遥感图像的数据格式

遥感图像的数据格式
遥感图像的数据格式

遥感图像的数据格式

2009-08-14 13:59

多波段图像具有空间的位置和光谱的信息。多波段图像的数据格式根据在二维空间的像元配置中如何存贮各种波段的信息而分为以下几类

(1)BSQ格式(band sequential)

各波段的二维图像数据按波段顺序排列。

(((像元号顺序),行号顺序),波段顺序)

(2)BIL格式(band interleaved by line)

对每一行中代表一个波段的光谱值进行排列,然后按波段顺序排列该行,最后对各行进行重复。

(((像元号顺序),波段顺序),行号顺序)

(3)BIP格式(band interleaved by pixel)

在一行中,每个像元按光谱波段次序进行排列,然后对该行的全部像元进行这种波段次序排列,最后对各行进行重复。

((波段次序,像元号顺序),行号顺序)

(4)行程编码格式(run-length encoding)

为了压缩数据,采用行程编码形式,属波段连续方式,即对每条扫描线仅存储亮度值以及该亮度值出现的次数,如一条扫描线上有60个亮度值为10的水体。它在计算机内以060010整数格式存储。其涵义为60个像元,每个像元的亮度值为10。计算机仅存60和10;这要比存储60个10的存储量少得多。但是对于仅有较少相似值的混杂数据,此法并不适宜。

(5)HDF格式

HDF格式是一种不必转换格式就可以在不同平台间传递的新型数据恪式,由美国国家高级计算应用中心(NCSA)研制,已经应用于MODIS、MISR等数据中。

HDF有6种主要数据类型:栅格图像数据、调色板(图像色谱)、科学数据集、HDF注释(信息说明数据)、Vdata(数据表)、Vgroup(相关数据组合)。HDF采用分层式数据管理结构,并通过所提供的“层体目录疗构”可以直接从嵌套的文件中获得各种信息。因此,打开一个HDF文件,在读取图像数据的同时可以方便的查取到其地理定位、轨道参数、图像属性、图像噪声等各种信息参数。

具体地讲,一个HDF文件包括一个头文件和一个或多个数据对象。一个数据对象是由一个数据描述符和一个数据元素组成。前者包含数据元素的类型、位置、尺度等信息;后者是实际的数据资抖。HDF这种数据组织方式可以实现HDF数据的自我描述。HDF用户可以通过应用界面来处理这些下同的数据集。例如一套8 bit图像数据集一般有3个数据对象——1个描述数据集成员、1个是图像数据本身、1个描述图像的尺寸大小。

在普通的彩色图像显示装置中,图像是分为R、G、B 3个波段显示的,这种按波段进行的处理最适合BSQ方式。而在最大似然比分类法中对每个像元进行的处理最适合BIP方式。BIL方式具有以上两种万式的中间特征。

在遥感数据中,除图像信息以外还附带有各种注记信息。这是提供数据结构在进行数据分发时,对存储方式用注记信息的形式来说明所提供的格式。以往曾使用多种格式,但从1982年左右起逐渐以世界标准格式的形式进行分发。因为这种格式是由Landsat Technical Working Group确定的,所以也叫LTWG格式。

世界标准格式具有超结构(super structure)的构造,在它的卷描述符、文件指针、文件说明符的3种记录中记有数据的记录方法。其图像数据部分为BSQ方式或BIL方式。

6-遥感图像特征和解译标志

上次课主要内容 4.4简单自然地物可识别性分析 4.5复杂地物识别概率(重点理解) ①要素t 的价值②要素总和(t 1,t 2,…,t m )t 的价值 K -K E ∑ = ③复杂地物识别概率的计算理解p70~71例子

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 5.2 遥感图像特征与解译标志的关系 5.3 遥感图像的时空特性 5.4 遥感图像中的独立变量 5.5 地物统计特征的构造

第五章遥感图像特征和解译标志 地物特征 电磁波特性 影像特征 遥感图像记录过程 n 图像解译就是建立在研究地物性质、电磁波性质 及影像特征三者的关系之上 n 图像要素或特征,分“色”和“形”两大类:?色:色调、颜色、阴影、反差; ?形:形状、大小、空间分布、纹理等。“形”只有依靠“色”来解译才有意义。

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n两个定义: ?解译标志定义:遥感图像光谱、辐射、空间和时间特征决定 图像的视觉效果、表现形式和计算特点,并导致物体在图像上 的差别。 l给出了区分遥感图像中物体或现象的可能性; l解译标志包括:色调与色彩、形状、尺寸、阴影、细部(图 案)、以及结构(纹理)等; l解译标志是以遥感图像的形式传递的揭示标志; ?揭示标志定义:在目视观察时借以将物体彼此分开的被感知 对象的典型特征。 l揭示标志包括:形状、尺寸、细部、光谱辐射特性、物体的阴 影、位置、相互关系和人类活动的痕迹; l揭示标志的等级决定于物体的性质、他们的相对位置及与周围 环境的相互作用等;

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n解译标志和揭示标志的关系: ?解译标志是以遥感图像的形式传递的揭示标志; ?虽然我们是通过遥感图像识别地物目标的,但是大多数情况 下,基于遥感图像识别地物并作出决定时,似乎并不是利用解 译标志,而是利用揭示标志。 例如,很多解译人员刚看到图像就差不多在脑海中形成地物的形象, 然后仅仅分析这个形象就能作出一定的决定。实际上,有经验的解译人 员,在研究图像的解译标志并估计到传递信息的传感系统的影响以后, 思想中就建立起地物的揭示标志,并在这些标志的基础上识别被感知物 体。解译人员在实地或图像上都没见过的地物或现象是例外。 n解译标志和揭示标志可以按两种方式进行划分:?直接标志和间接标志; ?永久标志和临时标志;

遥感数据特征

常用遥感数据特征总结 按照遥感平台类型,遥感技术可以分为航宇遥感、航天遥感、航空遥感、地面遥感四类。其中航天遥感平台发展最快,应用最广。很据航天遥感平台的服务内容,可以将其分为气象卫星系列、陆地卫星系列和海洋卫星系列。不同的卫星系列所获得的遥感数据有着不同的特征,常常应用于不同的应用领域,在进行检测研究时,常常根据不同的卫星资料特点,选择不同的遥感数据。下文简单总结了几种常用的航天遥感数据特征。 1 气象卫星系列 气象卫星是最早发张起来的环境卫星。从1960年美国发射第一颗实验性气象卫星(TIROS)以来,已经有多种实验性或者业务性气象卫星进入不同轨道。气象卫星资料已经在气象预报、气象研究、资源调查海洋研究等方面显示出了强大的生命力。 气象卫星主要有以下几种系列:60年代——TIROS系列、ESSA系列、Nimus 系列;70年代——ITOS系列、NOAA系列、SMS系列、GOES系列、MeteopII、GMS、Meteosat;80年代后,主要以NOAA系列为代表。我国的气象卫星发展比较晚,FY-1是我国发射的第一颗1988年9月7日发射成功。气象卫星主要有以下特征。 (1)轨道。气象卫星轨道可以分为两种,低轨和高轨。低轨是近极低太阳同步轨道,简称极地轨道,轨道高度800~1600km,南北向绕地球运转。对东西宽约2800km的带状地域进行观测,由于与太阳同步,使卫星每天在固定的时间经过每个地方的上空,资料获得时具有相同的照明条件。高轨是指地球同步轨道,轨道高度36000km左右,相对于地球静止,能够观测地球1/4的面积,有3—4颗卫星形成观测网,对某一固定地区,每隔20~30min获取一次资料,由于它相对于地球静止,可以作为通讯中继站,用于传送各种天气资料。 (2)短周期重复观测。地球同步卫星观测周期为0.5小时一次,极轨卫星为约为0.5~1天/次,时间分辨率较高。有助于对地面快速变化的动态检测。 (3)成像面积大,有助于获得宏观同步信息,减少数据处理容量。 (4)资源来源连续、实时性强、成本低 NOAA系列。 NOAA-11卫星:发射日期1988年9月24日,正式运行日期1988年11月8日,轨道高度841公里,轨道倾角98.9度,轨道周期:101.8分。 NOAA-12卫星:发射日期1991年5月14日,正式运行日期1991年9月17日轨道高度804公里,轨道倾角98.6度,轨道周期101.1分。 NOAA-14卫星:发射日期1994年12月30日,正式运行日期1985年4月10日,轨道高度845公里,轨道倾角99.1度,轨道周期101.9分。 NOAA-15卫星:发射日期1998年5月13日,正式运行日期1998年12月15日轨道高度808公里,轨道倾角98.6度,轨道周期101.2分。 NOAA-16卫星:发射日期2000年9月12日,正式运行日期2001年3月20日,轨道高度850公里,轨道倾角98.9度,轨道周期102.1分。

图像数据格式基础知识

所谓位映像,即是指一个二维的像素矩阵,而位图就是采用位映像方法显示和存储图像。一幅图像的显示就是将图像的像素映射到屏幕的像素上并显示一定的颜色。当一幅图形的像素由彩色表示时就是我们通常所说的彩色图像了。 由于数字图像可以表示为矩阵的形式,所以在计算机数字图像处理程序中,通常用二维数组来存放图像数据。二维数组的行对应图像的高,二维数组的列对应图像的宽,二维数组的元素对应图像的像素,二维数组元素的值就是像素的灰度值。采用二维数组来存储数字图像,符合二维图像的行列特性,同时也便于程序的寻址操作,使得计算机图像编程十分方便。 图像的问题数据是一个二维数组(矩阵),矩阵的每一个元素对应了图像的一个像素,当保存一幅图像时,不但要保存图像的位图数据矩阵,还要将每个像素的颜色保存下来,颜色的记录是利用颜色表来完成的。 颜色表,也叫颜色查找表,是图像像素数据的颜色索引表。 对于真彩色图像,每个像素占存储空间3个字节(24位),分别对应R, G, B三个分量,每个像素的值已经将该像素的颜色记录下来了,不再需要颜色表,因此24位真彩色位图没有颜色表。 彩色图像可以由RGB彩色空间表示。彩色空间是用来表示彩色的数学模型,又被称为彩色模型。 计算计算上显示的图像经常有二值图像、灰度图像、伪彩色图像及真彩色图像等不同格式类型。而灰度和彩色格式是数字图像处理中最常用到的类型。 灰度图像是数字图像的最基本形式,灰度图像可以由黑白照片数字化得到,或从彩色图像进行去色处理得到。灰度图像只表达图像的亮度信息而没有彩色信息,因此,灰度图像的每个像素点上只包含一个量化的灰度级(即灰度值),用来表示该点的亮度水平,并且通常用1个字节(8个二进制位)来存储灰度值。 彩色图像数据不仅包含亮度信息,还包含颜色信息。 BMP文件结构及其存取: 数字图像在外存储器设备中的存储形式是图像文件,图像必须按照某个已知的、公认的数据存储顺序和结构进行存储,才能使不同的程序对图像文件顺利进行打开或存盘操作,实现数据共享。 图像数据子啊文件中的存储顺序和结构称为图像文件格式。 目前广为流传的图像文件格式有许多种,常见的格式包括BMP, GIF, JPEG, TIFF, PSD, DICOM, MPEG等。在各种图像文件格式中,一部分时由某个软硬件厂商提出并广泛接受和采用的格式,如BMP, GIF和PSD格式。另一部分是由各种国际标准组织提出的形式,例如JPEG/ TIFF和DICOM,其中JEPG是国际静止图像压缩标准组织提出的格式,TIFF是由部分厂商组织提出的格式,DICOM是医学图像国际标准组织提取的医学图像专用格式。 BMP文件是Windows操作系统所推荐和支持的图像文件格式,是一种将内存或显示器的图像数据不经过压缩而直接按位存盘的文件格式,所以称为位图(bitmap)文件,因其文件扩展名为BMP,故称为BMP文件格式,简称BMP文件。 BMP文件结构: BMP文件图像被分成4部分:位图文件头、位图信息头、颜色表和位图数据。

遥感数据说明dxy

IKONOS数据 卫星简介 IKONOS卫星又称“伊科诺斯”卫星,IKONOS来源于希腊词eikōn,意为图像(image)。是地球眼公司发展的第一代商用高分辨率陆地观测卫星,用于为军民用户提供高分辨率卫星遥感图像,美国军事图像情报部门——美国国家地理空间情报局(NGA)是该卫星最大的用户。并且是世界上第一颗分辨率优于1m的商业遥感卫星,可提供多光谱(MS)和全色(PAN)图像。IKONOS卫星的发射被称为“空间时代历史上最重要的发展之一”。 1999年4月27日,IKONOS-1卫星发射失败。1999年9月24日,IKONOS-2卫星由雅典娜2号运载火箭在范登堡空军基地发射成功,成为世界上首颗分辨率优于1m的商业遥感卫星。设计寿命七年,2015年3月31日,IKONOS卫星在超额服务15年后退役。 数据特点 SPOT数据卫星运行在高度为680公里、倾角98.2度的极轨道上。伊克诺斯卫星设计成140天内绕地球飞行2049圈,即约每天绕地球飞行15圈,第一圈的星下点与2049圈的星下点完全相同。每3天就可以0.8米的分辨率对地面上的任何一个区域进行一次拍摄。若降低分辨率,它每天都可以重访一次同一区域。伊克诺斯卫星入轨后拍摄的图像,因为其优良的清晰度,已得到了广泛的赞誉。它可拍摄到地面上直径不足1米的物体的全色(黑白)图像和直径仅 3.28米的物体的多光谱图像。 携带一个全色1m分辨率传感器和一个四波段4m分辨率的多光谱传感器。传感器由三个CCD阵列构成三线阵推扫成像系统。IKONOS 传感器是三线阵CCD推帚式成像,因此在正常模式下,它可取得正视、后视和前视推扫成像。 全色光谱响应范围:0.15~0.90μm ,而多光谱则相应于Landsat-TM 的波段:MSI-1 0.45~0.52μm蓝绿波段; MSI-2 0.52~0.60μm绿红波段;MSI-3 0.63~0.69μm 红波段; MSI-4 0.76~0.90μm 近红外波段。去掉了TM的后三个波段,显然就光谱性质而言不如TM。但从空间分辨率来说,大大提高了数据的空间分辨率特征,4m彩色和1m 全色可以和航空相片相比,完全能满足万分之一比例尺测图精度要求。 下载方法 马里兰大学遥感数据(ikonos):https://www.360docs.net/doc/df2186406.html,/data/ikonos/

常见医学图像格式

附录C 图像格式 译者:Synge 发表时间:2012-05-03浏览量:1604评论数:0挑错数:0 翻译:xiaoqiao 在fMRI的早期,由于大多数据都用不同研究脉冲序列采集,然后离线大量重建,而且各研究中心文件格式各不相同、大多数的分析软件也都是各研究单位内部编写运用。如果这些数据不同其他中心交流,数据的格式不影响他们的使用。因此图像格式就像巴别塔似的多式多样。随着fMRI领域的不断发展,几种标准的文件格式逐渐得到了应用,数据分析软件包的使用促进了这些文件格式在不同研究中心和实验室的广泛运用,直到近期仍有多种形式的文件格式存在。这种境况在过去的10年里随着公认的NIfTI格式的发展和广泛认可而优化。该附录就fMRI资料存储的常见问题以及重要的文件格式做一概述, 3.1 数据存储 正如第2章所述,MRI数据的存储常采用二进制数据格式,如8位或16位。因此,磁盘上数据文件的大小就是数据图像的大小和维度,如保存维度128 ×128×96的16位图像需要25,165,824位(3 兆字节)。为了保存图像的更多信息,我们希望保存原始数据,即元数据。元数据包含了图像的各种信息,如图像维度及数据类型等。这点很重要,因为可以获得二进制数据所不知道的信息,例如,图像是128 ×128×96维度的16位图像采集还是128 ×128×192维度的8位图像采集。在这里我们主要讨论不同的图像格式保存不同的数量及种类的元数据。

MRI的结构图像通常保存为三维的资料格式。fMRI数据是一系列的图像采集,可以保存为三维格式,也可以保存为四维文件格式(第4维为时间)。通常,我们尽可能保存为四维数据格式,这样可以减少文件数量,但是有些数据分析软件包不能处理四维数据。 3.2 文件格式 神经影像的发展中出现了很多不同图像格式,常见的格式见表1.在这里我们就DICOM、Analyze和NIfTI最重要的三种格式做一讨论。 表1. 常见医学图像格式 Analyze .img/.hdr Analyze软件, 梅奥临床医学中心 DICOM 无ACR/NEMA协会 NIfTI .nii或.img/.hdr NIH影像学信息工具倡议 MINC .mnc 蒙特利尔神经学研究所(MNI,扩展名NetCDF) 3.2.1 DICOM格式 现今大多MRI仪器采集后的重建数据为DICOM格式。该数据格式源于美国放射学协会(ACR)和国际电子产品制造商协会(NEMA)。DICOM不仅仅是图像的存储格式,而且是不同成像系统的不同形式数据之间转换的模式,MRI图像只是其中一种特殊形式。目前使用的DICOM遵照1993年协议,且目前主要的MRI仪器供应商都支持该格式。 通常,DICOM把每一层图像都作为一个独立的文件,这些文件用数字命名从而反映相对应的图像层数(在不同的系统有一定差异)。文件中包含文件头信息,且必须要特定的软

遥感图像几种分类方法的比较

摘要 遥感图像分类一直是遥感研究领域的重要内容,如何解决多类别的图像的分类识别并满足一定的精度,是遥感图像研究中的一个关键问题,具有十分重要的意义。 遥感图像的计算机分类是通过计算机对遥感图像像素进行数值处理,达到自动分类识别地物的目的。遥感图像分类主要有两类分类方法:一种是非监督分类方法,另一种是监督分类方法。非监督分类方法是一个聚类过程,而监督分类则是一个学习和训练的过程,需要一定的先验知识。非监督分类由十不能确定类别属性,因此直接利用的价值很小,研究应用也越来越少。而且监督分类随着新技术新方法的不断发展,分类方法也是层出不穷。从传统的基十贝叶斯的最大似然分类方法到现在普遍研究使用的决策树分类和人工神经网络分类方法,虽然这些方法很大程度改善了分类效果,提高了分类精度,增加了遥感的应用能力。但是不同的方法有其不同优缺点,分类效果也受很多因素的影响。 本文在对国内外遥感图像分类方法研究的进展进行充分分析的基础上,应用最大似然分类法、决策树分类法对TM影像遥感图像进行了分类处理。在对分类实现中,首先对分类过程中必不可少的并影响分类效果的步骤也进行了详细地研究,分别是分类样本和分类特征;然后详细介绍两种方法的分类实验;最后分别分析分类结果图,采用混淆矩阵和kappa系数对两种方法的分类结果进行精度评价。 关键词:TM遥感影像,图像分类,最大似然法,决策树 题目:遥感图像几种分类方法的比较...................................... 错误!未定义书签。摘要.. (1) 第一章绪论 (3)

1.1遥感图像分类的实际应用及其意义 (4) 1.2我国遥感图像分类技术现状 (5) 1.3遥感图像应用于测量中的优势及存在的问题 (6) 1.3.1遥感影像在信息更新方面的优越性 (6) 1.3.2遥感影像在提取信息精度方面存在的问题 (6) 1.4研究内容及研究方法 (8) 1.4.1研究内容 (8) 1.4.2 研究方法 (8) 1.5 论文结构 (9) 第二章遥感图像的分类 (9) 2.1 监督分类 (9) 2.1.1 监督分类的步骤 (9) 2.1.2 最大似然法 (11) 2.1.3 平行多面体分类方法 (12) 2.1.4 最小距离分类方法 (13) 2.1.5监督分类的特点 (13) 2.2 非监督分类 (14) 2.2.1 K-means算法 (14) K-均值分类法也称为 (14) 2.2.2 ISODATA分类方法 (15) 2.2.3非监督分类的特点 (17) 2.4遥感图像分类新方法 (17) 2.4.1基于决策树的分类方法 (17) 2.4.2 人工神经网络方法 (19) 2.4.3 支撑向量机 (20) 2.4.4 专家系统知识 (21) 2.5 精度评估 (22) 第三章研究区典型地物类型样本的确定 (24) 3.1 样本确定的原则和方法 (24) 3.2 研究区地物类型的确定 (24) 3.3样本区提取方案 (25) 3.4 各个地物类型的样本的选取方法 (25) 3.4.1 建立目视解译标志 (25) 3.4.2 地面实地调查采集 (26) 3.4.3 利用ENVI遥感图像处理软件选取样本点 (26) 第四章遥感图像分类实验研究 (26) 4.1遥感影像适用性的判定 (26) 4.2分类前的预处理 (28) 4.2.1空间滤波的处理 (28) 4.2.2 频域滤波处理 (28) 4.3利用ENVI软件对影像按照不同的分类方法进行监督分类 (30) 4.3.1监督分类 (30) 4.3.2 决策树 (33) 4.4分类后的处理 (35)

遥感图像的监督分类与处理_赵文彪

杭州师范大学《遥感原理与应用》实验报告 题目:遥感图像的监督分类与处理实验姓名:赵文彪 学号: 2014212425 班级:地信141 学院:理学院

1实验目的 运用envi软件对自己家乡的遥感影像经行分类和分类后操作。 2概述 分类方法:监督分类和非监督分类 监督分类——从遥感数据中找到能够代表已知地面覆盖类型的均质样本区域(训练样区),然后用这些已知区域的光谱特征(包括均值、标准差、协方差矩阵和相关矩阵等)来训练分类算法,完成影像剩余部分的地面覆盖制图(将训练样区外的每个像元划分到具有最大相似性的类别中)。 非监督分类——依据一些统计判别准则将具有相似光谱特征的像元组分分为特定的光谱类;然后,再对这些光谱类进行标识并合并成信息类。 光谱特征空间 同名地物点在丌同波段图像中亮度的观测量将构成一个多维的随机向量X,称为光谱特征向量。而这些向量在直角坐标系中分布的情况为光谱特征空间。 同类地物在光谱特征空间中不可能是一个点,而是形成一个相对聚集的点群。丌同地物的点群在特征空间内一般具有不同的分布。 特征点集群的分布情况: 理想情况:至少在一个子空间中可以相互区分 典型情况:任一子空间都有相互重叠,总的特征空间可以区分 一般情况:任一子空间都存在重叠现象 监督分类,又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程。在分类乊前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决凼数迚行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决凼数去对其他待分数据迚行分类。使每个像元和训练样本做比较,按不同的规则将其划分到和其最相似的样本类,以此完成对整个图像的分类。 3实验步骤 3.1遥感影像图的剪切 用envi打开下载的遥感影像图,剪切出一个地貌信息丰富的区域(因为一景遥感影像太大,分类时间较长,故而采用剪切的方法,剪切一个地貌丰富的遥感影像图。既便于分类也使得分类种数不至于减小的太多) 以下为剪切出来的遥感影像

envi遥感图像监督分类与非监督分类

envi遥感图像监督分类 监督分类,又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程。它就是在分类之前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决函数去对其他待分数据进行分类。使每个像元和训练样本作比较,按不同的规则将其划分到和其最相似的样本类,以此完成对整个图像的分类。 遥感影像的监督分类一般包括以下6个步骤,如下图所示: 详细操作步骤 第一步:类别定义/特征判别 根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理。这个过程主要是一个目视查看的过程,为后面样本的选择打下基础。

启动ENVI5.1,打开待分类数据:can_tmr.img。以R:TM Band 5,G: TM Band 4,B:TM Band 3波段组合显示。 通过目视可分辨六类地物:林地、草地/灌木、耕地、裸地、沙地、其他六类。 第二步:样本选择 (1)在图层管理器Layer Manager中,can_tmr.img图层上右键,选择"New Region Of Interest",打开Region of Interest (ROI) Tool面板,下面学习利用选择样本。 1)在Region of Interest (ROI) Tool面板上,设置以下参数: ROI Name:林地 ROI Color: 2)默认ROIs绘制类型为多边形,在影像上辨别林地区域并单击鼠标左键开始绘制多边形样本,一个多边形绘制结束后,双击鼠标左键或者点击鼠标右键,选择Complete and Accept Polygon,完成一个多边形样本的选择; 3)同样方法,在图像别的区域绘制其他样本,样本尽量均匀分布在整个图像上; 4)这样就为林地选好了训练样本。 注:1、如果要对某个样本进行编辑,可将鼠标移到样本上点击右键,选择Edit record是修改样本,点击Delete record是删除样本。 2、一个样本ROI里面可以包含n个多边形或者其他形状的记录(record)。 3、如果不小心关闭了Region of Interest (ROI) Tool面板,可在图层管理器Layer Manager上的某一类样本(感兴趣区)双击鼠标。 (2)在图像上右键选择New ROI,或者在Region of Interest (ROI) Tool面板上,选择工具。重复"林地"样本选择的方法,分别为草地/灌木、耕地、裸地、沙地、其他5类选择样本; (3)如下图为选好好的样本。

遥感图像分类

实验四遥感图像分类 一、背景知识 图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。常规计算机图像分类主要有两种方法:非监督分类与监督分类,本实验将依次介绍这两种分类方法。 非监督分类运用ISODATA(Iterative Self-Organizing Data Analysis Technique)算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。使用该方法时,原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。 监督分类比非监督分类更多地要用户来控制,常用于对研究区域比较了解的情况。在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。监督分类一般要经过以下几个步骤:建立模板(训练样本)分类特征统计、栅格矢量转换、评价模板、确定初步分类图、检验分类结果、分类后处理。由于基本的非监督分类属于IMAGINE Essentials级产品功能,但在IMAGINE Professional级产品中有一定的功能扩展,非监督分类命令分别出现在Data Preparation菜单和Classification菜单中,而监督分类命令仅出现在Classification菜单中。 二、实验目的 理解并掌握图像分类的原理,学会图像分类的常用方法:人工分类(目视解译)、计算机分类(监督分类、非监督分类)。能够针对不同情况,区别使用监督分类、非监督分类。理解计算机分类的常用算法实现过程。熟练掌握遥感图像分类精度评价方法、评价指标、评价原理,并能对分类结果进行后期处理。 三、实验内容(6课时) 1.非监督分类(Unsupervised Classification); 2.监督分类(Supervised Classification); 3.分类精度评价(evaluate classification); 4.分类后处理(Post-Classification Process); 四、实验准备 实验数据: 非监督分类文件:germtm.img 监督分类文件:tm_860516.img 监督模板文件:tm_860516.sig 五、实验步骤、方法 1、非监督分类(Unsupervised Classification)

试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。

遥感原理与应用 1.试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。答:监督分类:1、最大似然法;2、平行多面体分类法:这种方法比较简单,计算速度比较快。主要问题 是按照各个波段的均值为标准差划分的平行多面体与实际地物类别数据点分布的点群形态不一致,也就造成俩类的互相重叠,混淆不清的情况;3、最小距离分类法:原理简单,分类精度不高,但计算速度快,它可以在快速浏览分类概况中使用。通常使用马氏距离、欧氏距离、计程距离这三种判别函数。主要优点:可充分利用分类地区的先验知识,预先确定分类的类别;可控制训练样本的选择,并可通过反复检验训练样本,以提高分类精度(避免分类中的严重错误);可避免非监督分类中对光谱集群组的重新归类。主要缺点:人为主观因素较强;训练样本的选取和评估需花费较多的人力、时间;只能识别训练样本中所定义的类别,对于因训练者不知或因数量太少未被定义的类别,监督分类不能识别,从而影响分结果(对土地覆盖类型复杂的地区需特别注意)。 非监督分类:1、ISODATA; 2、K-Mean:这种方法的结果受到所选聚类中心的数目和其初始位置以及模式分布的几何性质和读入次序等因素的影响,并且在迭代的过程中又没有调整类别数的措施,因此不同的初始分类可能会得到不同的分类结果,这种分类方法的缺点。可以通过其它的简单的聚类中心试探方法来找出初始中心,提高分类结果;主要优点:无需对分类区域有广泛地了解,仅需一定的知识来解释分类出的集群组;人为误差的机会减少,需输入的初始参数较少(往往仅需给出所要分出的集群数量、计算迭代次数、分类误差的阈值等);可以形成范围很小但具有独特光谱特征的集群,所分的类别比监督分类的类别更均质;独特的、覆盖量小的类别均能够被识别。主要缺点:对其结果需进行大量分析及后处理,才能得到可靠分类结果;分类出的集群与地类间,或对应、或不对应,加上普遍存在的“同物异谱”及“异物同谱”现象,使集群组与类别的匹配难度大;因各类别光谱特征随时间、地形等变化,则不同图像间的光谱集群组无法保持其连续性,难以对比。

遥感图像分类后处理

遥感图像分类后处理 一、实验目的与要求 监督分类和决策树分类等分类方法得到的一般是初步结果,难于达到最终的应用目的。 因此,需要对初步的分类结果进行一些处理,才能得到满足需求的分类结果,这些处理过程就通常称为分类后处理。常用分类后处理通常包括:更改分类颜色、分类统计分析、小斑点处理(类后处理)、栅矢转换等操作。 本课程将以几种常见的分类后处理操作为例,学习分类后处理工具。 二、实验内容与方法 1.实验内容 1.小斑块去除 ●Majority和Minority分析 ●聚类处理(Clump) ●过滤处理(Sieve) 2.分类统计 3.分类叠加 4.分类结果转矢量 5.ENVI Classic分类后处理 ●浏览结果 ●局部修改 ●更改类别颜色 6.精度评价 1.实验方法 在ENVI 5.x中,分类后处理的工具主要位于Toolbox/Classification/Post Classification/;

三、实验设备与材料 1.实验设备 装有ENVI 5.1的计算机 2.实验材料 以ENVI自带数据"can_tmr.img"的分类结果"can_tmr_class.dat"为例。数据位于"...\13数据\"。其他数据描述: ?can_tmr.img ——原始数据 ?can_tmr_验证.roi ——精度评价时用到的验证ROI 四、实验步骤 1.小斑块去除 应用监督分类或者非监督分类以及决策树分类,分类结果中不可避免地会产生一些面 积很小的图斑。无论从专题制图的角度,还是从实际应用的角度,都有必要对这些小图斑进行剔除或重新分类,目前常用的方法有Majority/Minority分析、聚类处理(clump)和过滤处理(Sieve)。 1)Majority和Minority分析 Majority/Minority分析采用类似于卷积滤波的方法将较大类别中的虚假像元归到该 类中,定义一个变换核尺寸,主要分析(Majority Analysis)用变换核中占主要地位(像元数最多)的像元类别代替中心像元的类别。如果使用次要分析(Minority Analysis),将用变换核中占次要地位的像元的类别代替中心像元的类别。 下面介绍详细操作流程: (1)打开分类结果——"\12.分类后处理\数据\can_tmr_class.dat"; (2)打开Majority/Minority分析工具,路径为Toolbox /Classification/Post Classification/Majority/Minority Analysis,在弹出对话框中选择"can_tmr_class.dat",点击OK; (3)在Majority/Minority Parameters面板中,点击Select All Items选中所有的类别,其他参数按照默认即可,如下图所示。然后点击Choose按钮设置输出路径,点击OK执行操作。

图像检索与数据库

西北工业大学 得分: 学号 ___________________________ 姓名 ___________________________ 考试课程 ___________________________ 考试日期 ___________________________

图像检索与数据库 近年来, 由于现代电子技术的发展,文字情报与文字情报一样,也能够经过数字化处理制成数据库用于计算机检索。本文便是对图像数据库及其检索的初步探讨。 1、图像数据库 1.1 图像数据库的类型 数据库一般分为文献参考数据库和源数据库。前者本身并不直接提供用户所需情报, 而是起着一种指示、介绍、牵线搭桥的作用;后者提供的是可供用户直接使用的一次情报。显然图像数据库属于后一类型。目前的图像数据库按照图像情报类型可分为三类, 即图形数据库、照片数据库、绘画图案数据库。 图形数据库大多应用于自然科学、工程技术领域, 收录的是用线条来表达概念的图形资料,包括设计图、配线图、住宅草图; 地图( 如地形图、地势图、道路地图、住宅地图、指路图;天气图等)。 照片数据库在图像数据库中占有主要地位, 广泛应用于社会, 人文科学和自然科学,工程技术各领域。收录的主要内容有:报纸照片; X光片、C T 等医用诊断图;幻灯片;卫星照片、宇航照片等观测图;;资料照片、肖像、记录照片;商品广告用赠礼照片等等。日本摄影研究中心的Photo Disc Library System 光盘数据库便属此类, 它收录了日本著名摄影家的5 万多幅彩色照片, 极富观赏性。 绘画·图案数据库数量也在逐年增多, 涉及的专业领域较多。该类数据库一般收录绘画、插图、图案、CAD 、注册商标、公共设施

介绍如何将图片存入数据库

本实例主要介绍如何将图片存入数据库。将图片存入数据库,首先要在数据库中建立一张表,将存储图片的字段类型设为Image类型,用FileStream类、BinaryReader把图片读成字节的形式,赋给一个字节数组,然后用ADO.SqlCommand对象的ExecuteNonQuery()方法来把数据保存到数据库中。主要代码如下: private void button1_Click(object sender, EventArgs e) { openFileDialog1.Filter = "*jpg|*.JPG|*.GIF|*.GIF|*.BMP|*.BMP"; if(openFileDialog1.ShowDialog()==DialogResult.OK) { string fullpath =openFileDialog1.FileName;//文件路径 FileStream fs = new FileStream(fullpath, FileMode.Open); byte[] imagebytes =new byte[fs.Length]; BinaryReader br = new BinaryReader(fs); imagebytes = br.ReadBytes(Convert.ToInt32(fs.Length)); //打开数据库 SqlConnection con = new SqlConnection("server=(local);uid=sa;pwd=;database=db_05"); con.Open(); SqlCommand com = new SqlCommand("insert into tb_08 values(@ImageList)",con); com.Parameters.Add("ImageList", SqlDbType.Image); com.Parameters["ImageList"].Value = imagebytes; com.ExecuteNonQuery(); con.Close(); }

遥感卫星影像数据特点

北京揽宇方圆信息技术有限公司 遥感卫星影像数据特点 北京揽宇方圆信息技术有限公司的卫星遥感影像以其快速、覆盖范围广、周期性等独特的优势,已成为现代遥感卫星影像数据源的最重要的数据源之一,为各行各业遥感数据应用提供充足数据支撑的重担。随着我国资源三号、高分系列等遥感卫星的成功发射,为用户提供0.3米卫星影像-30米卫星影像数据数据源打下了坚实的数据基础。然而随着各行各业的遥感用户工作范围、工作内容、技术手段等多个方面都新的要求,对我国卫星影像数据的获取和保障能力形成巨大的挑战,如何利用我国现有的和规划中的卫星资源,提升卫星影像获取和保障能力,以满足新型基础测绘的需要,成为北京揽宇方圆遥感卫星影像部门一项刻不容缓的工作。 遥感卫影像数据为遥感数据应用提供更加充足、更加高效、更加精准的数据支撑。 1)覆盖范围广。遥感影像数据不仅要覆盖我国陆地国土面积,还要能够覆盖海洋、周边乃至全球,覆盖范围急剧扩大,影像数据要实现全覆盖将具有一定的挑战性。 2)空间分辨率高。便新遥感卫星影像数据为常规工作内容,只有空间分辨率较高的影像数据才能满足基础测绘的精度要求。 3)时效性强。新型基础测绘服务内容由基本比例尺地图纸质图件向多样化数字产品、定制化制图服务以及地理国情监测、数字城市、应急测绘等个性化服务转变。而诸如此类的个性化服务对数据的时效性要求较高,尤其像应急测绘等服务,更是对影像数据提出了准实时化的要求。 4)覆盖频次要求高。200多颗遥感卫星影像对于重点区域动态更新的频率较高,对影像数据的覆盖频次具有较高要求,可以实现卫星影像对研究区域的定制化要求 5)区域性差异大。不同区域的基础测绘任务对影像数据的需求具有较大的差别,由于不同地区的地物变化频率、地物复杂程度、地域气候状况等要素的影响,使得该区域对影像数据的空间分辨率、时效性、覆盖频次等方面的需求也不尽相同。 为什么购买遥感卫星数据服务选择北京揽宇方圆 信誉超级好:多年的遥感卫星数据数据经营品牌公司,行业用户的实力选择,国家高新技术企业,国家A级纳税人企业,1800多个行业用户的选择。 遥感数据正版:卫星影像数据来源正规版权,提供正规的遥感数据查询服务。

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的研究现状与发展趋势 摘要:遥感在中国已经取得了世界级的成果和发展,被广泛应用于国民经济发展的各个方面,如土地资源调查和管理、农作物估产、地质勘查、海洋环境监测、灾害监测、全球变化研究等,形成了适合中国国情的技术发展和应用推广模式。随着遥感数据获取手段的加强,需要处理的遥感信息量急剧增加。在这种情况下,如何满足应用人员对于大区域遥感资料进行快速处理与分析的要求,正成为遥感信息处理面临的一大难题。这里涉及二个方面,一是遥感图像处理本身技术的开发,二是遥感与地理信息系统的结合,归结起来,最迫切需要解决的问题是如何提高遥感图像分类精度,这是解决大区域资源环境遥感快速调查与制图的关键。 关键词:遥感图像、发展、分类、计算机 一、遥感技术的发展现状 遥感技术正在进入一个能够快速准确地提供多种对地观测海量数据及应用研究的新阶段,它在近一二十年内得到了飞速发展,目前又将达到一个新的高潮。这种发展主要表现在以下4个方面: 1. 多分辨率多遥感平台并存。空间分辨率、时间分辨率及光谱分辨率普遍提高目前,国际上已拥有十几种不同用途的地球观测卫星系统,并拥有全色0.8~5m、多光谱3.3~30m的多种空间分辨率。遥感平台和传感器已从过去的单一型向多样化发展,并能在不同平台

上获得不同空间分辨率、时间分辨率和光谱分辨率的遥感影像。民用遥感影像的空间分辨率达到米级,光谱分辨率达到纳米级,波段数已增加到数十甚至数百个,重复周期达到几天甚至十几个小时。例如,美国的商业卫星ORBVIEW可获取lm空间分辨率的图像,通过任意方向旋转可获得同轨和异轨的高分辨率立体图像;美国EOS卫星上的MOiDIS-N传感器具有35个波段;美国NOAA的一颗卫星每天可对地面同一地区进行两次观测。随着遥感应用领域对高分辨率遥感数据需求的增加及高新技术自身不断的发展,各类遥感分辨率的提高成为普遍发展趋势。 2. 微波遥感、高光谱遥感迅速发展微波遥感技术是近十几年发展起来的具有良好应用前景的主动式探测方法。微波具有穿透性强、不受天气影响的特性,可全天时、全天候工作。微波遥感采用多极化、多波段及多工作模式,形成多级分辨率影像序列,以提供从粗到细的对地观测数据源。成像雷达、激光雷达等的发展,越来越引起人们的关注。例如,美国实施的航天飞机雷达地形测绘计划即采用雷达干涉测量技术,在一架航天飞机上安装了两个雷达天线,对同一地区一次获取两幅图像,然后通过影像精匹配、相位差解算、高程计算等步骤得到被观测地区的高程数据。高光谱遥感的出现和发展是遥感技术的一场革命。它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。高光谱遥感的发展,从研制第一代航空成像光谱仪算起已有二十多年的历史,并受到世界各国遥感科学家的普遍关注。但长期以来,高光谱遥感一直处在以航空为基础的研究发展阶段,且主要

宁夏国土资源遥感影像数据库设计

宁夏国土资源遥感影像数据库设计 【摘要】地理信息系统的迅速发展和广泛应用导致了大量遥感影像数据产生,为数据综合利用和管理数据,需要建立宁夏国土资源遥感影像数据库,本文简要概述了宁夏遥感影像数据库的功能模块。 【关键词】地理信息;遥感影像 1.前言 宁夏遥感影像数据库设计了三个子系统,每个子系统由若干个功能模块组成,各个功能模块相对独立,耦合度低,通过标准接口和流程,贯穿整个业务系统,覆盖系统所有功能需求。每个子系统的主要功能如下: 数据入库子系统负责整理历史的宁夏国土资源遥感卫星影像数据,根据产品的标准化和规范化要求进行统一整理,并入库管理。同时负责接收其他数据源(例如:中国资源卫星应用中心)的数据,进行整理后入库统一管理。 数据管理子系统负责对收集到的遥感卫星元数据、浏览数据以及产品数据进行统一管理,向其他子系统提供统一数据库访问接口和数据的统一访问服务,负责优化数据库访问,数据库备份和恢复,保证系统数据库的高效、可靠、稳定、安全的运行。 用户服务与数据分发子系统是面向用户进行遥感卫星数据分发的主要服务平台,为用户提供遥感卫星数据的检索、浏览、订购和下载的服务,并负责接收用户注册信息,管理用户信息,订单信息等工作。为用户提供方便快捷、安全可靠的遥感卫星数据服务。 2.数据入库子系统 本子系统负责整理历史数据,同时支持从其他数据平台(例如中国资源卫星应用中心)进行数据传输,收集各个遥感卫星的元数据、浏览数据等,并根据元数据标准和规范、以及产品的标准和规范要求将收集的数据进行统一整理,然后调用数据管理子系统提供的接口入库归档。本系统由6个功能模块组成: (1)历史数据整理模块 本模块可以对历史的遥感影像产品进行分析和预处理,使其符合数据中心统一管理的要求,然后通过产品入库模块存入数据中心,与后续新数据统一管理,服务和分发。 (2)数据传输模块

ArcGIS影像数据库-推荐下载

空间数据库技术 空间数据库技术用关系数据库管理系统(RDBMS)来管理空间数据,主要解决存储在关系数据库中的空间数据与应用程序之间的数据接口问题,即空间数据库引擎( Spatial Database Engine)。更确切地说,空间数据库技术是解决空间数据对象中几何属性在关系数据库中的存取问题,其主要任务是: 1)用关系数据库存储管理空间数据; 2)从数据库中读取空间数据,并转换为GIS应用程序能够接收和使用的格式; 3)将GIS应用程序中的空间数据导入数据库,交给关系数据库管理。因此空间数据库技术是空间数据进出关系数据库的通道。 建库目的 建立影像数据库的目的是将分幅分层生产的海量影像数据进行整理,使之符合统一的规范和标准;并对数据进行有效组织、管理,便于空间数据的查询、分发及其它应用。建库之后的数据是标准化、规范化的,采用统一的编码和统一的格式;数据是有效组织的,在平面方向,分幅的数据要组织成逻辑上无缝的一个整体,在垂直方向,各种数据通过一致的空间坐标定位能够相互叠加和套合;具有高效的空间数据查询、调度、漫游以及数据分发等功能,并且能够与其它系统无缝集成,为其它应用服务。从应用的角度讲,建立影像库的总体目标是能够管理多比例尺、多分辨率、多数据源的正射影像数据,能够作到在局域网或广域网上由全貌到细节、由整体到局部、由低分辨率到高分辨率快速、无缝的进行影像漫游、浏览和应用,支持图像数据集中式和分布式(局域网范围内分布式的存贮)的存贮与管理,为海量数据的应用提供一个高效的无缝平台。 建库原理 简而言之就是“两种方式,分层分块”。“两种方式”是指:栅格数据集(RasterDatset)和栅格目录(Raster Catalog)。它的存储和管理方式,这就是“分层分块”。

遥感图像分类方法综述

遥感图像分类方法综述 刘佳馨 摘要:伴随着科学技术在我们的生活中不断发展,遥感技术便应运而生,而遥感图像因成为遥感技术分析中的不可缺少的依据,变得备受关注。在本文中,以遥感图像分类方法为研究中心,从传统分类方法、近代分类方法两个方面对分类方法进行了介绍,并以此为基础对分类思想及后续处理进行说明,进而展望了遥感图像分类的研究趋势和发展前景。 关键词:遥感图像;图像分类;分类方法 1 引言 遥感,作为采集地球数据及其变化信息的重要技术手段,在世界范围内的各个国家以及我国的许多部门、科研单位和公司等,例如地质、水体、植被、土壤等多个方面,得到广泛的应用,尤其在监视观测天气状况、探测自然灾害、环境污染甚至军事目标等方面有着广泛的应用前景。伴随研究的深入,获取遥感数据的方式逐渐具有可利用方法多、探测范围广、获取速度快、周期短、使用时受限条件少、获取信息量大等特点。遥感图像的分类就是对遥感图像上关于地球表面及其环境的信息进行识别后分类,来识别图像信息中所对应的实际地物,从而进一步达到提取所需地物信息的目的。 2 遥感图像分类基本原理 遥感是一种应用探测仪器,在不与探测目标接触的情况下,从远处把目标的电磁波特性记录下来,并且通过各种方法的分析,揭示出物体的特征性质及其变化的综合性探测技术。图像分类的目的在于将图像中每个像元根据其不同波段的光谱亮度、空间结构特征或其他信息,按照某种规则或算法划分为不同的类别。而遥感图像分类则是利用计算机技术来模拟人类的识别功能,对地球表面及其环境在遥感图像上的信息进行属性的自动判别和分类,以达到提取所需地物信息的目的。 3 遥感图像传统分类方法 遥感图像传统分类方法是目前应用较多,并且发展较为成熟的分类方法。从分类前是否需要获得训练样区类别这一角度进行划分,可将遥感图像传统分类方法分为两大类,即监督分类(supervised classification)和非监督分类(Unsupervised

相关文档
最新文档