特高压

特高压
特高压

特高压

摘要:简要介绍了超导材料的发展历史、现状,对未来的超导材料的发展作了展望,并对目前超导材料的主要研制方法进行了分析。

关键词:超导体研究进展高温低温应用

一前言

特高压一直在备受争议中谨慎前行。然而,现在不得不承认,业内关注的焦点已经从技术、污染、资金的争议转向了“后特高压”时期将要带来的能源结构的转变。变输煤为输电,山西在慢慢转型,而电网、发电、煤炭也在发生着潜移默化的改变。

2009年2月,在1000千伏晋东南-南阳-荆门特高压项目商业运行一个月无任何故障之后,徐国庆的工作可以暂时告一段落了。

徐国庆的职位名称很长,国家电网交流公司特高压第二项目部现场项目部副经理。他负责河南段的建设施工,而这只是全长640公里线路中的一部分。

但徐国庆们的这种休息不会持续很久,2月23日,一条名为“特高压交直流输变电装备产业技术升级建设项目2009年第二批设备采购招标”的招标信息公布,国家电网的另外三条特高压线路也将按部就班地启动。

在屈指可数的几年内,国家电网将建成两横两纵四条特高压线路,南方电网将建成两条线路。

作为电力的“高速公路”,特高压一直在备受争议中谨慎前行。然而,现在不得不承认,业内关注的焦点已经从技术、污染、资金的争议转向了“后特高压”时期将要带来的能源结构的转变。变输煤为输电,势必会增加坑口发电的力度,中国长期以煤为主导,大秦等各煤炭专用线满负荷运转的现状是否会得到改善?煤炭和电力的资本将流向何方?对山西,对煤炭基地,甚至对中国能源将带来什么转变?

或许,正如中国电力科学研究院总工程师印永华对《能源》杂志记者所说:“特高压确实能引导能源的流向和发展。”山西在慢慢转型,而电网、发电、煤炭也在发生着潜移默化的改变。

从长子到荆门

有人说山西的天是灰的,上空飘的不是雾,而是煤,甚至戏称“一年白白吹到风里的煤尘就有几万吨”。

山西凭借其巨大的煤炭资源一直占据着能源供应龙头的地位。特高压的起点选择了山西东南的长治市

长子县。

长子县矿产资源非常丰富,地下储藏大量的煤炭、锰铁矿、矿电石等。县境地下均储藏有煤炭,煤炭储量为37亿吨,有沁水煤田、晋煤集团赵庄矿井等十余处煤田。长子县的规划以建设煤电两大基地为目标,以“六煤四电”为重点。

目前,长治地区电源总装机容量204.49万千瓦,预计到“十一五”末,长治地区总装机容量将达1215万千瓦。据《山西电网“十一五”规划及2020年远景目标报告》预测,长治、晋城两市,到“十一五”期末,大电厂总装机容量将达到1454万千瓦,其中外送电装机容量达690万千瓦。

其实,长子县只是山西众多县市中的一个,但足以代表山西的特色。

或许很多人并不知道,曾经,长期靠煤吃饭的山西一度成为全国最缺电的省份之一。国网山西省电力公司介绍,为了缩小电力缺口,2003年至2004年共投资98亿元,用于主网架建设、设备改造和技术更新,投资总额相当于过去10年的总和。而今,山西电网已实现从35千伏、110千伏的地区性电网到220千伏、500千伏的全省统一电网的完善,并实现了与京、津、冀、陕、蒙等省(直辖市、自治区)的联网。

这条特高压线路的另一头是湖北荆门。湖北,位于长江中游。因处于洞庭湖以北,故称湖北,素有“千湖省”之称,水力资源居全国第4位,地表水体积占全国第10位。长江由西向东横贯全省。汉江全长的3/4流经省境,与源出边境山地的众多河流,共同汇注长江。省内中小河流共有1193条,总长度达3.5万多公里。此外,全省过境容水量约有6338亿立方米,因而有丰富径流量可供调蓄利用。水力资源丰富,可开发水能达3308.1万千瓦。

2009年1月6日,这条线路正式建成投运。

而关于这条特高压线路的建设史还应追溯到四年前。2005年2月,国家发改委印发了《关于开展百万伏级交流、±80万伏级直流输电技术研究工作的通知》,全面启动了特高压工程的前期研究工作。发展更高一级电压等级输电被纳入国家“十一五”规划纲要,特高压输变电试验示范线路建设和特高压设备国产化工作被列入2005—2006年国家能源工作要点,特高压输电技术及设备研究被列入中长期科学和技术发展规划纲要。

二研究现状

1.超导材料的探索与发展

探索新型超导材料在超导材料研究中始终起着关键的作用,同时也是一项高风险、高投入的研究工作。自1911年荷兰物理学家卡麦林·昂尼斯发现汞在4.2K附近的超导电性以来,人们发现的新超导材料几乎遍布整个元素周期表,从轻元素硼、锂到过渡重金属铀系列等。超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973

年,发现了一系列A

15型超导体和三元系超导体,如Nb

3

Sn、V

3

Ga、Nb

3

Ge,其中Nb

3

Ge超导

体的临界转变温度(T c)值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,

因而在应用上受到很大限制。1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La-BaCuO),其T c为35K,第一次实现了液氮温区的高

温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。1987年初,中、美科学家各自发现临界温度大于90K的YBacuO超导体,已高于液氮温度(77K),高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BisrCuO,再后来又有人将Ca掺人其中,得到Bis尤aCuO超导体,首次使氧化物超导体的零电阻温度突破100K大关。1988年,美国的荷曼和盛正直等人又发现了T

1

系高温超导体,将超导临界温度提高到当时公认的最高记录125K。瑞士苏黎世的希林等发现在HgBaCaCuO超导体中,临界转变温度大约为133K,使高温超导临界温度取得新的突破。

2.超导材料的研究

2.1低温超导阶段

在梅斯勒发现超导体的抗磁性之后(相继有荷兰物理学家埃伦弗斯特根据有关的超导

体在液氦中比热不连续现象(提出热力学中二级相变的概念)柯特和卡西米尔提出超导的二

流体模型)德国物理学家F·伦敦和H·伦敦兄弟提出超导电性的电动力学唯相理论(即伦敦

方程);度海森伯根据电子间的库仑相互作用,提出了一种超导微观理论,波尔提出了另一种微观理论;前苏联物理学家阿布里科索夫提出第二类超导体的概念;巴丁/库伯和施里费提出了BCS理论,贾埃弗发现超导体中的单电子隧道效应;约毖夫森提出了约毖夫森效应等等。1934—1985年,人们对超导体在理论上和实验上都作了广泛的研究,使超导物理学理论逐步发展,超导材料逐步应用于实际科学技术领域。由于人们在一定条件下认识水平的局限性以及其它一些原因,直到今天,超导物理学理论尚不完善,实际应用也不广泛。在这一阶段,人们研究的超导材料临界转变温度较低,所以,在超导史上,这一时期属于低温超导阶段。

2.2高温超导阶段

目前,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K)以及2001年1月发现的新型超导体二硼化镁(39 K)。其中最有实用价值的是铋系、钇系(YBCO)

和二硼化镁(MgB

2

)。氧化物高温超导材料是以铜氧化物为组分的具有钙钛矿层状结构的复杂物质,在正常态它们都是不良导体。同低温超导体相比,高温超导材料具有明显的各向异性,在垂直和平行于铜氧结构层方向上的物理性质差别很大。高温超导体属于非理想的第II类超导体。且具有比低温超导体更高的临界磁场和临界电流,因此是更接近于实用的超导材料。特别是在低温下的性能比传统超导体高得多。

高温超导材料已进入实用化的研究开发阶段,氧化物复合超导材料的耐用(robustness) 和稳定性已引起材料科学家的广泛重视。由于高温超导薄膜材料较早进入电子学器件的应

用领域,很多学者做了薄膜材料与环境相关的稳定性和寿命研究工作。浸泡实验是一种常用的方法:在不同试剂 (水、酒精和丙酮等)、不同气氛(干氮、湿氮和流动氧等)中做周期循环和热时效疲劳试验。研究表明, 超导电性的退化主要来自于杂相 (第二相) 及时效过程中的析出相。美国西北大学的Mirkin 建议把在其它材料中应用已十分广泛的分子单层表面化学改性(又称“自装配,Self assembly ”) 引入到高温超导铜氧化合物中来。例如用有机物对YBCO 表面进行分子单层表面改性,以此改善薄膜对环境的敏感性。

高温超导带材以铋锶钙铜氧(BSCCO/2223)系为第一代带材,它以优良的可加工性而得

到了广泛的开发,并在超导强电应用领域占据重要位置。但铋系材料的实用临界电流密度 较低,并且在77 K 的应用磁场也很低。相反,YBCO 材料在77 K 的超导电性远优于BSCCO 材料;然而它的可加工性却极差,传统的压力加工和热处理工艺难以做出超导性好的带材。

近年来随着材料科学工艺技术的发展,一种在轧制 (rolling) 金属基带上制造YBCO

超导带材的工艺受到极大重视, 并被冠以“下一代”高温超导带材或“第二代”带材。有 两种基本技术方案:(1) 以美国橡树岭国家实验室 (ORNL) 为代表的一个方案, 称作轧制 双取向金属基带法 (RABiTS)。会上Specht 报告了基带的退火织构稳定性分析,并在1m 长的取向金属基带上用激光沉积YBCO 外延膜。

欧洲以德国、丹麦等为代表,努力开展高温超导材料工艺及应用研究。丹麦的NKT 已

批量制造铋系超导带材。长10m 、2000 A 的超导电力电缆正在研制中,下一步开发三相、50~100 m 输电电缆。西门子公司计划到2003年制成20 MVA 的超导变压器。用于电子学方面探伤的RF-SQUID 及卫星通讯用高温超导滤波器也在试制之中。

2.3 高温超导材料的制备工艺

为适应各种应用的要求,高温超导材料主要有:膜材(薄膜、 厚膜)、块材、线材和带

材等类型。其制备方法见表1。

2.3.1薄膜 表1 高温超导材料主要制备方法及用途

高温超导体薄膜是构成高温

超导电子器件的基础,制备出优质

的高温超导薄膜是走向器件应用的

关键。高温超导薄膜的制备几乎都

是在单晶衬底(如SrTiO 3、LaAl O 3

或MgO)上进行薄膜的气相沉积或外

延生长的。经过十年的研究,高温

超导薄膜的制备技术已趋于成熟,达到了实用化水平(Jc>106 Ac ·m 2 ,T=77 K)。目前,最常用、最有效的两种镀膜技术是:磁控溅射(MS)和脉冲激光沉积 (PLD)。这两种方法各有其独到之处,磁控溅射法是适合于大面积沉积的最优生长法之一。脉冲激光沉积法能简便地使薄膜的化学组成与靶的化

学组成达到一致,并且能控制薄膜的厚度。

2.3.2厚膜

高温超导体厚膜主要用于HTS磁屏蔽、微波谐振器、天线等。它与薄膜的区别不仅仅是膜的厚度,还有沉积方式上的不同。其主要不同点在以下三个方面:(1)通常,薄膜的沉积需要使用单晶衬底;(2)沉积出的薄膜相对于衬底的晶向而言具有一定的取向度;(3)一般薄膜的制造需要使用真空技术。获得厚膜的方法有很多:如热解喷涂和电泳沉积等,而最常用的技术是丝网印刷和刮浆法,这两种方法在电子工业中得到了广泛的应用。

2.3.3线材、带材

超导材料在强电上的应用,要求高温超导体必须被加工成包含有超导体和一种普通金属的复合多丝线材或带材。但陶瓷高温超导体本身是很脆的,因此不能被拉制成细的线材。在众多的超导陶瓷线材的制备方法中,铋系陶瓷粉体银套管轧制法(Ag PIT)是最成熟并且比较理想的方法。而压制出铋系带材的临界电流密度比通过滚轧技术制备出带材的临界电流密度要高得多。

2.3.4 块材

最初的氧化物超导体都是用固相法或化学法制得粉末,然后用机械压块和烧结等通常的粉末冶金工艺获得块材,制备方法比较简单。但T c达到了一定的高度,而载流能力J c太低,则不能满足应用的要求,因此必须要提高其临界电流密度。经过多年的研究,采用定

向凝固技术制备出的无大角度晶界的YBa

2Cu

3

O

x

-

7

块材,其J c值可达105A·m2- (77 K)。

2.4超导材料在电力系统中的应用

随着经济建设的发展,电能需求迅速增加,电力系统的规模也越来越大,形成了联合电力系统。目前我国最大的电力系统容量已超过了10000 Mw,最高输电电压为500 kV,大发电设备容量超过600Mw,发电量和装机容量均已位居世界第二。全国己形成五个跨省电网,五个独立省网和一个南方联营电网,不久将建成以三峡电网为中心的全国性电力系统。

采用联合电力系统有很多优点,如可以利用各地负荷的互补性减少系统总的装机容量;合理利用资源,实现经济运行;利于安装大容量机组,提高劳动生产率;减少备用容量等等。然而并网联合经营也带来了一些问题,如电力系统结构变得复杂,运行难度增大。2003年8月14日美国东北部地区的大面积停电,对现代电力系统的安全运行提出了警示,必须采取有效措施保证电网安全和经济运行。

美国能源部认为:超导电力技术是21世纪电力工业唯一的高技术储备。根据国际超导科技界和相关产业部门的预测:10年以后,全球超导产业将达到260亿美元。因此,超导技术被认为是2l世纪具有战略意义的高新技术。在电力系统中采用超导技术可提高单机容量和增加电网的输送容量、降低传输损耗、提高系统运行的稳定性和可靠性、改善电能质量、降低电网的占地面积和电网的造价及改造成本,并使超大规模电网的实现成为可能∽J。不仅如此,通过大容量的超导输电系统,可将排污的发电厂建在煤矿和油田附近,或将核电站建在比较偏远的地区,从而改善人类生存环境的质量。通过超导储能,还可大大改善可再生能源的电能质量,并使其与大电网有效地联结。因此,加强对超导电缆、超导故障电流限制器、超导储能器、超导变压器、超导发电机和超导电动机等超导技术的研究,将会极大地推动电力科技的发展,将电力科技的发展带入一个崭新的阶段。目前,超导电缆、

超导故障电流限制器、超导储能器和超导变压器已发展或接近到工程实用阶段,超导发电机和超导电动机的研制也取得了重大进展。

2.4.1超导输电电缆

我国电力资源和负荷分布不均,因此长距离、低损耗的输电技术显得十分迫切。超导材料由于其零电阻特性以及比常规导体高得多的载流能力,可以输送极大的电流和功率而没有电功率损耗。超导输电可以达到单回路输送GVA级巨大容量的电力,在短距离、大容量、重负载的传输时,超导输电具有更大的优势。

低温超导材料应用时需要液氮作为冷却剂,液氦的价格很高,这就使低温超导电缆丧失了工业化应用的可行性。若使用高温超导材料作为导电线芯制造成超导电缆,就可以在液氮的冷却下无电阻地传送电能。高温超导电缆的出现使超导技术在电力电缆方面的工业应用成为可能。

目前,市场上可以得到并可用来制造高温超导电缆的材料主要是银包套铋系多芯高温超导带材,其临界工程电流密度大于10 kA/cm2高温超导电缆以其尺寸较小、损耗低、传输容量大的优势,可用于地下电缆工程改造。以高温超导电缆取代现有的常导电缆,可增加传输容量。高温超导电缆另一重要应用场合是可在比常导电缆较低的运行电压下将巨大的电能传输进入城市负荷中心。由于交流损耗的缘故,利用高温超导材料制备直流电缆比制备交流电缆更具优势。利用超导技术,通过设计实用的直流传输电缆和有效的匹配系统,从而实现高效节能低压大容量直流电力传输系统。

2.4.2超导变压器

超导变压器一般都采用与常规变压器~样的铁芯结构,仅高、低压绕组采用超导绕组。超导绕组置于非金属低温容器中,以减少涡流损耗。变压器铁芯一般仍处在室温条件下,超导变压器具有损耗低、体积小、效率高(可达99%以上)、极限单机容量大、长时过载能力强等优点。同时由于采用高阻值的基底材料,因此具有一定的限制故障电流作用。一般而言,超导变压器的重量(铁芯和导线)仅为常规变压器的40%甚至更小,特别是当变压器的容量超过300 MVA时,这种优越性将更为明显。

早在20世纪60年代,就有人对超导变压器进行了研究。但是,由于交流损耗过大雨被认为是不经济的。随着极细丝超导复合导体的出现,超导变压器才成为有吸引力的应用项目。高温超导材料的出现,更是降低了超导变压器的技术难度,由于超导受到的磁场强度只有0.3~0.5 T,因此在变压器中采用高温超导材料是合适的;同时在液氮下的绝缘强度比液氦下的高,所以,将会使变压器绝缘更简化。

三结论与展望

前一段时间之所以会掀起世界性的超导热,是因为超导的三大特点:零电阻、完全的抗磁性和隧道效应。这些特性带来很大的实用价值’例如超导的零电阻’能使人们实现电力的无损输送等+如何使超导体的这三大特性实用化’以及实用化后将会出现的问题’都是目

前超导科学工作者们所面临的难题

3.1超导材料的可能应用

关于超导材料的应用,人们首先想到的是利用超导体的第一个特性—无电阻电流,假如能建立起一个全国性的电力网,由于无电阻,电力网中就无损耗,那么将节省10%—20%因输送而造成的电力损耗;用超导体制成的集成电路,将大幅度提高集成电路的性能;不发热,可以大大地缩小计算机的体积并大大加快运算速度。到目前为止,日本在超导材料的应用开发方面在世界上居领先地位,他们正在研制开发超导三极管、超导集成电路等。

利用超导的第二个性质,可以形成高磁场,高磁场在新兴的科技领域中有着广泛的应用,如日本正计划建设磁浮列车以及用超导电磁来推动轮船等。另一个用途是储能,美国计划一项代号为SMES的储能工程,这一工程研究了能在10s内释放40—100MW的能量;储能的另一个用途是均衡电力网,因为日夜间的电力需求不一。夜间,人们用电较少,则可以存储起来,在白天需要时释放出来。

超导材料还可用于医学、生物学及测量系统等等,由于真正理想的超导体尚未问世,人们对超导材料在科学领域的应用只能作一些设想和简单的试验,一旦理想的超导材料问世,它的实际应用远非今天所能设想的,它必将改变人类科学以致改变整个世界。

3.2超导研究所遇到的困难

超导材料有着广阔的应用前景,但要用超导材料来改进现有的科技工程又决非易事。目前,科学家和工程师们所遇到的困难是如何使超导材料实用化,即提高临界转变温度、临界电流密度和改良其加工性能,制造出理想的超导材料。

3.3中国超导材料的发展

我国电力、通信、国防、医疗等方面的发展急需利用超导技术解决现有的关键技术问题。在电力工业方面,电能需求量日益增长,对供电质量和可靠性的要求越来越高,常规电力技术已越来越不能满足电力工业发展的需求。超导电力技术(如超导储能、电缆、限流器、电机等)可以克服常规电力技术的缺陷,它的应用将带来电力工业的重大变革。在国防

工业方面,由于超导技术不可代替的特殊性和优越性,将在扫雷艇、超导电机、电磁武器、传感器、舰船用防弹及导航用高精度超导陀螺仪等领域被广泛应用。

七五”以来,在国家“863”专项计划和国家重点基础研究计划的支持下,我国超导企业坚持自主创新,在超导理论、材料及应用等方面取得了长足的进步,申请了数百项专利,同时在超导产业化与技术应用方面也实现了跨越式发展。自2000年以来,国内企业资本积极参与超导技术产业的发展,西部超导材料科技有限公司、北京中数威利超导技术有

限公司、北京云电英纳超导电缆有限公司和天津海泰超导公司相继成立。中国科学院电工研究所与5家电力设备制造企业和应用单位就超导限流器、电缆和变压器等签订了技术开发合同,共同推进超导电力技术的产业化。

到2020年,超导产业对我国GDP的贡献将达到200亿美元,超导材料将在电力、医疗、交通、通讯和国防等领域得到广泛应用。我国将形成较大规模并有较强国际竞争力的超导材料产业,占据国际超导市场的20%以上,材料制备达到国际先进水平。在这期间,我国低温超导材料的产业化将在国际热核聚变计划实施和磁共振成像技术应用的牵引下得到快

速发展。高温超导材料将逐渐成为实用超导材料的主体,第二代实用高温超导材料将形成规模产业。我国将建立相应的国家平台或研究开发基地,进一步提升我国超导材料自主创新能力和国际科学创新竞争力。

西北有色金属研究院经过40年的艰苦努力,在超导材料研究和产业化方面实现了第一个跨越式发展,换来了“十五”期间我国超导材料研发历史上里程碑的成果,并且奠定了未来发展的基础。在未来的5~15年,西北有色金属研究院将继续坚持自主创新,在我国建成具有国际一流水平的低温超导材料生产基地,同时实现高温超导材料技术的突破,实现我国超导材料第二个跨越式发展。

相关文档
最新文档