CKM $gamma$ phase from $B to K pi pi$

合集下载

The Subleading Isgur-Wise Form Factor $chi_3(vcdot v')$ to Order $alpha_s$ in QCD Sum Rules

The Subleading Isgur-Wise Form Factor $chi_3(vcdot v')$ to Order $alpha_s$ in QCD Sum Rules

a rXiv:h ep-ph/9212266v116Dec1992SLAC–PUB–6017WIS–92/99/Dec–PH December 1992T/E The Subleading Isgur-Wise Form Factor χ3(v ·v ′)to Order αs in QCD Sum Rules Matthias Neubert Stanford Linear Accelerator Center Stanford University,Stanford,California 94309Zoltan Ligeti and Yosef Nir Weizmann Institute of Science Physics Department,Rehovot 76100,Israel We calculate the contributions arising at order αs in the QCD sum rule for the spin-symmetry violating universal function χ3(v ·v ′),which appears at order 1/m Q in the heavy quark expansion of meson form factors.In particular,we derive the two-loop perturbative contribution to the sum rule.Over the kinematic range accessible in B →D (∗)ℓνdecays,we find that χ3(v ·v ′)does not exceed the level of ∼1%,indicating that power corrections induced by the chromo-magnetic operator in the heavy quark expansion are small.(submitted to Physical Review D)I.INTRODUCTIONIn the heavy quark effective theory(HQET),the hadronic matrix elements describing the semileptonic decays M(v)→M′(v′)ℓν,where M and M′are pseudoscalar or vector mesons containing a heavy quark,can be systematically expanded in inverse powers of the heavy quark masses[1–5].The coefficients in this expansion are m Q-independent,universal functions of the kinematic variable y=v·v′.These so-called Isgur-Wise form factors characterize the properties of the cloud of light quarks and gluons surrounding the heavy quarks,which act as static color sources.At leading order,a single functionξ(y)suffices to parameterize all matrix elements[6].This is expressed in the compact trace formula[5,7] M′(v′)|J(0)|M(v) =−ξ(y)tr{(2)m M P+ −γ5;pseudoscalar meson/ǫ;vector mesonis a spin wave function that describes correctly the transformation properties(under boosts and heavy quark spin rotations)of the meson states in the effective theory.P+=1g s2m Q O mag,O mag=M′(v′)ΓP+iσαβM(v) .(4)The mass parameter¯Λsets the canonical scale for power corrections in HQET.In the m Q→∞limit,it measures thefinite mass difference between a heavy meson and the heavy quark that it contains[11].By factoring out this parameter,χαβ(v,v′)becomes dimensionless.The most general decomposition of this form factor involves two real,scalar functionsχ2(y)andχ3(y)defined by[10]χαβ(v,v′)=(v′αγβ−v′βγα)χ2(y)−2iσαβχ3(y).(5)Irrespective of the structure of the current J ,the form factor χ3(y )appears always in the following combination with ξ(y ):ξ(y )+2Z ¯Λ d M m Q ′ χ3(y ),(6)where d P =3for a pseudoscalar and d V =−1for a vector meson.It thus effectively renormalizes the leading Isgur-Wise function,preserving its normalization at y =1since χ3(1)=0according to Luke’s theorem [10].Eq.(6)shows that knowledge of χ3(y )is needed if one wants to relate processes which are connected by the spin symmetry,such as B →D ℓνand B →D ∗ℓν.Being hadronic form factors,the universal functions in HQET can only be investigated using nonperturbative methods.QCD sum rules have become very popular for this purpose.They have been reformulated in the context of the effective theory and have been applied to the study of meson decay constants and the Isgur-Wise functions both in leading and next-to-leading order in the 1/m Q expansion [12–21].In particular,it has been shown that very simple predictions for the spin-symmetry violating form factors are obtained when terms of order αs are neglected,namely [17]χ2(y )=0,χ3(y )∝ ¯q g s σαβG αβq [1−ξ(y )].(7)In this approach χ3(y )is proportional to the mixed quark-gluon condensate,and it was estimated that χ3(y )∼1%for large recoil (y ∼1.5).In a recent work we have refined the prediction for χ2(y )by including contributions of order αs in the sum rule analysis [20].We found that these are as important as the contribution of the mixed condensate in (7).It is,therefore,worthwhile to include such effects also in the analysis of χ3(y ).This is the purpose of this article.II.DERIV ATION OF THE SUM RULEThe QCD sum rule analysis of the functions χ2(y )and χ3(y )is very similar.We shall,therefore,only briefly sketch the general procedure and refer for details to Refs.[17,20].Our starting point is the correlatord x d x ′d ze i (k ′·x ′−k ·x ) 0|T[¯q ΓM ′P ′+ΓP +iσαβP +ΓM+Ξ3(ω,ω′,y )tr 2σαβ2(1+/v ′),and we omit the velocity labels in h and h ′for simplicity.The heavy-light currents interpolate pseudoscalar or vector mesons,depending on the choice ΓM =−γ5or ΓM =γµ−v µ,respectively.The external momenta k and k ′in (8)are the “residual”off-shell momenta of the heavy quarks.Due to the phase redefinition of the effective heavy quark fields in HQET,they are related to the total momenta P and P ′by k =P −m Q v and k ′=P ′−m Q ′v ′[3].The coefficient functions Ξi are analytic in ω=2v ·k and ω′=2v ′·k ′,with discontinuities for positive values of these variables.They can be saturated by intermediate states which couple to the heavy-light currents.In particular,there is a double-pole contribution from the ground-state mesons M and M ′.To leading order in the 1/m Q expansion the pole position is at ω=ω′=2¯Λ.In the case of Ξ2,the residue of the pole is proportional to the universal function χ2(y ).For Ξ3the situation is more complicated,however,since insertions of the chromo-magnetic operator not only renormalize the leading Isgur-Wise function,but also the coupling of the heavy mesons to the interpolating heavy-light currents (i.e.,the meson decay constants)and the physical meson masses,which define the position of the pole.1The correct expression for the pole contribution to Ξ3is [17]Ξpole 3(ω,ω′,y )=F 2(ω−2¯Λ+iǫ) .(9)Here F is the analog of the meson decay constant in the effective theory (F ∼f M√m QδΛ2+... , 0|j (0)|M (v ) =iF2G 2tr 2σαβΓP +σαβM (v ) ,where the ellipses represent spin-symmetry conserving or higher order power corrections,and j =¯q Γh (v ).In terms of the vector–pseudoscalar mass splitting,the parameter δΛ2isgiven by m 2V −m 2P =−8¯ΛδΛ2.For not too small,negative values of ωand ω′,the coefficient function Ξ3can be approx-imated as a perturbative series in αs ,supplemented by the leading power corrections in 1/ωand 1/ω′,which are proportional to vacuum expectation values of local quark-gluon opera-tors,the so-called condensates [22].This is how nonperturbative corrections are incorporated in this approach.The idea of QCD sum rules is to match this theoretical representation of Ξ3to the phenomenological pole contribution given in (9).To this end,one first writes the theoretical expression in terms of a double dispersion integral,Ξth 3(ω,ω′,y )= d νd ν′ρth 3(ν,ν′,y )1Thereare no such additional terms for Ξ2because of the peculiar trace structure associated with this coefficient function.possible subtraction terms.Because of theflavor symmetry it is natural to set the Borel parameters associated withωandω′equal:τ=τ′=2T.One then introduces new variables ω±=12T ξ(y) F2e−2¯Λ/T=ω0dω+e−ω+/T ρth3(ω+,y)≡K(T,ω0,y).(12)The effective spectral density ρth3arises after integration of the double spectral density over ω−.Note that for each contribution to it the dependence onω+is known on dimensionalgrounds.It thus suffices to calculate directly the Borel transform of the individual con-tributions toΞth3,corresponding to the limitω0→∞in(12).Theω0-dependence can be recovered at the end of the calculation.When terms of orderαs are neglected,contributions to the sum rule forΞ3can only be proportional to condensates involving the gluonfield,since there is no way to contract the gluon contained in O mag.The leading power correction of this type is represented by the diagram shown in Fig.1(d).It is proportional to the mixed quark-gluon condensate and,as shown in Ref.[17],leads to(7).Here we are interested in the additional contributions arising at orderαs.They are shown in Fig.1(a)-(c).Besides a two-loop perturbative contribution, one encounters further nonperturbative corrections proportional to the quark and the gluon condensate.Let usfirst present the result for the nonperturbative power corrections.WefindK cond(T,ω0,y)=αs ¯q q TT + αs GG y+1− ¯q g sσαβGαβq√y2−1),δn(x)=1(4π)D×1dλλ1−D∞λd u1∞1/λd u2(u1u2−1)D/2−2where C F=(N2c−1)/2N c,and D is the dimension of space-time.For D=4,the integrand diverges asλ→0.To regulate the integral,we assume D<2and use a triple integration by parts inλto obtain an expression which can be analytically continued to the vicinity of D=4.Next we set D=4+2ǫ,expand inǫ,write the result as an integral overω+,and introduce back the continuum threshold.This givesK pert(T,ω0,y)=−αsy+1 2ω0dω+ω3+e−ω+/T(16)× 12−23∂µ+3αs9π¯Λ,(17)which shows that divergences arise at orderαs.At this order,the renormalization of the sum rule is thus accomplished by a renormalization of the“bare”parameter G2in(12).In the9π¯Λ 1µ2 +O(g3s).(18)Hence a counterterm proportional to¯Λξ(y)has to be added to the bracket on the left-hand side of the sum rule(12).To evaluate its effect on the right-hand side,we note that in D dimensions[17]¯Λξ(y)F2e−2¯Λ/T=3y+1 2ω0dω+ω3+e−ω+/T(19)× 1+ǫ γE−ln4π+2lnω+−ln y+12T ξ(y) F2e−2¯Λ/T=αsy+1 2ω0dω+ω3+e−ω+/T 2lnµ6+ y r(y)−1+ln y+1According to Luke’stheorem,theuniversalfunction χ3(y )vanishes at zero recoil [10].Evaluating (20)for y =1,we thus obtain a sum rule for G 2(µ)and δΛ2.It reads G 2(µ)−¯ΛδΛ224π3ω00d ω+ω3+e −ω+/T ln µ12 +K cond (T,ω0,1),(21)where we have used that r (1)=1.Precisely this sum rule has been derived previously,starting from a two-current correlator,in Ref.[16].This provides a nontrivial check of our ing the fact that ξ(y )=[2/(y +1)]2+O (g s )according to (19),we find that the µ-dependent terms cancel out when we eliminate G 2(µ)and δΛ2from the sum rule for χ3(y ).Before we present our final result,there is one more effect which has to be taken into account,namely a spin-symmetry violating correction to the continuum threshold ω0.Since the chromo-magnetic interaction changes the masses of the ground-state mesons [cf.(10)],it also changes the masses of higher resonance states.Expanding the physical threshold asωphys =ω0 1+d M8π3 22 δ3 ω032π2ω30e −ω0/T 26π2−r (y )−ξ(y ) δ0 ω096π 248T 1−ξ(y ).It explicitly exhibits the fact that χ3(1)=0.III.NUMERICAL ANALYSISLet us now turn to the evaluation of the sum rule (23).For the QCD parameters we take the standard values¯q q =−(0.23GeV)3,αs GG =0.04GeV4,¯q g sσαβGαβq =m20 ¯q q ,m20=0.8GeV2.(24) Furthermore,we useδω2=−0.1GeV from above,andαs/π=0.1corresponding to the scale µ=2¯Λ≃1GeV,which is appropriate for evaluating radiative corrections in the effective theory[15].The sensitivity of our results to changes in these parameters will be discussed below.The dependence of the left-hand side of(23)on¯Λand F can be eliminated by using a QCD sum rule for these parameters,too.It reads[16]¯ΛF2e−2¯Λ/T=9T4T − ¯q g sσαβGαβq4π2 2T − ¯q q +(2y+1)4T2.(26) Combining(23),(25)and(26),we obtainχ3(y)as a function ofω0and T.These parameters can be determined from the analysis of a QCD sum rule for the correlator of two heavy-light currents in the effective theory[16,18].Onefinds good stability forω0=2.0±0.3GeV,and the consistency of the theoretical calculation requires that the Borel parameter be in the range0.6<T<1.0GeV.It supports the self-consistency of the approach that,as shown in Fig.2,wefind stability of the sum rule(23)in the same region of parameter space.Note that it is in fact theδω2-term that stabilizes the sum rule.Without it there were no plateau.Over the kinematic range accessible in semileptonic B→D(∗)ℓνdecays,we show in Fig.3(a)the range of predictions forχ3(y)obtained for1.7<ω0<2.3GeV and0.7<T< 1.2GeV.From this we estimate a relative uncertainty of∼±25%,which is mainly due to the uncertainty in the continuum threshold.It is apparent that the form factor is small,not exceeding the level of1%.2Finally,we show in Fig.3(b)the contributions of the individual terms in the sum rule (23).Due to the large negative contribution proportional to the quark condensate,the terms of orderαs,which we have calculated in this paper,cancel each other to a large extent.As a consequence,ourfinal result forχ3(y)is not very different from that obtained neglecting these terms[17].This is,however,an accident.For instance,the order-αs corrections would enhance the sum rule prediction by a factor of two if the ¯q q -term had the opposite sign. From thisfigure one can also deduce how changes in the values of the vacuum condensates would affect the numerical results.As long as one stays within the standard limits,the sensitivity to such changes is in fact rather small.For instance,working with the larger value ¯q q =−(0.26GeV)3,or varying m20between0.6and1.0GeV2,changesχ3(y)by no more than±0.15%.In conclusion,we have presented the complete order-αs QCD sum rule analysis of the subleading Isgur-Wise functionχ3(y),including in particular the two-loop perturbative con-tribution.Wefind that over the kinematic region accessible in semileptonic B decays this form factor is small,typically of the order of1%.When combined with our previous analysis [20],which predicted similarly small values for the universal functionχ2(y),these results strongly indicate that power corrections in the heavy quark expansion which are induced by the chromo-magnetic interaction between the gluonfield and the heavy quark spin are small.ACKNOWLEDGMENTSIt is a pleasure to thank Michael Peskin for helpful discussions.M.N.gratefully acknowl-edgesfinancial support from the BASF Aktiengesellschaft and from the German National Scholarship Foundation.Y.N.is an incumbent of the Ruth E.Recu Career Development chair,and is supported in part by the Israel Commission for Basic Research and by the Minerva Foundation.This work was also supported by the Department of Energy,contract DE-AC03-76SF00515.REFERENCES[1]E.Eichten and B.Hill,Phys.Lett.B234,511(1990);243,427(1990).[2]B.Grinstein,Nucl.Phys.B339,253(1990).[3]H.Georgi,Phys.Lett.B240,447(1990).[4]T.Mannel,W.Roberts and Z.Ryzak,Nucl.Phys.B368,204(1992).[5]A.F.Falk,H.Georgi,B.Grinstein,and M.B.Wise,Nucl.Phys.B343,1(1990).[6]N.Isgur and M.B.Wise,Phys.Lett.B232,113(1989);237,527(1990).[7]J.D.Bjorken,Proceedings of the18th SLAC Summer Institute on Particle Physics,pp.167,Stanford,California,July1990,edited by J.F.Hawthorne(SLAC,Stanford,1991).[8]M.B.Voloshin and M.A.Shifman,Yad.Fiz.45,463(1987)[Sov.J.Nucl.Phys.45,292(1987)];47,801(1988)[47,511(1988)].[9]A.F.Falk,B.Grinstein,and M.E.Luke,Nucl.Phys.B357,185(1991).[10]M.E.Luke,Phys.Lett.B252,447(1990).[11]A.F.Falk,M.Neubert,and M.E.Luke,SLAC preprint SLAC–PUB–5771(1992),toappear in Nucl.Phys.B.[12]M.Neubert,V.Rieckert,B.Stech,and Q.P.Xu,in Heavy Flavours,edited by A.J.Buras and M.Lindner,Advanced Series on Directions in High Energy Physics(World Scientific,Singapore,1992).[13]A.V.Radyushkin,Phys.Lett.B271,218(1991).[14]D.J.Broadhurst and A.G.Grozin,Phys.Lett.B274,421(1992).[15]M.Neubert,Phys.Rev.D45,2451(1992).[16]M.Neubert,Phys.Rev.D46,1076(1992).[17]M.Neubert,Phys.Rev.D46,3914(1992).[18]E.Bagan,P.Ball,V.M.Braun,and H.G.Dosch,Phys.Lett.B278,457(1992);E.Bagan,P.Ball,and P.Gosdzinsky,Heidelberg preprint HD–THEP–92–40(1992).[19]B.Blok and M.Shifman,Santa Barbara preprint NSF–ITP–92–100(1992).[20]M.Neubert,Z.Ligeti,and Y.Nir,SLAC preprint SLAC–PUB–5915(1992).[21]M.Neubert,SLAC preprint SLAC–PUB–5992(1992).[22]M.A.Shifman,A.I.Vainshtein,and V.I.Zakharov,Nucl.Phys.B147,385(1979);B147,448(1979).FIGURESFIG.1.Diagrams contributing to the sum rule for the universal form factorχ3(v·v′):two-loop perturbative contribution(a),and nonperturbative contributions proportional to the quark con-densate(b),the gluon condensate(c),and the mixed condensate(d).Heavy quark propagators are drawn as double lines.The square represents the chromo-magnetic operator.FIG.2.Analysis of the stability region for the sum rule(23):The form factorχ3(y)is shown for y=1.5as a function of the Borel parameter.From top to bottom,the solid curves refer toω0=1.7,2.0,and2.3GeV.The dashes lines are obtained by neglecting the contribution proportional toδω2.FIG.3.(a)Prediction for the form factorχ3(v·v′)in the stability region1.7<ω0<2.3 GeV and0.7<T<1.2GeV.(b)Individual contributions toχ3(v·v′)for T=0.8GeV and ω0=2.0GeV:total(solid),mixed condensate(dashed-dotted),gluon condensate(wide dots), quark condensate(dashes).The perturbative contribution and theδω2-term are indistinguishable in thisfigure and are both represented by the narrow dots.11。

群论第8章

群论第8章
H (五维表示),", 一维复共轭表示实际上是二维表示(Mulliken 记号),物理上是不可约的。
能级简并(时间反演的结果). 实表示:Cn 的特征标为+1( A 表示),-1( B 表示)。 反演对称操作i 的特征标为 1(偶宇称,下标用 g ),-1(奇宇称,下标用u ).
除Ci ,有 10 个点群具有反演操作i 对称,它们均可以表示为Ci 群与另一正 则转动群的直积:
对 n = 2,4,6 ,它包含一个反演操作 I (≡ C2σ h )。
Sn 群:有一个 n 度转动反演轴( n = 4,6 ); 对 n = 2,3的 S2 和 S3 ,一般用 Ci 和 C3h 符号;
Dn 群:有一个 n 度转动轴及 n 个与之垂直的二度轴( n = 2,3,4,6 ); Dnd 群: Dn 群加 4 n 个垂直对交镜面( n = 2,3)镜面将二度轴角度平分。 Dnh 群: Dn 群加一个水平镜面( n = 2,3,4,6 ). n = 2,4,6 时, Dnh 包含反演操作。 除以上 27 个群外,还有Oh , O ,Td ,Th 和T 群。
群 论 讲 稿----吴 长 勤
第八章 点群和空间群 (Point Groups and Space Groups)
§1 点群 (Point Groups)
点群:使系统(如分子)不变的对称操作的集合构成的群。(某点固定,空 间任何两点距离不变的有限群)
一般,几何对称操作有:
E : 恒等操作;
Cn :转角 2π / n 的操作,转动轴称 n 度轴;
{ } C3v : {E}, C3,C32 , {σ1,σ 2 ,σ 3}; 三个共轭类。 { } { } C'3v : {E},{E}, C3,C32 , EC3, EC32 ,{σ1,σ 2 ,σ 3},{Eσ1, Eσ 2 , Eσ 3};

原子物理学习题(参考答案)

原子物理学习题(参考答案)

【1-6】一束α 粒子垂直射到一重金属箔上,求α 粒子被金属箔散射后,散射角θ ≥600 的 α 粒子数与散射角θ ≥900 的α 粒子数之比。
Z Z e2 dN 1 2 sin 4 ( ) Nnt ( 1 2 2 ) 2 2 4 0 2Mv 解:由 d 可得散射角 90 的α 粒子数为

2
1 ) 180 0 sin 2
5.06 10 14 m
α 粒子与 7Li 核对心碰撞的最小距离(考虑质心系运动)
rm
1 4 0 1 4 0 1 4 0
Z1 Z 2 e 2 (1 v 2 Z1 Z 2 e 2 (1 2 Ec
2
1 sin 1 sin

2
)


2
原子物理学习题 一、选择10-8m ; C C、10-10m ;
D、10-13m 。 C
(2)原子核式结构模型的提出是根据 粒子散射实验中 A、绝大多数 粒子散射角接近 180 ; C、以小角散射为主也存在大角散射;
B、 粒子只偏 2 ~3 ; D、以大角散射为主也存在小角散射。
散射角 60 的α 粒子数
N dN (
1 4 0
) 2 Nnt (
Z1 Z 2 e 2 2 ) 2Mv 2
180
1 sin
4

2
d
散 射 角
60 的 α 粒子数与散 (
α 【2-2】 分别计算 H、 He+、 Li++: (1)第一波尔半径、第二波尔半径及电子在这些轨道上的速度; (2)电子在基态的结合能; (3)由基态到第一激发态所需的激发能量及由第一激发态到基态所辐射的光子的波长。 解: (1)由

量子力学习题及答案

量子力学习题及答案
?2k ( 7 )
(7)代入(6)
csin2kk22a?dcos2k2a??kccos2k2a?
k21
kdsin2k2a
1
利用(4)、(5),得
k1k2kasin2k2a?acos2k2a??acos2k2a?2kdsin2k2a
1
a[(
k1k2k?2k)sin2k2a?2cos2k2a]?0
1?a?0
?
2
2?
??4
??0?e?4(b?x)对于区域Ⅰ,u(x)??,粒子不可能到达此区域,故?1(x)?0
而. ????2? (u0?e)
2
0?
2
?2?①
??2? (u1?e)
3
???
2
?3?0 ②
??2?e4
???
2
?
4
?0
对于束缚态来说,有?u?e?0
∴ ????k21?2?0 k22? (u0?e)
因此k1x
??1?ae ?
3
?fe
?k
1x
由波函数的连续性,有
?1(0)??2(0),?a?d(4)
?1?(0)???2
(0),?k1a?k2c (5)??(2a)??1a
3?(2a),?k2ccos2k2a?k2dsin2k2a??k?2k2
1fe(6)
?1a
2(2a)??3(2a),?csin2k2a?dcos2k2a?fe
1???k1?1?1?2?(u0?e)?????2??k22?2?0 (2) k22?2?e?2
束缚态0<e<u0 ??
??3??k2
1?3?0 (3)?1x
1?ae
?k?be
?k1x

核辐射探测习题解答6

核辐射探测习题解答6

第一章习题答案1. 计算Po 210放射源发射的α粒子()MeV E 304.5=α 在水中的射程。

答:先求α粒子在空气中的射程cm E R 88.3304.5318.0318.05.15.10=⨯==α由1001A A R R ρρ= 对多种元素组成的化合物或混合物,因为与入射粒子的能量相比,原子间的化学键能可以忽略,所以其等效原子量∑=ii i A n A式中i n 为各元素的原子百分数。

对空气而言,81.30=A ,在标准状态下,33010226.1--⋅⨯=cm g ρ,所以04102.3R AR ρ-⨯=对水而言 21631132=+==∑ii i A n A 在水中的射程m R AR μρ8.2488.32102.3102.3404=⨯⨯⨯=⨯=--2. 已知MeV 1质子在某介质中的电离损失率为A ,求相同能量的α粒子的电离损失率。

答:1611144222222,,=⨯⨯=⋅⋅==pp p ppp ion ion E m z E m z v z v z S S αααααα所以 A S ion 16.=α3. 试计算Cs 137KeV E 662=γγ射线发生康普顿效应时,反冲电子的最大能量。

答: MeV h c m h E e 478.0662.02511.01662.02120max ,=⨯+=+=νν4. 计算Cs 137的γ射线对Al Fe Pb ,,的原子光电吸收截面及光电子能量。

从中可得到什么规律性的启迪?已知k ε分别为KeV KeV KeV 559.1,111.7,001.88。

答:Cs 137的γ射线能量为MeV h 662.0=ν,525410625.61371324545Z K ph ⨯⨯⨯⎪⎭⎫ ⎝⎛⨯⨯==-σσ25321033.1cm Z ⨯⨯=-对Pb ,82=Z ,KeV K 001.88=ε()2235321093.4821033.1cm ph --⨯=⨯⨯=σKeV E e 660.573001.88661.661=-=对Fe ,26=Z ,KeV K 111.7=ε()2255321058.1261033.1cm ph --⨯=⨯⨯=σKeV E e 550.654111.7661.661=-= 对Al ,13=Z ,KeV K 559.1=ε()22753210938.4131033.1cm ph --⨯=⨯⨯=σKeV E e 102.660559.1661.661=-=5.试证明γ光子只有在原子核或电子附近,即存在第三者的情况下才能发生电子对效应,而在真空中是不可能的。

原子与原子核物理学(张国营)习题答案

原子与原子核物理学(张国营)习题答案

第一章1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。

散射物质是原子序数79Z =的金箔。

试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mvα=是α粒子的功能。

1.3 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。

试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。

已知金的原子量为197。

解:散射角在d θθθ+之间的α粒子数dn 与入射到箔上的总粒子数n 的比是:dnNtd nσ=其中单位体积中的金原子数:0//Au Au N m N A ρρ==而散射角大于090的粒子数为:2'dndn nNt d ππσ=⎰=⎰所以有:2'dn Nt d nππσ=⎰22218002903cos122()()4sin 2AuN Ze t d A Mu οοθρπθθπε=⋅⋅⎰ 等式右边的积分:180180909033cos sin 2221sin sin 22d I d οοοοθθθθθ=⎰=⎰=故'22202012()()4Au N dn Ze t n A Muρππε=⋅⋅ 648.5108.510--≈⨯=⨯即速度为71.59710/⨯米秒的α粒子在金箔上散射,散射角大于90ο以上的粒子数大约是4008.510-⨯。

1.4能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-⨯的银箔上,α粒子与银箔表面成ο60角。

在离L=0.12米处放一窗口面积为25100.6米-⨯的计数器。

Impacts on searching for signatures of new physics from $K^+ to pi^+ nu bar{nu}$ decay


Talk given at the workshop on “Fermion Mass and CP Violation”, Hiroshima, Japan, 5-6 March 1998. ‡ Research Fellow of the Japan Society for the Promotion of Science

1
1
Introduction
Processes mediated by flavor changing neutral current (FCNC) have been considered as good probes of physics beyond the standard model (SM). By using the experimentally well measured processes, it is expected to obtain an indirect evidence or constraints on new physics models. An existence of new physics may arise as violation of the unitarity of the Cabbibo-Kobayashi-Maskawa (CKM) matrix. Such signatures of new physics will be explored through the determination of the unitarity triangle at B-factories at KEK and SLAC in the near future. Typical FCNC processes which have been often used to study the new physics contributions are B 0 -B 0 and K 0 -K 0 mixings. Parameters xd in B 0 -B 0 mixing and ǫK in K 0 -K 0 mixing are dominated by the short distance physics and have been calculated in the SM and many new physics models. Experimentally, both parameters have been measured as [1] xd = 0.73 ± 0.05, |ǫK | = (2.23 ± 0.013) × 10−3 . (1.1a) (1.1b)

第五章引力场方程


它是1个2阶的对称张量,方程的左端应当是1个表示时空弯曲的2阶对称张量,由度规的2阶偏导数组成.
曲率张量表示时空的弯曲,由度规及其1,2阶偏导数组成,然而它是1个4阶张量. 很自然会想到用曲率
张量来构造1个对称的2阶张量. 将曲率张量 Rµναβ 的上下指标缩并1次就可以得到1个2阶张量. 从曲率张量对前2个指标的反对称
附录A中指出方括号内任何1对指标都是反对称指标,而克氏符号的2个下指标是对称指标,唯一的可能 是上式恒等于零. 在§4.4中我们用过同样的逻辑.
Bianchi恒等式需要对曲率张量求协变导数,在LGS中变成求普通偏导数,问题在于这时曲率张量 Rµναβ 是否还能用(5.4)式表示. 注意虽然在LGS中克氏符号的导数不一定为零,克氏符号本身全为零.
显然,性质(5.5),(5.6)和(5.7)是相互关联的. 例如,只要证明了后2式,第1式就不证自明了. 先来证明性质(5.6). 注意 Rµν(αβ) 是1个张量,为证明它是1个零张量,只需在1个特殊坐标系里证明 就可以了,今后将经常采用这种方法. 在LGS里,根据(5.4)式,有
Rµναβ = ηµρ −Γρνα,β + Γρνβ,α .
性,容易证明
Rµµαβ ≡ 0.
(5.11)
曲率张量对后2个指标的反对称性表明和第3或第4指标的缩并只差1个符号. 定义Ricci张量为曲率张量第1和第3个指标的缩并:
Rαβ = Rραρβ .
(5.12)
有一些广义相对论的书籍和文献中将Ricci张量定义为第1和第4个指标的缩并,结果会和这里差符号. Ricci张量是1个对称张量,证明如下:
果是否与路径有关. 关于这一点在§4.2中已有比较详尽的讨论. (2)由3条测地线组成的三角形的内角和是

(完整word版)量子力学中有关角动量及其耦合问题的讨论.

量子力学中有关角动量及其耦合问题的讨论(陇东学院电气工程学院, 甘肃庆阳 745000)摘要:轨道角动量在直角坐标系与球极坐标系下的算符表示及相关推导,同时通过对易关系,得出轨道角动量并不能描写一个可观察量.然后运用力学量算符和波函数的矩阵表示,在给定表象下,讨论电子自旋算符的表示及自旋波函数的构造。

接着讨论角动量的LS耦合,其中主要计算总角动量与角动量分量的共同本征态,并且通过介绍耦合表象与非耦合表象,以及在展开耦合基矢的基础上规定量子数j的取值,进而分析角动量的JJ耦合关键词:角动量;算符;对易关系;自旋;角动量耦合The Disscussion of Angular Momentum and ItsCoupling Question in Quantum Mechemics(Electrical Engineering College, Longdong University, Qingyang 745000, Gansu,China)Abstract:First,using a basic assumption that the mechanical quantities in Quantum Mechanics is the appropriate operatorthe, it discuss the representation of orbital angular momentum optrator in both rectangular and spherical systems and related deduction in the text,at the same time it gets that orbital angular momentum optrator does not describe an observable quantity through the communication relations.Then useing mechanical quantity operator and matrix representation of wave funtion, it discusse the reprentation of the electronic spin operators and retructrue of spin wave funtion in a given reprentation.Nextit discusse the LS coupling of angular momentum, in which it mainly calculate the common eigenstates of the total angular momentum and angular momentum component,and through introdution the coupling and the non—coupling reprentation and determine the values of quantum number j on the basis of expand the coupling vectors, analyzeing the JJ coupling of angular momentum.Key words:angular momentum;operator;commutation relation;spin;angular momentum coupling; clebsh—gordan cofficient0 引言量子力学中有关角动量及其耦合的问题,在很多量子力学教材和文献[1,2,3,4,5,6]中都作过比较简明的阐述,但在许多文献中都是就某一方面进行分析的,并且由于角动量耦合的克莱布希—高登系数计算比较繁琐,大多数教材和文献中都是直接给出或查表得到,只有在一些高等量子力学教材中出现过较简明扼要的计算.本文对量子力学中的角动量及其耦合的问题进行了比较系统的阐述,首先详细讨论轨道角动量在直角坐标系下的算符表示向球极坐标系下的算符表示的推导,进而通过角动量的对易关系得出了轨道角动量的一些重要性质。

原子物理学复习

第一章 原子的基本状况一、学习要点1.原子的质量和大小,R ~ 10-10 m , N o =6.022×1023/mol2.原子核式结构模型 (1)汤姆原子模型(2)α粒子散射实验:装置、结果、分析 (3)原子的核式结构模型 (4)α粒子散射理论: 库仑散射理论公式:(5)原子核大小的估计 (会推导): 散射角θ:),2sin11(Z 241220θπε+⋅=Mv e r mα粒子正入射:2024Z 4Mv e r m πε=,m r ~10-15-10-14 m二、基本练习1.选择(1)原子半径的数量级是:A .10-10cm; B.10-8m C. 10-10m D.10-13m (2)原子核式结构模型的提出是根据α粒子散射实验中:A.绝大多数α粒子散射角接近180︒B.α粒子只偏2︒~3︒C.以小角散射为主也存在大角散射D.以大角散射为主也()(X)Au AA g M N ==12-27C 1u 1.6605410kg12==⨯的质量22012c 42v Ze b tgM θπε=存在小角散射(3)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍?A. 1/4 B . 1/2 C . 1 D. 2 4一强度为I 的α粒子束垂直射向一金箔,并为该金箔所散射。

若θ=90°对应的瞄准距离为b ,则这种能量的α粒子与金核可能达到的最短距离为:A. b ; B . 2b ; C. 4b ; D. 0.5b 。

2.简答题(1)简述卢瑟福原子有核模型的要点.(2)简述α粒子散射实验. α粒子大角散射的结果说明了什么? 3.褚书课本P 20-21:(1).(2).(3);第二章 原子的能级和辐射一、学习要点:1.氢原子光谱:线状谱、4个线系(记住名称、顺序)、广义巴尔末公式)11(~22nmR -=ν、光谱项()2nR n T =、并合原则:)()(~n T m T -=ν2.玻尔氢原子理论:(1)玻尔三条基本假设的实验基础和容(记熟)(2)圆轨道理论(会推导):氢原子中假设原子核静止,电子绕核作匀速率圆周运动02200202220A529,04,Z Z 4≈===e m a n a n e m r e e n πεπε;13714,Z Z 40202≈===c e n c n e c e n πεααπευ;()n hcT n hc R n e m E e n --=-=∞2222422Z 2Z )41(πε,n =1.2.3……(3)实验验证:(a )氢原子4个线系的形成)11(Z ~,)4(222232042n m R ch e m R e -==∞∞νπεπ (会推导)非量子化轨道跃迁 )(212n E E mv h -+=∞ν(b )夫-赫实验:装置、.结果及分析;原子的电离电势、激发电势3.类氢离子(+++Li ,He ,正电子偶素.-μ原子等)(1) He +光谱:毕克林系的发现、波数公式、与氢原子巴耳末系的异同等(2)理论处理(会推导):计及原子核的运动,电子和原子核绕共同质心作匀速率圆周运动eem M m M +⋅=μ, 正负电荷中心之距Ze n r n 22204μπε =.能量224222Z )41(n e E n μπε-=,里德伯常数变化Mm R R eA +=∞11重氢(氘)的发现4.椭圆轨道理论索末菲量子化条件q q n h n pdq ,⎰=为整数a nn b n e m a n e m E n p e n ϕϕϕπεπε==-==,Z 4,2Z )41(,222022422,n n n ,,3,2,1;,3,2,1 ==ϕn 一定,n E 一定,长半轴一定,有n 个短半轴,有n 个椭圆轨道(状态),即n E 为n 度简并。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档