交点处D.△ABC的三条中线的交点处6.如图,在⊙O中,∠BOD=120°,则∠BCD的度数是()A.60°B.80°C.120°D.150°7.用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.每一个内角都大于90°C.有一个内角小于或等于90°D.每一个内角都小于90°8.如图,在△ABC中,∠C=64°,将△ABC绕着点A顺时针旋转后,得到△AB′C′,且点C′在BC上,则∠B′C′B的度数为()A.42°B.48°C.52°D.589.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B.C.D.10.如图,已知点A(2,1),B(0,2),将线段AB绕点M逆时针旋转到A1B1,点A与A1是对应点,则点M的坐标是()A.(0,﹣2)B.(1,﹣1)C.(0,0)D.(﹣1,﹣1)11.二次函数y=kx2﹣8x+8的图象与x轴有交点,则k的取值范围是()A.k<2B.k<2且k≠0C.k≤2D.k≤2且k≠0 12.如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=,则弦BC的最大值为()A.B.3C.D.二、填空题(本大题共有4小题,每小题3分,共12分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)13.把多项式4x﹣4x3因式分解为:.14.使得有意义的x的取值范围是.15.如图,P A、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD 的周长等于10cm,则P A=cm.16.如图,在正方形ABCD中,AB=8,点M在CD边上,且DM=2,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为.三、解答题(本大题共9小题,共72分)17.计算:.18.先化简,再求值:÷(﹣x+1),其中x=4.19.求满足不等式组并把解集在数轴上表示出来.20.2020年是特殊的一年,新年以来我们经历了新型冠状病毒肺炎,举国上下众志成城,共同抗疫.严酷战疫中,我们又一次感受到祖国的强大.口罩也成为人们防护防疫的必备武器.临高县某药店有2500枚口罩准备出售.从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)统计的这组数据的平均数为,众数为,中位数为;(3)根据样本数据,估计这2500枚口罩中,价格为2.0元的约有为枚.21.如图,MB,MD是⊙O的两条弦,点A,C分别在,上,且AB=CD,M是的中点.(1)求证:MB=MD;(2)过O作OE⊥MB于点E,当OE=1,MD=4时,求⊙O的半径.22.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B、C都是格点.(1)将△ABC绕点A逆时针旋转90°得到△A1B1C1;(2)作△A1B1C1关于点O成中心对称的△A2B2C2;(3)B1B2的长=;四边形C2B2C1B1的面积为.23.如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆.(1)如图1,求证:AD是⊙O的切线;(2)如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:AG=BG;②若AD=2,CD=3,求FG的长.24.某公司销售一种商品,成本为每件20元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价x(元)406080日销售量y(件)806040(1)求y与x的关系式;(2)若物价部门规定每件商品的利润率不得超过100%,求公司销售该商品获得的最大日利润;(3)若物价部门规定该商品销售单价不能超过a元,并且由于某种原因,该商品每件成本变成了之前的2倍,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.25.已知抛物线y=ax2+bx+c与x轴交于A(3,0),与y轴交于C(0,3),又经过点B(4,1).(1)求抛物线的函数关系式;(2)如图1,连接AB,在题1中的抛物线上是否存在点P,使△P AB的外接圆圆心恰好在P A上?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图2,连接AC,E为线段AC上任意一点(不与A、C重合),经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.湖南省长沙市长郡教育集团2020-2021学年度初三年级第一学期第一次月考数学试卷参考答案与试题解析一.选择题(共12小题)1.﹣的绝对值是()A.﹣2020B.﹣C.D.2020【分析】﹣的绝对值等于它的相反数,据此求解即可.【解答】解:|﹣|=.故选:C.2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形又是中心对称图形,故此选项符合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:B.3.下列计算正确的是()A.﹣2(a﹣b)=﹣2a+b B.2c2﹣c2=2C.x2y﹣4yx2=﹣3x2y D.3a+2b=5ab【分析】根据各个选项中的式子,可以计算出正确的结果,本题得以解决.【解答】解:∵﹣2(a﹣b)=﹣2a+2b,故选项A错误;∵2c2﹣c2=c2,故选项B错误;∵x2y﹣4yx2=﹣3x2y,故选项C正确;∵3a+2b不能合并,故选项D错误;故选:C.4.对于二次函数y=﹣2(x+3)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=﹣3C.顶点坐标为(﹣3,0)D.当x<﹣3 时,y随x的增大而减小【分析】根据抛物线的性质由a=﹣2得到图象开口向下,根据顶点式得到顶点坐标为(﹣3,0),对称轴为直线x=﹣3,当x<﹣3时,y随x的增大而增大.【解答】解:二次函数y=﹣2(x+3)2的图象开口向下,顶点坐标为(﹣3,0),对称轴为直线x=﹣3,当x<﹣3时,y随x的增大而增大,故A、B、C正确,D不正确,故选:D.5.如图,某石油公司计划在三条公路围成的一块平地上建一个加油站,综合各种因素,要求这个加油站到三条公路的距离相等,则应建在()A.△ABC的三条内角平分线的交点处B.△ABC的三条高线的交点处C.△ABC三边的中垂线的交点处D.△ABC的三条中线的交点处【分析】三条公路围成一个三角形,三角形中到三边的距离相等的点是三角形的内心,即三条内角平分线的交点.【解答】解:三角形中到三边的距离相等的是三角形的内心,即为三条内角平分线的交点.故选:A.6.如图,在⊙O中,∠BOD=120°,则∠BCD的度数是()A.60°B.80°C.120°D.150°【分析】根据圆周角定理得出∠A=∠DOB=60°,根据圆内接四边形的性质得出∠A+∠BCD=180°,代入求出即可.【解答】解:∵对的圆周角是∠A,对的圆心角是∠DOB,又∵∠BOD=120°,∴∠A=∠DOB=60°,∵A、B、C、D四点共圆,∴∠A+∠BCD=180°,∴∠BCD=180°﹣60°=120°,故选:C.7.用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.每一个内角都大于90°C.有一个内角小于或等于90°D.每一个内角都小于90°【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【解答】解:反证法证明“四边形中至少有一个内角大于或等于90°”时,假设每一个内角都小于90°,故选:D.8.如图,在△ABC中,∠C=64°,将△ABC绕着点A顺时针旋转后,得到△AB′C′,且点C′在BC上,则∠B′C′B的度数为()A.42°B.48°C.52°D.58【分析】根据旋转的性质,可以得到AC=AC′,然后根据∠C=64°,即可得到旋转角的度数,然后三角形内角和,即可得到∠B′C′B的度数.【解答】解:∵将△ABC绕着点A顺时针旋转后,得到△AB′C′,∠C=64°,∴AC=AC′,∠CAC′=∠BAB′,∠B=∠B′,∴∠C=∠AC′C=64°,∴∠CAC′=52°,∴∠BAB′=52°,∴∠B′AD=52°,∵∠B=∠B′,∠BDC′=∠B′DA,∴∠BC′D=∠B′AD=52°,即∠B′C′B的度数为52°,故选:C.9.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B.C.D.【分析】由y=ax2+bx+c的图象判断出a<0,b<0,于是得到一次函数y=ax+b的图象经过二,三,四象限,即可得到结论.【解答】解:∵y=ax2+bx+c的图象的开口向下,∴a<0,∵对称轴在y轴的左侧,∴b<0,∴一次函数y=ax+b的图象经过二,三,四象限.故选:C.10.如图,已知点A(2,1),B(0,2),将线段AB绕点M逆时针旋转到A1B1,点A与A1是对应点,则点M的坐标是()A.(0,﹣2)B.(1,﹣1)C.(0,0)D.(﹣1,﹣1)【分析】作出对应点连线的垂直平分线,它们的交点就是M点.【解答】解:如图,点M的坐标是(1,﹣1),故选:B.11.二次函数y=kx2﹣8x+8的图象与x轴有交点,则k的取值范围是()A.k<2B.k<2且k≠0C.k≤2D.k≤2且k≠0【分析】直接利用△=b2﹣4ac≥0,进而求出k的取值范围.【解答】解:∵二次函数与y=kx2﹣8x+8的图象与x轴有交点,∴△=b2﹣4ac=64﹣32k≥0,k≠0,解得:k≤2且k≠0.故选:D.12.如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=,则弦BC的最大值为()A.B.3C.D.【分析】过点O作OE⊥AB于E,由垂径定理易知E是AB中点,得OE是△ABC中位线,则BC=2OE,而OE≤OP,故BC≤2OP,即可得出答案.【解答】解:过点O作OE⊥AB于E,如图:∵O为圆心,∴AE=BE,∴OE=BC,∵OE≤OP,∴BC≤2OP,∴当E、P重合时,即OP垂直AB时,BC取最大值,∴弦BC的最大值为:2OP=2.故选:A.二.填空题(共4小题)13.把多项式4x﹣4x3因式分解为:4x(1+x)(1﹣x).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=4x(1﹣x2)=4x(1+x)(1﹣x).故答案为:4x(1+x)(1﹣x).14.使得有意义的x的取值范围是x>﹣1且x≠1.【分析】根据分式有意义的条件、二次根式有意义的条件和零指数幂的定义得出x﹣1≠0且x+1>0,再求出不等式的解集即可.【解答】解:要使有意义,必须x﹣1≠0且x+1>0,解得:x>﹣1且x≠1,故答案为:x>﹣1且x≠1.15.如图,P A、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD 的周长等于10cm,则P A=5cm.【分析】由于DA、DC、BC都是⊙O的切线,可根据切线长定理,将△PCD的周长转换为P A、PB的长,然后再进行求解.【解答】解:如图,设DC与⊙O的切点为E;∵P A、PB分别是⊙O的切线,且切点为A、B;∴P A=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=P A+PB=10(cm);∴P A=PB=5cm,故答案为:5.16.如图,在正方形ABCD中,AB=8,点M在CD边上,且DM=2,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为10.【分析】连接BM.先判定△F AE≌△MAB(SAS),即可得到EF=BM.再根据BC=CD =AB=8,CM=6,利用勾股定理即可得到,Rt△BCM中,BM=10,进而得出EF的长.【解答】解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠F AB=∠MAD,∴∠F AB=∠MAE,∴∠F AB+∠BAE=∠BAE+∠MAE,∴∠F AE=∠MAB,∴△F AE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=8.∵DM=2,∴CM=6.在Rt△BCM中,BM===10,∴EF=10,故答案为:10.三.解答题(共1小题)17.计算:.【分析】分别根据零指数幂,负指数幂、绝对值、二次根式的运算法则计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣1﹣,=﹣1﹣+1+4﹣,=4﹣.18.先化简,再求值:÷(﹣x+1),其中x=4.【考点】分式的化简求值.【专题】分式;运算能力.【答案】原式=,原式=﹣.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:÷(﹣x+1)====,当x=4时,原式==﹣.19.求满足不等式组并把解集在数轴上表示出来.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【答案】﹣1≤x<3,.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式组的解集表示在数轴上即可.【解答】解:,解不等式①得x≥﹣1.解不等式②得x<3.所以不等式组的解集为﹣1≤x<3,在数轴上表示不等式组的解集如图:20.2020年是特殊的一年,新年以来我们经历了新型冠状病毒肺炎,举国上下众志成城,共同抗疫.严酷战疫中,我们又一次感受到祖国的强大.口罩也成为人们防护防疫的必备武器.临高县某药店有2500枚口罩准备出售.从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)统计的这组数据的平均数为,众数为,中位数为;(3)根据样本数据,估计这2500枚口罩中,价格为2.0元的约有为枚.【考点】用样本估计总体;加权平均数;中位数;众数.【专题】统计的应用;数据分析观念.【答案】(1)28;(2)1.52元,1.8元,1.5元;(3)200.【分析】(1)根据扇形统计图中的数据,可以计算出m%的值,从而可以得到m的值;(2)根据扇形统计图中的数据可以得到这组数据的平均数,然后根据条形统计图中的数据可以得到这组数据的众数和中位数;(3)根据统计图中的数据,可以计算出质量为2.0元的约多少枚.【解答】解:(1)m%=1﹣10%﹣22%﹣32%﹣8%=28%,即m的值是28,故答案为:28;(2)平均数是:1.0×10%+1.2×22%+1.5×28%+1.8×32%+2.0×8%=1.52元,∵本次调查了5+11+14+16+4=50枚,中位数是:1.5元,众数是1.8元;故答案为:1.52元,1.8元,1.5元;(3)2500×8%=200(枚),答:价格为2.0元的约200枚.故答案为:200.21.如图,MB,MD是⊙O的两条弦,点A,C分别在,上,且AB=CD,M是的中点.(1)求证:MB=MD;(2)过O作OE⊥MB于点E,当OE=1,MD=4时,求⊙O的半径.【考点】勾股定理;垂径定理;圆心角、弧、弦的关系.【专题】与圆有关的计算;应用意识.【答案】见试题解答内容【分析】(1)想办法证明=即可解决问题.(2)连接OM,利用勾股定理垂径定理解决问题即可.【解答】(1)证明:∵AB=CD,∴=,∵M是的中点,∴=,∴=,∴BM=DM.(2)解:如图,连接OM.∵DM=BM=4,OE⊥BM,∴EM=BE=2,∵OE=1,∠OEM=90°,∴OM===,∴⊙O的半径为.22.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B、C都是格点.(1)将△ABC绕点A逆时针旋转90°得到△A1B1C1;(2)作△A1B1C1关于点O成中心对称的△A2B2C2;(3)B1B2的长=;四边形C2B2C1B1的面积为.【考点】勾股定理;作图﹣旋转变换.【专题】平移、旋转与对称;几何直观.【答案】(1)、(2)见解答;(3)10;12.【分析】(1)利用网格特点和旋转的性质画出B、C的对应点B1、C1即可;(2)利用网格特点,分别延长A1O、B1O、C1O,使A2O=A1O、B2O=B1O、C2O=C1O,从而得到A2、B2、C2;(3)利用勾股定理计算B1B2的长;利用平行四边形的面积公式计算四边形C2B2C1B1的面积.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)B1B2的长=2=10;四边形C2B2C1B1的面积=2×6=12.故答案为10,12.23.如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆.(1)如图1,求证:AD是⊙O的切线;(2)如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:AG=BG;②若AD=2,CD=3,求FG的长.【考点】圆的综合题.【专题】几何综合题.【答案】见试题解答内容【分析】(1)连接OA,OB,OC,由AC=AB,OA=OA,OC=OB可证出△OAC≌△OAB(SSS),利用全等三角形的性质可得出∠OAC=∠OAB,即AO平分∠BAC,利用垂径定理可得出AO⊥BC,结合AD∥BC可得出AD⊥AO,由此即可证出AD是⊙O的切线;(2)①连接AE,由圆内接四边形对角互补结合∠BCE=90°可得出∠BAE=90°,由同角的余角相等可得出∠BAG=∠AEB,结合∠ABC=∠ACB=∠AEB可得出∠BAG=∠ABC,再利用等角对等腰可证出AG=BG;②由∠ADC=∠AFB=90°,∠ACD=∠ABF,AC=AB可证出△ADC≌△AFB(AAS),利用全等三角形的性质可求出AF,BF的长,设FG=x,在Rt△BFG中,利用勾股定理可求出x的值,此题得解.【解答】(1)证明:如图1,连接OA,OB,OC.在△OAC和△OAB中,,∴△OAC≌△OAB(SSS),∴∠OAC=∠OAB,∴AO平分∠BAC,∴AO⊥BC.又∵AD∥BC,∴AD⊥AO,∴AD是⊙O的切线.(2)①证明:如图2,连接AE.∵∠BCE=90°,∴∠BAE=90°.又∵AF⊥BE,∴∠AFB=90°.∵∠BAG+∠EAF=∠AEB+∠EAF=90°,∴∠BAG=∠AEB.∵∠ABC=∠ACB=∠AEB,∴∠BAG=∠ABC,∴AG=BG.②解:在△ADC和△AFB中,,∴△ADC≌△AFB(AAS),∴AF=AD=2,BF=CD=3.设FG=x,在Rt△BFG中,FG=x,BF=3,BG=AG=x+2,∴FG2+BF2=BG2,即x2+32=(x+2)2,∴x=,∴FG=.24.某公司销售一种商品,成本为每件20元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价x(元)406080日销售量y(件)806040(1)求y与x的关系式;(2)若物价部门规定每件商品的利润率不得超过100%,求公司销售该商品获得的最大日利润;(3)若物价部门规定该商品销售单价不能超过a元,并且由于某种原因,该商品每件成本变成了之前的2倍,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.【考点】二次函数的应用.【专题】二次函数的应用;数据分析观念.【答案】(1)y=﹣x+120;(2)公司销售该商品获得的最大日利润为1600元;(3)a=70.【分析】(1)用待定系数法即可求解;(2)公司销售该商品获得的最大日利润为w元,则w=(x﹣20)y=(x﹣20)(﹣x+120)=﹣(x﹣70)2+2500,进而求解;(3)由题意得:w=(x﹣20×2)(﹣x+120)=﹣x2+160x﹣4800=﹣(x﹣80)2+1600,当w最大=1500时,﹣(x﹣80)2+1600=1500,解得x1=70,x2=90,而40≤x≤a,进而求解.【解答】解:(1)设函数的表达式为y=kx+b,将(40,80)、(60,60)代入上式得:,解得,故y与x的关系式为y=﹣x+120;(2)公司销售该商品获得的最大日利润为w元,则w=(x﹣20)y=(x﹣20)(﹣x+120)=﹣(x﹣70)2+2500,∵x﹣2≥0,﹣x+120≥0,x﹣20≤20×100%,∴20≤x≤40,∵﹣1<0,故抛物线开口向下,故当x<70时,w随x的增大而增大,∴当x=40(元)时,w的最大值为1600(元),故公司销售该商品获得的最大日利润为1600元;(3)由题意得:w=(x﹣20×2)(﹣x+120)=﹣x2+160x﹣4800=﹣(x﹣80)2+1600,当w最大=1500时,﹣(x﹣80)2+1600=1500,解得x1=70,x2=90,∵20≤x≤a,∴有两种情况,①a<80时,在对称轴左侧,w随x的增大而增大,∴当x=a=70时,w最大=1500,②a≥80时,在40≤x≤a范围内w最大=1600≠1500,∴这种情况不成立,∴a=70.25.已知抛物线y=ax2+bx+c与x轴交于A(3,0),与y轴交于C(0,3),又经过点B(4,1).(1)求抛物线的函数关系式;(2)如图1,连接AB,在题1中的抛物线上是否存在点P,使△P AB的外接圆圆心恰好在P A上?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图2,连接AC,E为线段AC上任意一点(不与A、C重合),经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.【考点】二次函数综合题.【专题】综合题;数形结合;待定系数法;一次方程(组)及应用;一元二次方程及应用;一次函数及其应用;二次函数图象及其性质;等腰三角形与直角三角形;几何直观;运算能力;推理能力.【答案】(1)抛物线的函数关系式为y=x2﹣x+3;(2)点P的坐标为(﹣1,6);(3)点E的坐标为(,).【分析】(1)将A(3,0),C(0,3),B(4,1)代入y=ax2+bx+c,用待定系数法求解即可;(2)先用圆周角定理及勾股定理的逆定理验证∠ABP=90°,∠CAB=90°,再过点B 作BP∥AC,写出直线AC的解析式,再解得BP的解析式,然后将直线BP和抛物线的解析式联立,解方程组并根据题意作出取舍,即可得出点P的坐标;(3)过点B作BH⊥x轴于点H,求得∠EOF=90°,设点E(x,﹣x+3),由勾股定理OE2,进而表示出S△OEF,从而得出关于x的二次函数,将其写成顶点式,根据二次函数的性质可得答案.【解答】解:(1)将A(3,0),C(0,3),B(4,1)代入y=ax2+bx+c得:,解得:,∴抛物线的函数关系式为y=x2﹣x+3;(2)在题1中的抛物线上存在点P,使△P AB的外接圆圆心恰好在P A上.∵△P AB的外接圆圆心恰好在P A上,∴∠ABP=90°,∵A(3,0),C(0,3),B(4,1),∴AC==3,AB==,BC==2,∴AC2+AB2=BC2,∴∠CAB=90°,过点B作BP∥AC,交抛物线于点P,如图1所示:∵A(3,0),C(0,3),∴直线AC的解析式为y=﹣x+3,设直线BP的解析式为y=﹣x+b,则﹣4+b=1,解得b=5.∴直线BP的解析式为y=﹣x+5,联立,解得,,又∵点B(4,1),∴点P的坐标为(﹣1,6);(3)过点B作BH⊥x轴于点H,如图2所示:∵A(3,0),C(0,3),B(4,1),∴∠OAE=45°,∠OAF=∠BAH=45°,又∵∠OFE=∠OAE,∠OEF=∠OAF,∴∠OEF=∠OFE=45°,∴OE=OF,∠EOF=180°﹣45°×2=90°,∵点E在直线AC上,直线AC的解析式为y=﹣x+3,∴设点E(x,﹣x+3),由勾股定理得:OE2=x2+(﹣x+3)2=2x2﹣6x+9,∴S△OEF=OE•OF=OE2=x2﹣3x+=+,∴当x=时,S△OEF取最小值,此时﹣x+3=﹣+3=,∴点E的坐标为(,).。
24-25九年级数学第一次月考卷(考试版A4)【人教版九年级上册第二十一章~第二十二章】(贵州专用)

2024-2025学年九年级数学上学期第一次月考卷(贵州专用)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版九年级上册第二十一章~第二十二章。
5.难度系数:0.8。
第一部分(选择题共36分)一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若关于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,则m的取值范围是( )A.m≠2B.m=2C.m≥2D.m≠02.将抛物线y=x2+2x﹣1向右平移3个单位后得到新抛物线的顶点坐标为( )A.(﹣4,﹣1)B.(﹣4)C.(2,1)D.(2,﹣2)3.若一元二次方程ax2+bx+c=0(a≠0)的一个根是x=1,则a+b+c的值是( )A.0B.﹣1C.1D.不能确定4.延时课上,4个同学以接龙的方式解一元二次方程,每人负责完成一个步骤,如图所示,其中有一位同学所负责的步骤是错误的,则这位同学是( )A.小张B.小王C.小李D.小赵5.关于x的一元二次方程x2+bx﹣8=0的根的情况,下列判断正确的是( )A.只有一个实数根B.没有实数根C.有两个相等的实数根D.有两个不相等的实数根6.已知a,b,c为实数,且b+c=5﹣4a+3a2,c﹣b=1﹣2a+a2,则a,b,c之间的大小关系是( )A.a<b≤c B.b<a≤c C.b≤c<a D.c<a≤b7.新能源汽车销量的快速增长,促进了汽车企业持续的研发投入和技术创新.某上市公司今年1月份一品牌的新能源车单台的生产成本是13万元,由于技术改进和产能增长,生产成本逐月下降,3月份的生产成本为12.8万元.假设该公司今年一季度每个月生产成本的下降率都相同,设每个月生产成本的下降率为x,则根据题意所列方程正确的是( )A.13(1﹣x)2=12.8B.13(1﹣x2)=12.8C.12.8(1﹣x2)=13D.13(1+x)2=12.88.一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为( )A.B.C.D.9.已知抛物线y=ax2﹣2ax+b(a<0)的图象上三个点的坐标分别为A(3,y1),,C,则y1,y2,y3的大小关系为( )A.y3<y1<y2B.y2<y1<y3C.y1<y3<y2D.y1<y2<y310.点A(a,b1),B(a+2,b2)在函数y=﹣x2+2x+3的图象上,当a≤x≤a+2时,函数的最大值为4,最小值为b1,则a的取值范围是( )A.0≤a≤2B.﹣1≤a≤2C.﹣1≤a≤1D.﹣1≤a≤011.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c >0;④b2﹣4ac>0;其中正确的结论有( )A.1个B.2个C.3个D.4个12.如图所示,在菱形ABCD中,AB=6,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C、D重合.当点E、F在BC、CD上滑动时,△CEF的面积最大值是( )A.4B.C.3D.第二部分(非选择题共114分)二、填空题:本题共4小题,每小题4分,共16分。
湖南省长沙市湖南师大附中2022学年九年级下学期第一次月考数学试题(含答案与解析)

C.10D.16
【9题答案】
【答案】B
【解析】
【分析】由题意知,盒子中白球的个数可能是 ,计算求解即可.
【详解】解:由题意知
∴盒子中白球的个数可能是8个
故选B.
【点睛】本题考查了频率.解题的关键在于明确大量试验可以用频率估计概率.
10.在一次数学活动课上,某数学老师在4张同样的纸片上各写了一个正整数,从中随机取2张,并将它们上面的数相加,重复这样做,每次所得的和都是5,6,7,8中的一个数,并且这4个数都能取到,根据以上信息,下列判断正确的是()
【详解】解:A.不是中心对称图形,故本选项不符合题意;
B.不是中心对称图形,故本选项不符合题意;
C.是中心对称图形,故本选项符合题意;
D.不是中心对称图形,故本选项不符合题意.
故选:C.
【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转 后与原图重合,掌握中心对称图形的概念是解题的关键.
14.已知扇形的圆心角为 ,半径为 ,则扇形的弧长是 .
15.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是________.
16.如图,AB为半圆O的直径,点C为半圆上的一点,CD⊥AB于点D,若AB=10,CD=4,则tan∠BCD的值为________.
(1)参加这次调查的学生总人数为___________人;
(2)请补全条形统计图;
(3)扇形统计图中类别 所对应扇形的圆心角度数为__________ ;
(4)类别 的4名学生中有3名男生和1名女生,班主任想从这4名学生中随机选取2名学生进行访谈,请用列举法(画树状图或列表)求所选取的2名学生恰好都是男生的概率.
人教版数学九年级(下)第一次月考数学试卷(含答案)

九年级(下)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.|﹣3|﹣1的值等于()A.4B.﹣4C.±4D.22.下列计算正确的是()A.a2+a2=2a4B.a2•a3=a6C.(a+1)2=a2+1D.(﹣a2)2=a43.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×103吨B.6.75×104吨C.0.675×105吨D.67.5×103吨4.下列立体图形中,俯视图是正方形的是()A.B.C.D.5.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°6.下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形7.如图,已知AB、AD是⊙O的弦,∠B=20°,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=15°,则∠BAD的度数是()A.30°B.45°C.20°D.35°8.若实数x,y满足条件2x2﹣6x+y2=0,则x2+y2+2x的最大值是()A.14B.15C.16D.不能确定二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.计算:═.10.化简:=.11.分解因式:3x2﹣6x+3=.12.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.6,那么摸出黑球的概率是.13.若关于x的分式方程﹣=1解为非负数,则a的范围.14.已知圆锥的底面半径为1cm,母线长为3cm,则其侧面积为cm2.(结果保留π)15.直角坐标平面上将二次函数y=﹣2(x﹣1)2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为.16.在Rt△ABC中,AD是斜边BC边上的中线,G是△ABC重心,如果BC=6,那么线段AG的长为.17.在关于x,y的二元一次方程组中,若a(2x+3y)=2,则a=.18.如图,矩形ABCD中,AB=2,BC=4,P,Q分别是BC,AB上的两个动点,AE=1,△AEQ沿EQ 翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算(1)|﹣1|﹣﹣(1﹣)0+4sin30°(2)解不等式组:.20.(8分)先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)请将条形图补充完整;(3)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果;(2)求点A落在第四象限的概率.23.(10分)某文化用品商店用1000元购进一批“晨光”套尺,很快销售一空;商店又用1500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?24.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=45°,AC=4,求图中阴影部分的面积.25.(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.26.(10分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?27.(12分)平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣2,﹣2),(,)…,都是梦之点,显然梦之点有无数个.(1)若点P(3,b)是反比例函数y=(n为常数,n≠0)的图象上的梦之点,则这个反比例函数解析式为;(2)⊙O的半径是2,①⊙O上的所有梦之点的坐标为;②已知点M(m,3),点Q是(1)中反比例函数y=图象上异于点P的梦之点,过点Q的直线q与y轴交于点A,tan∠OAQ=1.若在⊙O上存在一点N,使得直线MN∥q,求出m的取值范围.28.(12分)如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.九年级(下)第一次月考数学试卷参考答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.D;2.D;3.B;4.B;5.C;6.A;7.D;8.B;二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.4;10.﹣1;11.3(x﹣1)2;12.0.2;13.a≤﹣4且a≠﹣8;14.3π;15.(0,﹣1);16.2;17.2或﹣1;18.4;三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)21.560;26.26;27.y=;(,)、(﹣,﹣);。
湖南省长沙市开福区青竹湖湘一外国语学校2019-2020学年初三下学期第一次月考数学试卷 解析版

2019-2020学年湖南省长沙市开福区青竹湖湘一外国语学校九年级(下)第一次段考数学试卷一.选择题(共12小题)1.下列实数中,是无理数的是()A.0B.﹣3C.D.2.不等式组的解集在数轴上表示为()A.B.C.D.3.下列立体图形中,俯视图不是圆的是()A.B.C.D.4.若m>n,下列不等式不一定成立的是()A.m+3>n+3B.﹣3m<﹣3n C.>D.m2>n25.一次函数y=2x﹣3的图象经过的象限是()A.一、二、三B.二、三、四C.一、三、四D.一、二、四6.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分7.下列说法正确的是()A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为78.如图,在△ABC中,D,E分别是边AB,AC的中点,△ADE和四边形BCED的面积分别记为S1,S2,那么的值为()A.B.C.D.9.如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,则坡面AB的长度是(A.15m B.20m C.20m D.10m10.如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()A.x<﹣1B.﹣1<x<0C.x<﹣1或0<x<2D.﹣1<x<0或x>211.关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为()A.B.C.D.012.如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B 在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最小值为()A.4B.3C.7D.8二.填空题(共6小题)13.分解因式:x4﹣4x2=.14.在函数y=中,自变量x的取值范围是.15.如图所示的电路中,当随机闭合开关S1、S2、S3中的两个时,能够让灯泡发光的概率为.16.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为.17.如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C 的位置,则图中阴影部分的面积为.18.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF 的面积为.三.解答题(共6小题)19.计算:(3.14﹣π)0+|﹣1|﹣2cos45°+(﹣1)2019.20.先化简,再求值(﹣1)÷,然后选一个你喜欢的的数代入求值.21.某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.如图,在四边形ABCD中,AD∥BC,延长BC到E,使CE=BC,连接AE交CD于点F,点F是CD的中点.求证:(1)△ADF≌△ECF.(2)四边形ABCD是平行四边形.23.为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?24.如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF;(3)若BD=1,CD=,求弦AC的长.参考答案与试题解析一.选择题(共12小题)1.下列实数中,是无理数的是()A.0B.﹣3C.D.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、0是有理数,故A错误;B、﹣3是有理数,故B错误;C、是有理数,故C错误;D、是无理数,故D正确;故选:D.2.不等式组的解集在数轴上表示为()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x﹣2≤0,得:x≤1,则不等式组的解集为﹣1<x≤1,故选:B.3.下列立体图形中,俯视图不是圆的是()A.B.C.D.【分析】俯视图是从几何体的上面看物体,所得到的图形,分析每个几何体,解答出即可.【解答】解:A、圆柱的俯视图是圆;故本项不符合题意;B、圆锥的俯视图是圆;故本项不符合题意;C、立方体的俯视图是正方形;故本项符合题意;D、球的俯视图是圆;故本项不符合题意.故选:C.4.若m>n,下列不等式不一定成立的是()A.m+3>n+3B.﹣3m<﹣3n C.>D.m2>n2【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】解:A、不等式的两边都加3,不等号的方向不变,故A正确,不符合题意;B、不等式的两边都乘以﹣3,不等号的方向改变,故B正确,不符合题意;C、不等式的两边都除以3,不等号的方向不变,故C正确,不符合题意;D、如m=2,n=﹣3,m>n,m2<n2;故D错误,符合题意;故选:D.5.一次函数y=2x﹣3的图象经过的象限是()A.一、二、三B.二、三、四C.一、三、四D.一、二、四【分析】根据题目中的函数解析式和一次函数的性质可以解答本题.【解答】解:∵一次函数y=2x﹣3,∴该函数经过第一、三、四象限,故选:C.6.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.7.下列说法正确的是()A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为7【分析】事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.【解答】解:A.打开电视机,正在播放“张家界新闻”是随机事件,故A错误;B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B错误;C.两组数据平均数相同,则方差大的更不稳定,故C错误;D,数据5,6,7,7,8的中位数与众数均为7,正确.故选:D.8.如图,在△ABC中,D,E分别是边AB,AC的中点,△ADE和四边形BCED的面积分别记为S1,S2,那么的值为()A.B.C.D.【分析】根据已知可得到△ADE∽△ABC,从而可求得其面积比,则不难求得的值.【解答】解:根据三角形的中位线定理,△ADE∽△ABC,DE:BC=1:2,所以它们的面积比是1:4,所以=,故选:C.9.如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,则坡面AB的长度是(A.15m B.20m C.20m D.10m【分析】在Rt△ABC中,已知了坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.【解答】解:在Rt△ABC中,∵BC=10m,tan A=1:,∴AC=BC÷tan A=10m,∴AB==20(m).故选:C.10.如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()A.x<﹣1B.﹣1<x<0C.x<﹣1或0<x<2D.﹣1<x<0或x>2【分析】根据一次函数图象在反比例函数图象上方的x的取值范围便是不等式kx+b>的解集.【解答】解:由函数图象可知,当一次函数y1=kx+b(k≠0)的图象在反比例函数y2=(m为常数且m≠0)的图象上方时,x的取值范围是:x<﹣1或0<x<2,∴不等式kx+b>的解集是x<﹣1或0<x<2故选:C.11.关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为()A.B.C.D.0【分析】根据一元二次方程根与系数的关系得到x1+x2=4,代入代数式计算即可.【解答】解:∵x1+x2=4,∴x1+3x2=x1+x2+2x2=4+2x2=5,∴x2=,把x2=代入x2﹣4x+m=0得:()2﹣4×+m=0,解得:m=,故选:A.12.如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B 在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最小值为()A.4B.3C.7D.8【分析】连接OC,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最小,根据勾股定理和题意求得OP=2,则AB的最小长度为4.【解答】解:连接OC,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最小,∵C(3,4),∴OC==5,∵以点C为圆心的圆与y轴相切.∴⊙C的半径为3,∴OP=OC﹣3=2,∴OP=OA=OB=2,∵AB是直径,∴∠APB=90°,∴AB长度的最小值为4,故选:A.二.填空题(共6小题)13.分解因式:x4﹣4x2=x2(x+2)(x﹣2).【分析】先提取公因式再利用平方差公式进行分解,即x4﹣4x2=x2(x2﹣4)=x2(x+2)(x﹣2);【解答】解:x4﹣4x2=x2(x2﹣4)=x2(x+2)(x﹣2);故答案为x2(x+2)(x﹣2);14.在函数y=中,自变量x的取值范围是x≥﹣2且x≠0.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.15.如图所示的电路中,当随机闭合开关S1、S2、S3中的两个时,能够让灯泡发光的概率为.【分析】根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.【解答】解:因为随机闭合开关S1,S2,S3中的两个,有3种方法,其中有2种能够让灯泡发光所以P(灯泡发光)=.故本题答案为:.16.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为24.【分析】根据菱形的对角线互相平分可得BO=DO,然后求出OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求出CD,然后根据菱形的周长公式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=DO,∵点E是BC的中点,∴OE是△BCD的中位线,∴CD=2OE=2×3=6,∴菱形ABCD的周长=4×6=24;故答案为:24.17.如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C 的位置,则图中阴影部分的面积为6π.【分析】根据图形可知,阴影部分的面积是半圆的面积与扇形ABC的面积之和减去半圆的面积.【解答】解:由图可得,图中阴影部分的面积为:=6π,故答案为:6π.18.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF 的面积为.【分析】设D(2m,2n),根据题意A(3m,0),C(0,3n),B(3m,3n),即可得出9=3m•3n,k=2m•2n=4mn,解得mn=1,由E(3m,n),F(m,3n),求得BE、BF,然后根据三角形面积公式得到S△BEF=BE•BF=mn=.【解答】解:设D(2m,2n),∵OD:OB=2:3,∴A(3m,0),C(0,3n),∴B(3m,3n),∵双曲线y=(x>0)经过矩形OABC的顶点B,∴9=3m•3n,∴mn=1,∵双曲线y=(x>0)经过点D,∴k=4mn∴双曲线y=(x>0),∴E(3m,n),F(m,3n),∴BE=3n﹣n=n,BF=3m﹣m=m,∴S△BEF=BE•BF=mn=故答案为.三.解答题(共6小题)19.计算:(3.14﹣π)0+|﹣1|﹣2cos45°+(﹣1)2019.【分析】分别计算出(3.14﹣π)0=1,|﹣1|=﹣1,2cos45°=2×=,+(﹣1)2019=1即可求解;【解答】解:(3.14﹣π)0+|﹣1|﹣2cos45°+(﹣1)2019=1+﹣1﹣2×﹣1=﹣1;20.先化简,再求值(﹣1)÷,然后选一个你喜欢的的数代入求值.【分析】直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案.【解答】解:原式=(﹣)•=•=•=,当x=8时,原式==.21.某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有40人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为90°;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360°乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【解答】解:(1)参加此次诗词大会预选赛的同学共有18÷45%=40(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为360°×=90°,故答案为:90°.(3)获二等奖的人数=40×20%=8,一等奖的人数为40﹣8﹣10﹣18=4(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率=.22.如图,在四边形ABCD中,AD∥BC,延长BC到E,使CE=BC,连接AE交CD于点F,点F是CD的中点.求证:(1)△ADF≌△ECF.(2)四边形ABCD是平行四边形.【分析】(1)根据平行线的性质得到∠DAF=∠E,根据线段中点的定义得到DF=CF,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AD=EC,等量代换得到AD=BC,根据平行四边形的判定定理即可得到结论.【解答】证明:(1)∵AD∥BC,∴∠DAF=∠E,∵点F是CD的中点,∴DF=CF,在△ADF与△ECF中,,∴△ADF≌△ECF(AAS);(2)∵△ADF≌△ECF,∴AD=EC,∵CE=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.23.为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?【分析】(1)直接利用今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机,分别得出方程求出答案;(2)根据题意表示出总费用进而利用一次函数增减性得出答案.【解答】解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y 万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值﹣0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.24.如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF;(3)若BD=1,CD=,求弦AC的长.【分析】(1)连接OC,可证得∠CAD=∠BCD,由∠CAD+∠ABC=90°,可得出∠OCD =90°,即结论得证;(2)证明△ABC≌△AFC可得CB=CF,又CB=CE,则CE=CF;(3)证明△DCB∽△DAC,可求出DA的长,求出AB长,设BC=a,AC=a,则由勾股定理可得AC的长.【解答】解:(1)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,∵CE=CB,∴∠CAE=∠CAB,∵∠BCD=∠CAE,∴∠CAB=∠BCD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB+∠BCD=90°,∴∠OCD=90°,∴CD是⊙O的切线;(2)∵∠BAC=∠CAE,∠ACB=∠ACF=90°,AC=AC,∴△ABC≌△AFC(ASA),∴CB=CF,又∵CB=CE,∴CE=CF;(3)∵∠BCD=∠CAD,∠ADC=∠CDB,∴△DCB∽△DAC,∴,∴,∴DA=2,∴AB=AD﹣BD=2﹣1=1,设BC=a,AC=a,由勾股定理可得:,解得:a=,∴.。
湖南省长沙市华益中学2023-2024学年九年级下学期第一次月考数学试题

湖南省长沙市华益中学2023-2024学年九年级下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数中属于无理数的是()A .3.14159265 BC .227D 2.2024中国甲辰(龙)年金银纪念币共13枚,其中15克圆形银质纪念币为精制币,成色99.9%,最大发行量300000枚,数字300000用科学记数法表示为( ) A .5310⨯ B .6310⨯ C .4310⨯ D .43010⨯ 3.第33届夏季奥运会将于2024年7月26日至8月11日在法国巴黎举行,下列巴黎奥运会项目图标中,轴对称图形是( )A .B .C .D .4.高速公路是指专供汽车高速行驶的公路.高速公路在建设过程中,通常要从大山中开挖隧道穿过,把道路取直以缩短路程.其中的数学原理是( )A .两点之间线段最短B .两点确定一条直线C .平行线之间的距离最短D .平面内经过一点有无数条直线5.不等式组 137315x x -≤⎧⎨<-⎩的解集在数轴上表示正确的是( ) A .B .C .D .6.如图,已知AB AD =,那么添加下列一个条件后,不能判定ABC ADC △≌△的是( )A .CB CD = B .BAC DAC ∠=∠ C .BCA DCA ∠=∠D .90B D ∠=∠=︒ 7.下列说法正确的是( )A .“经过有交通信号灯的路口,遇到红灯”是必然事件B .已知某篮球运动员投篮投中的概率为0.7,则他投10次一定可以投中7次C .调查全国数学老师对初中数学核心素养的了解情况,应采用全面调查D .数据9,7,2,6,3,4的中位数是58.已知圆弧的度数为120︒,弧长为12π,则圆的半径为( )A .2B .6C .8D .189.如图,已知ABC V 与DEF V 位似,位似中心为点O ,若ABC V 的周长与DEF V 的周长之比为3:2,则:OA OD 是( )A .9:4B .3:5C .3:2D .5:210.长沙市体育中考由三个项目组成,田径项目15分,基础项目10分,球类项目15分.①田径运动:1000米跑(男)、800米跑(女)、分值15分.②基础项目:引体向上(男)或一分钟仰卧起坐(女)、实心球、立定跳远、一分钟跳绳(学生自选其中一项,报考前确定),分值10分,③球类项目,篮球运球、足球运球、排球向上垫球、200米游泳(学生自选其中一项,报考前确定),分值15分.比如:男生小益选择了“1000米跑(男),实心球,排球”作为中考体育项目.请问,对于2024年参加体育中考的小华(女)而言,她总共可以有( )种不同选择.A .8B .10C .16D .32二、填空题11.分解因式:mn 2﹣m=.12.对甲、乙两个小麦品种各100株小麦的株高x (单位:m )进行测量,算出平均数和方差为:0.95x =甲,2 1.01s =甲,0.95x =乙,2 1.35s =乙,于是可估计株高较整齐的小麦品种是.13.若菱形的两条对角线长分别是6cm ,8cm ,则该菱形的面积是cm 2.14.已知蓄电池的电压恒定,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,流过的电流是2A ,那么此用电器的电阻是Ω.15.如图,CD 为Rt ABC △斜边AB 上的中线,E 为AC 的中点.若8AC =,5CD =,则DE =.16.如图,无人机在空中A 处测得某校旗杆顶部B 的仰角为30o ,底部C 的俯角为60o ,无人机与旗杆的水平距离AD 为6m ,则该校的旗杆高约为m .1.≈,结果精确到0.1)三、解答题17.计算:()0π20241tan60-+︒.18.先化简,再求值:()()()2(2)5x y x y x y x x y ++-+--,其中1x =,1y .19.阅读材料,完成下面问题:如图,点A 是直线EF 外一点,利用直尺和圆规按如下步骤作图.(1)利用MBC NBC △≌△,可得到BC 平分ABF ∠,请根据作图过程,直接写出这两个三角形全等的判定依据______;A .SASB .SSSC .AASD .ASA(2)求证:AD EF P .20.随着新课程标准的颁布,为落实立德树人根本任务,我省各学校组织了丰富多彩的研学活动,得到家长、社会的一致好评.某中学为进一步提高研学质量,着力培养学生的核心素养,选取了A .“青少年科技馆”,B .“渡江战役纪念馆”,C .“徽文化园”,D .“长江白紧豚保护研究所”四个研学基地进行研学.为了解学生对以上研学基地的喜欢情况,随机抽取部分学生进行调查统计(每名学生只能选择一个研学基地),根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在本次调查中,一共抽取了________名学生,并将条形统计图补充完整;(2)学校想从选择研学基地D 的学生中选取两名学生了解他们对研学活动的看法,已知选择研学基地D 的学生中恰有两名女生,请用列表法或画树状图的方法求出所选两人中恰有一名男生和一名女生的概率.21.如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,过点D 作DE AC∥交AB 于点E ,F 是AC 上的一点,且CF AE =,连接EF .(1)求证:四边形CDEF 是矩形.(2)若2,30AF B =∠=︒,求ABD △的面积.22.某校开设智能机器人编程的校本课程,购买了A ,B 两种型号的机器人模型.A 型机器人模型单价比B 型机器人模型单价多200元,用2000元购买A 型机器人模型和用1200元购买B 型机器人模型的数量相同.(1)求A 型,B 型机器人模型的单价分别是多少元?(2)学校准备再次购买A 型和B 型机器人模型共40台,购买B 型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A 型和B 型机器人模型各多少台时花费最少?最少花费是多少元?23.如图,在Rt ABC △中,90ACB ∠=︒,O 为AC 边上一点,连结OB ,以OC 为半径的半圆与AB 边相切于点D ,交AC 边于点E .(1)求证:BC BD =;(2)若OB OA =,2AE =,①求半圆O 的半径;②求图中阴影部分的面积.24.我们不妨约定:若点Q 的横纵坐标分别是点P 横纵坐标的k 倍()1k ≠,则把点Q 称为点P 的“k 阶位似点”.若一个函数的图象上至少存在这样的一组不重合的P Q -两点,则称该函数为“k 阶位似函数”.例如,点()2,4Q -是()1,2P -的“2阶位似点”,点P ,点Q 均在函数2y x =-图象上,所以一次函数2y x =-可以叫做“2阶位似一次函数”,仔细审题,认真回答下列问题:(1)下列说法,正确的打“√”,错误的打“⨯”.①点()1,3P 的“3阶位似点”在二次函数225y x x =-+的图象上.( )②无论k 取何值()1k ≠,一次函数31y x =+都不可能是“k 阶位似一次函数”.( ) ③若反比例函数()0m y m x=≠是一个“k 阶位似反比例函数”,则k 的值只能等于1-.( )(2)已知点Q 是点01,2P y ⎛⎫ ⎪⎝⎭的“k 阶位似点”,且均在“k 阶位似二次函数”224y x x c =-+的图象上,点(),M k c 在反比例函数8y x=的图象上,且点M 在第一象限,求0y 的值; (3)已知关于x 的“k 阶位似二次函数”()2212y t x t x t =-++-(其中k ,t 是常数,0k <)的顶点为M ,与y 轴交于点C ,直线MC 与坐标轴围成的三角形的面积为S ,若关于x 的一次函数320242y t x ⎛⎫=-+ ⎪⎝⎭随x 的增大而减小,求S 的取值范围. 25.如图1,在平面直角坐标系xOy 中,已知点B 的坐标为()0,2-,点A 是x 轴正半轴上一点,M e 是AOB V 的外接圆,点C 是劣弧OA 的中点,M e 的半径是2.(1)求AOB V 的周长;(2)如图2.连接AC ,BC .BC 与x 轴交于点D ,记BOD V 的面积为1S ,ACD V 的面积为2S ,求12S S 的值; (3)如图3,连接OM 交BC 于点K ,点P 为线段BM 上一点,连接PK 交OC 于点E ,交y 轴于点Q ,记BP 的长度为()02m m <<,BQ 的长度为n ,请求出n 关于m 的函数关系式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省长沙市九年级(下)第一次月考数学试卷(3月)
一、选择题(本大题共10个小题,每小题3分,共30分)
1.﹣的相反数是()
A.﹣B.C.D.﹣
2.下列立体图形中,俯视图与主视图不同的是()
A.B.C.D.
3.“你是那夜空中最美的星星,照亮我一路前行.”这首朗朗上口的湖南本土励志原创歌曲《早安隆回》成为了全球华人圈的超级神曲,该歌曲抖音单日最高播放量超过了4.5亿,数据450000000用科学记数法表示为()
A.0.45×109B.4.5×108C.4.5×109D.4.5×107
4.关于x的一元二次方程x2﹣4x+2=0的根的情况是()
A.有两个不相等的实数根B.没有实数根
C.有两个相等的实数根D.不能确定
5.如图所示,P是等边△ABC内的一点,若将△PBC绕点B旋转到△P′BA,则∠P′BP 的度数为()
A.45°B.60°C.90°D.120°
6.对于一组统计数据3,3,6,5,3.下列说法错误的是()
A.众数是3B.平均数是4C.中位数是6D.方差是1.6
7.如图所示,该数轴表示的不等式组的解集为()
A.x>1B.x≥﹣1C.﹣3<x≤﹣1D.x>﹣3
8.如图,四边形ABCD内接于⊙O,已知点C为的中点,若∠A=50°,则∠CBD的度
数为()
A.25°B.30°C.40°D.50°
9.在平面直角坐标系中,将直线y=2x+b沿x轴向右平移2个单位后恰好经过原点,则b 的值为()
A.2B.﹣2C.4D.﹣4
10.卡塔尔世界杯已经结束,阿根延捧得大力神杯!我们知道,世界杯小组赛分成8个小组,每小组4个队,小组内进行单循环赛(两支球队间只比赛一场),已知胜一场积3分,平一场积1分,负一场积0分,小组赛结束后,积分前两名(相同积分比较净胜球)进入16强.
下表是世界杯E组积分表.
排名球队积分
1日本6
2西班牙4
3德国4
4哥斯达黎加?
根据此表,可以推断哥斯达黎加的积分是()
A.0B.1C.2D.3
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若代数式在实数范围内有意义,则x的取值范围是.
12.若分式与分式的值相等,则x=.
13.已知m,n是一元二次方程x2+2x2﹣5=0的两个根,则m2+mn+2m的值是.14.如图1是第七届国际数学教育大会(ICME)的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能够组合得到如图2所示的四边形OABC,若AB=1,∠AOB=30°,tan∠BOC=,则BC的长为.
15.如图,点A在反比例函数的图象上,AB⊥x轴于点B,点C在x轴上,且CO=OB,△ABC的面积为2,则m的值为.
16.刘徽是我国魏晋时期卓越的数学家,他首次提出“割圆术”,利用圆内接正多边形逐步逼近圆来近似计算圆周率.如图,多边形A1A2A3…A n是⊙O的内接正n边形.已知⊙O 的半径为r,∠A1OA2的度数为α,点O到A1A2的距离为d,△A1OA2的面积为S.下面四个推断中,
①当n变化时,α随n的变化而变化,α与n满足函数关系.
②若α为定值,当r变化时,d随r的变化而变化,d与r满足正比例函数关系.
③无论n,r为何值,总有nS=πr2.
④若n为定值,当r变化时,S随r的变化而变化,S与r满足二次函数关系.
其中错误的是(填序号).
三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分)
17.计算:.
18.先化简,再求值:,其中a=2023.
19.如图所示,一轮船由西向东航行,在A处测得小岛P在北偏东75°的方向上,轮船行驶40海里后到达B处,此时测得小岛P在北偏东60°的方向上.
(1)求BP的距离;
(2)已知小岛周围22海里内有暗礁,若轮船仍向前航行,有无触礁的危险?
20.某校为了解学生参加“第二课堂”社团活动的情况,对报名参加A:足球,B:象棋,C:羽毛球,D:舞蹈这四项社团活动的学生(每人必选且只能选修一项)中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图1中A所占扇形的圆心角为36°.
根据以上信息,解答下列问题:
(1)这次被调查的学生共有人,并将条形统计图补充完整;
(2)若该校共有1000学生加入“第二课堂”社团活动,请你估计这1000名学生中有多少人参加了羽毛球社团;
(3)在象棋社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加市级象棋大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.
21.如图,已知四边形ABCD是平行四边形,△AOB是等边三角形.
(1)求证:四边形ABCD是矩形.
(2)若AB=5,求四边形ABCD的周长.
22.卡塔尔世界杯期间,某商店特购进世界杯吉祥物“拉伊卜”摆件和挂件共90个进行销
售.已知“拉伊卜”摆件的进价为40元/个,“拉伊卜”挂件的进价为25元/个.
(1)若购进“拉伊卜”摆件和挂件共花费了2850元,请分别求出购进“拉伊卜”摆件和挂件的数量.
(2)该商店计划将“拉伊卜”摆件售价定为50元/个,“拉伊卜”挂件售价定为30元/个,若购进的90个“拉伊卜”摆件和挂件全部售完,且至少盈利725元,求购进的“拉伊卜”挂件不能超过多少个?
23.如图,AB是⊙O的直径,射线BC交⊙O于点D,E是劣弧AD上一点,且BE平分∠FBA,过点E作EF⊥BC于点F,延长FE和BA的延长线交于点.
(1)证明:GF是⊙O的切线;
(2)若AB=8,,求DB的长;
(3)在(2)的基础上,求图中阴影部分的面积.
24.我们不妨约定:在平面直角坐标系中,横、纵坐标互为倒数的点为“倒数点”.(1)若点是“倒数点”,则r=;
(2)若一次函数y=kx+2图象上有两个“倒数点”M、N,若△MON的面积为,求k的值;
(3)如图,已知顶点为D的二次函数y=ax2+bx+c(a<0)与x轴交于A(x1,0),B(x2,0)两点,且x1<0<x2,交y轴于点C,过C、D两点的直线交x轴于点E,满足∠ACE
=∠CBE;
①求ac的值;
②若点D(m,n)是“倒数点”,且当m≤x≤m+1时,y的最小值为0,求二次函数的解
析式.
25.如图,在半径为4的扇形AOB中,∠AOB=90°,C为上一动点(不与点A、B重合),连接AC、BC,点D、E分别是弦AC、BC的中点,连接OD、OE.
(1)求∠DOE的大小;
(2)连接AB,分别交OD、OE于点M、N,判断AN•BM是否为定值,若是,求出该定值;若不是,请说明理由.
(3)连接DE,分别记△ODE,△CDE的面积为S1,S2.
①求证:S1﹣S2为定值;
②当﹣=8+8时,求的值.。