假设检验法的原理和步骤

合集下载

假设检验PPT课件

假设检验PPT课件

60 62.5 65 67.5 70 72.5 75
b
H0 不真
67.5 70 72.5 75 77.5 80 82.5
两类错误是互相关联的, 当样本容 量固定时,一类错误概率的减少导致另 一类错误概率的增加.
b a
要同时降低两类错误的概率a b,或 者要在 a 不变的条件下降低 b,需要增
加样本容量.
(二)备择假设(alternative hypothesis),与原假设相对立(相反)的假设。 一般为研究者想收集数据予以证实自己观点的假设。 用H1表示。 表示形式:H1:总体参数≠某值 (<) (>)
例:H1: 0
(三)两类假设建立原则 1、H0与H1必须成对出现 2、通常先确定备择假设,再确定原假设 3、假设中的等号“=”总是放在原假设中

P>α时,H0成立
多重检验及校正
在同一研究中,有时我们会用到二次或多次显著 性检验,从上表可以看出,如果我们将显著性水平确 定为α=0.05水平,做一次显著性检验后我们只能保证 有95%的研究结果与真值是一致的;如果做两次显著 性检验后,研究结果与真值的符合程度就会降至 95%*95%=90.25,当我们进行5次显著性检验后,就 会降至77.4%,即在5次显著性检验后,由α水平所得 到的显著性检验结果的可靠性只有3/4的可靠性。
用于处理生物学研究中比较不同处理效应 的差异显著性。
数据资料中,两个样本的各个变量从各自 总体中抽取,两个样本之间变量没有任何关 联,即两个抽样样本彼此独立,不论两个样 本容量是否相同。
方法1:两个总体方差都已知(或方差未知大样本)
• 假定条件
– 两个样本是独立的随机样本
– 两个总体都是正态分布 – 若不是正态分布, 可以用正态分布来近似(n130和

06.假设检验基础

06.假设检验基础

个统计量落入区域 拒绝域 是个小概率事件。
如果该统计量的实测值落入拒绝域,也就是说,
H0 成立下的小概率事件发生了,那么就认为H0
不可信而否定它。否则我们就不能否定H0 (只
好接受它).
假设检验的基本步骤:
1. 建立检验假设,确定检验水准;
H0:零假设、无效假设。是与研究假设有关的、被推断特 征某种确定的关系; H1:备择假设、对立假设。是被推断总体特征的另一种关 系或状况,与H0既有联系又互相对立。 检验水准,将小概率事件具体化,即规定概率不超过 就是小概率。
应用条件:差值服从正态分布!
假设检验的步骤
1. 建立检验假设,确定检验水准;
H 0 : d 0, H 1 : d 0,
0.05(双侧)
2. 计算统计量;
d 0 ~ t , n 1 Sd n
t
X 0 X 0 t , n 1 SX S n
假设检验
——通过对假设作出取舍抉择来达到解决问题的目的
A.东北某县儿童囱门闭和月龄的总体均数与北方一般儿
童的均数相等无差异假设、零假设 H0(null hypothesis)
B.东北某县儿童囱门闭和月龄的总体均数与北方一般儿
童的均数不相等对立假设、备择假设H1(alternative
hypothesis)
单样本t检验
One sample t-test
试验设计
一组样本均数(代表未知总体均数)与已知总 体均数(一般为理论值、标准值或经过大量
观察所得稳定值等)的比较。
X 0 X 0 t , n 1 SX S n
应用条件:样本来自正态分布的总体 且为随机样本!
例:根据大量调查,已知健康成年男子的脉

假设检验PPT课件

假设检验PPT课件
假设检验
【学习目标】通过对本章的学习,掌握假设检验的概念和 类型、假设检验的两类错误和假设检验的一般步骤;重点掌握 单个总体均值的检验和比率的检验。
第一节 假设检验的基本问题 第二节 △ 假设检验的应用
假设检验
第一节 假设检验的基本问题
一、假设检验的概念 二、假设检验的两类错误 三、假设检验的类型 四、假设检验的类型一般步骤
假设检验
第一节 假设检验的基本问题
什么小概率?
1.在一次试验中,一个几乎不可能发生的事件发生的概率; 2.在一次试验中小概率事件一旦发生,我们就有理由拒绝原假 设; 3.小概率由研究者事先确定。
假设检验
第一节 假设检验的基本问题
二、假设检验的两类错误(决策风险)
(一) 第一类错误 第一类错误,亦称拒真(弃真)错误。是指当原假设为 真时,但由于样本的随机性使样本统计量的具体值落入 了拒绝区域,这时所作的判断是拒绝原假设。 犯第一类错误的概率亦称拒真概率,它实质上就是前面
t
986 1000 24
2.333>
t n 1 2.1315
16
2
所以接受 H1,即这天包装机工作不正常。
假设检验
第二节 假设检验的应用
二、单个总体比率(成数)的假设检验
比率P是平均数的一种特殊形式,因而前面讲的平均 数检验理论都适用于总体比率P的假设检验,只是估计量 的形式略有不同。
【例4】我国出口的参茸药酒畅销于某国市场。据以往调查, 购买此种酒的顾客中40岁以上的男子占50%。经营该药酒 的进出口公司经理关心这个比率是否发生了变化,于是, 委托一个咨询机构进行调查,这个咨询机构从众多购买该 药酒的顾客中随机抽取了400名进行调查,结果有210名为 40岁以上的男子。试问在0.05的显著水平上,能否认为购 买此种药酒的顾客中40岁以上男子所占比率变化了?

简述假设检验的基本原理

简述假设检验的基本原理

简述假设检验的基本原理假设检验是统计学中的一个重要的方法,它可以用来根据给定的样本数据来评估关于总体参数的某些假设是否正确、可靠和有效。

这种检验的基本原理有以下几点:首先,假设检验是根据样本数据来判断是否一个总体参数满足某种假设,通过比较样本结果与假设之间的关系来判断。

假设检验一般由三个步骤组成:(1)确定假设:确定假设中的总体参数以及检验统计量之间的关系;(2)确定检验统计量:按照假设,计算出样本抽样结果,用于判断总体参数是否满足假设;(3)确定显著性水平:所设定的显著性水平,用于判断检验统计量(样本抽样结果)是否满足假设,从而得出统计结论。

其次,假设检验涉及的冒险,即是否拒绝或接受假设,是有概率的。

在进行假设检验之前,最重要的是确定类型I和类型II错误。

类型I错误又称为误报错误,即在实际情况为假设正确的情况下拒绝该假设,这样产生的结果就是拒绝不正确的假设,在实际情况下发生的可能性被称为alpha显著性水平;类型II错误又称为漏报错误,即在实际情况下假设不正确的情况下接受该假设,这样产生的结果就是接受不正确的假设,在实际情况下发生的可能性被称为beta显著性水平。

在进行假设检验时,alpha和beta的值是事先确定的,一般常用0.05,表示出现错误的概率不超过5%。

最后,假设检验有两种统计显著性类型,即双尾检验和单尾检验。

双尾检验即检验的类型是左右双边,通常用于判断假设中涉及的总体参数是否等于某个特定值,而单尾检验则是只判断左尾或右尾,通常用于判断总体参数大于或小于某个特定值。

总之,假设检验是一种常用的统计检验方法,它可以用来根据样本数据来判断总体参数是否满足某一假设,基本原理有三点:确定假设,确定检验统计量,确定显著性水平。

此外,假设检验还涉及到有关alpha、beta,以及两种统计显著性类型的确定等内容。

因此,假设检验的基本原理是假设检验过程中数据分析的基础,是统计学中重要的方法之一。

假设检验基本思想和步骤

假设检验基本思想和步骤
② 备择假设(alternative hypothesis) 对立假设
H1 : u u0
* 检验假设是针对总体而非样本; * H0 和 H1 是相互联系、对立的假设,两者缺一不可 * H0 为无效假设,其假定通常是:某两个(或多个)总
体参数相等,或某两个总体参数之差等于0
* H1 的内容反映了检验的单双侧。若 H1 假设为
1=2
H1:该市高碘区与非高碘区儿童智力均数不等,即
12
=0.05
(2) 计算统计量
今 X1 =73.07, S1=10.75,n1=100 X2 =80.30,S2=11.83,n2=105
u X1 X 2 73.07 80.30 4.58
S12 S22
10.752 11.832
所有检验统计量都是在假设 H0 成立的条件下计 算出来的,它是用于决定是否拒绝 H0 的统计量,其统 计分布在统计推断中至关重要。
3、确定 P 值和作出推断结论
根据算出的检验统计量如 t、u 值,查相应的界
值表,即可得到概率 P。
P 是指从 H0 规定的总体作随机抽样,抽得等于 及大于现有样本获得的检验统计量值的概率。
1 称为检验效能(power of a test)。其意义是 当两总体确有差异,按规定检验水准 能发现该差 异的能力。如1 = 0.90,意味着若两总体确有差
别,则理论上在100次检验中,平均有90次能够得出 有统计学意义的结论。
拒绝H0,只可能犯 I 型错误,不可能犯 I I型错 误;不拒绝H0,只可能犯 II 型错误,不可能犯 I 型 错误。
n1 n2 2
n1 n2
30 28 2
30 28
=n1+n2–2=30+28–2=56

假设检验的P值法

假设检验的P值法

谢谢
THANKS
如何平衡p值法的利弊
结合其他统计方法
在某些情况下,可以将p值与其他统计方法(如效应量、 置信区间等)结合起来,以获得更全面的统计推断。
01
审慎解读p值
对于p值,应该审慎解读,避免过度解 释或误用。
02
03
考虑其他证据
除了p值,还应该考虑其他相关证据, 如实验设计、样本质量、数据来源等。
05 实际应用案例
Hale Waihona Puke 03 如何解读p值CHAPTER
p值与假设检验的关系
p值是衡量观察结果与原假设之间差异的指标,如果p值较小 ,说明观察到的数据与原假设存在显著差异,从而拒绝原假 设。
p值的大小反映了观察到的数据与原假设之间的不一致程度, 越小的p值意味着不一致程度越高。
p值与置信水平的关系
p值与置信水平是相关的概念,通常在假设检验中,p值越小,表明观察到的数据与原假设之间的差异越显著,从而有更高的 信心拒绝原假设。
02 p值法的原理
CHAPTER
假设检验的基本概念
01
假设检验是一种统计推断方法, 通过提出假设并对其进行检验, 以判断假设是否成立。
02
假设检验的基本步骤包括提出假 设、选择合适的统计量、确定样 本量、收集样本数据、计算统计 量、做出推断结论。
p值的计算方法
p值是指观察到的数据或更极端的数 据出现的概率,即在原假设为真的情 况下,观察到的结果或更极端的结果 出现的概率。
假设检验的p值法
目录
CONTENTS
• 引言 • p值法的原理 • 如何解读p值 • p值法的优缺点 • 实际应用案例 • 结论
01 引言
CHAPTER
什么是p值法

假设检验

X是的无偏估计量,
U | X 0 | ~ N (0,1)
/ n
3° 在假设 H0成立的条件下,由样本判断 y 小概率事件是否发生。 y pU ( x )

P{| U | u / 2 }
2

2
当 0很小时 ,
uα / 2
O uα / 2
x
{| U | u / 2 }是个小概率事件 (如上图) .
第一节
假设检验的 基本概念
一、假设检验的基本原理 二、假设检验的基本概念 三、两类错误

四、假设检验的一般步骤
停 下
实验设计 数理统计 统计推断
参数估计 假设检验 (回归分析)
统计推断: 研究如何加工、处理数据,从而 对所考察对象的性质做出尽可能精确和可靠的 推断.
很难发生. 但“很难发生”不等于“不发生”, 因而 假设检验所作出的结论有可能是错误的. 这种错误 有两类: (1) 当原假设H0为真, 观察值却落入拒绝域, 而 作出了拒绝H0的判断, 称为第Ⅰ类错误, 又叫弃真 错误, 这类错误是“以真为假”. 犯第Ⅰ类错误的概 率就是显著性水平 .
= P { 拒绝原假设H0 | H0为真 }
H0称为原假设或零假设, H1称为备择假设.
4. 拒绝域与临界点样本值x=(x1, x2, · · · , xn)所组成的集合. W1 = { x x 且使H0不成立}
W1 W1 : 拒绝原假设H0的检验统计量的取值范围.
W1 x x , U U
根据小概率原理, 如果H 0为真,则 | x 0 | 不应太大,则由一次试验得到
满足不等式
| u |
| x 0 |
/ n

请简述假设检验的基本步骤

请简述假设检验的基本步骤
假设检验是统计学的一种重要方法,它可以帮助我们在探索和研究中去验证某种假设的真实性。

它涉及到了两个基本步骤,即假设检验的构想和统计检验。

下面简要介绍一下假设检验的基本步骤。

第一步:构想假设。

在进行假设检验之前,首先要构想好假设。

假设的内容可以是对问题的一种判断和评价,也可以是根据已有的数据,利用统计学中的某些原理得出的结论,也可以根据某些理论结论而构想的假设。

例如:在研究英语学习者的语言能力与年龄之间的关系时,可以构想出以下假设:儿童英语水平会随着年龄的增长而提高。

第二步:统计检验。

统计检验是根据已有的样本数据,利用统计学中的某些原理,来检验构想出的假设是否正确。

统计检验一般包括两个部分:检验统计量计算和检验结论评价两部分。

在统计检验中,首先需要计算出检验统计量,然后再根据检验统计量的值,来判断构想出的假设是否正确。

比如假设检验中,为了判断英语学习者的语言能力与年龄之间是否存在某种相关性,可以采用相关系数统计量,来计算两者之间的相关程度,如果相关系数的统计量值达到规定的某个临界值,则说明假设成立。

最后,假设检验对于探索和研究有着重要的作用,但要想正确构想假设,以及正确判断检验结论,还需要在假设构想和统计检验的两个方面仔细研究,熟悉假设检验的基本原理和方法,以及正确使用统计学中的技术,这样才能正确判断出构想出的假设是否正确。

- 1 -。

假设检验方差分析


方差分析是通过比较不同组别之间的差异来检验假设
的一种统计方法。
02
它通过将总变异性分解为组间变异性和组内变异性,
来评估组间差异是否显著。
03
方差分析的基本思想是,如果各组之间存在显著差异
,那么组间变异性应该大于组内变异性。
方差分析的应用场景
01 比较不同组别之间的平均值是否存在显著差异。 02 检验一个或多个分类变量对连续变量的影响。 03 在实验设计中,用于评估不同处理或条件下的结
进行统计检验
根据样本数据和选择的统计量, 计算相应的值并进行统计检验。
提出假设
根据研究问题和数据情况,提 出原假设和备择假设。
确定显著性水平
确定一个合适的显著性水平, 用于判断假设是否成立。
做出推断
根据统计检验的结果,做出拒 绝或接受原假设的推断。
03 方差分析的原理及应用
方差分析的基本思想
01
提高数据分析的全面性和准确性。
04
加强假设检验和方差分析的理论研究,深入探讨其数 学原理和理论基础,为方法的改进和创新提供理论支 持。
THANKS FOR WATC
多因素方差分析用于比较多个分类变量与一个连续变量的关系。
详细描述
例如,比较不同品牌、不同型号、不同生产年份手机的使用寿命,通过多因素方差分析可以判断这些 因素对手机使用寿命的影响是否有显著差异。
05 结论
假设检验和方差分析的重要性
假设检验是统计学中一种重要的统计推断方法,通过检验假设是否成立,可以判断样本数据是否支持 或拒绝原假设,从而得出科学可靠的结论。
04 实际应用案例
单因素方差分析
总结词
单因素方差分析用于比较一个分类变 量与一个连续变量的关系。

假设检验基本原理

假设检验基本原理
假设检验基本原理是统计学中一种常用的推断方法,用于判断对于一个总体参数的某个假设是否成立。

该方法基于样本数据,通过计算样本统计量与假设参数之间的差异,并对差异进行统计推断,从而对原假设的真实性进行判断。

假设检验的基本原理可以概括为以下几个步骤:
1. 提出原假设和备择假设:在进行假设检验之前,需要明确所关注的总体参数,并提出对该参数的原假设(H0)和备择假
设(H1或Ha)。

原假设通常是关于总体参数取值的某种猜测,备择假设则是对原假设的否定或补充。

2. 选择显著性水平:显著性水平(α)是在假设检验中事先确
定的一个临界值,用于决定是否拒绝原假设。

通常常用的显著性水平有0.05和0.01两种。

选择不同的显著性水平可以决定
对原假设的拒绝程度。

3. 计算检验统计量:根据样本数据,计算出与原假设相关的检验统计量。

检验统计量是用于衡量样本数据与原假设的一致性或差异性的指标。

4. 确定拒绝域:拒绝域是在给定显著性水平下,检验统计量落在其中时拒绝原假设的区域。

拒绝域的选择与样本容量、总体分布及检验类型相关。

5. 判断并作出结论:比较计算得到的检验统计量与拒绝域的关
系,若检验统计量落在拒绝域内,则拒绝原假设,认为样本数据与原假设存在显著差异;若检验统计量不在拒绝域内,则无法拒绝原假设,认为样本数据与原假设一致或不足以提供充分证据。

总体来说,假设检验基本原理通过显著性水平和检验统计量的判断,对原假设进行推断,从而帮助我们在统计推断问题中做出合理的决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

假设检验法的原理和步骤
一、常用核心概念
什么是假设检验:假设就是对从总体参数(均值、比例等)的具体数值所作的陈述,比如,我认为配方一比配方二的效果要好。

而假设检验就是先对总体的参数提出某种假设,然后利用样本的信息判断假设是否成立的过程,比如上面的假设信息我该接受还是拒绝。

什么是显著性水平:显著性水平是一个概率值,原假设为真时,拒绝原假设的概率,表示为α,常取值为0.05、0.01、0.10。

一个公司招聘,本来准备招聘100个人,公司希望只有5%的人是混水摸鱼招聘进来,所以可能会有5个人混进来,所谓显著性水平α,就是你允许有多少比例混水摸鱼的能通过测试。

原假设与备择假设:待检验的假设又叫原假设(零假设),一般表示为H0,原假设一般表示两者没有显著性差异。

与原假设进行对比的叫备择假设,表示为H1。

一般在比较的时候,主要有等于、大于、小于。

检验统计量:即计算检验的统计量。

根据给定的显著性水平,查表得出相应的临界值。

再将检验统计量的值与该显著性水平的临界值进行比较,得出是否拒绝原假设的结论。

P值:是一个概率值,如果原假设为真,p值是抽样分布中大于或小于样本统计量的概率。

左检验时,p值为曲线上方小于等于检验统计量部分的面积。

右检验时,p值为曲线上方大于等于检验统计量
部分的面积。

假设检验的两种错误:类型 I 错误(弃真),如原假设为真,但否定它,则会犯类型 I 错误。

犯类型 I 错误的概率为α(即您为假设检验设置的显著性水平)。

α为 0.05 表明,当您否定原假设时,您愿意接受 5% 的犯错概率。

为了降低此风险,必须使用较低的α值。

但是,使用的α值越小,在差值确实存在时检测到实际差值的可能性也越小。

类型 II 错误(采伪),如原假设为假,但无法否定它,则会犯类型 II 错误。

犯类型 II 错误的概率为β,β依赖检验功效。

可以通过确保检验具有足够大的功效来降低犯类型 II 错误所带来的风险。

方法是确保样本数量足够大,以便在差值确实存在时检测到实际差值。

单双测检验:当假设关键词有不得少于/低于的时候用左侧检验,比如灯泡的使用寿命不得少于/低于700小时时;当假设关键词有不得多于/高于的时候用右侧检验,比如次品率不得多于/高于5%时。

双侧检验指按分布两端计算显著性水平概率的检验,应用于理论上不能确定两个总体一个一定比另一个大或小的假设检验。

一般假设检验写作H0:μ1=μ2。

检验结果:单侧,若p值>α,不拒绝H0,若p值<α,拒绝H0;双侧,若p值>1/2α,不拒绝H0,若p值<1/2α,拒绝H0
二、假设检验方法
假设检验方法:z检验,t检验,卡方检验(卡方本篇不详述,应用较少)
2.1 Z检验
Z检验原理:当总体标准差已知,样本量较大时用标准正态分布的理论来推断差异发生的概率,从而比较两个平均数的差异是否显著。

如果检验一个样本平均数与一个已知的总体平均数的差异是否显著,其Z值计算公式为:
如果检验来自两个的两组样本平均数的差异性,从而判断它们各自代表的总体的差异是否显著,其Z值计算公式为:
Z检验实例:
研究正常人与高血压患者胆固醇含量,比较两组血清胆固醇含量有无显著差异。

正常人组数据:n1=506(样本量) μ1=180.6(样本均值) s1=34.2(标准差)
高血压组数据:n2=142 μ2=223.6 s2=45.8
1、提出假设,规定适当检验统计量,确定检验水平:
H0:μ1=μ2
H1:μ1≠μ2
α=0.05,样本量较大,且检验来自两组样本平均数的差异性,故选择z检验统计量
2、计算统计量z值
将已知数据带入z检验公式,
计算假设检验统计量 z=10.4
α=0.05,双侧故α/2=0.025,1-α=0.975 查表,确认临界值为1.96
3、确定p值,做出推断结论
10.4(z值)>1.96(临界值),故p<0.05,按α=0.05水准拒绝H0,接受H1,可以认为正常人和高血压患者的血清胆固醇含量有差异。

2.2 t检验
t检验:分为单样本的t检验、配对样本均数t检验(本篇不详细说)、两独立样本均数t检验。

t检验应用于两组计量资料小样本比较,样本对总体有较好代表性,对比组间有较好组间均衡性,即随机抽样和随机分组。

且样本来自正态分布总体。

单个样本t检验适用于样本均数与已知总体均数μ0的比较,目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差别。

应用于总体标准α未知的小样本资料,且服从正态分布。

单样本t检验实例:
某地新生儿出生体重为3.3kg,从该地难产儿中随机抽取35名婴儿,平均体重为3.42kg,标准差为0.4kg,问该地难产儿出生体重与新生儿体重是否不同?
1、提出假设,规定适当检验统计量,确定检验水平:
H0:μ=μ0
H1:μ≠μ0
α=0.05 ,样本均数与已知总体均数μ0的比较,所以选择单样本t检验
2、计算统计量z值
n=35 μ0=3.3 μ=3.42 s=0.4
自由度=n-1=34,α=0.05,双侧故α/2=0.025,1-α=0.975,自由度34,查表得出临界值为2.032
3、确定p值,做出推断结论
因为1.77(z值)<2.032(临界值),故p>0.05,按α=0.05水平,差别无统计学意义,不拒绝h0,不能认为该地难产儿与新生儿体重有差异。

两独立样本t检验(ab实验背后原理):适用于完全随机设计的两样本均数的比较,其目的是检验两样本所来自总体的均数是否相等。

两独立样本t检验要求两样本所代表的总体服从正态分布N(μ1,σ^2)和N(μ2,σ^2),且两总体方差σ1^2、σ2^2相等,即方差齐性。

若两总体方差不等需要先进行变换。

两独立样本t检验的检验假设是两总体均数相等,即H0:μ1=μ2,统计量计算公式为:
两独立样本t检验实例:
25例糖尿病患者随机分成两组,甲单纯药物治疗,乙采用药物合并饮食治疗,二月后测空腹血糖如下,问两种疗法血糖值是否相同?
数据:n1=12 s1=182.5 n2=13 s2=141
1、提出假设,规定适当检验统计量,确定检验水平:
H0:μ1=μ2 H1:μ1≠μ2
α=0.05, 选用两独立样本t检验方法
2、计算统计量z值
将数据带入公式,计算得t=2.639
自由度=n1 n2-2=23 α=0.05,双侧故α/2=0.025,1-α=0.975,查表得临界值为 t=2.069
3、确定p值,做出推断结论
因为2.639(t值)>2.069(临界值) ,故 p<0.05 ,在0.05水准下,拒绝H0,接受H1,存在显著性差异,故认为两种疗法效果不同。

相关文档
最新文档