07-08-1线代试题及解答-复习
2008线性代数A参考答案

2007~2008学年第二学期《线性代数》A 卷参考答案及评分标准一、单项选择(每小题2分,共20分)请将正确选项前的字母填入下表中1、2-。
2、159206915-⎛⎫⎪-⎝⎭。
3、4。
4、213/21/2-⎛⎫⎪-⎝⎭。
5、 3 。
6、3。
7、 0 。
8、2。
9、1/λ。
10、222123122344x x x x x x x ++++ 三、计算题(1、2每小题6分,其余每小题6分,共40分)1、解:212223242322A A A A +++=1222232********* ……3分122201220011001---=1=- ……6分2、解:由AX A X =+有()A E X A -=()1002001002001101200101201111120112A E A ⎛⎫⎛⎫⎪ ⎪-=→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ……4分 200120012X ⎛⎫⎪∴=- ⎪ ⎪-⎝⎭……6分 3、解:由225A A E O --=有()()32A E A E E -+= ……3分320A E A E -+=≠有30A E -≠ 所以3A E -可逆 ……6分 且11(3)()2A E A E --=+ ……7分4、解:()1234310111512112370122318100001397000TTTTαααα⎛⎫ ⎪--⎛⎫⎪⎪- ⎪ ⎪-=→ ⎪ ⎪- ⎪ ⎪- ⎪⎝⎭ ⎪⎝⎭……3分 ∴1234,,,αααα线性相关,1234(,,,)2R αααα=,12,αα是它的一个极大无关组,……4分且31241237, 222αααααα=-=+. ……7分5、解:矩阵A 的特征方程为0)1)(2(163530642=--=-+--=-λλλλλλA E得特征值 12321==-=λλλ ……3分当21-=λ时有⎩⎨⎧=-=+⎪⎩⎪⎨⎧=-+=+=--00,036303306632313212121x x x x x x x x x x x 即它的基础解系是⎪⎪⎪⎭⎫ ⎝⎛-111,所以对应于21-=λ的全部特征向量是)0(111≠⎪⎪⎪⎭⎫⎝⎛-c c ……5分当132==λλ时有 02,6306306321212121=+⎪⎩⎪⎨⎧=+=+=--x x x x x x x x 即它的基础解系是向量⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-100012及,所以对应于132==λλ的全部特征向量是不全为零)2121,(100012c c c c ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛- ……7分6、解: 22020021201002000410011201001201001A E -⎛⎫⎛⎫⎪ ⎪---⎪⎪⎪⎪-⎛⎫=→⎪ ⎪⎪-⎝⎭⎪ ⎪- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭……3分112012001P -⎛⎫⎪∴=- ⎪ ⎪⎝⎭……6分 222123123(,,)24f x x x y y y=-+ ……7分 四、证明题(每题5分,共10分)1、证明:由 AB O = 有 12(,,,)s A X X X O = 即12(,,,)s AX AX AX O = 得i AX O = ()1,2,i s =即i X 为A X O =的s 个解 ……2分 显然12()(,,,)()s R B R X X X n R A =≤-即()()R A R B n +≤ ……3分 2、证明:()123,,3R ααα= ,()1234,,,3R αααα= 123,,ααα 线性无关 1234,,,αααα线性相关 则有 4112233m m m αααα=++ 成立 ……2分 设 112233454()0k k k k ααααα+++-=有 112233454112233()0k k k k k m m m ααααααα+++-++= 1411242234334()()()0k k m k k m k k m kαααα-+-+-+=……3分 ()1235,,,4R αααα=1235,,,αααα 线性无关则有141242343400k k m k k m k k m k -=⎧⎪-=⎪⎨-=⎪⎪=⎩ 解之有 12340k k k k ==== ……4分故 12354,,,ααααα-线性无关 即12354(,,,)4R ααααα-=……5分。
07-08线代BA卷答案

2007-2008学年第二学期期末试卷-A 卷线性代数B课程号: 11020063B 课序号: 01-13 开课系: 数学与数量经济学院一、填空题(每小题3分,共15分)1.6427811694143211111= 12 。
2.设 A 为3阶可逆矩阵,1=A ,则=-*1)(A 1 。
3. 设321,,ααα线性无关,则321211,,αααααα+++线性____无 ___关。
4. 设A 为4阶方阵,且()3=A r ,则齐次线性方程组*0A X =(*A 是A 的伴随矩阵)的基础解系所包含的线性无关向量的个数为 3 。
5.设T T T ===),3,1(,)3,2,1(,)1,1,1(321t ααα,若向量组321,,ααα线性相关,则=t 5 。
二、单项选择题(每小题2分,共10分)1.非齐次线性方程组AX B =中未知量的个数为n ,方程个数为m ,系数矩阵A 的秩为r , 则 B 。
(A )r = m 时,方程组AX B =有解(B )r = n 时,方程组AX B =有唯一解(C )m = n 时,方程组AX B =有唯一解(D )r 〈 n 时,方程组AX B =有无穷多解2.设A 为n 阶矩阵,且0A =,则A 的列向量中C 。
(A )必有两个向量对应分量成比例(B )必有一个向量为零向量(C )必有一个向量是其余向量的线性组合(D )任一向量是其余向量的线性组合3.设A 为n 阶单位矩阵,则矩阵A 的特征值为 B。
(A )0λ= (B )1λ= (C )2λ= (D )3λ=4.下面结论不正确的是C 。
(A )相似矩阵有相同的特征值(B )相似矩阵有相同的行列式(C )相似矩阵的秩一定不相同(D )实对称矩阵的属于不同特征值的特征向量是正交的5.123(2,1,3),(3,1,1),(1,1,2)ααα==-=-,则向量组1α,2α,3α是A。
(A ) 线性无关 (B )线性相关(C )1α可以由2α,3α线性表示 (D )3α可以由1α,2α线性表示三(10分)计算下列n 阶行列式 ab b b a b bb a D n==1[(1)]()n a n b a b -+-- 四(10分)解矩阵方程 A 2X AX =+,其中A = 3 0 1 1 1 00 1 4⎛⎫ ⎪ ⎪ ⎪⎝⎭ 5 -2 -2 4 -3 -2 -2 2 3X ⎛⎫ ⎪= ⎪ ⎪⎝⎭五(10分) 已知向量组()5,4,3,11-=α,()9,7,2,22-=α,()12,9,3,33=α试求这个向量组的一个极大无关组,并把其余向量用此极大无关组线性表示。
《2008线性代数》试卷参考答案(不完整版)

2 3 10
0
3
C1 证明:β = AZ 有解,Z0 = ⋮ ,则β = C1α1 + ⋯ + Cnαn,故(A,β)的列向 Cn 量组与 A 的列向量组等价,从而秩相等 反过来, (A,β)的列向量组与 A 的列向量组等价 故β可用α1, ⋯ ,αn线性表示 令β = C1α1 + ⋯ + Cnαn,则 Z0= C1 ⋮ 为 AZ=β的解 Cn
1 1 = (a + 2)(a − 1)2 a
当 a≠ −2, a ≠ 1 时,有唯一解; 当 a= 1时,无解; 当 a=-2 时,有无数解。 方程为-2x1+x2+x3=2,,x1+x2-2x3=4 对应齐次方程组基础解为 −1, − 1,1
T
求一特解为 x1=3,x2= 3 ,x3=0
2
10
−1 故通解为 a −1 + −1 六、证明题
n −2 n −1
n
=nn −1
1 + n +n + ⋯+ 0 0 ⋮ 0 0
n+1 2
n −1
0 0 0 0 ⋮ ⋮ 0 −1 −1 0
n+1 2
0 −1 ⋮ 0 0
n
−1 0 ⋮ 0 0
n
=nn −1 五、 a 1 解: A = 1 a 1 1
(−1)n+
n (n +1) 2
= nn −1
(−1)n(n+1)
1 1 1 3、解: A = ⋮ 1 1
2 1 1 ⋮ 1 1−n
3 1 1 ⋮ 1−n 1 ⋯ ⋯ ⋯ ⋱ ⋯ ⋯
2 n
⋯ n−2 n−1 ⋯ 1 1 ⋯ 1 1−n ⋱ ⋮ ⋮ ⋯ 1 1 ⋯ 1 1
2007级线性代数试题和答案 A卷

2007级线性代数试题和答案 A 卷2007级线性代数期末试题答案一、填空题(每小题4分、本题共28分)1.设A *是n 阶方阵A 的伴随矩阵,行列式2A =,则*2A = .2n n n 12 2|=22222n -=⨯=n-1**n-1n-1解应填因为行列式|2A |A |=|A|2.设4阶方阵A 和B 的伴随矩阵为A *和B *,且它们的秩分别为3)(=A r ,4)(=B r ,则秩=)(**B A r .()()()()****** 1.14 1.r A r B B r A B r A ====解应填由题设可知,,的可逆矩阵,故 3.设n 维向量(,0,,0,)T x x α=,其中0x <;又设矩阵T A E αα=-,且11T A E xαα-=+,则x = .()()()()()2-1-12 -12111- --111----21 -1-201111-22-12-11012T T T T T T TT T T T T T TT T x AA E E E x x x E E x x x x E x x AA E x x x x x x x x x x αααααααααααααααααααααααααααααααα=⎛⎫=+=+ ⎪⎝⎭=+=+⎛⎫=+ ⎪⎝⎭=≠+=+=+==解应填 因为,而 由及可知 故或-10-1x x =<=,又由可得4.已知n 阶方阵()ij n nA a ⨯=,12,,n ααα⋅⋅⋅,是A 的列向量组,行列式0A =,伴随矩阵*O A ≠,则齐次线性方程组*0A x =的通解为 .解 应填α =111221...n i i n i k k k ααα--+++ ,其中 121n i i i ααα⋅⋅⋅- 是向量组 12n ααα⋅⋅⋅的极大线性无关组, 121n k k k ⋅⋅⋅- 是任意常数。
因为|A|=0,A *≠0 所以秩r(A)=n-1,因此,向量组12n ααα⋅⋅⋅的秩r(12n ααα⋅⋅⋅)=n-1,由此又可知线性方程组A *x=0的基础解系含n-1个解,12n ααα⋅⋅⋅的极大线性无关组含n-1个向量,而A *A= A *(12n ααα⋅⋅⋅)=|A|E=0即A *=0(j=1 n) ,亦即12n ααα 都是A *x=0 的解,故12n ααα的极大线性无关组可作为A *x=0 的基础解系。
2008年07月线性代数(经管类)试题及答案

全国2008年07月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设3阶方阵A=[321,,ααα],其中i α(i=1, 2, 3)为A 的列向量,且|A|=2,则|B|=|[3221,,3ααα+α]|=( C ) A.-2 B.0 C.2 D.62.若方程组⎩⎨⎧=-=+0x kx 0x x 2121有非零解,则k=( A )A.-1B.0C.1D.23.设A ,B 为同阶可逆方阵,则下列等式中错误的是( C ) A.|AB|=|A| |B|B. (AB)-1=B-1A-1C. (A+B)-1=A-1+B-1D. (AB)T=BTAT4.设A 为三阶矩阵,且|A|=2,则|(A*)-1|=( D )A.41B.1C.2D.45.已知向量组A :4321,,,αααα中432,,ααα线性相关,那么( B )A. 4321,,,αααα线性无关B. 4321,,,αααα线性相关C. 1α可由432,,ααα线性表示D. 43,αα线性无关 6.向量组s 21,,ααα 的秩为r ,且r<s ,则( C ) A. s 21,,ααα 线性无关B. s 21,,ααα 中任意r 个向量线性无关C. s 21,,ααα 中任意r+1个向量线性相关D. s 21,,ααα 中任意r-1个向量线性无关 7.若A 与B 相似,则( D ) A.A ,B 都和同一对角矩阵相似 B.A ,B 有相同的特征向量C.A-λE=B-λED.|A|=|B|8.设1α,2α是Ax=b 的解,η是对应齐次方程Ax=0的解,则( B ) A. η+1α是Ax=0的解B. η+(1α-2α)是Ax=0的解C. 1α+2α是Ax=b 的解D. 1α-2α是Ax=b 的解 9.下列向量中与α=(1,1,-1)正交的向量是( D ) A. 1α=(1,1,1) B. 2α=(-1,1,1) C. 3α=(1,-1,1) D. 4α=(0,1,1)10.设A=⎥⎦⎤⎢⎣⎡--2111,则二次型f(x1,x2)=xTAx 是( B )A.正定B.负定C.半正定D.不定二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。
07~08(一)高数(文)1期末(A)卷评分标准

上海应用技术学院2007—2008学年第一学期《高等数学(文)1》期末(A)试卷评分标准一.选择题(在每个小题列出的四个选项中只有一个符合题目的要求,请将正确选项前的字母填在括号内)(本大题共10小题,每小题2分,共20分)1.D ; 2.C ; 3.B ; 4.A ; 5.B ; 6.C ; 7.B ; 8.A ; 9.C ; 10.D 。
二.填空题(请将答案直接填在空格内)(本大题共8小题,每小题2分,共16分) 1.=-∞→x x x )21(lim 2-e 。
2.设)(u f 可导,)(x e f y =,则=dy dxe ef x x )('。
3.曲线x e x y +=在点)1,0(处的切线方程为12+=x y 。
4.设1=x 为kx x y -=3的极值点,则=k 3。
5.)1ln(2x y +=的单调减少区间为]0,(-∞。
6.已知某商品的需求函数5PeQ -=,则在5=P 时的需求弹性=)5(η1。
7.设2)(x e x F -=是)(x f 的一个原函数,则=)(x f 22x xe --。
8.定积分=I ⎰-=+222)sin (cos ππdx x x x 2。
三.计算题(本大题共7小题,每小题6分,共42分)1.求极限42lim 4--→x x x 。
解:)4)(2()2)(2(lim 42lim 44-+-+=--→→x x x x x x x x .....................................(3分) 21lim 4+=→x x ..............................................(5分)41=.....................................................(6分) 2.求极限 )111(lim 0--→x x e x 。
解:)111(lim 0--→x x e x )1(1lim 0---=→x x x e x x e .....................................(1分) 201l i m x x e x x --=→ ...................................................(3分) xe x x 21lim 0-=→ ......................................................(4分) 2l i m 0xx e →=..........................................................(5分) 21= .............................................................(6分) 3.设)1ln(2x x y ++=,求122=x dx y d 。
07年01月线性代数02198自考试题及答案
07年01月线性代数02198自考试题及答案线性代数2007年7月高等教育自学考试全国统一命题考试线性代数试卷课程代码2198试卷说明:AT表示矩阵A的转置矩阵,E表示单位矩阵,|A|表示方阵A的行列式,在A可逆时,A-1表示A的逆矩阵,||α||表示向量α的长度。
1.设abe≠0,则三阶行列式的值是()A.aB.-bC.0D.abc2.若子阶方阵。
等价于矩阵,则A的秩是()A.0B.1C.2D.33.设A为n阶方阵,且A3=E,则以下结论一定正确的是()A.A—EB.A不可逆C.A可逆,且A-1=AD.A可逆,且A-1=A2。
4.设A为3阶矩阵,若|A|=k,则|—kA|是()A.-k.B.-3kC.-kD.k35.设α1,α2,α3。
线性相关,则以下结论正确的是()A.α1,α2一定线性相关B.α1,α3一定线性相关C.α1,α2一定线性无关D.存在不全为零的数kl,k2,k3使k1αl+k2α2+k3α3=06.设u1,u2是非齐次线性方程组A某=b的两个解,则以下结沦正确的是A.ul+u2是A某=b的解B.ul—u2是A某=b的解C.ku1是A某=b的解(这里k≠1)D.u1一u2是A某=b的解7.设3阶矩阵A的特征值为l,3,5,则A的行列式|A|等于()A.3B.4C.9D.15)(线性代数8.设矩阵A=A.正交矩阵B.正定矩阵C.对称矩阵D.反对称矩阵9.二次型,则A是()的矩阵是()A.B.C.D.10.设A.B.2C.D.是矩阵A的属于特征值λ的特征向量,则以下结论正确的是()是λ对应的特征向量是λ对应的特征向量一定线性相关一定线性无关二、填空题(本大题共10小题.每小题2分.共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.矩阵A=秩为_____________。
12.排列12453的逆序数为_____________。
13.设A,B为3阶方阵,且|A|=9,|B|=3,则|-2AB-1|=_____________。
线性代数07年至今真题及答案
2007 04184 10 20 A 2|| A |2|1A D-4B -1C 1D 44218||2|2|131 A A A B = 4321 C =654321 BACB ABC BACCBAA n BA A TA A T AA TA T A )()()(T T T T T T T A A A A A A A A A A T 4 A =d c b a A * Aa cb d B a bcd Ca cb d Da b c d0133 C3310 B 3130 C 13110 D01311 A =500043200101 A D BDA m×n Ax =0 A AB A A D AAx =0 n A r )( AAx=b T )2,0,1(T )3,1,1( A r(A )=2k , k 1, k 2 Ck 1(1,0,2)T +k 2(1,-1,3)T B (1,0,2)T +k (1,-1,3)T (1,0,2)T +k (0,1,-1)T D (1,0,2)T +k (2,-1,5)TT )2,0,1( Ax=b T )1,1,0( Ax =0 Ax=b )( k (1,0,2)T +k (0,1,-1)TA =111111111 B4B 3C 2D 1111111111)3(111111333111111111||A El i w.t r a c k e r -s o f tw a r e C ck t o b u y NOW !w w.co m10 413121214321222),,,(x x x x x x x x x x x f C4B 3C 2D 1000000001110000100000000000111100001000100011111A10 2011 ,3,2,1,0 i b a i i 332313322212312111b a b a b a b a b a b a b a b a b a =__0__ 12 A =4321 |A T A |=__4__ 4)2(4321||||||||222A A A A A T T1300333232131323222121313212111x a x a x a x a x a x a x a x a x a __0__14 A =100020101E A B B r(B )= __2__ E A B =000010100 r(B )=215 V={x =(x 1,x 2,0)|x 1,x 2 __2__ 16 )3,2,1()1,2,3( ),( =__10__17 A 4×3 Ax =0 A r(A )= __3__18 Ax =b A1)1(0021201321a a a A a __0__0 a 2)( A r 3)( A r19 ),,(321x x x f 232221y y y3 r 2 k 123 k r 232221y y y20 A =300021011a a 1 a54217673679492493231230760300940200320100767367949249323123 22 A =523012101 1A100010001523012101103012001220210101127012001200210101 127012002200210202 1271151252000100022/112/71152/112/5100010001 1A2/112/71152/112/5 23 T )1,2,1,1(1 T )2,4,2,2(2 T )1,6,0,3(3 T)4,0,3,0(4),,,(4321 41210642302103214440000033000321 0000330044400321 0000110011100321 00001100001030210000110000103001321,, 4 321032400543321521x x x x x x x x x111000*********A 11100101001001101000101001001101000101001001155453225210x x x x x x x x x x 0001110101T T k k )1,0,1,0,1()0,0,0,1,1(2125 A =1221 P AP P 1)3)(1(324)1(1221||22A E11 3211 0)( x A E00112222A E 2221x x x x11121211121||1111 32 0)( x A E00112222A E 2221x x x x11221211121||122221212121P P30011AP P 26 0011101012001111012/12/10011210101||),(1211222l i w.t r a ck e r -s o f t w a r e C ckt o b u y NOW !w w.co m00 0027 A 1A332322131211000a a a a a a A3323133222123121111||1||1A A A A A A A A A A A A A 000332312a a A 00002213 a A 000121123 a a A3332223121111||1A A A A A A A A 2007 10 0418410 20 2211b a b a =1 2211c a c a =2 222111c b a c b a D -3B -1C 1D 3222111c b a c b a =2211b a b a +2211c a c a =1+2=3 A 2|2| A ||A B -1B 41C41 D 12|2| A 2||)2(3 A 41|| AA B C TABC )( B A T B T C T B C T B T A T C T A T B T D A T C T B TA4321)2(1A A D 2 4321B 432121C 214321 D 14321214321)2(1A 143212 A 1432121A s ,,,21 C s ,,,21 s ,,,21s ,,,21 s ,,,21A m×n Ax= A AB AA D AAx= n A r )( A21, Ax =b 21, Ax =0 1,C Ax =b A)()(212121121 C C B )()(212121121 C C )()(212121121 C C D )()(212121121 C C)(2121 Ax =b 211, Ax =0 A B A 2,2,3 ||1B A121B 71C 7D 12B300020002 12300020002|| B 121||||11 B BA 0|23| E A AB 23B 32C 32D 230|23| E A 032 A E A 3210312123222132142),,(x x x x x x x x x x f C104012421 B 100010421 C 102011211 D 12021101110 2011 A = 100012021 B = 310120001 A+2B =72025202312 A =002520310 1)(T A 002/1130250 ),(E A T10001000105302120000110001020*******001130010200010021001130250200010001002/1130250100010001 1)(T A002/1130250 13 A = 333022001 A *A =600060006l i w.t ra ck e r -s o f t w ar eC c k t ob uy NOW !w w .co m14 A m ×n C n A B =AC __r__B =AC C A B15 )1,1,1(31,31,31 16 T )1,1,1(1T )0,1,1(2 T )0,0,1(3 T )1,1,0( 321,,3210332211 k k k 001011111110321k k k110121321k k k k k k101321k k k 17320320321321321x x x ax x x x x x a =__2__02412141121200132132111a a a a 2 a18 A n A 1)2( A41 2 A 41)2(11)2( A 19 A =a a a 000103 a 30 a031 031322a a a0)3(00010323 a a aa a 30 a 202221212122),(x x x x x x f __2__301112111112A54211111112113114111630010201001100010001001102013001111111211311411122 )4,3,2,1()0,2,1,1( T ),(08440633042202110,2,1,14321 T50621),(23 A 21211b b a a A10211P 01102P 21AP P B 1B102111P011012P 111121P A P B =0110 2121b b a a 1021=2121a a b b 1021=12112122a a a b b b 24 T )3,1,1,1(1 T )1,5,3,1(2 T )4,1,2,3(3 T )2,10,6,2(4),,,(432124131015162312311 854012460412023110700070041202311 0000070041202311 0000010041202311 000001004020201100000100201020110000010020100001 321,,25223321321321ax x x x ax x a x x xa2112113111),(a a a b Aa a a a a 110010103111 1 a1 a ),(b A 00000000211133223212x x x x x x x10101100221k kl i w.t r a ck e r -s o f t w a r e C ckt ob uy NOW !w w.c o m26 A =011101110 110111)2(1111111)2(1212112111111||A E)2()1(221 132 21 0)( x A E000330211330330211112121211211121112A E000110101000110211333231xx x x x x 111 k k132 0)( x A E000000111111111111A E3322321x x x x x x x0111 10122211 k k 21,k k27 A n 0)(2 E A A0)(2E A 022 E A A E A A )2(2 E A E A )2(A )2(1E A A2007 0418410 20A |A |=21|A -1|= A -2 B 21 C21D 2A n ||A C||AB ||||AC ||A nD ||||A nA nB =A +A T A B T =BB B =2AB BTD B =0B A A A A A A A A B T T T T T T T T )()(A =1111 A * D1111 B 1111 C 1111 D 1111 Cl i w.t r a ck e r -s o f t w ar e C ckt o b u y NOW !w w.co m0001 B100101110 C101010001 D001300010)0,1,1(1 t )0,2,1(2 )1,0,0(23 ttBB 1C 2D 30)1)(1(2111)1(1021011222 t t t t t t 1 tA 4×5 (A )=3 DA 0B A A 0 D A A 021 23 (A )= B 0B 1C 2D 3A200000000D (A )= (D )=1 A n ||2A C -2B -1C 1D 2A E A A T22||||A A 1|||||| A A A A TT10 2.2),,(y x z y x f p BB 1C 2D 310 20 11 A =1121 ||TAA __1__ 1)1(1121||||||||22A A A AA T T121694432111 )2,3( 32A __-2__2421132A13 A =21 B =21 B A T__5__ 521)2,1(B A T1432125 )1,4,3(1 )3,0,1(2 )5,2,0( 3211,1,1211,1,1)11,2,2(21)]3,0,1(5)1,4,3()5,2,0[(213 l i w.t r a c k e r -s o f t w a r e C ck t o b u y NOW !w w.co m15 A =613101 =__2__ 613101 603001003001 =2 16 )1,1,1(1 )0,2,1(2 )0,0,3(3 3R )3,7,8()1,2,3(332211 x x x )0,0,3()0,2,1()1,1,1()3,7,8(321x x x37283121321x x x x x x123321x x x 170202121tx x x x t =__2__02211 t t2 t18 T )1,3,1(T )4,2,1( ),( __1__19 A =x 01010101 x =__1__A 0|| A 0111101010101 x xx1 x20 323121232221321822532),,(x x x x x x x x x x x x f541431112 5421 D=2101210124)26(21232112123021012101222 A = 3512 B =0231 XA =B X252610022501101220016101210013512),(E A25131001 25131A 26512251302311BA X l i w.t r a ck e r -s o f t w ar e C ckt o b u y NOW !w w.co m23 A =a 363124843121 a (A )=1 (A )=2 a 363124843121 900000003121a000090003121a 9 a (A )=1 9 a (A )=224 1 = 111 2 = 531 3 = 626 4 =542),,,(4321 565142312611 3126028402611142014202611000014202611 0000142041222 00001420580200002/12102/5401 1 ,225362232234232132321x x x x x x x x 362232203421),(b A 322032203421 000032203421000032200201 00002/31100201 333231232x x x x x x11202/30k261630310104A P D D AP P 1 2)1)(2(31104)1(1630310104|| A E21 13221 0)( x A E00013050300013001531300000511210510513630510102A El i w.t r a ck e r -s o f t w ar e C ckt o b u y NOW !w w.co m000333x x 1 132 0)( x A E0000000210210210210630210105A E3322212x x x x x x0122 1003101013/1023/5P 100010002D P D AP P 127 1 ,2 211 21202211 k k 0)()(212211 k k 0)()(221121 k k k k1 ,2002121k k k k 021111 1 ,2365, !2008 0418410 201. ,2 AA A T 3 D A.-108 B.-12 C.12 D.1082.0404033232321kx x x x x kx x k= B A.-2 B.-1 C.1 D.23. DA.AB=BAB.111B A B AC.BA B A D.T T T B A B A4.,2 A*A C A.2 B.4 C.8 D.125.1 =2 = ( B )A. B. -3 C. D. 0,-1,06. 1 2 s s(s 2 C A. 1 2 s B. 1 … sC. 1 …D. 1 … s7. m n AX=0 C A.A B.A C.A D.A8. D A.BA B.C. P-1AP=BD. E-A= E-B9. A=200010001 A A.100020001 B.200010011 C.200011001 D. 100020101 10.,x x x )x ,x ,x (f 232221321 )x ,x ,x (f 321 C A. B. C. D.10 2011.,0211k k=_______1/2____.12. A=411023,B=,010201 AB=___326010142________.13. A=220010002, A-1=2110010002114. 33 A x=0 (A)= _____1______. 15. -2, B=A 2+2E ___6_________.l i w.t r a ck e r -s o f t w ar e C ck t o b u y NOW !w w.co m16. 0x x x 321 _____ __ c 1 011_+__ c 2 _101_.17. 1 =(1,0,0) 2 =(1,1,0), 3 =(-5,2,0) _______2____.18. A=200020002 112233c c c . 19. -2,1,1,B2=__-16_________.20. A= 3010121212221231213342x x x x x x x . 5421.1002210002100021 .1002210002100021=151500021000210002122. A=101111123 A 1 . A1=211211102112123. A=200200011,B=300220011 A,B,X (E-B 1 A).E X B T T X,X .1 (E-B1A).E X B T T()T TB A E X X= ()T TB A 1 =10021002001l i w.t ra ck e r -s o f t w ar eC ck t ob uy NOW !w w .co mX 1 =()T T B A =20002000124. 1 =(1,-1,2,4) 2 =(0,3,1,2), 3 =(3,0,7,14), 4 =(2,1,5,6), 5 =(1,-1,2,0) .10321103011301101101217520001142146000001 2 425.12x x 3x 3x 4x 523x 6x 2x 2x 2x 3x x x 2x 37x x x x x 54321543254321543211111171001516321132000000012262301026235433112001000145245351623260X X X X X X X12(16,23,0,0,0)(15,21,0,1,0)(11,17,0,0,1)T T T k k26. A=020212022 AP P 1 . AP P 1 =400010002 P=122212221 1 P =T P 122212221,627. 3 A x =0 . 1+ 1 + 2 + Ax =02008 0418410 20l i w.t r a ck e r -s o f t w a r e C ckt o b u y NOW !w w.co mD 1=620222555333231232221131211333131232121131111D a a a a a a a a a a a a a a a a a ad b a 04=32c b a C 3,1,1,3 d c b aB 3,1,3,1 d c b a 3,0,1,3 d c b aD 3,0,3,1 d c b a 3,0,4,2 d c b a b a 3,0,1,3 d c b aA A B000000111 B 000110111 C 000222111 D 333222111A n 2 n |5|A A||)5(A n||5A C ||5A ||5A nA = 4321||A B -4B -2C 2D 424321||||||121A A A ns ,,,21 2 s D s ,,,21 s ,,,21s ,,,21 1 ss ,,,21 1 s b Ax A 1 ,2 ,3 T )4,0,2(21 T )1,2,1(31k b Ax D T T k )1,2,1()2,0,1(B T Tk )4,0,2()1,2,1(T Tk )1,2,1()4,0,2( D TT k )3,2,1()2,0,1(b Ax T)2,0,1()(21210 Ax T )3,2,1()()(312132 A 2,1,1 D A E B A E C A E 2D A E 2 2 A 0|2| A E A E 2=2 A 12)( A A41 B21C 2D 41B 2C 3D 400001100001000011100110000100001A10 2011332313322212312111b a b a b a b a b a b a b a b a b a =__0__ 12 A =4321 P = 1011 T AP4723 T AP 43211101=4723 13 A =111110100 1A 001011110100010001111110100 001010100100110111 001011101100010011001011110100010001 14 A =54332221t Ax =0 t =__2__02121412014022154332221|| t t t t A 2 t15 2111 1212113t t =__-2__11212111t 123013011t t t 20013011t t t 2 t 16 T )3,0,1,2(T k ),1,2,1( k =322),( 23022 k 3/2 k17 Tb21,21, b =__0__18 =0 A =222222A __4__ 021 220321 4319 32212322213212452),,(x x x x x x x x x x f510122021 20232221321)2()1()1(),,(x k x k x k x x x f k 2 k020101k k k211k k k 2 k 5421 D =400103010021111122021*******11122002100111011113110121011101111400103010021111122 A = 210011101 B =410011103A 1A B AX100010001210011101 100011001210110101111011001100110101111122112100010001 111122112100010001 1 A =111122112B A X 1111122112 410011103=322234225 23 )1,1,1,1( )1,1,1,1( TA 2ATA =)1,1,1,1(1111 11111111111111112A = 111111*********1 1111111111111111=4444444444444444 24 T)4,2,1,1(1 T )2,1,3,0(2 T )14,7,0,3(3 T )0,2,1,1(401424271210311301),,,(4321 42200110033013012110011001101301 200000000110130110000000011013010000100001101301 421,, 34210325ax x x x x x x x 32132131522312a),(b A a 51223111201 211011101201a300011101201a 3 a 3 a3 a ),(b A 000011101201333231121x x x x x x 112011k26 A =2178 A A P AP P 1)9)(1(9102178||2A E 11 92 11 0)( x A E00111177A E 2221x x x x11111 k 1k92 0)( x A E00717171A E 22217x x x x17222 k 2k1171P 9001 P AP P 1l i w.t r a c k e r -s o f t wa r e C ck t o b u y NOW !w w.co m27 n A A A 2A E 2 A E A E 2)2(1A A2E A A E A A E A E A E 4444)2)(2(2 A E 2A E A E 2)2(12008 0418410 20 ],,[321 A i 3,2,1 i A 2|| A|],,3[|||3221 B C -2B 0C 2D 6333231232221131211||a a a a a a a a a A 2||333||333232312322222113121211A a a a a a a a a a a a aB 02121x kx x x k A-1B 0C 1D 201111||k k A 1 k A B C ||||||B A AB B 111)( A B AB 111)(B A B A D T T TA B AB )(1001A 1001B A 2|| A |)(|1A A41 B 1C 2D 441||1||1||1|)(|211 A A A A nA 4321,,, 432,,B 4321,,, B 4321,,, 1 432,, D 43,s ,,,21 r s r C s ,,,21 B s ,,,21 r s ,,,21 r +1 D s ,,,21 r -1 A B DA ,B B A ,B E B E A D ||||B A21, b Ax 0 Ax B 1 0Ax B )(21 0 Ax 21 b Ax D 21 b Ax 00)]([2121 b b A A A A )1,1,1( D l i w.t ra ck e r -s o f t w ar eC ck t ob uy NOW !w w .c o m)1,1,1(1 B )1,1,1(2C )1,1,1(3D )1,1,0(40110),(4 102111A Ax x x x f T),(21 B B C D2111A 011 0121112A A10 2011 A 3||A |2|A __24__2438||2|2|3 A A12 )3,2,1(|| T __0__963642321)3,2,1(321 T || T 096364232113 200030021AA300020046 6200311A 0200012 A 0003013 A4200221 A 2200122 A 0002123 A0030231A 0000132 A 3302133A 14 A 4×5 (A )=2 0 Ax __3__ 325 r n15 )2,0,1(1 )7,0,3(2 )6,0,2(3 321,, __2__0001002011001002011000130020160270320116 1321 x x x T T Tk k )1,0,1()0,1,1()0,0,1(2133223211x x x x x x x 10101100121k k 17 A 032A A E 1A )(31E A032 A A E E A E A )(31 1A )(31E A18 A 3,2,1 ||E A __24__A 3,2,1 E A 4,3,2 ||E A 2443219 2),(2 ),2( __-8__8222||||),(2),(),2(),2(22l i w.t r a ck e r -s o f t w ar eC c k t ob uy NOW !w w .co m20221201113A 323121232132142223),,(x x x x x x x x x x x f 542110020001000000100020010000000300002110200010000001000200100000003000021 4102000100020100000030002141200210000030021 21202100023 *******2216223152A3421B 2512C X C B AX X10013152],[E A 01105231 211010312153100121531001 1A 2153BC 2512 3421= 1111 )(1B C A X 21531111=3182 23 )3,1,2,1(1 )6,5,1,4(2 )7,4,3,1(3),,(321TT T763451312141 10180590590141000000590141 0000005909369 00000059011090000009/5109/1101 21,24 b a ,3)2(321132132321b x a x x x x x x xl i w.t r a c k e r -s o f t w ar e C ckt o b u y NOW !w w.co m),(b A 323211101111b a 11011101111b ab a 10011101111 0,1 b a),(b A 000011101111 00001110020133323112x x x x x x 112010k2511713A)10)(4(401411713||2A E41 10241 0)( x A E00117711A E 2221x x x x11111 k 1k102 0)( x A E007/1100171717A E222171x x x x 17/1222 k 2k 262112A nA )3)(1(342112||2A E 11 32 11 0)( x A E001100111111A E 2221x x x x111 32 0)( x A E00111111A E 2221x x x x 1121111P 3001D111121212121211P D AP P 1 1 PDP A 1111)())(( P PD PDP PDP PDP A n n111121n 3001 1111n n 313121 1111n n n n 313131312127 0 Ax b Ax 0 b021 k k 0)(21 k k A 021 A k A k 0021 b k k 02 k 01 k 0 01 k l i w.t r a ck e r -s o f t w ar e C ckt o b u y NOW !w w.co m-9B -3C -1D 93131 A 31||313A 9|| A AB n 22B A DB AB B AC ||||B AD 22||||B AA = 1011B =1101 BA AB A1201B 1011 C1001D0000 BA AB 10111101 1101 1011= 11120111= 1201A A D0000 B 0001 C 0011D 1011 ),,(),,,(22221111c b a c b a ),,,(),,,,(2222211111d c b a d c b aB21, 21, 21, 21, 21, 21, 21, 21,132,121 Ax =0 A A)1,3,5( B112135 C 712321 D135221121 )1,3,5( 0121)1,3,5( 0132m ×n A r (A )=n -3 n >3 ,, Ax =0Ax =0 D,, B ,, C ,, D ,,,,A D =100010001 2A C AB DED EP D AP P11 PDP A E PP PEP P PD A 11122 A =001010100 A D0 B -1 1 C 1 D -1 -1)1()1()1)(1(11)1(0101010||22A E10 A n 2 n E A 2CA 1B A EA nD A 11||2 A 0|| A A n10 2011011103212 aa =__3__ 0)3(3323111103203111103212a a a a 3 a1202022121kx x x x k = __4__04221 k k4 k 13 A = 311102 B =753240 B A T19119753333 B A T311012753240= 19119753333 144212,0510,2001321t t =__3__000300110201000250110201402250110201t t t 3 t 15 )1,21,1,2( __5/2__16 )3,2,1(1 )6,5,4(2 )3,3,3(3 321,, 321,,__2__ l i w.t r a ck e r -s o f t w a r e C ckt o b u y NOW !w w.co m000630321630630321333654321 17 A 3,2,1||A __36__||A 36)321(||||221 A A n18 A 0,3321 r (A )= __2__A000030003 r (A )=219 A = 314122421 f =32312123222128432x x x x x x x x x 20 A =1002 Ax x T 2221y y222122212y y x x Ax x T 21x y 122x y5421 D =50210113210143219325310027126412227121641300012221502101132101432124)1527(29353222 A =2141 B = 1102 C =1013 X AXB =C X ),(E A 10012141 11016041 110360123112160036/16/13/23/16001 1A6/16/13/23/1)(E B 10011102 20012202 2101200212/102/11001 1B12/102/1 11CB A X6/16/13/23/1 1013 12/102/1= 114212110132101 = 03661212101= 031212121=04/111 l i w.t r a ck e r -s o f t w ar e C ck t o b u y NOW !w w.co m23 T )2,1,3( T )2,1,1(1 T )1,3,1(2 T )1,1,1(3332211 x x x T T T Tx x x )1,1,1()1,3,1()2,1,1()2,1,3(32122133321321321x x x x x x x x x A 211211313111413040403111413010103111 110010103111 110010103111110010102011110010101001 11 x 12 x 13 x321,, )1,1,1( 32124 321,, 311 32222 3213352321,, 0332211 k k k0)352()22()(3213322311 k k k 0)32()52()2(3321232131 k k k k k k k 321,,32052023213231k k k k k k k05252321520520321520201 321,,25322321321321 x x x x x x x x x),(b A 3112112113311001102112)1(3)2)(1(0001102112 2 1 11 ),(b A 00000000211133223212x x x x x x x10101100221k k l i w .t ra ck e r -s o f t w ar eC ck t ob uy NOW !w w .co m26 A = 111111111 P AP P 1111111111)3(113113113111111111|| A E)3(010101)3(2021 33021 0)( x A E000000111111111111A E3322321x x x x x x x0111 10121011112/12/101121101||),(1211222 02/12/101121||1111 6/26/16/112/12/162||122233 0)( x A E000330112330330112422242112211121112A E000110101000110202000110112333231x x x x x x 11133/13/13/111131||13333/16/203/16/12/13/16/12/1P300000000 P AP P 127 Ax =b r ,,,21 Ax =0r ,,,,2102211 r r k k k k 0)(2211 r r k k k k A 02211 r r A k A k A k kA 000021 r k k k kb 0 kbl i w.t r a ck e r -s o f t w ar e C ckt o b u y NOW !w w.co m0 b0 k ---------------------------------02211 r r k k k r ,,,21021 r k k k -------------- r ,,,,212009 0418410 204284103520z y x z y x z y x A2,0,2 z y x B 0,2,2 z y x 2,2,0 z y x D 1,0,1 z y x42841035201112100001020013421A A A B1423 B 1423 C 1243 D 1243 A 45 A =4 TA 5 C2B 3C 4D 5B A , n m k m A ),(B A CB DA A =3 0 Ax A 2B 3C 4D 55 n A 3 r 2 r nn m A 1 n 21, 0 Ax 0 AxD1 k R k B2 k R k C 21 k R k D )(21 k R k0 Ax21, 21 )(21 k R k b x A n m A =r r =m b Ax B r =n b Ax m =n b Ax D r <n b Ax r =m m A r b A r )(),( b Ax3000130011201111A A Cl i w.t ra ck e r -s o f t w ar eC c k t ob uy NOW !w w .co m1B 2C 3D 411 22343 11 22 343 0)( x A EA E0000100011101112 134 r n )2,2,1,4( B31B 51C 91D2515|||| 51||||110 22212135),(x x x x f D2221y y B 2221y y C 2221y y D 2221y y10 2011313522001_______________ 1315231352200112 )0,1,3( A530412B AB _______________AB )3,2(13 A 2||T A |3|A _______________|3|A 54227||27||)3(3 T A A14 )9,7,5,3( )0,2,5,1( _______________ )9,5,0,4()9,7,5,3()0,2,5,1(15333231232221131211a a a a a a a a a A000333232131323222121313212111x a x a x a x a x a x a x a x a x a_______________0|| A 0 Ax 0321 x x x16 b Ax642002101012001 _______________ ),(b A 321002*********4443424123221x x x x x x x x TT k )1,2,1,2()0,3,2,1( l i w .t ra ck e r -s o f t w ar e C ck t ob uy NOW !w w .c o m18 )1,2,1( ),1,0(y y _______________ 0),( 02 y 2 y19 ),,,(4321x x x x f 2423222123x x x x _______________20 ),,(321x x x f 32312123222142244x x x x x x x x x_______________4212411 A 011 D 0)2)(2(44122D 3122)2(322)2)(2(3224011421241123D0)1)(2(4 0)1)(2(0)2)(2(1222 125421 5333353333533335D112814200002000020333114533143531433514333145333353333533335D222/100110011A 011021B B AX X 1000100012/100110011).(E A 200010001100110011200210001100010011 200210211100010001200210211100010001 2002102111AB A X 1 20021021101102102123123100042853A030095201201B AB024253100042853||A AB AB24 )2,3,4,1(1 )1,4,5,2(2 )3,7,9,3(3379314522341321 323032302341000032302341 321,,25553204420432143214321x x x x x x x x x x x x553244211111A 331033101111 00003310111100003310220144334324313322x x x x x x x x x x 0132110322 26210120001A P AP P 1A||A E )34)(1(2112)1(2101200012)3()1(2121 33121 0)( x A EA E 110110000 000000110333211x x x x x x 0011p 1102p33 0)( x A EA E 110110002 000110001333210xx x x x 1103p110110001P P3000100011AP Pl i w.t r a ck e r -s o f t w ar e C ck t o b u y NOW !w w.co m27 321,, 211 322 133 321,0332211 k k k0)()()(133322211 k k k 0)()()(332221131 k k k k k k 321,,000322131k k k k k k021111110110101110011101||A0321 k k k 321,, 2009 10 2011101110|| ij a 21a 21A C 2B 1C 1D 21011121A22211211a a a a A121112221121a a a a a a B01101P 11012P A B A P P 21 B B A P P 12 C B P AP 21 D B P AP 12 1101011021A P P22211211222112110111a a a a a a a a B a a a a a a121112221121 n A B C E ABC 1B D11CA B 11A CC ACD CAE ABC E A B C 111CA B 1000100010A 2A BB 1C 2D 32A000000100000100010000100010 2A4321,,, 4 321,, 4321,,, C1B 2C 3D 4321,, 4321,,, 4321,,, 4321,,, Ali w.t ra ck e r -s o f t w ar e C ck t ob uy NOW!w w .c o m321,, 0 Ax B 2121,,B 133221,, 2121,,D 133221,,133221,,A3202B E A E C4101 B 4101 C 4201 D 4201 B A B AP P 1 B E P A E P )(14201B E A E120240002A Ax x x x x f T),,(321 D232221z z z B 232221z z z C 2221z z D 2221z z232212332222123322221)2(2)44(2442x x x x x x x x x x x x x 2221z z 10 )(ij a A A D0 B 1 C 2D 310 2011 696364232333231232221131211a a a a a a a a a 333231232221131211a a a a a a a a a _______________ 632323232323296364232333231232221131211333231232221131211333231232221131211 a a a a a a a a a a a a a a a a a a a a a a a a a a a 61333231232221131211 a a a a a a a a a 12 3D 3,2,11,2,3 3D _______________ 4132)2()3(12323222221213 A a A a A a D130121A E A A 22_______________112211201120)(222E A E A A14 A A 24321B A _____ B41125A l i w.t r a c k e r -s o f t wa r e C ckt o b u y NOW !w w.co m15333220100A 1A _______________001012103100020033001010100100220333100010001333220100),(E A00102/113/12/1010001001001012230100020006001012206100020066 1A00102/113/12/10 16 )1,1,(1a )1,2,1(2 )2,1,1(3 a ___________0363213103210311121112111 a a a a a aa 2 a17 T x )1,0,1(1T x )5,4,3(2 b Ax0 Ax _______________T x x )6,4,2(1218 A 2,1 T )1,1(1 T k ),1(2k ______________1 2 0),(21 01 k 1 k 19 A 3,2,0 B A ||E B _______________ E B 4,1,1 44)1(1|| E B20232221321)()(),,(x x x x x x x f A _______________2332222121321222),,(x x x x x x x x x x f110121011A5421 ||ija 4150231xx 12a 812 A21a 21A 8445012x x A 2 x 5)38(413221 A220111A 2011B X X B AX X X B AX B X A E )(13/113/1313131201121113120111112)(11B A E X23 T )3,1,1,1(1 T )1,5,3,1(2 T )4,1,2,3(3 T)2,10,6,2(4l i w.t r a ck e r -s o f t w ar e C ck t o b u y NOW !w w.co m。
08年7月线性代数(经管类)试题答案
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
08年1月线性代数(经管类)试题答案
全国2008年1月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A 为三阶方阵且2||-=A 则=|3|A A T ( D ) A .-108B .-12C .12D .1082.如果方程组⎪⎩⎪⎨=+=-04043232321kx x x x 有非零解,则k =( B )A .-2B .-1C .1D .2A .BA AB =B .111)(---+=+B A B AC .||||||B A B A +=+D .T T T B A B A +=+)(4.设A 为四阶矩阵,且2||=A ,则=*||A ( C ) A .2B .4C .8D .1212A .)1,1,2(B .)2,0,3(-C .)0,1,1(D .)0,1,0(-s 21的秩不为()的充分必要条件是( C ) A .s ααα,,,21 全是非零向量 B .s ααα,,,21 全是零向量C .s ααα,,,21 中至少有一个向量可由其它向量线性表出D .s ααα,,,21 中至少有一个零向量7.设A 为m n ⨯矩阵,方程AX =0仅有零解的充分必要条件是( C ) A .A 的行向量组线性无关 B .A 的行向量组线性相关 C .A 的列向量组线性无关D .A 的列向量组线性相关..A .||||B A =B .秩(A )=秩(B)C .存在可逆阵P ,使B AP P =-1D .BE A E -=-λλ9.与矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( A )A .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001B .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011C .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001D .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤10002010110.设有二次型321321),,(x x x x x x f +-=,则),,(321x x x f ( C ) A .正定 B .负定 C .不定 D .半正定11.若0211=k ,则k =21. 12.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023,B =⎢⎣⎡⎥⎦⎤010201,则AB =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡241010623.13.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤220010002,则=-1A ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-2/110010002/1.)= __1__15.已知A 有一个特征值2-,则E A B 2+=必有一个特征值__6__.16.方程组0321=-+x x x 的通解是k k )1,0,1()0,1,1(21+-.123__2__18.矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200020002的全部特征向量是T T T k k k )1,0,0()0,1,0()0,0,1(++不全为零)(,,k k k .__-16__20.矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是3121232221321243),,(x x x x x x x x x x f +++-=. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算四阶行列式1002210002100021的值. 解:151500021000210002118021********2110402100021000211002210002100021-=-==-=.22.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤101111123,求1-A .解:⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100010001101111123→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤001010100123111101→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤---301110100220010101→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤----121110100200010101→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤----121110200200010202→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-----121110121200010002→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤---2/112/11102/112/1100010001,1-A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤---2/112/11102/112/1.23.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011,B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A ,B ,X 满足E X B A B E T T =--)(1,求X ,1-X .解:由E X B A B E T T =--)(1,得E X A B E B T =--)]([1,即E X A BB BE T =--)(1,E X A B T =-)(,=-1X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-100020002100020002)(TT A B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10002/10002/1X . 24.求向量组)4,2,1,1(1-=α,)2,1,3,0(2=α,)14,7,0,3(3=α,)6,5,1,2(4=α,)0,2,1,1(5-=α 的一个极大线性无关组.解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--021165121470321304211→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---4002130213021304211→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---4004000000021304211→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--0004000000021304211, 421,,ααα是一个极大线性无关组.25.求非齐次方程组⎪⎪⎩⎪⎪⎨⎧=-+-+=+++-=-+++=++++12334523622232375432154325432154321x x x x x x x x x x x x x x x x x x x 的通解.解:=A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----12133452362210231123711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------236281023622102362210711111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------0006000000002362210711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------0000000006002362210711111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000001002362210711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000001002362010711011→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---00000000010023620101651001, ⎪⎪⎪⎩⎪⎪⎪⎨⎧===--=++-=5544354254106223516x x x x x x x x x x x ,通解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1006501021000231621k k .26.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤----020212022,求P 使AP P 1-为对角矩阵.解:λλλλλλλλλ4)2(4)2)(1(2021222||-----=--=-A E 86323+--=λλλ )2(3)42)(2()2(3)8(23+-+-+=+-+=λλλλλλλλ)4)(1)(2()45)(2(2--+=+-+=λλλλλλ,特征值21-=λ,12=λ,43=λ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---=-220220012220232012220232024A E λ→⎪⎪⎪⎭⎫⎝⎛--000220012→⎪⎪⎪⎭⎫ ⎝⎛--000110012→⎪⎪⎪⎭⎫ ⎝⎛--000110102→⎪⎪⎪⎭⎫ ⎝⎛--0001102/101,⎪⎪⎩⎪⎪⎨⎧===33323121x x x x xx ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛=112/11α; 对于12=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-=-120120021120101021120202021A E λ→⎪⎪⎪⎭⎫ ⎝⎛-000120021→⎪⎪⎪⎭⎫ ⎝⎛--000120101→⎪⎪⎪⎭⎫ ⎝⎛0002/110101,⎪⎪⎩⎪⎪⎨⎧=-=-=33323121x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛--=12/112α;对于43=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=-000210022420210022420232022A E λ→⎪⎪⎪⎭⎫ ⎝⎛000210011→⎪⎪⎪⎭⎫⎝⎛-000210201,⎪⎩⎪⎨⎧=-==33323122xx x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛-=1223α. 令⎪⎪⎪⎭⎫ ⎝⎛---=11122/11212/1P ,则P 是可逆矩阵,使=-AP P 1⎪⎪⎪⎭⎫⎝⎛-400010002. 四、证明题(本大题6分)27.设321,,ααα是齐次方程组Ax =0的基础解系,证明1α,21αα+,321ααα++也是Ax =0的基础解系.证: (1)Ax =0的基础解系由3个线性无关的解向量组成.(2)321,,ααα是Ax =0的解向量,则1α,21αα+,321ααα++也是Ax =0的解向量. (3)设0)()(321321211=+++++ααααααk k k ,则0)()(332321321=+++++αααk k k k k k ,由321,,ααα线性无关,得⎪⎩⎪⎨⎧==+=++000332321k k k k k k ,系数行列式01100110111≠=,只有零解0321===k k k ,所以1α,21αα+,321ααα++线性无关.由(1)(2)(3)可知,1α,21αα+,321ααα++也是Ax =0的基础解系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
07-08-1线性期末试题
一、 填空题(每题4分,共24分)
1、行列式6427811694143211111= _____.
2、若0是方阵A的一个特征值,则方阵A的行列式的值为_____.
3、若A=01112421,为使矩阵A有最小秩,则应为_____.
4、若方程组kkxxxxxx2121213122有解,则k=_____.
5、设A=200011012,A*为A的伴随矩阵,则|A*|=_____.
6、若D=333231232221131211aaaaaaaaa =1,则D1=333231312322212113121111324324324aaaaaaaaaaaa= ______.
二、 选择题(每题4分,共32分)
1、设A为三阶方阵,*A是A的伴随矩阵,常数0a,且1a,则*()aA[ ]
A、*aA B、2*aA C、3*aA D、1*aA
2、若三阶方阵A的行列式0A,则[ ]
A、A必有一列元素全为零 B、A=0
C、A必有两列元素成比例 D、A ,B,C是0A的充分条件
3、设A、B、C均为n阶矩阵,且ABC=E,则有[ ]
A、ACB=E B、CBA=E C、BCA=E D、BAC=E
4、如果矩阵A满足2AA,则[ ]
A、A=0 B、A=E C、A=0或A=E D、A不可逆或AE不可逆
5、若非齐次线性方程组Axb中,方程的个数少于未知量的个数,则[ ]
A、0Ax有无穷多解 B、0Ax仅有零解
C、Axb有无穷多解 D、Axb有唯一解
6、设321,,xxx是齐次线性方程组0Ax的基础解系,则下列向量组中,不是0Ax的基
础解系的是[D ] (B)1223123,,
A、3214,3,xxx B、321211,,xxxxxx
C、3211,,xxxx D、122331, , xxxxxx
7、设A、B是两个n阶正交阵,则下列结论不正确的是[ ]
A、AB是正交阵 B、 AB是正交阵
C、1A是正交阵 D、1B是正交阵
8、设秩rs),,,(21, 不能由向量组
s,,,21
线性表示,则[ ]
A、秩1),,,,(21rs, B、秩rs),,,,(21,
C、不能确定秩
),,,,(
21s
D、以上结论都不正确
三、(8分) 计算行列式1111111111111111xxDxx的值.
四、(8分) 设A=100420422,*A为A的伴随矩阵,求1*)(A。
五、(8分)求下列齐次线性方程组的一个基础解系。
1234
1234
1234
81020245038620xxxxxxxxxxxx
六、(10分)设A=101011112,试问A能否对角化?若能,则求出可逆矩阵P,使得
APP
1
为对角形矩阵。
七、(10分) 设A、B均为n阶矩阵,且满足0ABAB,证明EA与EB互为逆
矩阵,从而证明ABBA。
解答:
一、填空题(每题4分,共24分)
1、12; 2、0; 3、49; 4、415; 5、4; 6、12
二、选择题(每题4分,共32分)
1、 B; 2、 D; 3、 C; 4、 D;
5、 A; 6、 D; 7、 A; 8、 A
三、解:1111111111111111xxxx1111111111111111xxxx-
xxxxxxx000
00
00
1111
0000xxxxxx
24
00x
xxx
四、解:
因为04224024001||A,- 又EAAA||* 所以EAAA*||-
2121102110041||)(1*AAA
-
故2121102110041||)(1*AAA-
五、解:对系数矩阵进行初等行变换
2683
154221081A
82432051520021081~
0000134021081~
000013400401~
-
所以方程组的一个基础解系为:014341,1041021
六、解: 211110101||EA)3)(1(
所以特征值为01,12,33-
(1)对于01,解方程组0)0(xEA得基础解系:1111,
(2)对于12,解方程组0)(xEA得基础解系:0112,
(3)对于33,解方程组0)3(xEA得基础解系: 2113,
所以 201111111P, 且3000100001APP
七、解: 因为EABBAEBEAE))((,
所以AE与BE互为逆矩阵,
于是:EAEBE))((,
即EBABAE,0BABA,
又因为0ABBA,因此BAAB---