成都市武侯区中考数学二诊试卷含答案解析
2021年四川省成都市中考数学二诊试卷(附答案详解)

2021年四川省成都市中考数学二诊试卷1.−2021的相反数是()A. 12021B. − 12021C. 2021D. −20212.用一个平面截一个正方体,截面形状不可能是()A. 三角形B. 四边形C. 五边形D. 七边形3.据新闻报道:2020年11月10日8时12分,中国“奋斗者”号载人潜水器在马里亚纳海沟成功坐底,坐底深度10909米,此时“奋斗者”号承受的水压接近110兆帕(1兆帕=1000000帕),请你用科学记数法表示110兆帕()A. 1.1×107B. 1.1×108C. 1.1×106D. 1.1×1094.在平面直角坐标系中,将抛物线y=2(x−1)2+3先向左平移2个单位,再向下平移1个单位,得到的抛物线解析式为()A. y=2(x+1)2+2B. y=2(x−3)2+2C. y=2(x+1)2+4D. y=2(x−3)2+45.下面计算正确的是()A. a2⋅a3=a6B. (−2a2)3=−8a6C. a9÷a3=a3D. 2a2+a2=3a46.若关于x的方程axx−1=2x−1+1无解,则a的值是()A. 1B. 3C. −1或2D. 1或27.在Rt△ABC中,∠C=90°,BC=5,AB=13,则sin B的值是()A. 1213B. 513C. 125D. 5128.水产养殖中常采用“捉--放--捉”的方式估计一个鱼塘中鱼的数量,如从某个鱼塘中随机地捞出100条鱼,将这些鱼作上记号后再放回鱼塘,隔数日后再从该鱼塘随机捞出144条鱼,其中带有记号的有6条,从而估计该鱼塘有()条鱼.A. 1600B. 2400C. 1800D. 20009.如图,在四边形ABCD中,AD//BC;AB=AD=DC=1,BD⊥CD,则四边形ABCD的面积为()A. √33B. 3√32C. 3√34D. √310. 如图是二次函数y =ax 2+bx +c 的部分图象,图象过点A(3,0),对称轴为x =1,给出下面五个结论:①b 2>4ac ;②2a +b =1;③a −b +c =0;④b +c <0;⑤若y <0,则−1<x <3.其中正确的个数是( )A. 1个B. 2个C. 3个D. 4个11. 如果若|x −2|=1,则x = ______ .12. 已知一次函数y =−2x +1,若−2≤x ≤1,则y 的最小值为______ .13. 小华根据朗诵比赛中9位评委所给的分数作了如下表格:平均数 中位数 众数 方差8.8 8.7 8.7 0.11如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是______ .14. 如图,AB ⊥BD ,CD ⊥BD ,当点P 满足PA =PC ,∠APC =90°时,若AB =2,tan∠APB =12,则BD =______ .15. (1)计算:2sin45°+√(1−√2)2+(−√22)−1+(π−3)0; (2)解不等式组{2x −1≥x +2①x+12>2x−13②.16. 先化简,再求值:(3−2x+1)÷3x 2+x x+1,其中x =√3+1.17. 2021年2月25日上午,全国脱贫攻坚总结表彰大会在北京人民大会堂隆重举行,大会对全国脱贫攻坚先进个人、先进集体进行了表彰,“精准扶贫”是新时期党和国家扶贫工作的精髓和亮点,某校团委随机抽取九年级部分学生,对他们是否了解“精准扶贫”政策的情况进行调查,调查结果分为四类,分别为:A 类:非常了解,B 类:了解,C 类:基本了解,D 类:不了解.并将调查的数据绘制成如图两幅不完整的统计图,请根据统计图中的信息解决下列问题:(1)本次被抽样调查学生的总人数是______ 人;(2)该校九年级共有800人,请估计基本了解的人数约为______ 人;(3)若调查人员想从5名学生(分别记为a ,b ,c ,d ,e)中随机选取两人,调查他们对“精准扶贫”政策的了解情况,请用列表或树状图的方法,求同时选中a ,e 两人的概率.18.为保护师生健康,新都某中学在学校门口安装了红外测温通道,对进校师生进行体温监测,测温装置安装在E处.某同学进校时,当他在地面D处,开始显示测量体温,此时在其额头A处测得E的仰角为30°,当他走到地面C处,结束显示体温,此时在其额头B处测得E的仰角为45°,已知该同学脚到额头的高度为AD,且AD=1.6米,CD=1米,求测温装置E距地面的高度约为多少米?(保留小数点后两位有效数字,√3≈1.73)19.已知在平面直角坐标系中,点A(1,2)在反比例函数y=k的图象上,过点A的直线与该双曲线的另一支x交于点B(−2,m).(1)求直线AB的函数表达式;(2)若点C为x轴上一动点,求当S△ABC=6时,点C的坐标.20.如图,在正方形ABCD中,BC=4,G为射线CB上的动点,连接DG,交AC于H.(1)证明:△AHB≌△AHD;(2)若DG交AB于F,当FB=FH时,求BG之长;(3)是否存在点G,使得△GHC为等腰三角形,若存在,请求出CG之长;若不存在,请说明理由.21.若x−y=2,xy=3,则代数式x3y−2x2y2+xy3的值为______ .22.“干支纪年法”是我国历法的一种传统纪年法,甲、乙、丙、丁、戊、已、庚、辛、壬、癸被称为“十天干”;子、丑、寅、卯、辰、已、午、未、申、酉、戍、亥叫做“十二地支”;“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅…癸酉;甲戌、乙亥、丙子…癸未;甲申、乙酉、丙戌…癸已;…共得到60个组合,称六十甲子,周而复始,无穷无尽.2021年是“干支纪年法”中的辛丑年,那么2050年是“干支纪年法”中的______ .23.如图,在直角△ABC中,∠A=90°,AB=3,AC=4,四边形ADEF为△ABC的内接正方形,若在△ABC内取一点,这点取自正方形ADEF的概率为______ .24.将一副三角板如图放置在一起,使得等腰直角△ABD与直角△ACD的斜边重合,其中AD=4,∠B=∠C=90°,∠CAD=30°,则点B到边AC的距离为______ .的图象与一次函数y=2x+b的图象相交于A,B两点,若A,B 25.反比例函数y=1x两点的横坐标分别为x1,x2,则|x1−x2|的最小值为______ .26.为应对全球变暖,落实国家节能减排政策,某公司积极进行技术创新,将原本直接排放进大气中的二氧化碳转化为固态形式的化工产品,从而实现“变废为宝、低碳排放”.经过生产实践和数据分析,在这种技术下,该公司二氧化碳月处理成本y(万元)与二氧化碳月处理量x(2≤x≤6,单位:百吨)之间满足的一元二次函数关系,如图所示,已知点A(2,2),顶点B(3,1.5),假设每处理一百吨二氧化碳得到的化工产品的收入为2万元.(1)求该公司二氧化碳月处理成本y(万元)与二氧化碳月处理量x(2≤x≤6,单位:百吨)之间满足的一元二次函数一般式;(2)该公司利用这种技术处理二氧化碳的最大月收益W是多少万元?(月收益=月收入−月处理成本)27.将矩形ABCD折叠,使得点C落在边AB上,折痕为EF,(1)如图1,当点C与点A重合时,若AB=4,BF=3,求AE的长;(2)如图2,点C落在AB边的点M处(不与A,B重合),若AB=4,AD=8,①取EF的中点O,连接并延长MO与D′E的延长线交于点P,连接PF,ME.求证:四边形MFPE是平行四边形;②设BM=t,用含有t的式子表示四边形ABFE的面积,并求四边形ABFE的面积的最大值及此时t的值.28.如图所示:二次函数y=x2−x−6的图象与x轴交于A,B两点,与y轴交于点C,连接AC,BC.(1)求直线BC的函数表达式;(2)如图1,若点M为抛物线上线段BC右侧的一动点,连接CM,BM.求△BMC面积的最大值及相应点M的坐标;(3)如图2,该抛物线上是否存在点P,使得∠ACO=∠BCP?若存在,请求出所有点P的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:−2021的相反数是2021,故选:C.根据相反数的概念解答即可.本题考查的是相反数的概念,掌握只有符号不同的两个数叫做互为相反数是解题的关键.2.【答案】D【解析】解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,不可能为七边形.故选:D.正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形.本题考查正方体的截面.正方体的截面的四种情况应熟记.3.【答案】B【解析】解:110兆帕=110000000帕=1.1×108帕,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:∵抛物线y=2(x−1)2+3的顶点坐标为(1,3),∴平移后抛物线的顶点坐标为(−1,2),∴平移后抛物线的解析式为y=2(x+1)2+2.故选:A.找出抛物线的顶点坐标,将其按要求平移后可得出新抛物线的顶点坐标,进而即可得出抛物线的解析式.本题考查了二次函数图象与几何变换,通过平移顶点找出平移后抛物线的解析式是解题的关键.5.【答案】B【解析】解:A、a2⋅a3=a5,故本选项不合题意;B、(−2a2)3=−8a6,故本选项符合题意;C、a9÷a3=a6,故本选项不合题意;D、2a2+a2=3a2,故本选项不合题意;故选:B.分别根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则以及合并同类项法则逐一判断即可.本题主要考查了合并同类项,同底数幂的乘除法以及积的乘方,熟记相关运算法则是解答本题的关键.6.【答案】D【解析】解:axx−1=2x−1+1,去分母得,ax=2+x−1,整理得,(a−1)x=1,当x=1时,分式方程无解,则a−1=1,解得,a=2;当整式方程无解时,a=1,故选:D.先转化为整式方程,再由分式方程无解,进而可以求得a的值.本题主要考查分式方程的解,掌握解分式方程的方法是解题的关键.7.【答案】A【解析】解:在Rt△ABC中,∠C=90°,BC=5,AB=13,∴AC=√AB2−BC2=√132−52=12,∴sinB=ACAB =1213,故选:A.先根据勾股定理求出AC,再根据锐角三角函数求解即可.本题考查勾股定理,锐角三角函数,理解锐角三角函数的意义,掌握勾股定理是得出正确答案的前提.8.【答案】B【解析】解:设鱼塘中有x条鱼,根据题意,得:100x =6144,解得x=2400,经检验x=2400是分式方程的解,所以估计该鱼塘有2400条鱼,故选:B.设鱼塘中有x条鱼,根据题意得出100x =6144,解之即可得出答案.本题主要考查了利用样本估计总体的思想,首先设整个鱼塘约有鱼x条,然后利用样本估计总体的思想即可列出方程解决问题.9.【答案】C【解析】解:如图,过点D作DE//AB交BC于点E,∵AD//BC,DE//AB,∴四边形ABED是平行四边形,∴DE=AB,BE=AD,∵AB=AD=DC=1,∴DE=AB=DC=1,BE=AD=1,∴DE=BE=CD=1,∴∠CBD=∠BDE,∠C=∠CED,∵BD⊥CD,∴∠BDC=90°,∴∠CBD+∠C=∠BDE+∠CDE=90°,∴∠C=∠CDE,∴CE=BE=1,∴BC=2,∴BD=√BC2−CD2=√22−12=√3,∴S△BCD=12BD⋅CD=12×√3×1=√32,∵CE=BE=1,∴S△BDE=12S△BCD=12×√32=√34,∵S△ABD=S△BDE=√34,∴S四边形ABCD =S△ABD+S△BCD=√34+√32=3√34.故选:C.过点D作DE//AB交BC于点E,先证明四边形ABED是平行四边形,得出DE=BE= CD=1,进而得出∠CBD=∠BDE,∠C=∠CED,再由BD⊥CD,利用直角三角形性质得出∠C=∠CDE,即可求出BC=2,运用勾股定理求得BD,即可求得S△BCD,再利用平行四边形对角线和三角形中线性质即可求得答案.本题考查了等腰三角形的判定和性质,直角三角形性质,三角形面积,平行四边形的判定与性质等,添加辅助线构造平行四边形是解题关键.10.【答案】D【解析】解:∵抛物线与x轴有两个交点,∴b2−4ac>0,即b2>4ac,①正确;∵对称轴为x=1,∴−b2a=1,即b=−2a,∴2a+b=2a+(−2a)=0,∴②不正确;∵图象过点A(3,0),对称轴为x=1,∴图象与x轴左侧的交点为(−1,0),将(−1,0)代入y=ax2+bx+c得:a−b+c=0,③正确;由图象知顶点(1,a+b+c)在x轴下方,∴a+b+c<0,即b+c<−a,而开口向上,a>0,∴−a<0,∴b+c<−a<0,④正确;∵抛物线与x轴两个交点分别为(−1,0),(3,0),且开口向上,∴y<0时−1<x<3,⑤正确;∴正确的有①③④⑤,故选:D.根据二次函数图象及性质逐个判断.本题考查二次函数图象与系数的关系,解题的关键是要掌握抛物线顶点、对称轴、与x(y)轴交点等知识.11.【答案】3或1【解析】解:∵|x−2|=1,∴x−2=±1,则x−2=1,x−2=−1,解得:x=3或1,故答案为:3或1.根据绝对值的性质可得x−2=±1,再解方程即可.此题主要考查了绝对值,关键是掌握绝对值等于一个正数的数有两个,它们互为相反数.12.【答案】−1【解析】解:∵k=−2<0,∴y随x的增大而减小,∴当x=1时,y取得最小值,此时y=−2×1+1=−1.故答案为:−1.由k=−2<0,可得出y随x的增大而减小,结合−2≤x≤1,即可求出y的最小值.本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.13.【答案】中位数【解析】解:去掉一个最高分和一个最低分对中位数没有影响,故答案为:中位数.根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.本题考查了统计量的选择,解题的关键是了解中位数、众数、平均数及方差的定义,难度不大.14.【答案】6【解析】解:∵AB⊥BD,CD⊥BD,∴∠B=∠D=90,∴∠CPD+∠C=90°,∵∠APC=90°,∴∠APB+∠CPD=90°,∴∠APB=∠C=90°−∠CPD,在△ABP和△PDC中,{∠APB=∠C ∠B=∠DPA=PC,∴△ABP≌△PDC(AAS),∴AB=PD,∵AB=2,∴PD=2,∵tan∠APB=12,∴ABBP =12,∴BP=4,∴BD=BP+PD=6,故答案为:6.根据全等三角形的判定证得△ABP≌△PDC,由全等三角形的性质得到PD=AB=2,由三角函数求出BP=4,即可求得BD.本题主要考查了全等三角形的性质和判定,三角函数的定义,由全等三角形的判定定理证得△ABP≌△PDC是解决问题的关键.15.【答案】解:(1)原式=2×√22+√2−1−√2+1=√2+√2−1−√2+1=√2;(2)解不等式①,得:x≥3,解不等式②,得:x<5,则不等式组的解集为3≤x<5.【解析】(1)先代入三角函数值、计算算术平方根、负整数指数幂和零指数幂,再计算乘法,最后计算加减即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.【答案】解:原式=(3x+3x+1−2x+1)÷x(3x+1)x+1=3x+1x+1×x+1x(3x+1)=1x,当x=√3+1时,原式=√3+1=√3−12.【解析】根据分式的混合运算法则把原式化简,把x的值代入计算即可.本题考查的是分式的化简求值,掌握分式的混合运算法则、分母有理化是解题的关键.17.【答案】150 320【解析】解:(1)本次被抽样调查学生的总人数是:30÷20%=150(人),故答案为:150;(2)C类的人数为:150−15−45−30=60(人),∴该校九年级共有800人,估计基本了解的人数约为:800×60150=320(人),故答案为:320;(3)画树状图如图:共有20个等可能的结果,同时选中a,e两人的结果有2个,∴同时选中a,e两人的概率为220=110.(1)由D类人数除以所占百分比即可;(2)由九年级总人数乘以基本了解的人数所占的比例即可;(3)画树状图,再由概率公式求解即可.此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.也考查了条形统计图和扇形统计图. 18.【答案】解:设EF =x 米.在Rt △BEF 中,tan45°=EF BF =1, ∴BF =EF =x 米.在Rt △AEF 中,tan30°=EFAF =√33, ∴AF =√3EF =√3x 米.∵AB =CD =AF −BF ,∴√3x −x =1,解得:x ≈1.37,∴EG =1.6+1.37=2.97(米).答:测温装置E 距地面的高度约为2.97米.【解析】设EF =x 米.通过解直角三角形分别表示出、AF 的长度,根据AB =CD =AF −BF 得到方程,解即可求得EF ,进而即可求解.本题主要考查了解直角三角形的应用−仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.19.【答案】解:(1)把点A(1,2)代入y =kx 中,解得k =2,∴反比例函数表达式为y =2x ,把点B(−2,m)代入y =2x 中,解得m =−1,∴点B 的坐标为(−2,−1),设直线AB 的表达式为y =kx +b ,把A(1,2)和B(−2,−1)代入上式,得{k +b =2−2k +b =−1, 解得{k =1b =1, ∴一次函数表达式为y =x +1;(2)设点C 的坐标为(a,0),如图,当y=0时,x+1=0,解得x=−1,∴点D的坐标为(−1,0),则CD=|a+1|,∵S△ABC=S△ADC+S△BDC=6,即12CD×2+12CD×1=6,∴CD=4,∴|a+1|=4,a+1=±4,解得a1=3,a2=−5,∴点C的坐标为(3,0)或(−5,0).【解析】(1)把点A(1,2)代入y=kx中,即可算出反比例函数表达式,即可算出点B的坐标,把A、B两点的坐标代入一次函数表达式y=kx+b中,解方程组即可得出答案;(2)先设点C的坐标为(a,0),根据直接AB的解析即可算出点D的坐标,则CD=|a+1|,根据S△ABC=S△ADC+S△BDC=6,再根据三角形面积计算即可得出答案.本题主要考查了一次函数与反比例函数交点问题,熟练掌握相关知识进行计算是解决本题的关键.20.【答案】证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAC=∠DAC=45°=∠ACB,在△AHB和△AHD中,{AB=AD∠BAH=∠DAH AH=AH,∴△AHB≌△AHD(SAS);(2)如图1,∵△AHB≌△AHD,∴∠ABH=∠ADH,∵AD//BC,∴∠G=∠ADH,∵BF=FH,∴∠FBH=∠FHB,∴∠G=∠FHB=∠FBH,∵∠G+∠FHB+∠FBH+∠GBF=180°,∴∠G=∠FHB=∠FBH=30°=∠ADF,∴AD=√3AF=4,BG=√3BF,∴AF=4√3,3∴BF=4−4√3,3∴BG=√3BF=4√3−4;(3)当GH=CH时,∴∠ACB=∠DGC=45°,∴∠GHC=90°,即DG⊥AC,∴点G与点B重合,∴CG=CB=4;当GH=GC时,∴∠GHC=∠GCH=45°,∴∠HGC=90°,∵∠DGC是Rt△DGC的一个锐角,∴∠DGC<90°,∴不存在GH=GC;当CH=CG时,∴∠GHC=∠HGC=67.5°,∴∠GDC=22.5°,如图2,在CD上截取CG=CN,连接GN,∴∠CNG=∠CGN=45°,GN=√2CG,∴∠DGN=22.5°=∠GDC,∴DN=GN,∵DN+NC=CD=4,∴√2GC+GC=4,∴GC=4√2−4,综上所述:GC=4或4√2−4.【解析】(1)由“SAS”可证△AHB≌△AHD;(2)先求∠G=∠FHB=∠FBH=30°=∠ADF,由直角三角形的性质可求解;(3)分三种情况讨论,由等腰三角形的性质和等腰直角三角形的性质可求解.本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,等腰三角形的性质等知识,利用分类讨论思想解决问题是解题的关键.21.【答案】12【解析】解:x3y−2x2y2+xy3=xy(x2−2xy+y2)=xy(x−y)2,把x−y=2,xy=3代入得:原式=3×22=12.故答案为:12.原式提取公因式xy,再利用完全平方公式分解,将已知等式代入计算即可求出值.考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.22.【答案】庚午【解析】解:需要弄清“干支”纪年是从公元4年开始,故可以列一个数字对应表.用公元年数字的最后一个数字来对应“天干”,用公元年数字除以12,余数对应“地支”.例如公元2021年的个位数是1,对应“天干”的“辛”;2021÷4得到余数是5,对应“地支”中“丑”,故是“辛丑”年;同样公元2050年的个位数是0,对应“天干”的“庚”;2050÷4得到余数是10,对应“地支”中“午”.故答案为:庚午.需要弄清“干支”纪年是从公元4年开始,故可以列一个数字对应表.用公元年数字的最后一个数字来对应“天干”,用公元年数字除以12,余数对应“地支”.本题考查“天干、地支”的循环纪年,转化为用数字的循环来计算的数学方法.此题关健是弄清“干支”纪年是从公元4年开始.23.【答案】2449【解析】解:在直角△ABC中,∠A=90°,AB=3,AC=4.∴S△ABC=12AC⋅AB=6.AB=5.∵四边形ADEF为△ABC的内接正方形.∴EF//AB.EF=FA.∴△CEF∽△CBA.∴EFAB =CFFA即:EF3=4−EF4.∴EF=127.∴正方形ADEF的面积为:14449.∴在△ABC内取一点,这点取自正方形ADEF的概率为=S正方形ADEFS△ABC =2449.故答案为:2449.根据已知,求出△ABC面积,利用相似性质,求出正方形的变成和面积,利用面积的比,即可求出概率.本题考查三角形相似的判定和性质、勾股定理、概率的公式,比较综合,关键在于求出相应图形的面积,属于拔高题.24.【答案】√3−1【解析】解:过B作BE⊥AC于E,∵AD=4,∠ABF=∠C=90°,∠CAD=30°,∴CD=12AD=2,AB2+BD2=AD2=16,∵AB=BD,∴2AB2=16,∴AB=BD=2√2,∵∠ABF=∠C,∠AFB=∠DFC,∴△ABF∽△DCF,∴BFCF =ABDC=2√22=√2,设CF=x,则BF=√2x,∴DF=BD−BF=2√2−√2x,∵DF2=CD2+CF2,∴(2√2−√2x)2=22+x2,解得x1=4−2√3,x2=4+2√3>AD(不合题意,舍去),即CF=4−2√3,∴BF=4√2−2√6,∵AC=AD⋅cos∠CAD=4×√32=2√3,∴AF=AC−CF=2√3−(4−2√3)=4√3−4,∵S△ABF=12AB⋅BF=12AF⋅BE,∴BE=AB⋅BFAF =2√2×(4√2−2√6)4√3−4=2(2−√3)√3−1=√3−1,故答案为:√3−1.过B作BE⊥AC于E,根据特殊三角形的性质求出AB,BD,CD,AC,由相似三角形的判定证得△ABF∽△DCF,由相似三角形的性质证得BF=√2CF,由勾股定理求出CF,进而求出BF,AF,根据三角形的面积公式即可求得BE.本题主要考查了含30°的直角三角形的性质和等腰直角三角形的性质,勾股定理,相似三角形的性质和判定,三角形的面积公式,根据相似三角形的性质和勾股定理求出CF 是解决问题的关键.25.【答案】√2【解析】解:令1x=2x+b,即2x2+bx−1=0,由题意可知,x1+x2=−b2,x1x2=−12,∵|x1−x2|=√(x1+x2)−4x1x2=√b24+2,∴当b=0时,|x1−x2|有最小值为√2,故答案为√2.令1x =2x+b,即2x2+bx−1=0,由题意可知,x1+x2=−b2,x1x2=−12,即可得到|x1−x2|=√b24+2,即可求得|x1−x2|的最小值为√2.本题是反比例函数与一次函数的交点问题,根与系数的关系,得到|x1−x2|=√b24+2是解题的关键.26.【答案】解:(1)∵顶点B(3,1.5).设抛物线为:y=a(x−3)2+1.5.将点A(2,2)代入,解得:a=12.∴解析式为:y=12(x−3)2+1.5(2≤x≤6).(2)收益W=2−y=2−12(x−3)2−32=−12(x−3)2+12.∵2≤x≤6.∴当x=3时,W取最大值,最大值为:12.即公司利用这种技术处理二氧化碳的最大月收益W是12万元.【解析】(1)根据图形设函数的解析式为顶点式,即可求解解析式.(2)表示出收益,利用函数的性质即可求解最大收益.本题考查利用待定系数法求二次函数解析式,以及考查求二次函数的最值问题,属于基础题.27.【答案】解:(1)如图1,∵矩形ABCD沿EF折叠,∴∠AFE=∠EFC,∵AD//BC,∴∠AEF=∠EFC=∠AFE,∴AE=AF,在Rt△ABF中,AB=4,BF=3,则AF=5=AE,即AE=5;(2)①∵D′E//MF,即D′P//MF,∴∠EPM=∠PMF,∵∠MOF=∠POE,OE=OF,∴△EOP≌△FOM(AAS),∴∠EMO=∠FPO,∴MF//EP,∴四边形MFPE是平行四边形;②∵ABEF为梯形,点C在M处,则MF=CF,则BF2=MF2−t2=(8−BF)2−t2,解得BF=4−116t2,则ME2=AE2+(4−t)2=MD′2+D′E2=42+(AD−AE)2=42+(8−AE)2,即AE2+(4−t)2=42+(8−AE)2,解得AE=−116t2+12t+4,∴S梯形ABFE =12(AE+BF)×AB=12(4−116t2−116t2+12t+4)=−14t2+t+16,∵−14<0,故四边形ABFE的面积存在最大值,当t=2时,四边形ABFE的面积的最大值为17.【解析】(1)证明∠AEF=∠EFC=∠AFE,则AE=AF,即可求解;(2)①证明△EOP≌△FOM(AAS),进而求解;②ABEF为梯形,点C在M处,则MF=CF,求出BF=4−116t2,AE=−116t2+12t+4,进而求解.本题考查的是四边形综合题,涉及平行四边形的性质、三角形全等、面积的计算等,综合性强,难度较大.28.【答案】解:(1)对于y =x 2−x −6①,令y =x 2−x −6=0,解得x =3或−2,令x =0,则y =−6,故点A 、B 、C 的坐标分别为(−2,0)、(3,0)、(0,−6),设直线BC 的表达式为y =kx +b ,则{0=3k +b b =−6,解得{k =2b =−6, 故直线BC 的表达式为y =2x −6;(2)过点M 作y 轴的平行线交BC 于点H ,设点M 的坐标为(x,x 2−x −6),则点H(x,2x −6),则△BMC 面积=S △HMB +S △HMC =12×HM ×OB =32(2x −6−x 2+x +6)=32(−x 2+3x),∵−32<0,故△BMC 面积存在最大值, 当x =32时,△BMC 面积的最大值为278,此时点M 的坐标为(32,−214);(3)存在,理由:在Rt △OBC 中,tan∠OBC = OB OC =2,由B 、C 的坐标得,BC =√45,①当点P 在BC 的右侧时,延长CP 交x 轴于点H ,过点H 作NH ⊥BC 交CB 的延长线于点N ,在Rt △BNH 中,tan∠NBH =tan∠OBC =2,设BN =x ,则NH =2x ,在Rt △CNH 中,tan∠BCP =tan∠ACO =13=NH CN =2x √45+x ,解得x =√455, 则BH =√NH 2+BN 2=√5x =3,故点H 的坐标为(6,0),由点C 、H 的坐标得,直线CH 的表达式为y =x −6②,联立①②并解得{x =2y =−4(不合题意的值已舍去), 故点P 的坐标为(2,−4);②当点P 在BC 的左侧时,设直线CH′交抛物线于点P′,同理可得,点H′的坐标为(67,0),则直线CH′的表达式为y =7x −6③,联立①③并解得{x =8y =50(不合题意的值已舍去), 故点P 的坐标为(8,50);综上,点P 的坐标为(2,−4)或(8,50).【解析】(1)用待定系数法即可求解;(2)由△BMC 面积=S △HMB +S △HMC =12×HM ×OB ,即可求解;(3)分点P 在BC 的右侧、点P 在BC 的左侧两种情况,用解直角三角形的方法,分别求解即可.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
中考数学二诊试卷(含答案解析)

中考数学二诊试卷姓名:得分:日期:一、选择题(本大题共 12 小题,共 36 分)1、(3分) 2019的相反数是()A.2019B.-2019C.12019D.-120192、(3分) 下列图案中,属于轴对称图形的是()A. B. C. D.3、(3分) 2019年初,网上流传起了“绵阳轻轨将于2019年11月动工”的虚假消息引起社会关注,绵阳市发改委称,由于2018年我市一般公共预算收入为124.54亿元,暂无法满足建设申报条件.把数124.54亿用科学记数法表示为()A.12.454×109B.0.12454×1010C.1.2454×1010D.1.2454×10114、(3分) 如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A. B. C.D.5、(3分) 用半径为2cm的半圆围成一个圆锥的侧面,这个圆锥的底面半径为()A.1cmB.2cmC.πcmD.2πcm6、(3分) 如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是()A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°7、(3分) 已知等腰△ABC中,AD⊥BC于点D,且AD=12BC,则△ABC底角的度数为()A.45°或75°B.75°C.45°或75°或15°D.60°8、(3分) 如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据√2≈1.41,√3≈1.73)()A.7.3海里B.10.3海里C.17.3海里D.27.3海里9、(3分) 如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=k 2−2k+1x的图象上.若点A的坐标为(-4,-4),则k的值为()A.16B.-3C.5D.5或-310、(3分) 有七张正面分别标有数字-3,-2,-1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2-2(a-1)x+a(a-3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2-(a2+1)x-a+2的图象不经过点(1,0)的概率是()A.2 7B.37C.47D.6711、(3分) 如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;如此下去…,则正六角星形A4F4B4D4C4E4的面积为()A.1 16B.164C.1128D.125612、(3分) 二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(-2,-9a),下列结论:①a-3b+2c>0;②3a-2b-c=0;③若方程a(x+5)(x-1)=-1有两个根x1和x2,且x1<x2,则-5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为-8.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共 6 小题,共 18 分)13、(3分) 因式分解:2x3y-8xy=______.14、(3分) 如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是______.x-2与x轴交于点A,以OA为斜边在x轴上方作等腰直角三角形15、(3分) 如图,直线y=12OAB,将△OAB沿x轴向右平移,当点B落在直线y=1x-2上时,则△OAB平移的距离是______.216、(3分) 若关于y的一元二次方程y2+my+n=0的两个根分别是关于x的一元二次方程x2+x-1=0的根的2倍,则m+n的值为______.17、(3分) 如图,矩形ABCD的边长AD=6,AB=4,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M、N,则MN的长为______.18、(3分) 如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AB=4,△BCD为等边三角形,点E为△BCD围成的区域(包括各边)内的一点,过点E作EM∥AB,交直线AC于点M,作EN∥AC,交直线AB于点N,则12AN+AM的最大值为______.三、计算题(本大题共 1 小题,共 16 分)19、(16分) (1)计算:(−12)−1−3tan30∘+(1−√2)0+√12(2)先化简,再求值(x−1x −x−1x+1)÷2x2−2xx2+2x+1,其中,x满足x2-x=1.四、解答题(本大题共 6 小题,共 70 分)20、(11分) 小明参加班长竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是7位评委对小明“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图.(1)求评委给小明演讲答辩分数的众数,以及民主测评为“良好”票数的扇形圆心角度数;(2)求小明的综合得分是多少?(3)在竞选中,小亮的民主测评得分为82分,如果他的综合得分不小于小明的综合得分,他的演讲答辩得分至少要多少分?21、(11分) 如图,一次函数y=-x+b交x轴于点A,交y轴于点B(0,1),与反比例函数y1=kx(k<0)的图象交于点C,C点的横坐标是-2.(1)求反比例函数y1的解析式;(2)设函数y2=mx (m>0)的图象与y1=kx(k<0)的图象关于y轴对称,在y2=mx(m>0)的图象上取一点D(D点的横坐标大于1),过D点作DE⊥x轴于点E,若四边形OBDE的面积为10,求D点的坐标.22、(11分) 上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=利润成本×100%)23、(11分) 如图,在正方形ABCD 中,E 是AB 上一点,连接DE .过点A 作AF⊥DE ,垂足为F ,⊙O 经过点C 、D 、F ,与AD 相交于点G .(1)求证:△AFG∽△DFC ;(2)若正方形ABCD 的边长为4,AE=1,求⊙O 的半径.24、(12分) 如图,二次函数y=ax 2+bx+c 的图象与x 轴的一个交点坐标(2+3√2,0),顶点A 的坐标为(2,92).直线y =−12x +3交x 轴于点B ,交y 轴于点C ,与抛物线的对称轴交于点D ,E 为y 轴上的一个动点.(1)求这条抛物线的解析式和点D 的坐标;(2)若以C 、D 、E 为顶点的三角形与△ACD 相似,求点E 的坐标;(3)若点E 关于直线BC 的对称点M 恰好落在抛物线上,求点M 的坐标.25、(14分) 把两个全等的矩形ABCD 和EFGH 如图1摆放(点D 和点G 重合,点C 和点H 重合),点A 、D (G )在同一条直线上,AB=6cm ,BC=8cm .如图2,△ABC 从图1位置出发,沿BC 方向匀速运动,速度为1cm/s ,AC 与GH 交于点P ;同时,点Q 从点E 出发,沿EF 方向匀速运动,速度为1cm/s.点Q停止运动时,△ABC也停止运动.设运动时间为t(s)(0<t<6).(1)当t为何值时,CQ∥FH;(2)过点Q作QM⊥FH于点N,交GF于点M,设五边形GBCQM的面积为y(cm2),求y与t之间的函数关系式;(3)在(2)的条件下,是否存在某一时刻,使点M在线段PC的中垂线上?若存在,请求出t 的值;若不存在,请说明理由.2019年四川省绵阳市游仙区中考数学二诊试卷【第 1 题】【答案】B【解析】解:2019的相反数是-2019.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键.【第 2 题】【答案】B【解析】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:B.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.【第 3 题】【答案】C【解析】解:124.54亿用科学记数法表示成:1.2454×1010,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.【第 4 题】【答案】B【解析】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.根据从上面看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.【第 5 题】【答案】A【解析】解:由题意知:底面周长=2πcm,底面半径=2π÷2π=1cm.故选:A.由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长=2π,底面半径=2π÷2π得出即可.此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.【第 6 题】【答案】B【解析】解:根据图象,△ABC绕点C顺时针方向旋转90°,再向下平移5格即可与△DEF重合.故选:B.观察图象可知,先把△ABC绕点C顺时针方向旋转90°,再向下平移5格即可得到.本题考查了几何变换的类型,几何变换只改变图形的位置,不改变图形的形状与大小,本题用到了旋转变换与平移变换,对识图能力要求比较高.【第 7 题】【答案】C【解析】解:①如图1,当AB=AC时,∵AD⊥BC,∴BD=CD,BC,∵AD=12∴AD=BD=CD,∴底角为45°;②如图2,当AB=BC时,BC,∵AD=12∴AD=1AB,2∴∠ABD=30°,∴∠BAC=∠BCA=75°,∴底角为75°.③如图3,当AB=BC时,BC,AB=BC,∵AD=12AB,∴AD=12∴∠DBA=30°,∴∠BAC=∠BCA=15°;∴△ABC底角的度数为45°或75°或15°;故选:C.分三种情况讨论,先根据题意分别画出图形,当AB=AC时,根据已知条件得出AD=BD=CD,从而得出△ABC底角的度数;当AB=BC时,先求出∠ABD的度数,再根据AB=BC,求出底角的BC,AB=BC,得出∠DBA=30°,从而得出底角的度数.度数;当AB=BC时,根据AD=12此题考查了含30度角的直角三角形和等腰三角形的性质,关键是根据题意画出图形,注意不要漏解.【第 8 题】【答案】B【解析】解:作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°,设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=√3x,又∵BC=20,即x+√3x=20,解得:x=10(√3-1)∴AC=√2x≈10.3(海里).即:A、C之间的距离为10.3海里.故选:B.作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的知识,可得出AD,继而可得出BD,结合题意BC=CD+BD=20海里可得出方程,解出x的值后即可得出答案.此题考查了解直角三角形的应用,解答本题的关键是根据题意构造直角三角形,将实际问题转化为数学模型进行求解,难度一般.【第 9 题】【答案】D【解析】解:设C(x,y),如图,∵矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,∴△ABD和△CDB的面积相等,∴矩形AEOF的面积等于矩形OMCN的面积,∴xy=k2-2k+1=4×4,即(k-1)2=16,解得k1=-3,k2=5.经检验,当k值为-3和5,都有k2-2k+1=16>0,即都可以使得C点在第一象限,∴k的值为5或-3,故选:D.先利用矩形的性质得到矩形AEOF的面积等于矩形OMCN的面积,则根据反比例函数图象上点的坐标特征得到|k2-2k+1|=4×4,然后解关于k的一元二次方程即可.本题考查了反比例函数图象上点的坐标特征:反比例函数y=k(k为常数,k≠0)的图象是双曲x线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了矩形的性质.【第 10 题】【答案】B【解析】解:令△=[-2(a-1)]2-4a(a-3)=4a+4>0,解得:a>-1,∴使关于x的一元二次方程x2-2(a-1)x+a(a-3)=0有两个不相等的实数根的数有0,1,2,3.当二次函数y=x2-(a2+1)x-a+2的图象经过点(1,0)时,1-(a2+1)-a+2=0,解得:a1=-2,a2=1.∴使关于x的一元二次方程x2-2(a-1)x+a(a-3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2-(a2+1)x-a+2的图象不经过点(1,0)的数字为0,2,3,∴该事件的概率为3.7故选:B.令根的判别式△>0可求出使关于x的一元二次方程x2-2(a-1)x+a(a-3)=0有两个不相等的实数根的a的值,利用二次函数图象上点的坐标特征求出当二次函数y=x2-(a2+1)x-a+2的图象经过点(1,0)时a的值,进而可得出“使关于x的一元二次方程x2-2(a-1)x+a(a-3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2-(a2+1)x-a+2的图象不经过点(1,0)”的a的值,再利用随机事件的概率=事件可能出现的结果数÷所有可能出现的结果数即可求出结论.本题考查了概率公式、根的判别式以及二次函数图象上点的坐标特征,利用根的判别式△>0及二次函数图象上点的坐标特征,找出使得事件成立的a的值是解题的关键.【第 11 题】【答案】D【解析】解:∵A1、F1、B1、D1、C1、E1分别是△ABC和△DEF各边中点,∴正六角星形AFBDCE∽正六角星形A1F1B1D1C1E1且相似比为2:1,∵正六角星形AFBDCE的面积为1,∴正六角星形A1F1B1D1C1E1的面积为14,同理可得,第二个六角形的面积为:142=116,第三个六角形的面积为:143=164,第四个六角形的面积为:14=1 256.故选:D.先分别求出第一个正六角星形AFBDCE与第二个边长之比,再根据相似多边形面积的比等于相似比的平方,找出规律即可解答.本题考查的是相似多边形的性质及三角形中位线定理,解答此题的关键是熟知相似多边形面积的比等于相似比的平方.【第 12 题】【答案】B【解析】解:∵抛物线的开口向上,∴a>0,∵抛物线的顶点坐标(-2,-9a),∴-b2a =-2,4ac−b24a=-9a,∴b=4a,c=-5a,∴抛物线的解析式为y=ax2+4ax-5a,∴a-3b+2c=a-12a-10a=-21a<0,所以①结论错误,3a-2b-c=3a+4a+5a=12a>0,故②结论错误,∵抛物线y=ax2+4ax-5a交x轴于(-5,0),(1,0),∴若方程a(x+5)(x-1)=-1有两个根x1和x2,且x1<x2,则-5<x1<x2<1,正确,故结论③正确,=-2,可得若方程|ax2+bx+c|=1有四个根,设方程ax2+bx+c=1的两根分别为x1,x2,则x1+x22x1+x2=-4,=-2,可得x3+x4=-4,设方程ax2+bx+c=1的两根分别为x3,x4,则x3+x42所以这四个根的和为-8,故结论④正确,故选:B.根据二次函数的性质一一判断即可.本题考查二次函数的性质、二次函数图象上的点的特征、抛物线与坐标轴的交点问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【第 13 题】【答案】2xy(x+2)(x-2)【解析】解:2x3y-8xy=2xy(x2-4)=2xy(x+2)(x-2)故答案为:2xy(x+2)(x-2)先提公因式2xy,得到x2-4继续用平方差公式分解因式.本题考查了提公因式法和平方差公式法分解因式,认真观察并分步彻底分解是解题关键.【第 14 题】【答案】80°【解析】解:∵∠BAC的平分线交直线b于点D,∴∠BAD=∠CAD,∵a∥b,∠1=50°,∴∠BAD=∠CAD=50°,∴∠2=180°-50°-50°=80°.故答案为:80°.直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案.此题主要考查了平行线的性质,正确得出∠BAD=∠CAD=50°是解题关键.【 第 15 题 】【 答 案 】6【 解析 】解:y=12x-2,当y=0时,12x-2=0,解得:x=4,即OA=4, 过B 作BC⊥OA 于C ,∵△OAB 是以OA 为斜边的等腰直角三角形,∴BC=OC=AC=2,即B 点的坐标是(2,2),设平移的距离为a ,则B 点的对称点B′的坐标为(a+2,2),代入y=12x-2得:2=12(a+2)-2,解得:a=6,即△OAB 平移的距离是6,故答案为:6.根据等腰直角三角形的性质求得点BC 、OC 的长度,即点B 的纵坐标,表示出B′的坐标,代入函数解析式,即可求出答案.本题考查了一次函数图象上点的坐标特征、等腰直角三角形和平移的性质等知识点,能求出B′的坐标是解此题的关键.【 第 16 题 】【 答 案 】-2【 解析 】解:设方程y 2+my+n=0的两个根分别为y 1,y 2,∴y 1+y 2=-m ,y 1•y 2=n ,∵关于y 的一元二次方程y 2+my+n=0的两个根分别是关于x 的一元二次方程x 2+x-1=0的根的2倍,∴y 1+y 2=2×(-1)=-m ,y 1•y 2=4×(-1)=n ,∴m=2,n=-4,∴m+n=-2,故答案为:-2.设方程y 2+my+n=0的两个根分别为y 1,y 2,根据题意列方程即可得到结论.本题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解题的关键.【 第 17 题 】【 答 案 】9√210【 解析 】解:过F 作FH⊥AD 于H ,交ED 于O ,则FH=AB=4,∵BF=2FC ,BC=AD=6,∴BF=AH=4,FC=HD=2, ∴AF=√FH 2+AH 2=√42+42=4√2,∵OH∥AE ,∴HO AE =DH AD =13,∴OH=13AE=23,∴OF=FH -OH=4-23=103,∵AE∥FO ,∴△AME∽FMO ,∴AM FM =AE FO =35,∴AM=38AF=3√22,∵AD∥BF ,∴△AND∽△FNB ,∴AN FN =AD BF =32,∴AN=35AF=12√25, ∴MN=AN -AM=12√253√22=9√210. 故答案为9√210.首先过F 作FH⊥AD 于H ,交ED 于O ,于是得到FH=AB=4,根据勾股定理求得AF ,根据平行线分线段成比例定理求得OH ,由相似三角形的性质求得AM 与AF 的长,根据相似三角形的性质,求得AN 的长,即可得到结论.本题考查了相似三角形的判定与性质,矩形的性质,勾股定理,比例的性质,准确作出辅助线,求出AN 与AM 的长是解题的关键.【 第 18 题 】【 答 案 】5【 解析 】解:过E 作EH⊥AC 交AC 的延长线于点H ,∵EN∥AC ,EM∥AB ,∴四边形ANEM 是平行四边形,∠HME=∠A=60°,设EM=AN=a ,AM=b ,Rt△HEM 中,∠HEM=30°, ∴MH=12ME=12a ,∴12AN+AM=12a+b=EH+AM=AH ,当E 在点D 时,AH 的值最大是:2+3=5,12AN+AM 的最大值为5,故答案为:5.作辅助线,构建30度的直角三角形,即可得到结论.本题考查了等边三角形的性质、直角三角形30度角的性质、平行四边形的判定和性质,有难度.【第 19 题】【答案】解:(1)(−12)−1−3tan30∘+(1−√2)0+√12=(-2)-3×√33+1+2√3=(-2)-√3+1+2√3=-1+√3;(2)(x−1x −x−1x+1)÷2x2−2xx+2x+1=(x−1)(x+1)−x(x−1)x(x+1)⋅(x+1)2 2x(x−1)=(x−1) x(x+1)⋅(x+1)2 2x(x−1)=x+12x2,∵x2-x=1,∴x2=x+1,∴原式=x+12(x+1)=12.【解析】(1)根据负整数指数幂、特殊角的三角函数值、零指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后由x2-x=1,得x2=x+1,代入化简后的式子即可解答本题.本题考查分式的化简求值、负整数指数幂、特殊角的三角函数值、零指数幂,解答本题的关键是明确它们各自的计算方法.【第 20 题】【答案】解:(1)小明演讲答辩分数的众数是94分,民主测评为“良好”票数的扇形的圆心角度数是:(1-10%-70%)×360°=72°.(2)演讲答辩分:(95+94+92+90+94)÷5=93,民主测评分:50×70%×2+50×20%×1=80,所以,小明的综合得分:93×0.4+80×0.6=85.2.(3)设小亮的演讲答辩得分为x分,根据题意,得:82×0.6+0.4x≥85.2,解得:x≥90.答:小亮的演讲答辩得分至少要90分.【 解析 】(1)根据众数的定义和所给的统计图即可得出评委给小明演讲答辩分数的众数;用1减去一般和优秀所占的百分比,再乘以360°,即可得出民主测评为“良好”票数的扇形圆心角的度数;(2)先去掉一个最高分和一个最低分,算出演讲答辩分的平均分,再算出民主测评分,再根据规定即可得出小明的综合得分;(3)先设小亮的演讲答辩得分为x 分,根据题意列出不等式,即可得出小亮的演讲答辩得至少分数.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个得分的数据.【 第 21 题 】【 答 案 】解:(1)把B (0,1)代入y=-x+b 得:b=1,∴y=-x+1,当x=-2时,y=3,∴点C 坐标为(-2,3),∴反比例函数解析式为y 1=−6x ;(2)∵函数的图象与的图象关于y 轴对称,设点D 坐标为(a ,6a ),则DE=6a ,OE=a ,∴S 四边形OBDE =OE (OB+DE )=12a (1+6a )=10,解得:a=14, ∴D 点坐标为(14,37).【 解析 】(1)运用待定系数法解得即可;(2)根据(1)的结论,可设点D 坐标为(a ,6a ),则DE=6a ,OE=a ,由四边形OBDE 的面积为10,根据梯形的面积公式即可求解.本题考查了用待定系数法求一次函数和反比例函数的解析式,函数图象上点的坐标特征,函数的图象和性质的应用,能求出两函数的解析式是解此题的关键,数形结合思想的应用.【第 22 题】【答案】解:(1)设第一批购进水果x千克,则第二批购进水果2.5x千克,依据题意得:5500 2.5x −2000x=1,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700,答:这两批水果共购进700千克;(2)设售价为每千克a元,则:700(1−0.1)a−2000−55002000+5500≥0.26,630a≥7500×1.26,∴a≥7500×1.26630,∴a≥15,答:售价至少为每千克15元.【解析】(1)设第一批购进水果x千克,则第二批购进水果2.5x千克,依据题意列式计算而得到结果,并检验是原方程的解,而求得.(2)设售价为每千克a元,求得关系式700(1−0.1)a−2000−55002000+5500≥0.26,又由630a≥7500×1.26,而解得.本题考查了分式方程的应用,由已知条件列方程,并根据自变量的变化范围来求值.【第 23 题】【答案】(1)证明:在正方形ABCD中,∠ADC=90°,∴∠CDF+∠ADF=90°,∵AF⊥DE,∴∠AFD=90°,∴∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD ,∴△AFG∽△DFC .(2)解:如图,连接CG .∵∠EAD=∠AFD=90°,∠EDA=∠ADF ,∴△EDA∽△ADF , ∴EA AF =DA DF ,即EA DA =AFDF ,∵△AFG∽△DFC ,∴AG DC =AF DF , ∴AG DC =EA DA ,在正方形ABCD 中,DA=DC ,∴AG=EA=1,DG=DA-AG=4-1=3,∴CG=√DG 2+DC 2=5,∵∠CDG=90°,∴CG 是⊙O 的直径,∴⊙O 的半径为52.【 解析 】(1)欲证明△AFG∽△DFC ,只要证明∠FAG=∠FDC ,∠AGF=∠FCD ;(2)首先证明CG 是直径,求出CG 即可解决问题;本题考查相似三角形的判定和性质、正方形的性质、圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.【 第 24 题 】【 答 案 】解:(1)∵二次函数y=ax 2+bx+c 的图象与x 轴的一个交点坐标(2+3√2,0),顶点A 的坐标为(2,92)设其顶点式解析式为y=a (x-2)2+92,把(2+3√2,0)代入可得:a=-14,∴y=-14(x-2)2+92,即y=-14x 2+x +72.∵直线y =−12x +3与抛物线的对称轴交于点D ,当x=2时,y=2∴点D 坐标为(2,2).∴这条抛物线的解析式为:y=-14x 2+x +72,点D 的坐标为:(2,2). (2)设点E 坐标为(0,m ) ∵直线y =−12x +3交x 轴于点B ,交y 轴于点C ,当x=0时,y=3;当y=0时,x=6, ∴点C 坐标为(0,3),点B 坐标为(6,0),∴CD=√5,AD=52,CE=3-m①当△ADC∽△DCE 时,【formula error 】即52√5=√53−m ,解得m=1; ②当△ADC∽△ECD 时,AD EC =DCCD 即523−m =1,解得m=12.∴E 点坐标为(0,1)或(0,12).(3)如图,作MH⊥y 轴于点H ,设ME 与BC 交于点G ,MH=m ,则∠MEH=∠OBC∴tan∠OBC=tan∠MEH=12,∴HE=2m ,EM=√5m在Rt△CEG 中,EG=12EM=√5m 2, ∴CG=√5m 4,CE=54m , ∴OE=OC -CE=3-54m ,∴OH=OE+EH=3-54m +2m=3+34m ,∴点M 坐标为(m ,3+34m ),把M (m ,3+34m )代入y=-14(x-2)2+92得:m 1=2,m 2=-1,∴M 点坐标为(2,92)或(-1,94).【 解析 】(1)将函数解析式写成顶点式,代入顶点及抛物线与x 轴交点坐标可以求得解析式;点D 横坐标即为顶点横坐标,代入直线解析式即可求得点D 纵坐标,从而可得结论;(2)设点E 坐标为(0,m ),用含m 的代数式表示出CE ,利用相似三角形的性质列比例式可解;(3)从点E 关于直线BC 的对称点M 向y 轴作垂直,由∠MEH 与∠OBC 相等,利用三角函数求得相关线段的长度,从而用一个未知数表示出点M 的坐标,再将其代入抛物线解析式可求得这个未知数,从而得解.本题是二次函数的综合题,涉及到待定系数法求解析式,相似三角形的性质,三角函数等知识点,综合性比较强,难度较大.【 第 25 题 】【 答 案 】解:(1)∵四边形ABCD 和四边形EFGH 是两个全等的矩形, ∴BC=EH=GF=8cm ,AB=EF=6cm ,∠1B=∠E=∠EFG=90°, ∴AC=FH=√62+82=10(cm ), 当CQ∥FH 时,△CEQ∽△HEF , ∴CE EH =EQ EF ,即8−t 8=t 6, 解得:t=247,即t=247时,CQ∥FH ;(2)∵QM⊥FH ,∴∠FNQ=90°=∠EFG ,∴∠QMF+∠MFN=∠MFN+∠EFH=90°,∴∠QMF=∠EFH ,∴△FMQ∽△EFH ,∴MFEF =FQEH ,即MF6=6−t88,解得:MF=34(6-t ),当0<t <6时,五边形GBCQM 的面积为y=梯形GBEF 的面积-△CEQ 的面积-△MFQ 的面积 =12(8+8+8-t )×6-12×(8-t )×t-12(6-t )×34(6-t )=18t 2-52t+1172, 即y 与t 之间的函数关系式为:y=18t 2-52t+1172;(3)存在,理由如下:∵AB∥GH ,∴△PCH∽△ACB ,∴PH AB =CH BC ,即PH 6=t 8,∴PH=34t , ∴PG=6-34t ,连接PM 、CM ,作MK⊥BC 于K 点,如图2所示:则四边形GHKM 为矩形,∴MK=GH=6,EK=MF=34(6-t ),∴CK=8-t-34(6-t ), 若M 在PC 的垂直平分线上,则PM=CM ,由勾股定理得:PM 2=PG 2+MG 2,CM 2=CK 2+MK 2,∴PG 2+MG 2=CK 2+MK 2,即(6-34t )2+[8-34(6-t )]2=62+[8-t-34(6-t )]2,整理得:1716t 2-2t=0,解得:t=3217,或t=0(不合题意舍去),∴t=3217; 即存在某一时刻,使点M 在线段PC 的中垂线上,t 的值为3217s . 【 解析 】(1)由矩形的性质得出BC=EH=GF=8cm ,AB=EF=6cm ,∠1B=∠E=∠EFG=90°,由勾股定理得出AC=FH=√62+82=10(cm ),由平行线得出△CEQ∽△HEF ,得出CE EH =EQ EF ,即可得出结果;(2)证明△FMQ∽△EFH ,得出MF EF =FQ EH ,求出MF=34(6-t ),当0<t <6时,五边形GBCQM 的面积为y=梯形GBEF 的面积-△CEQ 的面积-△MFQ 的面积,代入面积公式进行计算即可;(3)由平行线得出△PCH∽△ACB ,得出PH AB =CH BC ,求出PH=34t ,得出PG=6-34t ,连接PM 、CM ,作MK⊥BC 于K 点,则四边形GHKM 为矩形,得出MK=GH=6,EK=MF=34(6-t ),则CK=8-t-34(6-t ),由垂直平分线的性质得出PM=CM ,由勾股定理得出方程,解方程即可.本题是四边形综合题目,考查了矩形的性质、勾股定理、相似三角形的判定与性质、线段垂直平分线的性质、三角形和梯形面积公式等知识;本题综合性强,证明三角形相似和由勾股定理得出方程是解题的关键.。
2019届四川省成都市武侯区中考数学二诊试卷(有答案)

2019届四川省成都市武侯区中考二诊试卷数学一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)如果a与互为相反数,则a等于()A.B.C.2 D.﹣22.(3分)如图所示的几何体是由6 个完全相同的小立方块搭成,则这个几何体的左视图是()A.B.C.D.3.(3分)从成都经川南到贵阳的成贵客运专线正在建设中,这项工程总投资约780亿元,预计2019 年12月建成通车,届时成都到贵阳只要 3 小时,这段铁路被称为“世界第一条山区高速铁路”.将数据780亿用科学记数法表示为()A.78×109 B.7.8×108C.7.8×1010D.7.8×10114.(3分)下列计算正确的是()A.(﹣2a2)3=﹣6a6 B.a3+a3=2a3C.a6÷a3=a2D.a3•a3=a95.(3分)在平面直角坐标系中,若直线y=2x+k﹣1经过第一、二、三象限,则k的取值范围是()A.k>1B.k>2C.k<1D.k<2<6.(3分)如图,直线a∥b,直线c与直线a、b分别相交于点A、B,过A作AC⊥b,垂足为C,若∠1=48°,则∠2的度数为()A.58°B.52°C.48°D.42°7.(3分)武侯区部分学校已经开展“分享学习”数学课堂教学,在刚刚结束的3 月份的月考中,某班7 个共学小组的数学平均成绩分别为130 分、128 分、126 分、130 分、127 分、129 分、131 分,则这组数据的众数和中位数分别是()A.131分,130分B.130分,126分C.128分,128分D.130分,129分8.(3分)关于x的一元二次方程2x2﹣3x=﹣5的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定9.(3分)如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC 的长为()A.B.πC.2πD.3π10.(3分)如图,抛物线y=ax2+bx+c(a≠0)与x 轴的一个交点坐标为(3,0),对称轴为直线x=﹣1,则下列说法正确的是()A.a<0 B.b2﹣4ac<0C.a+b+c=0 D.y随x的增大而增大二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)49的算术平方根是.12.(4分)已知2a+b=2,2a﹣b=﹣4,则4a2﹣b2=.13.(4分)如图,在△ABC中,D为AB的中点,E为AC上一点,连接DE,若AB=12,AE=8,∠ABC=∠AED,则AC=.14.(4分)如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F 在BC边上,若CD=6,则AD=.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(2)求不等式组的整数解.16.(6分)先化简,再求值:,其中.17.(8分)为了减轻二环高架上汽车的噪音污染,成都市政府计划在高架上的一些路段的护栏上方增加隔音屏.如图,工程人员在高架上的车道M 处测得某居民楼顶的仰角∠ABC的度数是20°,仪器BM 的高是0.8m,点M 到护栏的距离MD 的长为11m,求需要安装的隔音屏的顶部到桥面的距离ED 的长(结果保留到0.1m,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)18.(8分)为了弘扬中国传统文化,“中国诗词大会”第三季已在中央电视台播出.某校为了解九年级学生对“中国诗词大会”的知晓情况,对九年级部分学生进行随机抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请根据统计图的信息,解答下列问题:(1)求在本次抽样调查中,“基本了解”中国诗词大会的学生人数;(2)根据调查结果,发现“很了解”的学生中有三名同学的诗词功底非常深厚,其中有两名女生和一名男生.现准备从这三名同学中随机选取两人代表学校参加“武侯区诗词大会”比赛,请用画树状图或列表的方法,求恰好选取一名男生和一名女生的概率.19.(10分)如图,一次函数y=kx+b的图象与反比例函数的图象相交于A(n,3),B(3,﹣2)两点,过A作AC⊥x轴于点C,连接OA.(1)分别求出一次函数与反比例函数的表达式;(2)若直线AB上有一点M,连接MC,且满足S△AMC =2S△AOC,求点M的坐标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF并延长交EC的延长线于点G.ⅰ)试探究线段CF与CD之间满足的数量关系;ⅱ)若CD=4,tan∠BCE=,求线段FG的长.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)若a为实数,则代数式a2+4a﹣6的最小值为.22.(4分)对于实数m,n 定义运算“※”:m※n=mn(m+n),例如:4※2=4×2(4+2)=48,若x1、x2是关于x 的一元二次方程x2﹣5x+3=0的两个实数根,则x1※x2=.23.(4分)如图,有A、B、C三类长方形(或正方形)卡片(a>b),其中甲同学持有A、B 类卡片各一张,乙同学持有B、C类卡片各一张,丙同学持有A、C类卡片各一张,现随机选取两位同学手中的卡片共四张进行拼图,则能拼成一个正方形的概率是.24.(4分)如图,在平面直角坐标系中,平行四边形ABOC的边OB在x轴上,过点C(3,4)的双曲线与AB交于点D,且AC=2AD,则点D的坐标为.25.(4分)如图,有一块矩形木板ABCD,AB=13dm,BC=8dm,工人师傅在该木板上锯下一块宽为xdm的矩形木板MBCN,并将其拼接在剩下的矩形木板AMND的正下方,其中M′、B′、C′、N′分别与M、B、C、N对应.现在这个新的组合木板上画圆,要使这个圆最大,则x的取值范围是,且最大圆的面积是dm2.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m,宽为60m,按照规划将预留总面积为4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?27.(10分)如图,已知△ABC是等边三角形,点D、E分别在AC、AB上,且CD=AE,BD与CE相交于点P.(1)求证:△ACE≌△CBD;(2)如图2,将△CPD沿直线CP翻折得到对应的△CPM,过C作CG∥AB,交射线PM于点G,PG与BC相交于点F,连接BG.ⅰ)试判断四边形ABGC的形状,并说明理由;ⅱ)若四边形ABGC的面积为,PF=1,求CE的长.28.(12分)在平面直角坐标系中,抛物线y=﹣6x+4的顶点A在直线y=kx﹣2上.(1)求直线的函数表达式;(2)现将抛物线沿该直线方向进行平移,平移后的抛物线的顶点为A′,与直线的另一交点为B′,与x轴的右交点为C(点C不与点A′重合),连接B′C、A′C.ⅰ)如图,在平移过程中,当点B′在第四象限且△A′B′C的面积为60时,求平移的距离AA′的长;ⅱ)在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,求出所有满足条件的点A′的坐标.参考答案与试题解析一、选择题1.B.2.B.3.C.4.B.5.A6.D7.D8.C9.A10.C.二、填空题11.712.﹣813.9.14.3.三、解答题15.解:(1)原式=3﹣1+2×+2﹣=2++2﹣=4;(2)解不等式2(x﹣3)≤﹣2,得:x≤2,解不等式>x﹣1,得:x>﹣1,则不等式组的解集为﹣1<x≤2,所以不等式组的整数解为0、1、2.16.解:====,当a=+1时,原式=.17.解:由题意:CD=BM=0.8m,BC=MD=11m,在Rt△ECB中,EC=BC•tan20°=11×0.36≈3.96(m),∴ED=CD+EC=3.96+0.8≈4.8(m),答:需要安装的隔音屏的顶部到桥面的距离ED 的长4.8m.18.解:(1)∵调查的总人数为12÷20%=60(人),∴“基本了解”中国诗词大会的学生人数m=60﹣24﹣12﹣6=18(人);(2)列表:共有6种等可能的结果,其中恰好选取一名男生和一名女生的情况有4种,∴P(恰为一名男生和一名女生)==.19.解:(1)将点B(3,﹣2)代入,得:m=3×(﹣2)=6,则反比例函数解析式为y=﹣.∵反比例函数的图象过A(n,3),∴3=﹣,∴n=﹣2,∴A(﹣2,3),将点A(﹣2,3)、B(3,﹣2)代入y=kx+b,得:,解得:,则一次函数解析式为y=﹣x+1;(2)设点M的坐标为(m,﹣m+1),过M作ME⊥AC于E.∵y=﹣,∴S△AOC=×|﹣6|=3,∴S△AMC =2S△AOC=6,∴AC•ME=×3×|m+2|=6,解得m=2或﹣6.当m=2时,﹣m+1=﹣1;当m=﹣6时,﹣m+1=7,∴点M的坐标为(2,﹣1)或(﹣6,7).20.(本小题满分10分)(1)证明:如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,(1分)∵CD⊥AB,∴∠OBC+∠BCD=90°,(2分)∵∠BCE=∠BCD,∴∠OCB+∠BCE=90°,即OC⊥CE,∴CE是⊙O的切线;(3分)(2)解:i)线段CF与CD之间满足的数量关系是:CF=2CD,(4分)理由如下:如图2,过O作OH⊥CF于点H,∴CF=2CH,∵∠FCE=2∠ABC=2∠OCB,且∠BCD=∠BCE,∴∠OCH=∠OCD,∵OC为公共边,∴△COH≌△COD(AAS),∴CH=CD,∴CF=2CD;(6分)ii)∵∠BCD=∠BCE,tan∠BCE=,∴tan∠BCD=.∵CD=4,∴BD=CD•tan∠1=2,∴BC==2,由i)得:CF=2CD=8,设OC=OB=x,则OD=x﹣2,在Rt△ODC中,OC2=OD2+CD2,∴x2=(x﹣2)2+42,解得:x=5,即OB=5,∵OC⊥GE,∴∠OCF+∠FCG=90°,∵∠OCD+∠COD=90°,∠FCO=∠OCD,∴∠GCF=∠COB,∵四边形ABCF为⊙O的内接四边形,∴∠GFC=∠ABC,∴△GFC∽△CBO,∴,∴=,∴FG=.(10分)一、填空题21.解:原式=a2+4a+4﹣10=(a+2)2﹣10,因为(a+2)2≥0,所以(a+2)2﹣10≥﹣10,则代数式a2+4a﹣6的最小值是﹣10.故答案是:﹣10.22.解:由题意可知:△>0,∴x1+x2=5,x1x2=3∴原式=x1x2(x1+x2)=3×5=15故答案为:1523.解:由题可得,随机选取两位同学,可能的结果如下:甲乙、甲丙、乙丙,∵a2+2ab+b2=(a+b)2,∴选择乙丙手中的卡片共四张进行拼图,则能拼成一个边长为(a+b)的正方形,∴能拼成一个正方形的概率为,故答案为:.24.解:作CF⊥OB,垂足为F,作DE⊥OB,垂足为E,连接CD并延长交x轴于M设反比例函数的解析式是y=,把C点的坐标(3,4)代入得:k=12即y=,∵ABOC是平行四边形∴AC∥OB,OC∥AB,AC=OB,AB=OC∵C(3,4)∴OF=3,CF=4∴OC=,即AB=5设AC=2a,则AD=a,OB=2a (a>0)∴BD=5﹣a,∵OC∥AB∴∠COF=∠DBE且∠CFO=∠DEB∴△CFO∽△BDE∴∴DE=,BE=∴OE=∴D(,)∵点D是y=图象上一点∴×=12∴a=∴D(7,)故答案为(7,).25.解:如图,设⊙O与AB相切于点H,交CD与E,连接OH,延长HO交CD于F,设⊙O 的半径为r.在Rt△OEF中,当点E与N′重合时,⊙O的面积最大,此时EF=4,,则有:r2=(8﹣r)2+42,∴r=5.∴⊙O的最大面积为25π,由题意:,∴2≤x≤3,故答案为2≤x≤3,25π.二、解答题26.解:(1)设各通道的宽度为x米,根据题意得:(90﹣3x)(60﹣3x)=4536,解得:x1=2,x2=48(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务,根据题意得:﹣=2,解得:y=400,经检验,y=400是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.27.(1)证明:∵△ABC是等边三角形,∴∠A=∠ACB=60°,AC=BC,(2分)∵AE=CD,∴△ACE≌△CBD;(3分)(2)解:i)四边形ABGC为菱形,理由是:∵△ACE≌△CBD,∴∠ACE=∠CBD,∴∠DPC=∠PCB+∠CBD=∠PCB+∠ACE=∠ACB=60°,由翻折得:CD=CM,∠CDP=∠CMP,∠MPC=∠DPC=60°,∴∠DCF+∠DPF=60°+2×60°=180°,∴∠CDP+∠CFP=360°﹣180°=180°,∴∠CMP+∠CMF=180°∴∠CMF=∠CFP,∴CF=CM=CD,(4分)∵∠CFM+∠CFG=180°,∠CDP+∠CFM=180°,∴∠CDP=∠CFG,∵CG∥AB,∴∠GCF=∠CBA=60°=∠BCD,∴△CDB≌△CFG,(5分)∴CG=CB,∴CG=AB,∵CG∥AB,CG=AB=AC,∴四边形ABGC是菱形;(6分)ii)过C作CH⊥AB于H,设菱形ABGC的边长为a,∵△ABC是等边三角形,∴AH=BH=a,∴CH=AH•sin60°=a=,∵菱形ABGC的面积为6,∴AB•CH=6,即a a=6,∴a=2,(7分)∴BG=2,∵四边形ABGC是菱形,∴AC∥BG,∴∠GBC=∠ACB=60°,∵∠GPB=180°﹣∠CPD﹣∠CPM=60°,∴∠GBC=∠GPB,∵∠BGF=∠BGF,∴△BGF∽△PGB,(8分)∴,即BG2=FG•PG,∵PF=1,BG=2,∴,∴FG=3或﹣4(舍),(9分)∵△CDB≌△CFG,△ACE≌△CBD,∴FG=BD,BD=CE,∴CE=FG=3.(10分)28.解:(1)∵y=﹣6x+4=(x﹣6)2﹣14,∴点A的坐标为(6,﹣14).∵点A在直线y=kx﹣2上,∴﹣14=6k﹣2,解得:k=﹣2,∴直线的函数表达式为y=﹣2x﹣2.(2)设点A′的坐标为(m,﹣2m﹣2),则平移后抛物线的函数表达式为y=(x﹣m)2﹣2m ﹣2.当y=0时,有﹣2x﹣2=0,解得:x=﹣1,∵平移后的抛物线与x轴的右交点为C(点C不与点A′重合),∴m>﹣1.(i)联立直线与抛物线的表达式成方程组,,解得:,,∴点B′的坐标为(m﹣4,﹣2m+6).当y=0时,有(x﹣m)2﹣2m﹣2=0,解得:x1=m﹣2,x2=m+2,∴点C的坐标为(m+2,0).过点C作CD∥y轴,交直线A′B′于点D,如图所示.当x=m+2时,y=﹣2x﹣2=﹣2m﹣4﹣2,∴点D的坐标为(m+2,﹣2m﹣4﹣2),∴CD=2m+2+4.∴S△A′B′C =S△B′CD﹣S△A′CD=CD•[m+2﹣(m﹣4)]﹣CD•(m+2﹣m)=2CD=2(2m+2+4)=60.设t=,则有t2+2t﹣15=0,解得:t1=﹣5(舍去),t2=3,∴m=8,∴点A′的坐标为(8,﹣18),∴AA′==2.(ii)∵A′(m,﹣2m﹣2),B′(m﹣4,﹣2m+6),C(m+2,0),∴A′B′2=(m﹣4﹣m)2+[﹣2m+6﹣(﹣2m﹣2)]2=80,A′C2=(m+2﹣m)2+[0﹣(﹣2m ﹣2)]2=4m2+12m+8,B′C2=[m+2﹣(m﹣4)]2+[0﹣(﹣2m+6)]2=4m2﹣20m+56+16.当∠A′B′C=90°时,有A′C2=A′B′2+B′C2,即4m2+12m+8=80+4m2﹣20m+56+16,整理得:32m﹣128﹣16=0.设a=,则有2a2﹣a﹣10=0,解得:a1=﹣2(舍去),a2=,∴m=,∴点A′的坐标为(,﹣);当∠B′A′C=90°时,有B′C2=A′B′2+A′C2,即4m2﹣20m+56+16=80+4m2+12m+8,整理得:32m+32﹣16=0.设a=,则有2a2﹣a=0,解得:a3=0(舍去),a4=,∴m=﹣,∴点A′的坐标为(﹣,﹣).综上所述:在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,点A′的坐标为(,﹣)或(﹣,﹣).。
2020年四川省成都市中考数学二诊试卷(含答案)

四川省成都市中考数学二诊试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)如果a与互为相反数,则a等于()A.B.C.2 D.﹣22.(3分)如图所示的几何体是由6 个完全相同的小立方块搭成,则这个几何体的左视图是()A.B.C.D.3.(3分)从成都经川南到贵阳的成贵客运专线正在建设中,这项工程总投资约780亿元,预计2019 年12月建成通车,届时成都到贵阳只要3 小时,这段铁路被称为“世界第一条山区高速铁路”.将数据780亿用科学记数法表示为()A.78×109 B.7.8×108C.7.8×1010D.7.8×10114.(3分)下列计算正确的是()A.(﹣2a2)3=﹣6a6B.a3+a3=2a3C.a6÷a3=a2D.a3•a3=a95.(3分)在平面直角坐标系中,若直线y=2x+k﹣1经过第一、二、三象限,则k的取值范围是()A.k>1B.k>2C.k<1D.k<2<6.(3分)如图,直线a∥b,直线c与直线a、b分别相交于点A、B,过A作AC⊥b,垂足为C,若∠1=48°,则∠2的度数为()[A.58°B.52°C.48°D.42°7.(3分)武侯区部分学校已经开展“分享学习”数学课堂教学,在刚刚结束的3 月份的月考中,某班7 个共学小组的数学平均成绩分别为130 分、128 分、126 分、130 分、127 分、129 分、131 分,则这组数据的众数和中位数分别是()A.131分,130分B.130分,126分C.128分,128分D.130分,129分8.(3分)关于x的一元二次方程2x2﹣3x=﹣5的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.不能确定9.(3分)如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB 的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为()A.B.π C.2πD.3π10.(3分)如图,抛物线y=ax2+bx+c(a≠0)与x 轴的一个交点坐标为(3,0),对称轴为直线x=﹣1,则下列说法正确的是()A.a<0 B.b2﹣4ac<0C.a+b+c=0 D.y随x的增大而增大二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)49的算术平方根是.12.(4分)已知2a+b=2,2a﹣b=﹣4,则4a2﹣b2=.13.(4分)如图,在△ABC中,D为AB的中点,E为AC上一点,连接DE,若AB=12,AE=8,∠ABC=∠AED,则AC=.14.(4分)如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=6,则AD=.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(2)求不等式组的整数解.16.(6分)先化简,再求值:,其中.17.(8分)为了减轻二环高架上汽车的噪音污染,成都市政府计划在高架上的一些路段的护栏上方增加隔音屏.如图,工程人员在高架上的车道M 处测得某居民楼顶的仰角∠ABC的度数是20°,仪器BM 的高是0.8m,点M 到护栏的距离MD 的长为11m,求需要安装的隔音屏的顶部到桥面的距离ED 的长(结果保留到0.1m,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)18.(8分)为了弘扬中国传统文化,“中国诗词大会”第三季已在中央电视台播出.某校为了解九年级学生对“中国诗词大会”的知晓情况,对九年级部分学生进行随机抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请根据统计图的信息,解答下列问题:(1)求在本次抽样调查中,“基本了解”中国诗词大会的学生人数;(2)根据调查结果,发现“很了解”的学生中有三名同学的诗词功底非常深厚,其中有两名女生和一名男生.现准备从这三名同学中随机选取两人代表学校参加“武侯区诗词大会”比赛,请用画树状图或列表的方法,求恰好选取一名男生和一名女生的概率.19.(10分)如图,一次函数y=kx+b的图象与反比例函数的图象相交于A (n,3),B(3,﹣2)两点,过A作AC⊥x轴于点C,连接OA.(1)分别求出一次函数与反比例函数的表达式;=2S△AOC,求点M的坐(2)若直线AB上有一点M,连接MC,且满足S△AMC标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD ⊥AB于点D,过C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF并延长交EC的延长线于点G.ⅰ)试探究线段CF与CD之间满足的数量关系;ⅱ)若CD=4,tan∠BCE=,求线段FG的长.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)若a为实数,则代数式a2+4a﹣6的最小值为.22.(4分)对于实数m,n 定义运算“※”:m※n=mn(m+n),例如:4※2=4×2(4+2)=48,若x1、x2是关于x 的一元二次方程x2﹣5x+3=0的两个实数根,则x1※x2=.23.(4分)如图,有A、B、C三类长方形(或正方形)卡片(a>b),其中甲同学持有A、B类卡片各一张,乙同学持有B、C类卡片各一张,丙同学持有A、C类卡片各一张,现随机选取两位同学手中的卡片共四张进行拼图,则能拼成一个正方形的概率是.24.(4分)如图,在平面直角坐标系中,平行四边形ABOC的边OB在x轴上,过点C(3,4)的双曲线与AB交于点D,且AC=2AD,则点D的坐标为.25.(4分)如图,有一块矩形木板ABCD,AB=13dm,BC=8dm,工人师傅在该木板上锯下一块宽为xdm的矩形木板MBCN,并将其拼接在剩下的矩形木板AMND的正下方,其中M′、B′、C′、N′分别与M、B、C、N对应.现在这个新的组合木板上画圆,要使这个圆最大,则x的取值范围是,且最大圆的面积是dm2.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m,宽为60m,按照规划将预留总面积为4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?27.(10分)如图,已知△ABC是等边三角形,点D、E分别在AC、AB上,且CD=AE,BD与CE相交于点P.(1)求证:△ACE≌△CBD;(2)如图2,将△CPD沿直线CP翻折得到对应的△CPM,过C作CG∥AB,交射线PM于点G,PG与BC相交于点F,连接BG.ⅰ)试判断四边形ABGC的形状,并说明理由;ⅱ)若四边形ABGC的面积为,PF=1,求CE的长.28.(12分)在平面直角坐标系中,抛物线y=﹣6x+4的顶点A在直线y=kx ﹣2上.(1)求直线的函数表达式;(2)现将抛物线沿该直线方向进行平移,平移后的抛物线的顶点为A′,与直线的另一交点为B′,与x轴的右交点为C(点C不与点A′重合),连接B′C、A′C.ⅰ)如图,在平移过程中,当点B′在第四象限且△A′B′C的面积为60时,求平移的距离AA′的长;ⅱ)在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,求出所有满足条件的点A′的坐标.参考答案与试题解析一、选择题1.B.2.B.3.C.4.B.5.A6.D7.D8.C9.A10.C.二、填空题11.712.﹣813.9.14.3.三、解答题15.解:(1)原式=3﹣1+2×+2﹣=2++2﹣=4;(2)解不等式2(x﹣3)≤﹣2,得:x≤2,解不等式>x﹣1,得:x>﹣1,则不等式组的解集为﹣1<x≤2,所以不等式组的整数解为0、1、2.16.解:====,当a=+1时,原式=.17.解:由题意:CD=BM=0.8m,BC=MD=11m,在Rt△ECB中,EC=BC•tan20°=11×0.36≈3.96(m),∴ED=CD+EC=3.96+0.8≈4.8(m),答:需要安装的隔音屏的顶部到桥面的距离ED 的长4.8m.18.解:(1)∵调查的总人数为12÷20%=60(人),∴“基本了解”中国诗词大会的学生人数m=60﹣24﹣12﹣6=18(人);(2)列表:共有6种等可能的结果,其中恰好选取一名男生和一名女生的情况有4种,∴P(恰为一名男生和一名女生)==.19.解:(1)将点B(3,﹣2)代入,得:m=3×(﹣2)=6,则反比例函数解析式为y=﹣.∵反比例函数的图象过A(n,3),∴3=﹣,∴n=﹣2,∴A(﹣2,3),将点A(﹣2,3)、B(3,﹣2)代入y=kx+b,得:,解得:,则一次函数解析式为y=﹣x+1;(2)设点M的坐标为(m,﹣m+1),过M作ME⊥AC于E.∵y=﹣,∴S△AOC=×|﹣6|=3,∴S△AMC =2S△AOC=6,∴AC•ME=×3×|m+2|=6,解得m=2或﹣6.当m=2时,﹣m+1=﹣1;当m=﹣6时,﹣m+1=7,∴点M的坐标为(2,﹣1)或(﹣6,7).20.(本小题满分10分)(1)证明:如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,(1分)∵CD⊥AB,∴∠OBC+∠BCD=90°,(2分)∵∠BCE=∠BCD,∴∠OCB+∠BCE=90°,即OC⊥CE,∴CE是⊙O的切线;(3分)(2)解:i)线段CF与CD之间满足的数量关系是:CF=2CD,(4分)理由如下:如图2,过O作OH⊥CF于点H,∴CF=2CH,∵∠FCE=2∠ABC=2∠OCB,且∠BCD=∠BCE,∴∠OCH=∠OCD,∵OC为公共边,∴△COH≌△COD(AAS),∴CH=CD,∴CF=2CD;(6分)ii)∵∠BCD=∠BCE,tan∠BCE=,∴tan∠BCD=.∵CD=4,∴BD=CD•tan∠1=2,∴BC==2,由i)得:CF=2CD=8,设OC=OB=x,则OD=x﹣2,在Rt△ODC中,OC2=OD2+CD2,∴x2=(x﹣2)2+42,解得:x=5,即OB=5,∵OC⊥GE,∴∠OCF+∠FCG=90°,∵∠OCD+∠COD=90°,∠FCO=∠OCD,∴∠GCF=∠COB,∵四边形ABCF为⊙O的内接四边形,∴∠GFC=∠ABC,∴△GFC∽△CBO,∴,∴=,∴FG=.(10分)一、填空题21.解:原式=a2+4a+4﹣10=(a+2)2﹣10,因为(a+2)2≥0,所以(a+2)2﹣10≥﹣10,则代数式a2+4a﹣6的最小值是﹣10.故答案是:﹣10.22.解:由题意可知:△>0,∴x1+x2=5,x1x2=3∴原式=x1x2(x1+x2)=3×5=15故答案为:1523.解:由题可得,随机选取两位同学,可能的结果如下:甲乙、甲丙、乙丙,∵a2+2ab+b2=(a+b)2,∴选择乙丙手中的卡片共四张进行拼图,则能拼成一个边长为(a+b)的正方形,∴能拼成一个正方形的概率为,故答案为:.24.解:作CF⊥OB,垂足为F,作DE⊥OB,垂足为E,连接CD并延长交x 轴于M设反比例函数的解析式是y=,把C点的坐标(3,4)代入得:k=12即y=,∵ABOC是平行四边形∴AC∥OB,OC∥AB,AC=OB,AB=OC ∵C(3,4)∴OF=3,CF=4∴OC=,即AB=5设AC=2a,则AD=a,OB=2a (a>0)∴BD=5﹣a,∵OC∥AB∴∠COF=∠DBE且∠CFO=∠DEB∴△CFO∽△BDE∴∴DE=,BE=∴OE=∴D(,)∵点D是y=图象上一点∴×=12∴a=∴D(7,)故答案为(7,).25.解:如图,设⊙O与AB相切于点H,交CD与E,连接OH,延长HO交CD于F,设⊙O的半径为r.在Rt△OEF中,当点E与N′重合时,⊙O的面积最大,此时EF=4,,则有:r2=(8﹣r)2+42,∴r=5.∴⊙O的最大面积为25π,由题意:,∴2≤x≤3,故答案为2≤x≤3,25π.二、解答题26.解:(1)设各通道的宽度为x米,根据题意得:(90﹣3x)(60﹣3x)=4536,解得:x1=2,x2=48(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务,根据题意得:﹣=2,解得:y=400,经检验,y=400是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.27.(1)证明:∵△ABC是等边三角形,∴∠A=∠ACB=60°,AC=BC,(2分)∵AE=CD,∴△ACE≌△CBD;(3分)(2)解:i)四边形ABGC为菱形,理由是:∵△ACE≌△CBD,∴∠ACE=∠CBD,∴∠DPC=∠PCB+∠CBD=∠PCB+∠ACE=∠ACB=60°,由翻折得:CD=CM,∠CDP=∠CMP,∠MPC=∠DPC=60°,∴∠DCF+∠DPF=60°+2×60°=180°,∴∠CDP+∠CFP=360°﹣180°=180°,∴∠CMP+∠CMF=180°∴∠CMF=∠CFP,∴CF=CM=CD,(4分)∵∠CFM+∠CFG=180°,∠CDP+∠CFM=180°,∴∠CDP=∠CFG,∵CG∥AB,∴∠GCF=∠CBA=60°=∠BCD,∴△CDB≌△CFG,(5分)∴CG=CB,∴CG=AB,∵CG∥AB,CG=AB=AC,∴四边形ABGC是菱形;(6分)ii)过C作CH⊥AB于H,设菱形ABGC的边长为a,∵△ABC是等边三角形,∴AH=BH=a,∴CH=AH•sin60°=a=,∵菱形ABGC的面积为6,∴AB•CH=6,即a a=6,∴a=2,(7分)∴BG=2,∵四边形ABGC是菱形,∴AC∥BG,∴∠GBC=∠ACB=60°,∵∠GPB=180°﹣∠CPD﹣∠CPM=60°,∴∠GBC=∠GPB,∵∠BGF=∠BGF,∴△BGF∽△PGB,(8分)∴,即BG2=FG•PG,∵PF=1,BG=2,∴,∴FG=3或﹣4(舍),(9分)∵△CDB≌△CFG,△ACE≌△CBD,∴FG=BD,BD=CE,∴CE=FG=3.(10分)28.解:(1)∵y=﹣6x+4=(x﹣6)2﹣14,∴点A的坐标为(6,﹣14).∵点A在直线y=kx﹣2上,∴﹣14=6k﹣2,解得:k=﹣2,∴直线的函数表达式为y=﹣2x﹣2.(2)设点A′的坐标为(m,﹣2m﹣2),则平移后抛物线的函数表达式为y=(x ﹣m)2﹣2m﹣2.当y=0时,有﹣2x﹣2=0,解得:x=﹣1,∵平移后的抛物线与x轴的右交点为C(点C不与点A′重合),∴m>﹣1.(i)联立直线与抛物线的表达式成方程组,,解得:,,∴点B′的坐标为(m﹣4,﹣2m+6).当y=0时,有(x﹣m)2﹣2m﹣2=0,解得:x1=m﹣2,x2=m+2,∴点C的坐标为(m+2,0).过点C作CD∥y轴,交直线A′B′于点D,如图所示.当x=m+2时,y=﹣2x﹣2=﹣2m﹣4﹣2,∴点D的坐标为(m+2,﹣2m﹣4﹣2),∴CD=2m+2+4.∴S△A′B′C =S△B′CD﹣S△A′CD=CD•[m+2﹣(m﹣4)]﹣CD•(m+2﹣m)=2CD=2(2m+2+4)=60.设t=,则有t2+2t﹣15=0,解得:t1=﹣5(舍去),t2=3,∴m=8,∴点A′的坐标为(8,﹣18),∴AA′==2.(ii)∵A′(m,﹣2m﹣2),B′(m﹣4,﹣2m+6),C(m+2,0),∴A′B′2=(m﹣4﹣m)2+[﹣2m+6﹣(﹣2m﹣2)]2=80,A′C2=(m+2﹣m)2+[0﹣(﹣2m﹣2)]2=4m2+12m+8,B′C2=[m+2﹣(m﹣4)]2+[0﹣(﹣2m+6)]2=4m2﹣20m+56+16.当∠A′B′C=90°时,有A′C2=A′B′2+B′C2,即4m2+12m+8=80+4m2﹣20m+56+16,整理得:32m﹣128﹣16=0.设a=,则有2a2﹣a﹣10=0,解得:a1=﹣2(舍去),a2=,∴m=,∴点A′的坐标为(,﹣);当∠B′A′C=90°时,有B′C2=A′B′2+A′C2,即4m2﹣20m+56+16=80+4m2+12m+8,整理得:32m+32﹣16=0.设a=,则有2a2﹣a=0,解得:a3=0(舍去),a4=,∴m=﹣,∴点A′的坐标为(﹣,﹣).综上所述:在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,点A′的坐标为(,﹣)或(﹣,﹣).。
成都市武侯区中考数学二模试卷

2011年四川省成都市武侯区中考数学二模试卷收藏试卷下载试卷试卷分析隐藏答案一、选择题(每小题3分,共30分)1、下列运算中,正确的是()A、5a-3a=2B、x8÷x4=x2C、(-2)-2=D、(x-2y)2=x2-4y2显示解析2、(课改)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()、3 、4 、5 、6★★★★★显示解析3、为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),请根据统计图计算成绩在15~25次的频率是()A、0.4B、0.5C、0.6D、0.7 显示解析4、如图,下列条件能判定四边形ABCD为菱形的有()个①AB=BC=CD=DA;②AC、BD互相垂直平分;③平行四边形ABCD且AC⊥BD;④平行四边形ABCD且AC=BD.A、1B、2C、3D、4显示解析5、如图,小明在打网球时,使球恰好能打过网,而且落点恰好在离网6米的位置上,则球拍击球的高度h为()A、B、1 C、D、★☆☆☆☆显示解析6、第六次火车大提速后,从北京到上海的火车运行速度提高了25%,运行时间缩短了2h.已知北京到上海的铁路全长为1462km.设火车原来的速度为xkm/h,则下面所列方程正确的是()A、B、C、D、显示解析7、如图,从一个半径为2的圆形纸片中剪下一个圆心角为60°的扇形ABC,将剪下的扇形围成一个圆锥,则圆锥底面圆半径为()A、B、C、D、显示解析8、抛物线y=-x2+2x-2经过平移得到y=-x2,平移方法是()A、向右平移1个单位,再向下平移1个单位B、向右平移1个单位,再向上平移1个单位C、向左平移1个单位,再向下平移1个单位D、向左平移1个单位,再向上平移1个单位显示解析9、如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则tan∠EAB的值是()A、B、C、D、显示解析10、已知二次函数y=-x2+bx+c的图象过点A(1,2),B(3,2),C(0,-1),D(2,3).点P(x1,y1),Q(x2,y2)也在该函数的图象上,当0<x1<1,2<x2<3时,y1与y2的大小关系正确的是()A、y1≥y2B、y1>y2C、y1<y2D、y1≤y2显示解析二、填空题(每小题3分,共15分)11、分解因式:2a4-32=2(a-2)(a+2)(a2+4).显示解析12、如图所示,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A′的坐标为(1,3).显示解析13、有一组数据3、5、7、a、4,如果他们的平均数是5,那么这组数据的方差是2.显示解析14、观察下列一组数:,,,,…,它们是按一定规律排列的.那么这一组数的第k个数是.显示解析15、如图,四边形OABC为菱形,点B、C在以点O为圆心的上,若OA=3,∠1=∠2,则扇形OEF的面积为3π.显示解析三、(每小题18分,共18分)16、解答下列各题:(1);(2)解不等式组并把解集在数轴上表示出来.(3)已知,,试求的值?显示解析四、解答题(17题8分,18题9分,19、20题各10分,共37分)17、如图,用树状图或表格求右面两个转盘配成紫色的概率.(提示:红色和蓝色在一起就配成紫色)☆☆☆☆☆显示解析18、如图,把一张长方形卡片ABCD放在宽度为10mm的横格线中,恰好四个顶点都在横格线上,已知α=32°,求长方形卡片的周长.(参考数据sin32°≈0.5cos32°≈0.8tan32°≈0.6)显示解析19、已知反比例函数y= (m为常数)的图象经过点A(-1,6).(1)求m的值;(2)如图,过点A作直线AC与函数y= 的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.☆☆☆☆☆显示解析20、如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于点F.(1)求证:CF﹦BF;(2)若CD﹦6,AC﹦8,则⊙O的半径为5,CE的长是.VIP显示解析五、填空题(共5小题,每小题4分,满分20分)21、若,则=.显示解析22、直线y=kx(k<0)与双曲线交于A(x1,y2),B(x2,y2)两点,则3x1y2-8x2y1的值是.-10.显示解析23、已知一列数a1,a2,…,a n(n为正整数)满足,请通过计算推算a n=(用含n的代数式表示),a2011=.显示解析24、在△ABC中,∠BAC=120°,∠ABC=15°,∠A、∠B、∠C的对边分别为a、b、c,则a:b:c=2::.显示解析25、如图,在⊙O的内接△ABC中,AB+AC=12,AD⊥AC于D,且AD=3,当AB=6时,⊙O的面积最大,最大面积是36π.显示解析六、解答题(共3小题,满分30分)26、某生产“科学记算器”的公司,有100名职工,该公司生产的计算器由百货公司代理销售,经公司多方考察,发现公司的生产能力受到限制.决定引进一条新的计算器生产线生产计算器,并从这100名职工中选派一部分人到新生产线工作.分工后,继续在原生产线从事计算器生产的职工人均年产值可增加20%,而分派到新生产线的职工人均年产值为分工前人均年产值的4倍,如果要保证公司分工后,原生产线生产计算器的年总产值不少于分工前公司生产计算器的年总产值,而新生产线生产计算器的年总产值不少于分工前公司生产计算器的年总产值的一半.(1)试确定分派到新生产线的人数;(2)当多少人参加新生产线生产时,公司年总产值最大?相比分工前,公司年总产值的增长率是多少?显示解析27、如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O 分别与AC,BC相切于点D,E.(1)当AC=2时,求⊙O的半径;(2)设AC=x,⊙O的半径为y,求y与x的函数关系式.VIP显示解析28、如图,直线y=- x+4与x轴交于点A,与y轴交于点C,已知二次函数的图象经过点A、C和点B(-1,0).(1)求该二次函数的关系式;(2)设该二次函数的图象的顶点为M,求四边形AOCM的面积;(3)有两动点D、E同时从点O出发,其中点D以每秒个单位长度的速度沿折线OAC按O⇒A⇒C的路线运动,点E以每秒4个单位长度的速度沿折线OCA按O⇒C⇒A的路线运动,当D、E两点相遇时,它们都停止运动.设D、E同时从点O出发t秒时,△ODE 的面积为S.①请问D、E两点在运动过程中,是否存在DE∥OC,若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,那么S0=.。
四川省成都市武侯区2019年中考数学二诊试卷

四川省成都市武侯区2019年中考数学二诊试卷一、选择题:(每小题4分,共40分)1.下列每组多边形均有若干块中,其中不能铺满地面(镶嵌)的一组是()A.正三角形和正方形B.正方形和正六边形C.正三角形和正六边形D.正五边形和正十边形2.已知某几何体的三视图(单位:cm),则这个圆锥的侧面积等于()A.12πcm2 B.15πcm2 C.24πcm2 D.30πcm23.已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.154.下列说法中正确的是()A.3,4,3,5,5,2这组数据的众数是3B.为了解参加运动会的运动员的年龄情况,从中抽了100名运动员的年龄,在这里100名运动员是抽取的一个样本C.如果数据x1,x2…x n的平均数是,那么(x1﹣)+(x2﹣)+…+(x n ﹣)=0D.一组表据的方差是S2,将这组数据中的每个数据都乘以3,所得的一组新数据的方差是3S25.在Rt△ABC中,各边的长度都扩大两倍,那么锐角A的各三角函数值()A.都扩大两倍B.都缩小两倍C.不变D.都扩大四倍6.如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M,N分别为AB,BC边上的中点,则MP+NP的最小值是()A. 2 B. 1 C.D.7.下列运算中正确的是()A.(a﹣b)2=a2﹣b2 B.(﹣a+1)(﹣a﹣1)=a2﹣1C.(﹣)﹣2=1 D.﹣(﹣2ab2)2=4a2b48.有一新娘去商店买新婚衣服,购买了不同款式的上衣2件,不同颜色的裙子3条,利用“树状图”表示搭配衣服所有可能出项的结果数为()A. 2 B. 3 C. 5 D. 69.如图,P是Rt△ABC的斜边BC上异于B、C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()A.1条B.2条C.3条D.4条10.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大二、填空题:(每小题4分,共20分;将答案直接写在该题目中的横线上)11.已知是方程组的解,则a+2b的值为.12.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80米,如果要通过最大轮船的水面高度为20米,则设计拱桥的半径应是m.13.从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概率是.14.据有关媒体披露,2014年全国高校毕业生人数达727万人,创历史新高,将727万用科学记数法表示应为.15.如图,梯形ABCD中,AD∥BC,DC⊥BC,AB=8,BC=5,若以AB为直径的⊙O与DC相切于E,则DC=.三、解答题:(本大题共5个小题,每小题8分,共40分)16.计算:|﹣|+sin45°+tan60°﹣(﹣)﹣1﹣+(π﹣3)0.17.化简求值:已知:a是4的小数部分,求代数式+的值.18.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米,高速公路通车后,有一长途汽车的行驶速度提高了45千米/小时,从甲地到乙地的行驶时间减少了一半,求该长途汽车在原来国道上行驶的速度.19.去年某省将地处A、B两地的两所大学合并成一所综合大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路.如图中线段AB,经测量,在A地北偏东60°方向,B地西偏北45°方向的C 处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?20.如图所示,正方形ABCD的边长为1,AC是对角线,AE平分∠BAC,EF⊥AC于点F.(1)求证:BE=CF;(2)求BE的长.四、灵活应用:(本大题共5个小题,每小题10分,共50分)21.(10分)(2015•蓬溪县校级模拟)某学区为了解教师对网上教研活动的满意度,利用“网上短信平台”,对本区在20~60岁之间的300名教师,进行短信抽样调查.被抽查人中,各年龄段人数所占比例如图甲所示,各年龄段对活动感到满意的人数如图乙(部分)所示,根据图形信息回答下列问题:(1)被抽查的教师中,人数最多的年龄段是岁;(2)被抽查的300人中有83%的人对网上教研活动感到满意,请你求出26~30岁年龄段的满意人数,并补全图乙;(3)比较26~30岁和41~50岁这两个年龄段对网上教研活动的满意度的高低(四舍五入到1%).(注:某年龄段满意度=该年龄段满意人数÷该年龄段被抽查人数×100%).22.(10分)如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C的圆与y轴的另一个交点为D.已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4).(1)求此抛物线的表达式与点D的坐标;(2)若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值.23.(10分)数学活动课上,小颖同学用两块完全一样的透明等腰直角三角板ABC、DEF进行探究活动.操作:使点D落在线段AB的中点处并使DF过点C(如图1),然后将其绕点D 顺时针旋转,直至点E落在AC的延长线上时结束操作,在此过程中,线段DE 与AC或其延长线交于点K,线段BC与DF相交于点G(如图2,3).探究1:在图2中,求证:△ADK∽△BGD.探究2:在图2中,求证:KD平分∠AKG.探究3:①在图3中,KD仍平分∠AKG吗?若平分,请加以证明;若不平分,请说明理由.②在以上操作过程中,若设AC=BC=8,KG=x,△DKG的面积为y,请求出y与x的函数关系式,并直接写出x的取值范围.24.(10分)如图,AB=AC=8,∠BAC=90°,直线l与以AB为直径的⊙O相切于点B,点D是直线l上任意一动点,连接DA交⊙O于点E.(1)当点D在AB上方且BD=6时,求AE的长.(2)当点D在什么位置时,CE恰好与⊙O相切?请说明理由.25.(10分)在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.四川省成都市武侯区2019年中考数学二诊试卷参考答案与试题解析一、选择题:(每小题4分,共40分)1.下列每组多边形均有若干块中,其中不能铺满地面(镶嵌)的一组是()A.正三角形和正方形B.正方形和正六边形C.正三角形和正六边形D.正五边形和正十边形考点:平面镶嵌(密铺).分析:正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.解答:解:A、正三角形的每个内角是60°,正方形的每个内角是90°,3×60°+2×90°=360°,故能铺满,不合题意;B、正方形和正六边形内角分别为90°、120°,显然不能构成360°的周角,故不能铺满,符合题意;C、正三角形和正六边形内角分别为60°、120°,2×60°+2×120°=360°,故能铺满,不合题意;D、正五边形和正十边形内角分别为108°、144°,2×108°+1×144°=360°,故能铺满,不合题意.故选:B.点评:此题主要考查了平面镶嵌,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.2.已知某几何体的三视图(单位:cm),则这个圆锥的侧面积等于()A.12πcm2 B.15πcm2 C.24πcm2 D.30πcm2考点:圆锥的计算.专题:计算题.分析:俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.解答:解:∵底面半径为3,高为4,∴圆锥母线长为5,∴侧面积=2πrR÷2=15πcm2.故选:B.点评:由该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.3.已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.15考点:二次根式的化简求值.分析:由a﹣b=2+,b﹣c=2﹣可得,a﹣c=4然后整体代入.解答:解:∵a﹣b=2+,b﹣c=2﹣,∴a﹣c=4,∴原式====15.故选D.点评:此题的关键是把原式转化为的形式,再整体代入.4.下列说法中正确的是()A.3,4,3,5,5,2这组数据的众数是3B.为了解参加运动会的运动员的年龄情况,从中抽了100名运动员的年龄,在这里100名运动员是抽取的一个样本C.如果数据x1,x2…x n的平均数是,那么(x1﹣)+(x2﹣)+…+(x n ﹣)=0D.一组表据的方差是S2,将这组数据中的每个数据都乘以3,所得的一组新数据的方差是3S2考点:方差;总体、个体、样本、样本容量;算术平均数;众数.分析:利用方差、算术平均数、众数的定义分别判断后即可确定正确的选项.解答:解:A、3,4,3,5,5,2这组数据的众数是3和5,故错误;B、为了解参加运动会的运动员的年龄情况,从中抽了100名运动员的年龄,在这里100名运动员的年龄是抽取的一个样本,故错误;C、如果数据x1,x2…x n的平均数是,那么(x1﹣)+(x2﹣)+…+(x n﹣)=0,正确;D、一组表据的方差是S2,将这组数据中的每个数据都乘以3,所得的一组新数据的方差是9S2,故错误,故选C.点评:本题考查了方差、算术平均数、众数的定义,属于统计的基础知识,难度较小.5.在Rt△ABC中,各边的长度都扩大两倍,那么锐角A的各三角函数值()A.都扩大两倍B.都缩小两倍C.不变D.都扩大四倍考点:锐角三角函数的定义.专题:常规题型;压轴题.分析:根据三边对应成比例,两三角形相似,可知扩大后的三角形与原三角形相似,再根据相似三角形对应角相等解答.解答:解:∵各边的长度都扩大两倍,∴扩大后的三角形与Rt△ABC相似,∴锐角A的各三角函数值都不变.故选C.点评:本题考查了锐角三角形函数的定义,理清锐角的三角函数值与角度有关,与三角形中所对应的边的长度无关是解题的关键.6.如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M,N分别为AB,BC边上的中点,则MP+NP的最小值是()A. 2 B. 1 C.D.考点:轴对称-最短路线问题;菱形的性质.专题:压轴题;动点型.分析:首先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP 有最小值.然后证明四边形PMBN为菱形,即可求出MP+NP=BM+BN=BC=1.解答:解:作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP 有最小值.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形AM′BN是平行四边形,∴PN∥AB,又N是BC边上的中点,∴PN是△CAB的中位线,∴P是AC中点,∴PM∥BN,PM=BN,∴四边形PMBN是平行四边形,∵BM=BN,∴平行四边形PMBN是菱形.∴MP+NP=BM+BN=BC=1.故选B.点评:考查菱形的性质和轴对称及平行四边形的判定等知识的综合应用.7.下列运算中正确的是()A.(a﹣b)2=a2﹣b2 B.(﹣a+1)(﹣a﹣1)=a2﹣1C.(﹣)﹣2=1 D.﹣(﹣2ab2)2=4a2b4考点:完全平方公式;幂的乘方与积的乘方;平方差公式;负整数指数幂.专题:计算题.分析:A、原式利用完全平方公式化简得到结果,即可做出判断;B、原式利用平方差公式化简得到结果,即可做出判断;C、原式利用负整数指数幂法则计算得到结果,即可做出判断;D、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式=a2+b2﹣2ab,错误;B、原式=a2﹣1,正确;C、原式=4,错误;D、原式=﹣4a2b4,错误,故选B点评:此题考查了完全平方公式,幂的乘方与积的乘方,平方差公式,以及负整数指数幂法则,熟练掌握公式及法则是解本题的关键.8.有一新娘去商店买新婚衣服,购买了不同款式的上衣2件,不同颜色的裙子3条,利用“树状图”表示搭配衣服所有可能出项的结果数为()A. 2 B. 3 C. 5 D. 6考点:列表法与树状图法.专题:计算题.分析:列出得出所有等可能的情况数即可.解答:解:列表如下:上衣用a,b表示,裙子用c,d,e表示,a bc (a,c)(b,c)d (a,d)(b,d)e (a,e)(b,e)所有等可能的情况有6种,故选D点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.9.如图,P是Rt△ABC的斜边BC上异于B、C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()A.1条B.2条C.3条D.4条考点:相似三角形的判定.分析:过点P作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以.解答:解:由于△ABC是直角三角形,过P点作直线截△ABC,则截得的三角形与△ABC有一公共角,所以只要再作一个直角即可使截得的三角形与Rt△ABC相似,过点P可作AB的垂线、AC的垂线、BC的垂线,共3条直线.故选:C.点评:本题主要考查三角形相似判定定理及其运用.解题时,运用了两角法(有两组角对应相等的两个三角形相似)来判定两个三角形相似.10.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大考点:反比例函数图象上点的坐标特征;矩形的性质.专题:压轴题;数形结合.分析:设矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周长始终保持不变,则a+b为定值.根据矩形对角线的交点与原点O重合及反比例函数比例系数k的几何意义可知k=AB•AD=ab,再根据a+b一定时,当a=b时,ab最大可知在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.解答:解:设矩形ABCD中,AB=2a,AD=2b.∵矩形ABCD的周长始终保持不变,∴2(2a+2b)=4(a+b)为定值,∴a+b为定值.∵矩形对角线的交点与原点O重合∴k=AB•AD=ab,又∵a+b为定值时,当a=b时,ab最大,∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选:C.点评:本题考查了矩形的性质,反比例函数比例系数k的几何意义及不等式的性质,有一定难度.根据题意得出k=AB•AD=ab是解题的关键.二、填空题:(每小题4分,共20分;将答案直接写在该题目中的横线上)11.已知是方程组的解,则a+2b的值为7.考点:二元一次方程组的解.分析:把代入方程组中,得出关于a,b的值,再计算即可.解答:解:把代入方程组中,可得:,解得:,把代入a+2b=7,故答案为:7.点评:本题主要考查了方程组的解的定义:能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.12.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80米,如果要通过最大轮船的水面高度为20米,则设计拱桥的半径应是50m.考点:垂径定理的应用;勾股定理.分析:根据垂径定理和勾股定理求解.解答:解:如图,点E是拱桥所在的圆的圆心,作EF⊥AB,延长交圆于点D,则由垂径定理知,点F是AB的中点,AF=FB=AB=40,EF=ED﹣FD=AE﹣DF,由勾股定理知,AE2=AF2+EF2=AF2+(AE﹣DF)2,设圆的半径是r.则:r2=402+(r﹣20)2,解得:r=50故答案是:50.点评:本题利用了垂径定理和勾股定理求解.建立数学模型是关键.13.从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概率是.考点:概率公式;一次函数图象与系数的关系.分析:从﹣1,1,2三个数中任取一个,共有三种取法,其中函数y=﹣1•x+3是y随x增大而减小的,函数y=1•x+3和y=2•x+3都是y随x增大而增大的,所以符合题意的概率为.解答:解:P(y随x增大而增大)=.故本题答案为:.点评:用到的知识点为:概率=所求情况数与总情况数之比;一次函数未知数的比例系数大于0,y随x的增大而增大.14.据有关媒体披露,2014年全国高校毕业生人数达727万人,创历史新高,将727万用科学记数法表示应为7.27×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.解答:解:将727万用科学记数法表示为:7.27×106.故答案为:7.27×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.如图,梯形ABCD中,AD∥BC,DC⊥BC,AB=8,BC=5,若以AB为直径的⊙O与DC相切于E,则DC=2.考点:切线的性质;勾股定理;梯形中位线定理.分析:如图:连接OE,过D作DF∥AB,则OE⊥CD;OE是梯形ABCD的中位线,故OE=(BC+AD),则AD=2OE﹣BC=2×4﹣5=3,可求BF=AD=3,故CF可求,进而可求出CD的长.解答:解:连接OE,过D作DF∥AB,梯形ABCD中,AD∥BC,DC⊥BC,AB为直径的⊙O与DC相切于E,故OE⊥CD,OE是梯形ABCD的中位线,OE=(BC+AD),即AD=2OE﹣BC=2×4﹣5=3.∵AD∥BC,AB∥DF,∴四边形ABFD是平行四边形,BF=AD=3,CF=BC﹣BF=5﹣3=2,DF=AB=8,CD===2.点评:本题考查的是切线的性质,勾股定理及中位线定理,解答此题的关键是作出辅助线,构造出直角三角形解答.三、解答题:(本大题共5个小题,每小题8分,共40分)16.计算:|﹣|+sin45°+tan60°﹣(﹣)﹣1﹣+(π﹣3)0.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二、三项利用特殊角的三角函数值计算,第四项利用负指数幂法则计算,第五项化为最简二次根式,最后一项利用零指数幂法则计算即可得到结果.解答:解:原式=+×+﹣(﹣3)﹣2+1=+1++3﹣2+1=5.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.化简求值:已知:a是4的小数部分,求代数式+的值.考点:二次根式的化简求值.分析:先求出4的范围,求出a的值,再求出每一部分的值,最后代入求出即可.解答:解:∵4=,∴6<4<7,∴a=4﹣6,∴a﹣1<0,∴+=+=a﹣1+=a﹣1﹣=4﹣6﹣1﹣=4﹣7﹣=4﹣7﹣﹣=﹣7.点评:本题考查了二次根式的混合运算的应用,解此题的关键是能根据a的值化简二次根式,有一定的难度.18.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米,高速公路通车后,有一长途汽车的行驶速度提高了45千米/小时,从甲地到乙地的行驶时间减少了一半,求该长途汽车在原来国道上行驶的速度.考点:分式方程的应用.分析:设该长途汽车在原来国道上行驶的速度为x千米/时,根据“甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半”,可列出方程.解答:解:设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意得=•,解得:x=55,经检验:x55是原分式方程的解,答:该长途汽车在原来国道上行驶的速度55千米/时.点评:本题主要查了分式方程的应用,关键是设出速度,以时间做为等量关系列方程.19.去年某省将地处A、B两地的两所大学合并成一所综合大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路.如图中线段AB,经测量,在A地北偏东60°方向,B地西偏北45°方向的C 处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?考点:解直角三角形的应用-方向角问题.专题:应用题.分析:本题要求的实际上是C到AB的距离,过C点作CD⊥AB,CD就是所求的线段,由于CD是条公共直角边,可用CD表示出AD,BD,然后根据AB 的长,来求出CD的长.解答:解:过C点作CD⊥AB于D,由题可知:∠CAD=30°,设CD=x千米,tan∠CAD=,所以AD==x,由CD⊥AB,得到∠CDB=90°,又∠CBD=45°,所以△CDB为等腰直角三角形,则BD=CD=x,∵AB=2,∴x+x=2,∴x====﹣1>0.7.∴计划修筑的这条公路不会穿过公园.点评:解直角三角形的应用关键是构建直角三角形,如果有共用直角边的,可以利用公共边来进行求解.20.如图所示,正方形ABCD的边长为1,AC是对角线,AE平分∠BAC,EF⊥AC 于点F.(1)求证:BE=CF;(2)求BE的长.考点:正方形的性质;角平分线的性质;等腰直角三角形.分析:(1)由角平分线的性质可得到BE=EF,再证明△CEF为等腰直角三角形,可证明BE=CF;(2)设BE=x,在△CEF中可表示出CE,由BC=1,可列出方程,可求得BE.解答:(1)证明:∵四边形ABCD为正方形,∴∠B=90°,∵EF⊥AC,∴∠EFA=90°,∵AE平分∠BAC,∴BE=EF,又∵AC平分∠BCD,∴∠ACB=45°,∴∠FEC=∠FCE,∴EF=FC,∴BE=CF;(2)解:设BE=x,则EF=CF=x,在Rt△CEF中可求得CE=x,∵BC=1,∴x+x=1,解得x=﹣1,即BE的长为﹣1.点评:本题主要考查正方形的性质,掌握正方形的四边相等、对角线平分每一对对角是解题的关键.四、灵活应用:(本大题共5个小题,每小题10分,共50分)21.(10分)某学区为了解教师对网上教研活动的满意度,利用“网上短信平台”,对本区在20~60岁之间的300名教师,进行短信抽样调查.被抽查人中,各年龄段人数所占比例如图甲所示,各年龄段对活动感到满意的人数如图乙(部分)所示,根据图形信息回答下列问题:(1)被抽查的教师中,人数最多的年龄段是26~30岁;(2)被抽查的300人中有83%的人对网上教研活动感到满意,请你求出26~30岁年龄段的满意人数,并补全图乙;(3)比较26~30岁和41~50岁这两个年龄段对网上教研活动的满意度的高低(四舍五入到1%).(注:某年龄段满意度=该年龄段满意人数÷该年龄段被抽查人数×100%).考点:条形统计图;扇形统计图.专题:图表型.分析:(1)根据图甲的百分比解答即可;(2)求出感到满意的总人数,然后列式计算即可求出26~30岁年龄段的满意人数;(3)分别用满意的人数除以被调查的人数,计算后比较即可得解.解答:解:(1)由图甲可知,被抽查的教师中,人数最多的年龄段是26~30岁;故答案为:26~30;(2)感到满意的总人数=300×83%=249人,26~30岁年龄段的满意人数=249﹣41﹣50﹣40﹣18﹣7=249﹣156=93人;补全统计图如图所示;(3)26~30岁满意度=×100%≈79%,41~50岁满意度=×100%≈89%,所以,41~50岁年龄段比26~30岁年龄段对网上教研活动的满意度高.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(10分)如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C的圆与y轴的另一个交点为D.已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4).(1)求此抛物线的表达式与点D的坐标;(2)若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值.考点:二次函数综合题.分析:(1)利用待定系数法求抛物线的解析式;利用勾股定理的逆定理证明∠ACB=90°,由圆周角定理得AB为圆的直径,再由垂径定理知点C、D关于AB对称,由此得出点D的坐标;(2)求出△BDM面积的表达式,再利用二次函数的性质求出最值.解答中提供了两种解法,请分析研究.解答:解:(1)∵抛物线y=ax2+bx+c过点A(﹣2,0),B(8,0),C(0,﹣4),∴,解得,∴抛物线的解析式为:y=x2﹣x﹣4;∵OA=2,OB=8,OC=4,∴AB=10.如答图1,连接AC、BC,由勾股定理得:AC=,BC=.∵AC2+BC2=AB2=100,∴∠ACB=90°,∴AB为圆的直径.由垂径定理可知,点C、D关于直径AB对称,∴D(0,4);(2)解法一:设直线BD的解析式为y=kx+b,∵B(8,0),D(0,4),∴,解得,∴直线BD解析式为:y=﹣x+4.设M(x,x2﹣x﹣4),如答图2﹣1,过点M作ME∥y轴,交BD于点E,则E(x,﹣x+4).∴ME=(﹣x+4)﹣(x2﹣x﹣4)=﹣x2+x+8.∴S△BDM=S△MED+S△MEB=ME(x E﹣x D)+ME(x B﹣x E)=ME(x B﹣x D)=4ME,∴S△BDM=4(﹣x2+x+8)=﹣x2+4x+32=﹣(x﹣2)2+36.∴当x=2时,△BDM的面积有最大值为36;解法二:如答图2﹣2,过M作MN⊥y轴于点N.设M(m,m2﹣m﹣4),∵S△OBD=OB•OD==16,S梯形OBMN=(MN+OB)•ON=(m+8)[﹣(m2﹣m﹣4)]=﹣m(m2﹣m﹣4)﹣4(m2﹣m﹣4),S△MND=MN•DN=m[4﹣(m2﹣m﹣4)]=2m﹣m(m2﹣m﹣4),∴S△BDM=S△OBD+S梯形OBMN﹣S△MND=16﹣m(m2﹣m﹣4)﹣4(m2﹣m﹣4)﹣2m+m(m2﹣m﹣4)=16﹣4(m2﹣m﹣4)﹣2m=﹣m2+4m+32=﹣(m﹣2)2+36;∴当m=2时,△BDM的面积有最大值为36.点评:本题考查了待定系数法求解析式,直角三角形的判定及性质,图形面积计算,三角形相似的判定和性质,二次函数的系数与x轴的交点的关系等,在解答此题时要注意构造出辅助线,利用勾股定理求解.23.(10分)数学活动课上,小颖同学用两块完全一样的透明等腰直角三角板ABC、DEF进行探究活动.操作:使点D落在线段AB的中点处并使DF过点C(如图1),然后将其绕点D 顺时针旋转,直至点E落在AC的延长线上时结束操作,在此过程中,线段DE 与AC或其延长线交于点K,线段BC与DF相交于点G(如图2,3).探究1:在图2中,求证:△ADK∽△BGD.探究2:在图2中,求证:KD平分∠AKG.探究3:①在图3中,KD仍平分∠AKG吗?若平分,请加以证明;若不平分,请说明理由.②在以上操作过程中,若设AC=BC=8,KG=x,△DKG的面积为y,请求出y与x的函数关系式,并直接写出x的取值范围.考点:相似形综合题.分析:探究1,根据△ABC、△DEF是等腰直角三角形可知∠KAD=∠KDG=∠DBG=45°,由三角形内角和定理可知∠KDA+∠BDG=135°.∠BDG+∠BGD=135°,故可得出△ADK∽△BGD;探究2,根据△ADK∽△BGD可知=,再由点D是线段AB的中点得出BD=AD,故可得出△ADK∽△DCK,∠AKD=∠DKC,由此可得出结论;探究3,①同探究1可得△ADK∽△BGD,同探究2可得,△ADK∽△DGK,故可得出结论;②过点D作DM⊥AC于点M,DN⊥KG于点N,由①知线段KD平分∠AKG,故DM=DN.再由AC=BC=8,点D是线段AB的中点,∠KAD=45°,可知DM=DN=4.根据三角形的面积公式即可得出结论.解答:解:探究1,∵∠KAD=∠KDG=∠DBG=45°,∴∠KDA+∠BDG=135°.∵∠BDG+∠BGD=135°,∴∠KDA=∠BGD,∴△ADK∽△BGD;探究2,∵△ADK∽△BGD,∴=,∵点D是线段AB的中点,∴BD=AD,∴=,∴=,∵∠KAD=∠KDG=45°,∴△ADK∽△DCK,∴∠AKD=∠DKC,∴KD平分∠AKG.探究3,①KD仍平分∠AKG.理由如下:∵同探究1可得△ADK∽△BGD,同探究2可得,△ADK∽△DGK,∴∠AKD=∠DKG,∴KD仍平分∠AKG;②如图,过点D作DM⊥AC于点M,DN⊥KG于点N,由①知线段KD平分∠AKG,∴DM=DN.∵AC=BC=8,点D是线段AB的中点,∠KAD=45°,∴DM=DN=4.∵KG=x,∴S△DKG=y=×4x=2x,对于图3的情况同理可得y=2x,综上所示,y=2x,其中8﹣8≤x≤8﹣8.点评:本题考查的是相似形综合题,涉及到相似三角形的判定与性质、等腰直角三角形的性质等知识.难度适中.24.(10分)如图,AB=AC=8,∠BAC=90°,直线l与以AB为直径的⊙O相切于点B,点D是直线l上任意一动点,连接DA交⊙O于点E.(1)当点D在AB上方且BD=6时,求AE的长.(2)当点D在什么位置时,CE恰好与⊙O相切?请说明理由.。
成都市武侯区2019年中考数学二诊试卷
成都市武侯区2019年中考数学二诊试卷一、选择题:(共10个小题,30分)1.设a=2°,b=(﹣3)2,c=,d=()﹣1,则a,b,c,d按由小到大的顺序排列正确的是()A.c<a<d<b B.b<d<a<c C.a<c<d<b D.b<c<a<d2.已知两圆半径分别是方程x2﹣7x+10=0的两根,两圆的圆心距为6,则两圆的位置关系是()A.相交B.内切C.外切D.外离3.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10π B.15π C.20π D.30π4.下列图形:①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形.其中既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个5.下列运算正确的是()A. B. C.(ab)2=ab2 D.(﹣a2)3=a66.下列说法正确的是()A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差S甲2=0.2,乙组数据的方差S乙2=0.5,则乙组数据比甲组数据稳定7.设0<k<2,关于x的一次函数y=kx+2(1﹣x),当1≤x≤2时的最大值是()A.2k﹣2 B.k﹣1 C.k D.k+18.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tanA=()A.B.1 C.D.9.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.48 B.96 C.84 D.4210.已知二次函数y=x2+bx+c过点(0,﹣3)和(﹣1,2m﹣2)对于该二次函数有如下说法:①它的图象与x轴有两个公共点;②若存在一个正数x0,使得当x<x0时,函数值y随x的增大而减小,则m>0;若存在一个负数x0,使得当x>x0时,函数值y随x的增大而增大,则m<0;③若将它的图象向左平移3个单位后过原点,则m=﹣1;④若当x=2时的函数值与x=2012时的函数值相等,则当x=20时的函数值为﹣3.其中正确的说法的个数是()A.1 B.2 C.3 D.4二、填空题:(共6个小题,18分)11.使式子有意义的x的取值范围是.12.如图,在△ABC中,∠B=50°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=°.13.甲、乙玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n.若m、n满足|m﹣n|≤1,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是.14.如图,AB是半⊙O的直径,CD切半⊙O于点C,P是△OAC的重心,且OP=,CD=,BD=1.则图中阴影部分的面积为.15.如图,在正方形ABCD内有一折线段,其中AE⊥EF,EF⊥FC,并且AE=6,EF=8,FC=10,则正方形的边长为.16.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO 在y轴上,点B1,B2,B3,…都在直线y=x上,则A2015的坐标是.三、解答题:(共8个小题,72分)17.化简求值:(﹣x﹣1)÷,其中x=﹣(cos45°)﹣1.18.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?19.如图,一次函数的图象与反比例函数y1=﹣(x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<﹣1时,一次函数值大于反比例函数的值,当x>﹣1时,一次函数值小于反比例函数值.(1)求一次函数的解析式;(2)设函数y2=(x>0)的图象与y1=﹣(x<0)的图象关于y轴对称.在y2=(x >0)的图象上取一点P(P点的横坐标大于2),过P作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标;(3)在(2)的条件下,过原点O作直线交线段BQ于点M,若BM:MQ=4:5,在双曲线y2=(x>0)上,是否存在点P′,使点P′与点P关于直线OM对称?若存在,请直接写出点P′的坐标;若不存在,请说明理由.20.从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?21.如图,点A是⊙O上一点,OA⊥AB,且OA=1,AB=,OB交⊙O于点D,作AC⊥OB,垂足为M,并交⊙O于点C,连接BC.(1)求证:BC是⊙O的切线;(2)过点B作BP⊥OB,交OA的延长线于点P,连接PD,求sin∠BPD的值.22.如图1,图2,是一款家用的垃圾桶,踏板AB(与地面平行)或绕定点P(固定在垃圾桶底部的某一位置)上下转动(转动过程中始终保持AP=A′P,BP=B′P).通过向下踩踏点A到A′(与地面接触点)使点B上升到点B′,与此同时传动杆BH运动到B'H'的位置,点H绕固定点D旋转(DH为旋转半径)至点H',从而使桶盖打开一个张角∠HDH′.如图3,桶盖打开后,传动杆H′B′所在的直线分别与水平直线AB、DH垂直,垂足为点M、C,设H′C=B′M.测得AP=6cm,PB=12cm,DH′=8cm.要使桶盖张开的角度∠HDH'不小于60°,那么踏板AB离地面的高度至少等于多少cm?(结果保留两位有效数字)(参考数据:≈1.41,≈1.73)23.如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.(1)求线段AC的长度;(2)当点Q从B点向A点运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为l:①当l经过点A时,射线QP交AD于点E,求AE的长;②当l经过点B时,求t的值.24.如图,四边形ABCD是平行四边形,过点A、C、D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连结CE,点A、B、D的坐标分别为(﹣2,0)、(3,0)、(0,4).(1)求抛物线的解析式;(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l 和x轴上的动点,连结MN,当线段MN恰好被BC垂直平分时,求点N的坐标;(3)在满足(2)的条件下,过点M作一条直线,使之将四边形AECD的面积分为3:4的两部分,求出该直线的解析式.成都市武侯区2019年中考数学二诊试卷参考答案与试题解析一、选择题:(共10个小题,30分)1.设a=2°,b=(﹣3)2,c=,d=()﹣1,则a,b,c,d按由小到大的顺序排列正确的是()A.c<a<d<b B.b<d<a<c C.a<c<d<b D.b<c<a<d【考点】实数大小比较;零指数幂;负整数指数幂.【专题】计算题.【分析】直接计算,再根据负数小于一切正数,两个负数比较大小,两个负数绝对值大的反而小进行解答.【解答】解:∵a=2°=1,b=(﹣3)2=9,﹣3<c=<﹣2,d=()﹣1=2,∴<1<2<9,即c<a<d<b.故选A.【点评】本题涉及到实数的零指数幂,负整数指数及负数开立方,要把它们逐一计算再比较大小.2.已知两圆半径分别是方程x2﹣7x+10=0的两根,两圆的圆心距为6,则两圆的位置关系是()A.相交B.内切C.外切D.外离【考点】圆与圆的位置关系;解一元二次方程-因式分解法.【分析】先解一元二次方程得到两圆半径分别为2和5,再计算两半径之和和两半径之差,然后把它们与圆心距进行大小比较,再根据圆和圆的位置关系进行判断.【解答】解:解方程x2﹣7x+10=0得x1=1,x2=3,即两圆半径分别为2和5,∵2+5=7,5﹣2=3,∴3<6<7,∴两圆的位置关系是相交.故答案为:相交.【点评】本题考查了圆和圆的位置关系:若两圆的圆心距、半径分别为d、R、r,则两圆外离⇔d>R+r;两圆外切⇔d=R+r;两圆相交⇔R﹣r<d<R+r(R≥r);两圆内切⇔d=R ﹣r(R>r);两圆内含⇔d<R﹣r(R>r).也考查了因式分解法解一元二次方程.3.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10π B.15π C.20π D.30π【考点】圆锥的计算;由三视图判断几何体.【分析】根据三视图可以判定此几何体为圆锥,根据三视图的尺寸可以知圆锥的底面半径为3,圆锥的母线长为5,代入公式求得即可.【解答】解:由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积==×6π×5=15π,故选B.【点评】本题考查了圆锥的侧面积的计算,解题的关键是正确的理解圆锥的底面周长等于圆锥的侧面展开扇形的面积.4.下列图形:①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形.其中既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:平行四边形不是轴对称图形,是中心对称图形.故错误;正方形是轴对称图形,也是中心对称图形.故正确;等腰梯形是轴对称图形,不是中心对称图形.故错误;菱形是轴对称图形,也是中心对称图形.故正确;正六边形是轴对称图形,也是中心对称图形.故正确.共3个.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.下列运算正确的是()A. B. C.(ab)2=ab2 D.(﹣a2)3=a6【考点】幂的乘方与积的乘方;算术平方根;立方根.【分析】根据幂的乘方的性质,积的乘方的性质,立方根、平方根的知识,对各选项分析判断后利用排除法求解,即可求得答案.【解答】解:A、=﹣2,故本选项正确;B、=3,故本选项错误;C、(ab)2=a2b2,故本选项错误;D、(﹣a2)3=﹣a6,故本选项错误.故选A.【点评】此题考查了幂的乘方,积的乘方,立方根,平方根的知识.此题比较简单,注意理清指数的变化是解题的关键,注意掌握立方根与平方根的定义.6.下列说法正确的是()A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差S甲2=0.2,乙组数据的方差S乙2=0.5,则乙组数据比甲组数据稳定【考点】概率的意义;全面调查与抽样调查;中位数;众数;方差.【分析】根据概率、方差、众数、中位数的定义对各选项进行判断即可.【解答】A、一个游戏中奖的概率是,则做100次这样的游戏有可能中奖一次,该说法错误,故本选项错误;B、为了了解全国中学生的心理健康状况,应采用抽样调查的方式,该说法错误,故本选项错误;C、这组数据的众数是1,中位数是1,故本选项正确;D、方差越大,则平均值的离散程度越大,稳定性也越小,则甲组数据比乙组稳定,故本选项错误;故选C.【点评】本题考查了概率、方差、众数、中位数等知识,属于基础题,掌握各知识点是解题的关键.7.设0<k<2,关于x的一次函数y=kx+2(1﹣x),当1≤x≤2时的最大值是()A.2k﹣2 B.k﹣1 C.k D.k+1【考点】一次函数的性质.【专题】压轴题.【分析】首先确定一次函数的增减性,根据增减性即可求解.【解答】解:原式可以化为:y=(k﹣2)x+2,∵0<k<2,∴k﹣2<0,则函数值随x的增大而减小.∴当x=1时,函数值最大,最大值是:(k﹣2)+2=k.故选:C.【点评】本题主要考查了一次函数的性质,正确根性质确定当x=2时,函数取得最小值是解题的关键.8.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tanA=()A.B.1 C.D.【考点】锐角三角函数的定义;三角形中位线定理.【专题】计算题.【分析】若想利用tan∠BCD的值,应把∠BCD放在直角三角形中,也就得到了Rt△ACD 的中位线,可分别得到所求的角的正切值相关的线段的比.【解答】解:过B作BE∥AC交CD于E.∵AC⊥BC,∴BE⊥BC,∠CBE=90°.∴BE∥AC.∵AB=BD,∴AC=2BE.又∵tan∠BCD=,设BE=x,则AC=2x,∴tanA===,故选A.【点评】本题涉及到三角形的中位线定理,锐角三角函数的定义,解答此题关键是作出辅助线构造直角三角形,再进行计算.9.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.48 B.96 C.84 D.42【考点】平移的性质.【分析】根据平移的性质得出BE=6,DE=AB=10,则OE=6,则阴影部分面积=S四边形ODFC=S 梯形ABEO,根据梯形的面积公式即可求解.【解答】解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC =S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故选:A.【点评】本题主要考查了平移的性质及梯形的面积公式,得出阴影部分和梯形ABEO的面积相等是解题的关键.10.已知二次函数y=x2+bx+c过点(0,﹣3)和(﹣1,2m﹣2)对于该二次函数有如下说法:①它的图象与x轴有两个公共点;②若存在一个正数x0,使得当x<x0时,函数值y随x的增大而减小,则m>0;若存在一个负数x0,使得当x>x0时,函数值y随x的增大而增大,则m<0;③若将它的图象向左平移3个单位后过原点,则m=﹣1;④若当x=2时的函数值与x=2012时的函数值相等,则当x=20时的函数值为﹣3.其中正确的说法的个数是()A.1 B.2 C.3 D.4【考点】二次函数的性质.【分析】把已知点的坐标代入可得y=x2﹣2mx﹣3,可利用方程x2﹣2mx﹣3=0的判别式判断①;可求得其对称轴为x=m,结合二次函数的增减性可判断②;根据左加右减的原则,可求得平移后的解析式,可判断③;根据二次函数的对称性,可求得对称轴,可求得m的值,再把x=20代入,可求得对应函数值,可判断④;可得出答案.【解答】解:∵二次函数y=x2+bx+c过点(0,﹣3)和(﹣1,2m﹣2)∴代入可求得c=﹣3,b=﹣2m,∴二次函数解析式为y=x2﹣2mx﹣3,令y=0可得x2﹣2mx﹣3=0,则其判别式△=4m2+12>0,故二次函数图象与x轴有两个公共点,∴①正确;∴二次函数的对称轴为x=m,且二次函数图象开口向上,∴若存在一个正数x0,使得当x<x0时,函数值y随x的增大而减小,则m>0;若存在一个负数x0,使得当x>x0时,函数值y随x的增大而增大,则m<0,∴②正确;由平移可得向左平移3个单位后其函数解析式为y=(x+3)2﹣2m(x+3)﹣3,把点(0,0)代入可得m=1,∴③不正确;由当x=2时的函数值与x=2012时的函数值相等,代入可求得m=1007,∴函数解析式为y=x2﹣2014x﹣3,当x=20时,代入可得y=400﹣4028﹣3≠﹣3,∴④不正确;综上可知正确的有两个,故选B.【点评】本题主要考查二次函数的性质及与方程的关系,掌握二次函数的对称轴、增减性及图象的平移是解题的关键.注意与一元二次方程的关系.二、填空题:(共6个小题,18分)11.使式子有意义的x的取值范围是﹣1≤x≤2.【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:根据题意得:,解得:﹣1≤x≤2.故答案是:﹣1≤x≤2.【点评】本题考查的知识点为:二次根式的被开方数是非负数.12.如图,在△ABC中,∠B=50°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=65°.【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC 的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=47°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)==115°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=180°﹣115°=65°;故答案为:65.【点评】本题考查了三角形内角和定理、三角形外角性质.解题时注意挖掘出隐含在题干中已知条件“三角形内角和是180°”.13.甲、乙玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n.若m、n满足|m﹣n|≤1,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与m、n满足|m﹣n|≤1的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,m、n满足|m﹣n|≤1的有10种情况,∴甲、乙两人“心有灵犀”的概率是:=.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.14.如图,AB是半⊙O的直径,CD切半⊙O于点C,P是△OAC的重心,且OP=,CD=,BD=1.则图中阴影部分的面积为π﹣.【考点】切线的性质;扇形面积的计算.【分析】延长OP交AC于点E,则可求得OE=1,连接BC,可求得BC=2,在△BCD 中可求得其为直角三角形,且∠DCB=∠A=30°可求得AO及∠AOC的大小,利用面积公式可求得答案.【解答】解:如图,延长OP交AC于点E,∵P是△OAC的重心,且OP=,∴OE=1,且E为AC中点,连接BC,则OE为△ABC的中位线,∴BC=2OE=2,在△BCD中,BC=2,BD=1,CD=,满足BC2=BD2+CD2,∴△BCD为直角三角形,且∠BCD=30°,∵DC为⊙O的切线,∴∠CAO=30°,∴∠AOE=60°,AO=2OE=2,AE=,∴∠AOC=120°,AC=2AE=2,=πOA2=π,S△AOC=AC•OE=×2×1=,∴S扇形AOC∴S﹣S△AOC=π﹣,阴影=S扇形AOC故答案为:π﹣.【点评】本题主要考查切线的性质及扇形的面积的计算,由条件求得△BCD为直角三角形,求得∠CAO=30°是解题的关键.15.如图,在正方形ABCD内有一折线段,其中AE⊥EF,EF⊥FC,并且AE=6,EF=8,FC=10,则正方形的边长为4.【考点】相似三角形的判定与性质;勾股定理;正方形的性质.【分析】首先连接AC,则可证得△AEM∽△CFM,根据相似三角形的对应边成比例,即可求得EM与FM的长,然后由勾股定理求得AM与CM的长,进而得到AC的长,在Rt△ABC中,由AB=AC•sin45°,即可求出正方形的边长.【解答】解:解:连接AC,∵AE丄EF,EF丄FC,∴∠E=∠F=90°,∵∠AME=∠CMF,∴△AEM∽△CFM,∴,∵AE=6,EF=8,FC=10,∴==,∴EM=3,FM=5,在Rt△AEM中,AM==3,在Rt△FCM中,CM==5,∴AC=8,在Rt△ABC中,AB=AC•sin45°=8×=4,故答案为:4.【点评】此题考查了相似三角形的判定与性质,正方形的性质以及勾股定理的应用.此题综合性较强,解题时要注意数形结合思想的应用.16.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO 在y轴上,点B1,B2,B3,…都在直线y=x上,则A2015的坐标是(2015,2017).【考点】一次函数图象上点的坐标特征;等边三角形的性质.【专题】规律型.【分析】根据题意得出直线AA1的解析式为:y=x+2,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.【解答】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(0,2),AO∥A1B1,∠B1OC=30°,∴CO=OB1cos30°=,∴B1的横坐标为:,则A1的横坐标为:,连接AA1,可知所有三角形顶点都在直线AA1上,∵点B1,B2,B3,…都在直线y=x上,AO=2,∴直线AA1的解析式为:y=x+2,∴y=×+2=3,∴A1(,3),同理可得出:A2的横坐标为:2,∴y=×2+2=4,∴A2(2,4),∴A3(3,5),…A2015(2015,2017).故答案为:(2015,2017).【点评】此题主要考查了一次函数图象上点的坐标特征以及数字变化类,得出A点横纵坐标变化规律是解题关键.三、解答题:(共8个小题,72分)17.化简求值:(﹣x﹣1)÷,其中x=﹣(cos45°)﹣1.【考点】分式的化简求值;负整数指数幂;特殊角的三角函数值.【分析】根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=(﹣)÷=﹣×=﹣(x+2)(x﹣1)=﹣x2﹣x+2.当x=﹣(cos45°)﹣1=﹣时,原式=﹣(﹣)2﹣(﹣)+2=﹣2++2=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第三小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?【考点】频数(率)分布直方图;用样本估计总体;扇形统计图;中位数;概率公式.【分析】(1)首先求得总人数,然后求得第四组的人数,即可作出统计图;(2)利用总人数260乘以所占的比例即可求解;(3)利用概率公式即可求解.【解答】解:(1)总人数是:10÷20%=50(人),第四组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,,中位数位于第三组;(2)该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×260=104(人);(3)成绩是优秀的人数是:10+6+4=20(人),成绩为满分的人数是4,则从成绩为优秀的女生中任选一人,她的成绩为满分的概率是=0.2.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题19.如图,一次函数的图象与反比例函数y1=﹣(x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<﹣1时,一次函数值大于反比例函数的值,当x>﹣1时,一次函数值小于反比例函数值.(1)求一次函数的解析式;(2)设函数y2=(x>0)的图象与y1=﹣(x<0)的图象关于y轴对称.在y2=(x >0)的图象上取一点P(P点的横坐标大于2),过P作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标;(3)在(2)的条件下,过原点O作直线交线段BQ于点M,若BM:MQ=4:5,在双曲线y2=(x>0)上,是否存在点P′,使点P′与点P关于直线OM对称?若存在,请直接写出点P′的坐标;若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)根据当x<﹣1时,一次函数值大于反比例函数值;当x>﹣1时,一次函数值小于反比例函数值,利用函数图象得到A横坐标为﹣1,将x=﹣1代入反比例解析式求出y的值,确定出A的坐标,设一次函数解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出一次函数解析式;(2)由函数y2═(x>0)的图象与y1=﹣(x<0)的图象关于y轴对称,可确定出函数y2=(x>0)的解析式,求出三角形BOC面积,设P(n,),表示出PQ,OQ的长,利用梯形的面积公式表示出梯形PQOB的面积,由梯形PQOB面积减去三角形BOC面积表示出四边形BCQP的面积,根据四边形BCQP面积为2列出关于n的方程,求出方程的解得到n的值,即可得到点P的坐标;(3)根据双曲线的对称性,点P关于直线y=x的对称点P′必在此双曲线上,因此,只需计算直线OM是否为第一、三象限的角平分线.过点M作MN⊥x轴于N,可证RT△MNQ∽RT△BOQ,利用相似三角形的性质,可得MN=,再利用,求得NQ=,从而得到ON=,故可得MN=ON,所以直线OM是否为第一、三象限的角平分线,即可得到答案.【解答】解:(1)∵x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时,一次函数值小于反比例函数值.∴A点的横坐标是﹣1,把x=﹣1代入y1=﹣,得y=3∴A(﹣1,3),设一次函数解析式为y=kx+b,因直线过A、C,则,解得:,∴一次函数解析式为y=﹣x+2(2)∵y2=(x>0)的图象与y1=﹣(x<0)的图象y轴对称,∴y2=(x>0),∵B点是直线y=﹣x+2与y轴的交点,∴B (0,2),设P(n,),n>2 S﹣S△BOC=2,四边形BOQP∴(2+)n﹣×2×2=2,n=,∴P(,);(3)存在,P′(,).【点评】此题属于反比例函数综合题,涉及的知识有:待定系数法求一次函数解析式,一次函数与坐标轴的交点,对称的性质,坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法及数形结合思想是解本题的关键.20.从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为15km/h;他途中休息了0.1h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?【考点】一次函数的应用.【专题】数形结合.【分析】(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在坡路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.【解答】解:(1)小明骑车在平路上的速度为:4.5÷0.3=15(km/h),∴小明骑车在上坡路的速度为:15﹣5=10(km/h),小明骑车在下坡路的速度为:15+5=20(km/h).。
2019年四川省成都市中考数学二诊试卷(含答案)
中考数学二诊试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)如果a与互为相反数,则a等于()A.B.C.2 D.﹣22.(3分)如图所示的几何体是由6 个完全相同的小立方块搭成,则这个几何体的左视图是()A.B.C.D.3.(3分)从成都经川南到贵阳的成贵客运专线正在建设中,这项工程总投资约780亿元,预计2019 年12月建成通车,届时成都到贵阳只要3 小时,这段铁路被称为“世界第一条山区高速铁路”.将数据780亿用科学记数法表示为()A.78×109 B.7.8×108C.7.8×1010D.7.8×10114.(3分)下列计算正确的是()A.(﹣2a2)3=﹣6a6B.a3+a3=2a3C.a6÷a3=a2D.a3•a3=a95.(3分)在平面直角坐标系中,若直线y=2x+k﹣1经过第一、二、三象限,则k的取值范围是()A.k>1B.k>2C.k<1D.k<2<6.(3分)如图,直线a∥b,直线c与直线a、b分别相交于点A、B,过A作AC⊥b,垂足为C,若∠1=48°,则∠2的度数为()[A.58°B.52°C.48°D.42°7.(3分)武侯区部分学校已经开展“分享学习”数学课堂教学,在刚刚结束的3 月份的月考中,某班7 个共学小组的数学平均成绩分别为130 分、128 分、126 分、130 分、127 分、129 分、131 分,则这组数据的众数和中位数分别是()A.131分,130分B.130分,126分C.128分,128分D.130分,129分8.(3分)关于x的一元二次方程2x2﹣3x=﹣5的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.不能确定9.(3分)如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB 的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为()A.B.π C.2πD.3π10.(3分)如图,抛物线y=ax2+bx+c(a≠0)与x 轴的一个交点坐标为(3,0),对称轴为直线x=﹣1,则下列说法正确的是()A.a<0 B.b2﹣4ac<0C.a+b+c=0 D.y随x的增大而增大二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)49的算术平方根是.12.(4分)已知2a+b=2,2a﹣b=﹣4,则4a2﹣b2=.13.(4分)如图,在△ABC中,D为AB的中点,E为AC上一点,连接DE,若AB=12,AE=8,∠ABC=∠AED,则AC=.14.(4分)如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=6,则AD=.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(2)求不等式组的整数解.16.(6分)先化简,再求值:,其中.17.(8分)为了减轻二环高架上汽车的噪音污染,成都市政府计划在高架上的一些路段的护栏上方增加隔音屏.如图,工程人员在高架上的车道M 处测得某居民楼顶的仰角∠ABC的度数是20°,仪器BM 的高是0.8m,点M 到护栏的距离MD 的长为11m,求需要安装的隔音屏的顶部到桥面的距离ED 的长(结果保留到0.1m,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)18.(8分)为了弘扬中国传统文化,“中国诗词大会”第三季已在中央电视台播出.某校为了解九年级学生对“中国诗词大会”的知晓情况,对九年级部分学生进行随机抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请根据统计图的信息,解答下列问题:(1)求在本次抽样调查中,“基本了解”中国诗词大会的学生人数;(2)根据调查结果,发现“很了解”的学生中有三名同学的诗词功底非常深厚,其中有两名女生和一名男生.现准备从这三名同学中随机选取两人代表学校参加“武侯区诗词大会”比赛,请用画树状图或列表的方法,求恰好选取一名男生和一名女生的概率.19.(10分)如图,一次函数y=kx+b的图象与反比例函数的图象相交于A (n,3),B(3,﹣2)两点,过A作AC⊥x轴于点C,连接OA.(1)分别求出一次函数与反比例函数的表达式;=2S△AOC,求点M的坐(2)若直线AB上有一点M,连接MC,且满足S△AMC标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD ⊥AB于点D,过C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF并延长交EC的延长线于点G.ⅰ)试探究线段CF与CD之间满足的数量关系;ⅱ)若CD=4,tan∠BCE=,求线段FG的长.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)若a为实数,则代数式a2+4a﹣6的最小值为.22.(4分)对于实数m,n 定义运算“※”:m※n=mn(m+n),例如:4※2=4×2(4+2)=48,若x1、x2是关于x 的一元二次方程x2﹣5x+3=0的两个实数根,则x1※x2=.23.(4分)如图,有A、B、C三类长方形(或正方形)卡片(a>b),其中甲同学持有A、B类卡片各一张,乙同学持有B、C类卡片各一张,丙同学持有A、C类卡片各一张,现随机选取两位同学手中的卡片共四张进行拼图,则能拼成一个正方形的概率是.24.(4分)如图,在平面直角坐标系中,平行四边形ABOC的边OB在x轴上,过点C(3,4)的双曲线与AB交于点D,且AC=2AD,则点D的坐标为.25.(4分)如图,有一块矩形木板ABCD,AB=13dm,BC=8dm,工人师傅在该木板上锯下一块宽为xdm的矩形木板MBCN,并将其拼接在剩下的矩形木板AMND的正下方,其中M′、B′、C′、N′分别与M、B、C、N对应.现在这个新的组合木板上画圆,要使这个圆最大,则x的取值范围是,且最大圆的面积是dm2.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m,宽为60m,按照规划将预留总面积为4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?27.(10分)如图,已知△ABC是等边三角形,点D、E分别在AC、AB上,且CD=AE,BD与CE相交于点P.(1)求证:△ACE≌△CBD;(2)如图2,将△CPD沿直线CP翻折得到对应的△CPM,过C作CG∥AB,交射线PM于点G,PG与BC相交于点F,连接BG.ⅰ)试判断四边形ABGC的形状,并说明理由;ⅱ)若四边形ABGC的面积为,PF=1,求CE的长.28.(12分)在平面直角坐标系中,抛物线y=﹣6x+4的顶点A在直线y=kx ﹣2上.(1)求直线的函数表达式;(2)现将抛物线沿该直线方向进行平移,平移后的抛物线的顶点为A′,与直线的另一交点为B′,与x轴的右交点为C(点C不与点A′重合),连接B′C、A′C.ⅰ)如图,在平移过程中,当点B′在第四象限且△A′B′C的面积为60时,求平移的距离AA′的长;ⅱ)在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,求出所有满足条件的点A′的坐标.参考答案与试题解析一、选择题1.B.2.B.3.C.4.B.5.A6.D7.D8.C9.A10.C.二、填空题11.712.﹣813.9.14.3.三、解答题15.解:(1)原式=3﹣1+2×+2﹣=2++2﹣=4;(2)解不等式2(x﹣3)≤﹣2,得:x≤2,解不等式>x﹣1,得:x>﹣1,则不等式组的解集为﹣1<x≤2,所以不等式组的整数解为0、1、2.16.解:====,当a=+1时,原式=.17.解:由题意:CD=BM=0.8m,BC=MD=11m,在Rt△ECB中,EC=BC•tan20°=11×0.36≈3.96(m),∴ED=CD+EC=3.96+0.8≈4.8(m),答:需要安装的隔音屏的顶部到桥面的距离ED 的长4.8m.18.解:(1)∵调查的总人数为12÷20%=60(人),∴“基本了解”中国诗词大会的学生人数m=60﹣24﹣12﹣6=18(人);(2)列表:共有6种等可能的结果,其中恰好选取一名男生和一名女生的情况有4种,∴P(恰为一名男生和一名女生)==.19.解:(1)将点B(3,﹣2)代入,得:m=3×(﹣2)=6,则反比例函数解析式为y=﹣.∵反比例函数的图象过A(n,3),∴3=﹣,∴n=﹣2,∴A(﹣2,3),将点A(﹣2,3)、B(3,﹣2)代入y=kx+b,得:,解得:,则一次函数解析式为y=﹣x+1;(2)设点M的坐标为(m,﹣m+1),过M作ME⊥AC于E.∵y=﹣,∴S△AOC=×|﹣6|=3,∴S△AMC =2S△AOC=6,∴AC•ME=×3×|m+2|=6,解得m=2或﹣6.当m=2时,﹣m+1=﹣1;当m=﹣6时,﹣m+1=7,∴点M的坐标为(2,﹣1)或(﹣6,7).20.(本小题满分10分)(1)证明:如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,(1分)∵CD⊥AB,∴∠OBC+∠BCD=90°,(2分)∵∠BCE=∠BCD,∴∠OCB+∠BCE=90°,即OC⊥CE,∴CE是⊙O的切线;(3分)(2)解:i)线段CF与CD之间满足的数量关系是:CF=2CD,(4分)理由如下:如图2,过O作OH⊥CF于点H,∴CF=2CH,∵∠FCE=2∠ABC=2∠OCB,且∠BCD=∠BCE,∴∠OCH=∠OCD,∵OC为公共边,∴△COH≌△COD(AAS),∴CH=CD,∴CF=2CD;(6分)ii)∵∠BCD=∠BCE,tan∠BCE=,∴tan∠BCD=.∵CD=4,∴BD=CD•tan∠1=2,∴BC==2,由i)得:CF=2CD=8,设OC=OB=x,则OD=x﹣2,在Rt△ODC中,OC2=OD2+CD2,∴x2=(x﹣2)2+42,解得:x=5,即OB=5,∵OC⊥GE,∴∠OCF+∠FCG=90°,∵∠OCD+∠COD=90°,∠FCO=∠OCD,∴∠GCF=∠COB,∵四边形ABCF为⊙O的内接四边形,∴∠GFC=∠ABC,∴△GFC∽△CBO,∴,∴=,∴FG=.(10分)一、填空题21.解:原式=a2+4a+4﹣10=(a+2)2﹣10,因为(a+2)2≥0,所以(a+2)2﹣10≥﹣10,则代数式a2+4a﹣6的最小值是﹣10.故答案是:﹣10.22.解:由题意可知:△>0,∴x1+x2=5,x1x2=3∴原式=x1x2(x1+x2)=3×5=15故答案为:1523.解:由题可得,随机选取两位同学,可能的结果如下:甲乙、甲丙、乙丙,∵a2+2ab+b2=(a+b)2,∴选择乙丙手中的卡片共四张进行拼图,则能拼成一个边长为(a+b)的正方形,∴能拼成一个正方形的概率为,故答案为:.24.解:作CF⊥OB,垂足为F,作DE⊥OB,垂足为E,连接CD并延长交x 轴于M设反比例函数的解析式是y=,把C点的坐标(3,4)代入得:k=12即y=,∵ABOC是平行四边形∴AC∥OB,OC∥AB,AC=OB,AB=OC ∵C(3,4)∴OF=3,CF=4∴OC=,即AB=5设AC=2a,则AD=a,OB=2a (a>0)∴BD=5﹣a,∵OC∥AB∴∠COF=∠DBE且∠CFO=∠DEB∴△CFO∽△BDE∴∴DE=,BE=∴OE=∴D(,)∵点D是y=图象上一点∴×=12∴a=∴D(7,)故答案为(7,).25.解:如图,设⊙O与AB相切于点H,交CD与E,连接OH,延长HO交CD于F,设⊙O的半径为r.在Rt△OEF中,当点E与N′重合时,⊙O的面积最大,此时EF=4,,则有:r2=(8﹣r)2+42,∴r=5.∴⊙O的最大面积为25π,由题意:,∴2≤x≤3,故答案为2≤x≤3,25π.二、解答题26.解:(1)设各通道的宽度为x米,根据题意得:(90﹣3x)(60﹣3x)=4536,解得:x1=2,x2=48(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务,根据题意得:﹣=2,解得:y=400,经检验,y=400是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.27.(1)证明:∵△ABC是等边三角形,∴∠A=∠ACB=60°,AC=BC,(2分)∵AE=CD,∴△ACE≌△CBD;(3分)(2)解:i)四边形ABGC为菱形,理由是:∵△ACE≌△CBD,∴∠ACE=∠CBD,∴∠DPC=∠PCB+∠CBD=∠PCB+∠ACE=∠ACB=60°,由翻折得:CD=CM,∠CDP=∠CMP,∠MPC=∠DPC=60°,∴∠DCF+∠DPF=60°+2×60°=180°,∴∠CDP+∠CFP=360°﹣180°=180°,∴∠CMP+∠CMF=180°∴∠CMF=∠CFP,∴CF=CM=CD,(4分)∵∠CFM+∠CFG=180°,∠CDP+∠CFM=180°,∴∠CDP=∠CFG,∵CG∥AB,∴∠GCF=∠CBA=60°=∠BCD,∴△CDB≌△CFG,(5分)∴CG=CB,∴CG=AB,∵CG∥AB,CG=AB=AC,∴四边形ABGC是菱形;(6分)ii)过C作CH⊥AB于H,设菱形ABGC的边长为a,∵△ABC是等边三角形,∴AH=BH=a,∴CH=AH•sin60°=a=,∵菱形ABGC的面积为6,∴AB•CH=6,即a a=6,∴a=2,(7分)∴BG=2,∵四边形ABGC是菱形,∴AC∥BG,∴∠GBC=∠ACB=60°,∵∠GPB=180°﹣∠CPD﹣∠CPM=60°,∴∠GBC=∠GPB,∵∠BGF=∠BGF,∴△BGF∽△PGB,(8分)∴,即BG2=FG•PG,∵PF=1,BG=2,∴,∴FG=3或﹣4(舍),(9分)∵△CDB≌△CFG,△ACE≌△CBD,∴FG=BD,BD=CE,∴CE=FG=3.(10分)28.解:(1)∵y=﹣6x+4=(x﹣6)2﹣14,∴点A的坐标为(6,﹣14).∵点A在直线y=kx﹣2上,∴﹣14=6k﹣2,解得:k=﹣2,∴直线的函数表达式为y=﹣2x﹣2.(2)设点A′的坐标为(m,﹣2m﹣2),则平移后抛物线的函数表达式为y=(x ﹣m)2﹣2m﹣2.当y=0时,有﹣2x﹣2=0,解得:x=﹣1,∵平移后的抛物线与x轴的右交点为C(点C不与点A′重合),∴m>﹣1.(i)联立直线与抛物线的表达式成方程组,,解得:,,∴点B′的坐标为(m﹣4,﹣2m+6).当y=0时,有(x﹣m)2﹣2m﹣2=0,解得:x1=m﹣2,x2=m+2,∴点C的坐标为(m+2,0).过点C作CD∥y轴,交直线A′B′于点D,如图所示.当x=m+2时,y=﹣2x﹣2=﹣2m﹣4﹣2,∴点D的坐标为(m+2,﹣2m﹣4﹣2),∴CD=2m+2+4.∴S△A′B′C =S△B′CD﹣S△A′CD=CD•[m+2﹣(m﹣4)]﹣CD•(m+2﹣m)=2CD=2(2m+2+4)=60.设t=,则有t2+2t﹣15=0,解得:t1=﹣5(舍去),t2=3,∴m=8,∴点A′的坐标为(8,﹣18),∴AA′==2.(ii)∵A′(m,﹣2m﹣2),B′(m﹣4,﹣2m+6),C(m+2,0),∴A′B′2=(m﹣4﹣m)2+[﹣2m+6﹣(﹣2m﹣2)]2=80,A′C2=(m+2﹣m)2+[0﹣(﹣2m﹣2)]2=4m2+12m+8,B′C2=[m+2﹣(m﹣4)]2+[0﹣(﹣2m+6)]2=4m2﹣20m+56+16.当∠A′B′C=90°时,有A′C2=A′B′2+B′C2,即4m2+12m+8=80+4m2﹣20m+56+16,整理得:32m﹣128﹣16=0.设a=,则有2a2﹣a﹣10=0,解得:a1=﹣2(舍去),a2=,∴m=,∴点A′的坐标为(,﹣);当∠B′A′C=90°时,有B′C2=A′B′2+A′C2,即4m2﹣20m+56+16=80+4m2+12m+8,整理得:32m+32﹣16=0.设a=,则有2a2﹣a=0,解得:a3=0(舍去),a4=,∴m=﹣,∴点A′的坐标为(﹣,﹣).综上所述:在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,点A′的坐标为(,﹣)或(﹣,﹣).。
2017武侯区二诊数学试卷答案
则∠CAC ′的度数为
.
答 案 90∘
解析
因为 ≌ ,则 ,又因为 ,故 . △ △ BCA
B′AC ′
∠BAC = ∠B′AC ′
∠BAC + ∠C AB′ = 90∘
∠B′AC ′ + ∠C AB′ = 90∘
8/ 13. 如图,点A是反比例函数y = k 图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC 的面积 x
2a
2×2
C. 直线x = −3
D. 直线x = −1
显示试题来源
编辑
co ⌢
10. 如图,⊙O的直径AB = 6,点C在⊙O上,连接AC ,OC ,若∠A = 35∘,则BC的长为( ).
A. π
2
B. 7π
3
C. 7π
6
D. 2π
填空题(每小题4分,共20分) 解答题(共30分)
答案 C
解析
,则 ,选 . ∠C OB = 2∠C AB = 70∘ = 7π
(2)
若轮船从A港到B港的航行时间为4小时,求轮船航行的平均速度(结果保留根号,参考数据:
sin
∘ 25
≈
, 21
50
, ) ∘
9
cos 25 ≈
∘
7
tan 25 ≈
10
15
答案
. 30√3 + 14
4
解析
, , AD = AP × cos 30∘ = 30√3 AB = 30√3 + 14
平均速度v = 30√3 + . 14
目录
A卷(共100分) 选择题(每小题3分,共30分) 填空题(每小题4分,共16分) 解答下列各题(满分54分) B卷(共50分)
2017年四川省成都市武侯区中考数学二诊试卷
2017年四川省成都市武侯区中考数学二诊试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列各数中,为无理数的是()A.5B.C.D.3.62.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.正方形C.平行四边形D.正五边形3.(3分)刚刚过去的2017年春运总里程达到12亿千米,约等于地球到太阳距离的8倍,用科学记数法表示12亿为()A.1.2×109B.1.2×108C.12×109D.12×108 4.(3分)如图,AB∥CD,直线l交AB于点E,交CD于F点,若∠1=70°,则∠2的度数为()A.20°B.70°C.110°D.160°5.(3分)下列计算正确的是()A.a2+a2=a4B.2x•3x2=6x3C.(﹣a2b)2=a4b D.(x+3)2=x2+96.(3分)将直线y=2x+3向下平移4个单位长度,得到的直线的函数表达式是()A.y=2x﹣1B.y=2x+1C.y=﹣4x+3D.y=2x+77.(3分)如果a+b=3,则代数式÷的值为()A.B.C.3D.68.(3分)如图,在菱形ABCD中,AB=12,点E为AD上一点,BE交AC于点F,若=,则AE的长为()A.3B.4C.5D.69.(3分)二次函数y=2x2+4x﹣3的图象的对称轴为()A.直线x=2B.直线x=4C.直线x=﹣3D.直线x=﹣1 10.(3分)如图,⊙O的直径AB=6,点C在⊙O上,连接AC,OC,若∠A=35°,则的长为()A.πB.πC.πD.2π二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)函数y=中,自变量x的取值范围为.12.(4分)如图,△ABC的顶点A,B都在格点上,将△ABC绕点A顺时针旋转得到相应的△AB′C′,且点B的对应点B′也在格点上,则∠CAC′的度数为.13.(4分)如图,点P在反比例函数y=(x<0)的图象上,过P作x轴,y轴的垂线,垂足分别为点A,B,已知矩形PAOB的面积为3,则k=.14.(4分)位于武侯区“中国女鞋之都”的某制鞋企业为了了解初中学生穿鞋的尺码情况,选择对某校的40名女生进行了调查,结果如下表所示,那么在平均数、中位数、众数三个统计量中,该制鞋企业最感兴趣的统计量是,该统计量的数值是码.333435363738尺码(单位:码)人数2881462三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:()2+cos60°﹣+(3.14﹣π)0(2)已知关于x的一元二次方程2x2+kx+1=0的一个根为1,求k的值和该方程的另一个根.16.(6分)解不等式组,并把解集在所给数轴上表示出来.17.(8分)“工匠精神”一词被写入去年的政府工作报告,全国人大代表曾呼吁孩子从小就要养成劳动习惯,培育“工匠精神”,“五•一”劳动节即将到来,武侯区某校为了了解学生做家务的情况,对学校部分学生进行了随机问卷调查,并将调查结果绘制成如下所示的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)填空:被调查的学生共有名;(2)请补全条形统计图,若该校共有1000名学生,试估计该校学生做家务情况是“坚持做”和“经常做”的共有多少名?18.(8分)如图,一艘轮船从A港出发沿射线AB方形开往B港,在A港测得灯塔P在北偏东60°方向上,在B港测得灯塔P在北偏西25°方向上,已知AP=60海里,过P作PD⊥AB于点D.(1)求灯塔P到轮船航线的距离PD的长;(2)若轮船从A港到B港的航行时间为4小时,求轮船航行的平均速度(结果保留根号,参考数据:sin25°≈,cos25°,tan25°≈)19.(10分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与反比例函数y=(x>0)的图象相交于点A(a,5).(1)求反比例函数的表达式;(2)点B在反比例函数的图象上,过B作BC∥x轴,交y轴于点C,连接AB,AC,且AB=AC,求点B的坐标及△AOC的面积.20.(10分)如图,CD为⊙O的直径,直线AB与⊙O相切于点D,过C作CA⊥CB,分别交直线AB于点A和B,CA交⊙O于点E,连接DE,且AE=CD.(1)如图1,求证:△AED≌△CDB;(2)如图2,连接BE分别交CD和⊙O于点F,G,连接CG,DG.i)试探究线段DG与BF之间满足的等量关系,并说明理由.ii)若DG=,求⊙O的周长(结果保留π)四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)若===,且2b+3d﹣f≠0,那么=.22.(4分)在一个不透明的盒子中装有x颗白色棋子和y颗黑色棋子,它们除颜色外完全相同,现从该盒子总随机取出一颗棋子,取得白色棋子的概率是,将取出的棋子放回,再往该盒子中放进6颗同样的黑色棋子,此时从盒子中随机取出一颗棋子,取得白色棋子的概率是,那么原来盒子中的白色棋子有颗.23.(4分)我们知道,同底数幂的乘法法则为:a m•a n=a m+n(其中a≠0,m,n 为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)•h(n),请根据这种新运算填空:(1)若h(1)=,则h(2)=;(2)若h(1)=k(k≠0),那么h(n)•h(2017)=(用含n和k的代数式表示,其中n为正整数)24.(4分)如图,直线y=﹣x+8与双曲线y=相交于A,B两点,与y轴交于点C,点P是线段BC上的动点(点P不与点B,C重合),过P作y轴的平行线,交双曲线于点D,连接CD,若点A的横坐标为﹣1,则△PDC的面积的最大值为.25.(4分)如图,⊙O的直径AB=12,点C,D在⊙O上,连接BC,CD,且BC=CD,若直线CD与直线AB相交于点E,AE=2,则弦BD的长为.五、简答题(本大题共3小题,共30分)26.(8分)小明和小颖在如图所示的四边形场地上,沿边骑自行车进行场地追逐赛(两人只要有一个人回到自己的出发点,则比赛结束).小明从A地出发,沿A→B→C→D→A的路线匀速骑行,速度为8米/秒;小颖从B地出发,沿B→C→D→A→B的路线匀速骑行,速度为6米/秒.已知∠ABC=90°,AB=40米,BC=80米,CD=90米.设骑行时间为t秒,假定他们同时出发且每转一个弯需要额外耗时2秒.(1)填空:当t=秒时,两人第一次到B地的距离相等;(2)试问小明能否在小颖到达D地前追上她?若能,求出此时t的值;若不能,请说明理由.27.(10分)如图,在矩形ABCD中,E为CD上一点,将△ADE沿直线AE翻折,使点D落在BC边上点D′处(1)如图1,求证:△CD′E~△BAD′;(2)如图2,F为AD上一点,且DF=CD′,EF与BD相交于点G,试探究EF与BD的位置关系,并说明理由;(3)设AD′与BD相交于点H,在(2)的条件下,若D′E∥BD,HG=2,求BD的长.28.(12分)如图,在平面直角坐标系xOy中,边长为4的正方形OABC的顶点A在x轴上,顶点C在y轴上,点D是OA的中点,连接CD,过D作DE⊥CD,且DE=CD,以点D为顶点的抛物线刚好经过E点,P为射线CB上一点,过点P作PF⊥CD于点F.(1)求E点坐标及抛物线的表达式;(2)若点P从点C出发,沿射线CB以每秒1个单位长度的速度运动,运动时间为t秒.则当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点Q为抛物线上一点,当点Q在直线PF上,且满足以点D,E,P,Q为顶点的四边形是平行四边形时,求点Q的坐标.2017年四川省成都市武侯区中考数学二诊试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列各数中,为无理数的是()A.5B.C.D.3.6【分析】根据无理数的定义求解即可.【解答】解:5,﹣,3.6是有理数,是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.正方形C.平行四边形D.正五边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)刚刚过去的2017年春运总里程达到12亿千米,约等于地球到太阳距离的8倍,用科学记数法表示12亿为()A.1.2×109B.1.2×108C.12×109D.12×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:12亿=1.2×109.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)如图,AB∥CD,直线l交AB于点E,交CD于F点,若∠1=70°,则∠2的度数为()A.20°B.70°C.110°D.160°【分析】先根据平行线的性质得∠EFD=∠1=70°,然后利用邻补角的定义计算∠2的度数.【解答】解:∵AB∥CD,∴∠EFD=∠1=70°,∵∠2+∠EFD=180°,∴∠2=180°﹣70°=110°.故选:C.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5.(3分)下列计算正确的是()A.a2+a2=a4B.2x•3x2=6x3C.(﹣a2b)2=a4b D.(x+3)2=x2+9【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a2,不符合题意;B、原式=6x3,符合题意;C、原式=a4b2,不符合题意;D、原式=x2+6x+9,不符合题意,故选:B.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6.(3分)将直线y=2x+3向下平移4个单位长度,得到的直线的函数表达式是()A.y=2x﹣1B.y=2x+1C.y=﹣4x+3D.y=2x+7【分析】根据图象的平移规律,可得答案.【解答】解:由题意,得y=2x+3﹣4,化简,得y=2x﹣1,故选:A.【点评】本题考查了一次函数图象与几何变换,熟记图象的平移规律是解题关键,上加下减,左加右减.7.(3分)如果a+b=3,则代数式÷的值为()A.B.C.3D.6【分析】先化简题目中的式子,然后将a+b的值代入即可解答本题.【解答】解:÷==2(a+b),∵a+b=3,∴2(a+b)=6,故选:D.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.8.(3分)如图,在菱形ABCD中,AB=12,点E为AD上一点,BE交AC于点F,若=,则AE的长为()A.3B.4C.5D.6【分析】先证明△AFE∽△BCF,然后利用相似三角形的性质即可求出AE的长度.【解答】解:由于AD∥BC,∴△AEF∽△BCF,∴=,∵AB=BC=12,∴AE=4,故选:B.【点评】本题考查相似三角形的性质与判定,解题的关键是熟练运用相似三角形的性质,本题属于基础题型.9.(3分)二次函数y=2x2+4x﹣3的图象的对称轴为()A.直线x=2B.直线x=4C.直线x=﹣3D.直线x=﹣1【分析】根据配方法,可得答案.【解答】解:配方,得y=2(x+1)2﹣5,图象得对称轴是x=﹣1,故选:D.【点评】本题考查了二次函数的性质,利用配方法得出顶点式解析式是解题关键.10.(3分)如图,⊙O的直径AB=6,点C在⊙O上,连接AC,OC,若∠A=35°,则的长为()A.πB.πC.πD.2π【分析】根据圆周角定理得到∠BOC,然后根据弧长的公式即可得到结论.【解答】解:∵∠A=35°,∴∠BOC=2∠A=70°,∴的长==π故选:C.【点评】本题考查了圆周角定理,弧长的计算,熟记弧长的公式是解题的关键.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)函数y=中,自变量x的取值范围为x≠5.【分析】根据分式的分母不为0回答即可.【解答】解:由分式分母不为0可知;x﹣5≠0.解得:x≠5.故答案为:x≠5.【点评】本题主要考查的是函数自变量的取值范围,明确分式的分母不为0是解题的关键.12.(4分)如图,△ABC的顶点A,B都在格点上,将△ABC绕点A顺时针旋转得到相应的△AB′C′,且点B的对应点B′也在格点上,则∠CA C′的度数为90°.【分析】根据旋转的性质即可得到结论.【解答】解:∵AB=4,∴AB′=AB=4,∵点B的对应点B′也在格点上,∴△BAB′是等腰直角三角形,∴∠BAB′=90°,∴∠CAC′=∠BAB′=90°,故答案为:90°.【点评】本题考查了旋转的性质,熟练掌握旋转的性质是解题的关键.13.(4分)如图,点P在反比例函数y=(x<0)的图象上,过P作x轴,y轴的垂线,垂足分别为点A,B,已知矩形PAOB的面积为3,则k=﹣3.【分析】根据反比例函数k的几何意义可得|k|=﹣3,再根据图象在二、四象限可确定k<0,进而得到解析式.=3,【解答】解:∵S矩形PAOB∴|k|=3,∵图象在二、四象限,∴k<0,∴k=﹣3,故答案为:﹣3.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.14.(4分)位于武侯区“中国女鞋之都”的某制鞋企业为了了解初中学生穿鞋的尺码情况,选择对某校的40名女生进行了调查,结果如下表所示,那么在平均数、中位数、众数三个统计量中,该制鞋企业最感兴趣的统计量是众数,该统计量的数值是36码.333435363738尺码(单位:码)人数2881462【分析】鞋厂最感兴趣的是各种鞋号的鞋的销售量,特别是销售量最多的即这组数据的众数,然后利用众数的定义写出答案即可.【解答】解:由于众数是数据中出现最多的数,故鞋厂最感兴趣的销售量最多的鞋号即这组数据的众数,众数为36.故答案为:众数,36.【点评】本题主要考查了学生对统计量的意义的理解与运用,要求学生对对统计量进行合理的选择和恰当的运用,比较简单.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:()2+cos60°﹣+(3.14﹣π)0(2)已知关于x的一元二次方程2x2+kx+1=0的一个根为1,求k的值和该方程的另一个根.【分析】(1)将()2=10、cos60°=、=2以及(3.14﹣π)0=1代入原式,即可得出结论;(2)将x=1代入原方程,即可求出k值,设方程的另一个根为m,由根与系数的关系,即可得出1×m=,解之即可得出该方程的另一个根.【解答】解:(1)原式=10+﹣2+1=9;(2)将x=1代入原方程,得:2+k+1=0,解得:k=﹣3.设方程的另一个根为m,由根与系数的关系,得:1×m=,解得:m=.∴k的值为﹣3,该方程的另一个根为.【点评】本题考查了一元二次方程的解、根与系数的关系、零指数幂以及特殊角的三角函数值,解题的关键是:(1)牢记a0=1(a≠0);(2)将x=1代入原方程求出k值.16.(6分)解不等式组,并把解集在所给数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式5x﹣2≥3(x﹣1),得:x≥﹣,解不等式x﹣1<5﹣x,得:x<3,将解集表示在数轴上如下:∴不等式组的解集为﹣≤x<3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(8分)“工匠精神”一词被写入去年的政府工作报告,全国人大代表曾呼吁孩子从小就要养成劳动习惯,培育“工匠精神”,“五•一”劳动节即将到来,武侯区某校为了了解学生做家务的情况,对学校部分学生进行了随机问卷调查,并将调查结果绘制成如下所示的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)填空:被调查的学生共有200名;(2)请补全条形统计图,若该校共有1000名学生,试估计该校学生做家务情况是“坚持做”和“经常做”的共有多少名?【分析】(1)根据题意列式计算即可;(2)根据题意即可得到结论.【解答】解:(1)被调查的学生共有60÷30%=200(人);故答案为:200;(2)“经常做”的学生人数=200﹣60﹣40﹣10=90(名);则“坚持做”和“经常做”的共有60+90=150名;1000×=750(名).答:估计该校学生做家务情况是“坚持做”和“经常做”的共有750名.【点评】本题考查条形统计图、扇形统计图等知识.结合生活实际,绘制条形统计图,扇形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.18.(8分)如图,一艘轮船从A港出发沿射线AB方形开往B港,在A港测得灯塔P在北偏东60°方向上,在B港测得灯塔P在北偏西25°方向上,已知AP=60海里,过P作PD⊥AB于点D.(1)求灯塔P到轮船航线的距离PD的长;(2)若轮船从A港到B港的航行时间为4小时,求轮船航行的平均速度(结果保留根号,参考数据:sin25°≈,cos25°,tan25°≈)【分析】(1)在直角△APD中利用三角函数即可直接求得PD的长;(2)利用三角函数求得AD和BD,则AB即可求得,然后利用速度公式求解.【解答】解:(1)在Rt△APD中,PD=AP•sin∠PAD=AP•sin30°=60×=30(海里);(2)在直角△APD中,AD=AP•cos∠PAD=60×=30(海里),在直角△PBD中,∠BPD=25°,则BD=PD•tan∠BPD=30×tan25°≈30×=14,则AB=AD+BD=30+14(海里).则轮船的平均速度是=(海里/时).【点评】本题考查解直角三角形的应用,有一定难度,关键在于运用三角函数关系用AD表示出BD,最终求出AB的长度.19.(10分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与反比例函数y=(x>0)的图象相交于点A(a,5).(1)求反比例函数的表达式;(2)点B在反比例函数的图象上,过B作BC∥x轴,交y轴于点C,连接AB,AC,且AB=AC,求点B的坐标及△AOC的面积.【分析】(1)把A(a,5)代入y=x求出A的坐标,把A的坐标代入y=求出k即可;(2)过A作AD⊥BC于D,求出CD=3,根据等腰三角形的性质求出CD=BD=3,得出B点的横坐标为6,代入解析式求出B点的坐标,即可得出C点的坐标,根据三角形的面积公式求出面积即可.【解答】解:(1)把A(a,5)代入y=x得:5=a,解得:a=3,即A的坐标为(3,5),把A的坐标代入y=得:k=15,即反比例函数的表达式为y=;(2)过A作AD⊥BC于D,∵BC∥x轴,∴AD⊥x轴,∵A(3,5),∴CD=3,∵AC=AB,AD⊥BC,∴CD=BD=3,∴B点的横坐标为6,把x=6代入y=得:y=,即B点的坐标为(6,),C点的坐标为(0,),∵A(3,5),∴△AOC的面积为×3=.【点评】本题考查了一次函数与反比例函数的交点问题,用待定系数法求反比例函数的解析式,能求出各个点的坐标是解此题的关键.20.(10分)如图,CD为⊙O的直径,直线AB与⊙O相切于点D,过C作CA⊥CB,分别交直线AB于点A和B,CA交⊙O于点E,连接DE,且AE=CD.(1)如图1,求证:△AED≌△CDB;(2)如图2,连接BE分别交CD和⊙O于点F,G,连接CG,DG.i)试探究线段DG与BF之间满足的等量关系,并说明理由.ii)若DG=,求⊙O的周长(结果保留π)【分析】(1)由AE=CD,∠AED=∠CDB,∠ADE=∠B,根据AAS即可证明;(2)i)结论:BF=2DG.由△AED≌△CDB,推出DE=DB,推出∠DEB=∠DBE,由∠BDG+∠CDG=90°,∠CDG+∠DCG=90°,推出∠BDG=∠DCG=∠DEB=∠DBG,DG=GB,由∠DFG+∠DBF=90°,∠FDG+∠BDG=90°,推出∠GFD=∠GDF,推出DG=GF=GB,即可解决问题;ii)如图2中,AD=BC=y,DE=DB=z,由DE∥BC,可得=,即=,整理得y2﹣yz﹣z2=0,可得y=z或y=z(舍弃),由DE∥BC,推出===,设DF=2k,CF=(1+)k,根据EF•FG=DF•C F,可得(﹣)•=2k•(1+)k,求出k即可解决问题.【解答】解:(1)如图1中,∵CD是直径,∴∠CED=90°,∵AB是⊙O的切线,∴CD⊥AB,∴∠AED=∠CDB=90°,∵∠ACB=∠AED=90°,∴DE∥BC,∴∠ADE=∠B,∵AE=CD,∴△AED≌△CDB.(2)i)如图2中,结论:BF=2DG.理由如下:∵△AED≌△CDB,∴DE=DB,∴∠DEB=∠DBE,∵∠BDG+∠CDG=90°,∠CDG+∠DCG=90°,∴∠BDG=∠DCG=∠DEB=∠DBG,∴DG=GB,∵∠DFG+∠DBF=90°,∠FDG+∠BDG=90°,∴∠GFD=∠GDF,∴DG=GF=GB,∴BF=2DG.ii)如图2中,设AD=BC=y,DE=DB=z,∵DE∥BC,∴=,∴=整理得y2﹣yz﹣z2=0,∴y=z或y=z(舍弃),∵DE∥BC,∴===,∴=,∴EF=﹣,设DF=2k,CF=(1+)k,∵EF•FG=DF•CF,∴(﹣)•=2k•(1+)k,∴k=,∴CD=DF+CF=+1,∴OC=,⊙O的周长为(+1)π.【点评】本题考查圆综合题、切线的性质、全等三角形的判定和性质、相似三角形的判定和性质、平行线分线段成比例定理,角平分线的性质定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)若===,且2b+3d﹣f≠0,那么=.【分析】先根据比的性质整理,再根据等比定理解答即可.【解答】解:∵===,∴===,∵2b+3d﹣f≠0,∴=.故答案为:.【点评】本题考查了比例的性质,主要利用了等比性质,熟记性质是解题的关键.22.(4分)在一个不透明的盒子中装有x颗白色棋子和y颗黑色棋子,它们除颜色外完全相同,现从该盒子总随机取出一颗棋子,取得白色棋子的概率是,将取出的棋子放回,再往该盒子中放进6颗同样的黑色棋子,此时从盒子中随机取出一颗棋子,取得白色棋子的概率是,那么原来盒子中的白色棋子有4颗.【分析】根据概率公式列出有关x、y的方程组,求得x、y的值即可.【解答】解:根据题意得:,解得:,所以原来盒子中的白色棋子有4颗.故答案为:4.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.23.(4分)我们知道,同底数幂的乘法法则为:a m•a n=a m+n(其中a≠0,m,n 为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)•h(n),请根据这种新运算填空:(1)若h(1)=,则h(2)=;(2)若h(1)=k(k≠0),那么h(n)•h(2017)=k n+2017(用含n和k的代数式表示,其中n为正整数)【分析】(1)将h(2)变形为h(1+1),再根据定义新运算:h(m+n)=h(m)•h(n)计算即可求解;(2)根据h(1)=k(k≠0),以及定义新运算:h(m+n)=h(m)•h(n)将原式变形为k n•k2017,再根据同底数幂的乘法法则计算即可求解.【解答】解:(1)∵h(1)=,h(m+n)=h(m)•h(n),∴h(2)=h(1+1)=×=;(2)∵h(1)=k(k≠0),h(m+n)=h(m)•h(n),∴h(n)•h(2017)=k n•k2017=k n+2017.故答案为:;k n+2017.【点评】考查了同底数幂的乘法,定义新运算,熟练掌握运算性质和法则是解题的关键.24.(4分)如图,直线y=﹣x+8与双曲线y=相交于A,B两点,与y轴交于点C,点P是线段BC上的动点(点P不与点B,C重合),过P作y轴的平行线,交双曲线于点D,连接CD,若点A的横坐标为﹣1,则△PDC的面积的最大值为.【分析】首先求得反比例函数的解析式,然后设P的横坐标是m,利用m表示出△PDC的面积,利用函数的性质求解.【解答】解:把x=﹣1代入y=﹣x+8,得y=1+8=9,则A的坐标是(﹣1,9).把(﹣1,9)代入y=得k=﹣9.设P的横坐标是m,把x=m代入y=﹣x+8,得y=﹣m+8,则P的坐标是(m,﹣m+8).把x=m代入y=﹣得y=﹣,则PD=﹣m+8+.则△PDC的面积y=(﹣m+8+)m,即y=﹣m2+4m+=﹣(m﹣4)2+则y的最大值是.故答案是:.【点评】本题考查了待定系数法求函数解析式以及二次函数的性质,正确求得二次函数解析式是关键.25.(4分)如图,⊙O的直径AB=12,点C,D在⊙O上,连接BC,CD,且BC=CD,若直线CD与直线AB相交于点E,AE=2,则弦BD的长为或3.【分析】分两种情形分别画出图形求解即可解决问题;【解答】解:①当BD、BC在直径AB的同侧时.连接OC、AD.∵=,∴OC⊥BD,∵AB是直径,∴∠ADB=∠OFB=90°,∴AD∥OC,∴=,∴=,∴AD=,∴BD==.②当BD,CD在直径AB两侧时,连接AD,CO,CO的延长线交BD与F.同法可证:AD∥OC,∴=,∴=,∴AD=3,∴BD==3,故答案为或3.【点评】本题考查圆周角定理、垂径定理、勾股定理、平行线分线段成比例定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.五、简答题(本大题共3小题,共30分)26.(8分)小明和小颖在如图所示的四边形场地上,沿边骑自行车进行场地追逐赛(两人只要有一个人回到自己的出发点,则比赛结束).小明从A地出发,沿A→B→C→D→A的路线匀速骑行,速度为8米/秒;小颖从B地出发,沿B→C→D→A→B的路线匀速骑行,速度为6米/秒.已知∠ABC=90°,AB=40米,BC=80米,CD=90米.设骑行时间为t秒,假定他们同时出发且每转一个弯需要额外耗时2秒.(1)填空:当t=秒时,两人第一次到B地的距离相等;(2)试问小明能否在小颖到达D地前追上她?若能,求出此时t的值;若不能,请说明理由.【分析】(1)由题意列出方程即可解决问题.(2)先判断小明在BC还是CD边上追上小颖,再用骑车的路程的关系建立方程,求解即可.【解答】解:(1)由题意得,40﹣8t=6t,∴t=,∴当t=秒时,两人第一次到B地的距离相等;故答案为:;(2)当小颖到点C时,所用时间为80÷6=秒,此时,小明也骑了秒,而小明到点B时,用了40÷8=5秒,剩余﹣5﹣2=,×8=米<80米,所以小明不可能在BC边上追上小颖,当小颖到达D点时,所用时间为(80+90)÷6+2=+2=秒,小明在AB边上用时:40÷8=5秒,小明在BC边上用时:80÷8=10秒,刚好到到点C时,一共用时:5+2+10=17秒,小明在CD边上用时:90÷8=11.25秒,所以,小明到达点D时,共用:5+10+2+2+11.25=30.25秒<秒∴能在到达D地前追上;根据题意得,8(t﹣2×2)=6(t﹣2)+40,∴t=30秒,【点评】本题考查一元一次方程的应用,解题的关键是学会构建方程解决问题,熟练行程问题中的等量关系,属于基础题.27.(10分)如图,在矩形ABCD中,E为CD上一点,将△ADE沿直线AE翻折,使点D落在BC边上点D′处(1)如图1,求证:△CD′E~△BAD′;(2)如图2,F为AD上一点,且DF=CD′,EF与BD相交于点G,试探究EF与BD的位置关系,并说明理由;(3)设AD′与BD相交于点H,在(2)的条件下,若D′E∥BD,HG=2,求BD的长.【分析】(1)利用同角的余角相等,证明∠AD′B=∠ED′C,即可解决问题.(2)结论:EF⊥BD.只要证明△EDF∽△DAB,推出∠FED=∠ADB,由∠ADB+∠BDC=90°,推出∠FED+∠BDC=90°,即∠DGE=90°.(3)首先证明四边形HGED′是矩形,推出HG=ED′=DE=2,设EC=y,CD′=x,易知△DGE≌△ECD′,可得DG=CE=y,EG=CD′=HD′=x,由△BHD′∽△D′CE,可得=,即=,推出BH=,推出BD=BH+GH+DG=y+2+,由△DFE ∽△CED′,可得=,推出=,即x2=2y,由x2+y2=4,可得y2+2y﹣4=0,就发现即可解决问题.【解答】(1)证明:如图1中,∵四边形ABCD是矩形,∴∠B=∠C=90°,∵∠AD′E=∠D=90°,∴∠AD′B+∠ED′C=90°,∠ED′C+∠D′EC=90°,∴∠AD′B=∠D′EC,∴△CD′E~△BAD′.(2)解:结论:EF⊥BD,理由如下:如图2中,∵△CD′E~△BAD′,∴=,∵CD′=DF,AD′=AD,D′E=DE∴=,∵∠EDF=∠BAD=90°,∴△EDF∽△DAB,∴∠FED=∠ADB,∵∠ADB+∠BDC=90°,∴∠FED+∠BDC=90°,∴∠DGE=90°,∴EF⊥BD.(3)解:∵D′E∥BD,AD′⊥D′E,∴BD⊥AD′,∴∠GHD′=∠HD′E=∠HGE=90°,∴四边形HGED′是矩形,∴HG=ED′=DE=2,设EC=y,CD′=x,易知△DGE≌△ECD′,∴DG=CE=y,EG=CD′=HD′=x,∵△BHD′∽△D′CE,∴=,∴=,∴BH=,∴BD=BH+GH+DG=y+2+,∵△DFE∽△CED′,∴=,∴=,∴x2=2y,∵x2+y2=4,∴y2+2y﹣4=0,∴y=﹣1+或﹣1﹣(舍弃),∴BD=﹣1++2+2=3+.【点评】本题考查四边形综合题、矩形的性质、翻折变换、相似三角形的判定和性质,二元二次方程组、勾股定理等知识,解题时根据是正确寻找相似三角形解决问题,学会利用此时构建方程组解决问题,属于中考压轴题.28.(12分)如图,在平面直角坐标系xOy中,边长为4的正方形OABC的顶点A在x轴上,顶点C在y轴上,点D是OA的中点,连接CD,过D作DE⊥CD,且DE=CD,以点D为顶点的抛物线刚好经过E点,P为射线CB上一点,过点P作PF⊥CD于点F.(1)求E点坐标及抛物线的表达式;(2)若点P从点C出发,沿射线CB以每秒1个单位长度的速度运动,运动时间为t秒.则当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点Q为抛物线上一点,当点Q在直线PF上,且满足以点D,E,P,Q为顶点的四边形是平行四边形时,求点Q的坐标.【分析】(1)过点E作EG⊥x轴于G点.先证明△ODC≌△GED,从而得到∴EG=OD=2,DG=OC=4,故此可得到点E的坐标,然后设抛物线的解析式为y=a (x﹣2)2,最后将点E的坐标代入抛物线的解析式可求得a的值;(2)①当△DFP∽△COD,则∠PDF=∠DCO,依据平行线的判定定理可知PD∥OC,然后可证明四边形PDOC是矩形,则PC=OD=2,故此可求得t的值;②当△PFD∽△COD,可证明∠PCF=∠PDF,则PC=PD.设P(t,4),则CP=t,DP=,然后由PC=PD列方程求解即可;(3)当点Q在点P的左侧时,设点P的坐标为(t,0),点Q的坐标为(x,y),依据平分四边形对角线互相平分的性质和线段的中点坐标公式可求得y=2,x=t﹣4,从而得到点Q的坐标,然后将点Q的坐标代入抛物线的解析式求解即可;当点Q在点P的右侧时,同理可求得点Q的坐标.【解答】解:(1)如图1,过点E作EG⊥x轴于G点.∵四边形OABC是边长为4的正方形,D是OA的中点,∴OA=OC=4,OD=2,∠AOC=∠DGE=90°.∵∠CDE=90°,∴∠ODC+∠GDE=90°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省成都市武侯区中考数学二诊试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.在实数,6,﹣,2.5中,无理数是()A.B.6 C.﹣D.2.52.如图,其左视图是矩形的几何体是()A. B.C.D.3.成都市元宵节灯展参观人数约为47万人,将47万用科学记数法表示为4.7×10n,那么n的值为()A.3 B.4 C.5 D.64.下列运算正确的是()A.x4+x4=x8B.(x﹣y)2=x2﹣y2C.x3•x4=x7D.(2x2)3=2x65.在下面四个图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个6.计算3﹣2的结果正确的是()A.B.﹣C.9 D.﹣97.3月,成都市某区一周天气质量报告中某项污染指标的数据是:60,60,100,90,90,70,90,则下列关于这组数据表述正确的是()A.众数是60 B.中位数是100 C.平均数是78 D.极差是408.关于x的一元二次方程x2+3x=0的根的说法正确的是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根9.如图,正比例函数y=﹣x与反比例函数y=﹣的图象相交于A、B两点,分别过A、B 两点作y轴的垂线,垂足分别为C、D,连接AD,BC,则四边形ACBD的面积为()A.2 B.4 C.6 D.810.如图,在扇形AOB中,AC为弦,∠AOB=140°,∠CAO=60°,OA=6,则的长为()A.πB.πC.2πD.2π二、填空题(本大题共4个小题,每小题4分,共16分)11.代数式在实数范围内有意义,则x的取值范围是.12.分解因式:2x2﹣8x+8=.13.二次函数y=3x2﹣6x+2的图象的对称轴为,顶点坐标为.14.如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,AC=200.4米,BD=100米,∠α=30°,∠β=70°,则AE的长度约为米.(参考数据:sin70≈0.94,cos70°≈0.34,tan70°≈2.25).三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算: +(﹣1)2﹣4cos30°﹣||(2)解不等式组,并将它的解集在下面的数轴上表示出来.16.(6分)先化简,再求值:(1﹣)÷,其中a=.17.(8分)在如图所示的平面直角坐标系中,△ABC的三个顶点都在小正方形的顶点处,请结合图完成下列各题:(1)填空:tan∠ABC=;AB=(结果保留根号).(2)将△ABC绕原点O旋转180°,画出旋转对应的△A′B′C′,并求直线A′C′的函数表达式.18.(8分)如图,在菱形ABCD中,E、F分别是AB和BC上的点,且BE=BF.(1)求证:△ADE≌△CDF;(2)若∠A=40°,∠DEF=65°,求∠DFC的度数.19.(10分)全面二孩政策定于1月1日正式实施,武侯区某年级组队该年级部分学生进行了随机问卷调查,其中一个问题是“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有300名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“非常愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“非常满意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.20.(10分)如图1,△ABC内接于⊙O,∠BAC的平分线AD交⊙O于点D,交BC于点E,过点D作DF∥BC,交AB的延长线于点F.(1)求证:△BDE∽∠ADB;(2)试判断直线DF与⊙O的位置关系,并说明理由;(3)如图2,条件不变,若BC恰好是⊙O的直径,且AB=6,AC=8,求DF的长.四、填空题21.若实数m满足=m+1,且0<m<,则m的值为.22.若关于x的分式方程=﹣有增根,则k的值为.23.在平面直角坐标系中,横坐标,纵坐标都为正数的点称为整点,正方形边长的整点称为边整点,如图,第一个正方形有4个边整点,第二个正方形有8个边整点,第三个正方形有12个边整点,…,按此规律继续作下去,若从内向外共作了5个这样的正方形,那么其边整点的个数共有个,这些边整点落在函数y=的图象上的概率是.24.如图1,有一张矩形纸片ABCD,已知AB=10,AD=12,现将纸片进行如下操作:现将纸片沿折痕BF进行折叠,使点A落在BC边上的点E处,点F在AD上(如图2);然后将纸片沿折痕DH进行第二次折叠,使点C落在第一次的折痕BF上的点G处,点H在BC 上(如图3),给出四个结论:①AF的长为10;②△BGH的周长为18;③=;④GH的长为5,其中正确的结论有.(写出所有正确结论的番号)25.如图,线段AB=16,以AB为直径的半圆上有一点C,连接BC并延长到点D,使DC=2BC,连接OD、AC交于点E,当∠B=2∠D时,线段OE的长为.五、解答题(本大题共3个小题,共30分)26.(8分)成都地铁规划到将通车13条线路,近几年正是成都地铁加紧建设和密集开通的几年,市场对建材的需求量有所提高,根据市场调查分析可预测:水泥生产销售后所获得的利润y1(万元)与资金量x(万元)满足正比例关系y1=20x;钢材生产销售的后所获得的利润y2(万元)与资金量x(万元)满足函数关系的图象如图所示(其中OA是抛物线的一部分,A为抛物线的顶点,AB∥x轴).(1)直接写出当0<x<30及x>30时,y2与x之间的函数关系式;(2)某建材经销公司计划100万元用于生产销售水泥和钢材两种材料,若设钢材部分的资金量为t(万元),生长销售完这两种材料后获得的总利润为W(万元).①求W与t之间的函数关系式;②若要求钢材部分的资金量不得少于45万元,那么当钢材部分的资金量为多少万元时,获得的总利润最大?最大总利润是多少?27.(10分)如图,在矩形ABCD中,P为AD上一点,连接BP,CP,过C作CE⊥BP 于点E,连接ED交PC于点F.(1)求证:△ABP∽△ECB;(2)若点E恰好为BP的中点,且AB=3,AP=k(0<k<3).①求的值(用含k的代数式表示);②若M、N分别为PC,EC上的任意两点,连接NF,NM,当k=时,求NF+NM的最小值.28.(12分)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣10ax+16a(a ≠0)交x轴于A、B两点,抛物线的顶点为D,对称轴与x轴交于点H,且AB=2DH.(1)求a的值;(2)点P是对称轴右侧抛物线上的点,连接PD,PQ⊥x轴于点Q,点N是线段PQ上的点,过点N作NF⊥DH于点F,NE⊥PD交直线DH于点E,求线段EF的长;(3)在(2)的条件下,连接DN、DQ、PB,当DN=2QN(NQ>3),2∠NDQ+∠DNQ=90°时,作NC⊥PB交对称轴左侧的抛物线于点C,求点C的坐标.四川省成都市武侯区中考数学二诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.在实数,6,﹣,2.5中,无理数是()A.B.6 C.﹣D.2.5【考点】无理数.【分析】根据无理数的概念及其三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项解答即可.【解答】解:在实数,6,﹣,2.5中,有理数为6,﹣,2.5,无理数为,故选A.【点评】本题考查了无理数的概念,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.如图,其左视图是矩形的几何体是()A. B.C.D.【考点】简单几何体的三视图.【分析】直接利用已知几何体分别得出其左视图即可.【解答】解:A、其左视图为三角形,故此选项错误;B、其左视图为矩形,故此选项正确;C、其左视图为三角形,故此选项错误;D、其左视图为圆,故此选项错误.故选:B.【点评】此题主要考查了简单几何体的三视图,正确掌握左视图的定义是解题关键.3.成都市元宵节灯展参观人数约为47万人,将47万用科学记数法表示为4.7×10n,那么n的值为()A.3 B.4 C.5 D.6【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将470000用科学记数法表示为:4.7×105,所以n=5.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列运算正确的是()A.x4+x4=x8B.(x﹣y)2=x2﹣y2C.x3•x4=x7D.(2x2)3=2x6【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.【分析】直接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘法运算法则、完全平方公式分别化简求出答案.【解答】解:A、x4+x4=2x4,故此选项错误;B、(x﹣y)2=x2﹣2xy+y2,故此选项错误;C、x3•x4=x7,故此选项正确;D、(2x2)3=8x6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘法运算、完全平方公式等知识,熟练掌握相关法则是解题关键.5.在下面四个图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【考点】中心对称图形;轴对称图形.【分析】直接利用中心对称图形以及轴对称图形的定义分别分析得出答案.【解答】解:圆既是轴对称图形又是中心对称图形,故正确;等腰三角形是轴对称图形不是中心对称图形,故错误;正方形既是轴对称图形又是中心对称图形,故正确;正六边形既是轴对称图形又是中心对称图形,故正确;故选:C.【点评】此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.6.计算3﹣2的结果正确的是()A.B.﹣C.9 D.﹣9【考点】负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:原式==,故选:A.【点评】本题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数是解题关键.7.3月,成都市某区一周天气质量报告中某项污染指标的数据是:60,60,100,90,90,70,90,则下列关于这组数据表述正确的是()A.众数是60 B.中位数是100 C.平均数是78 D.极差是40【考点】极差;算术平均数;中位数;众数.【分析】根据众数、平均数、中位数、极差的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:60,60,70,90,90,90,100,故众数为90,故A选项错误;则中位数为:90,故B选项错误;平均数为:(60+60+70+90+90+90+100)=80,故C选项错误;极差为:100﹣60=40,故选项D正确.故选:D.【点评】本题考查了众数、平均数和中位数、极差的概念,正确掌握各知识点的概念是解答本题的关键.8.关于x的一元二次方程x2+3x=0的根的说法正确的是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式.【分析】利用一元二次方程根的判别式,得出△>0时,方程有两个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根.确定住a,b,c的值,代入公式判断出△的符号.【解答】解:∵△=b2﹣4ac=3 2﹣4×1×0=9>0,∴方程有两个不相等的实数根,故选D.【点评】此题主要考查了一元二次方程根的判别式,根的判别式的应用在中考中是热点问题,特别注意运算的正确性.9.如图,正比例函数y=﹣x与反比例函数y=﹣的图象相交于A、B两点,分别过A、B 两点作y轴的垂线,垂足分别为C、D,连接AD,BC,则四边形ACBD的面积为()A.2 B.4 C.6 D.8【考点】反比例函数与一次函数的交点问题;一元二次方程的解.【分析】将正比例函数解析式代入反比例函数解析式中可得出关于x的一元二次方程,解方程即可求出点A、B的横坐标,由此即可得出点A、B的坐标,由点A、B的坐标即可得出线段AC、BD、OC、OD的长度,再通过分割图形利用三角形的面积公式即可得出结论.【解答】解:将正比例函数y=﹣x代入到反比例函数y=﹣中得:﹣x=﹣,整理得:x2=2,解得:x=±,∴点A的坐标为(﹣,)、点B的坐标为(,﹣),∴AC=BD=,OC=OD=.=•CD•(AC+BD)=×2×2=4.S四边形ACBD故选B.【点评】本题考查了反比例函数与一次函数的交点问题、一元二次方程的解以及三角形的面积公式,解题的关键是求出点A、B的坐标.本题属于基础题,难度不大,解决该题型题目时,将正比例函数解析式代入反比例函数解析式中,求出交点的坐标是关键.10.如图,在扇形AOB中,AC为弦,∠AOB=140°,∠CAO=60°,OA=6,则的长为()A.πB.πC.2πD.2π【考点】弧长的计算.【分析】首先判定三角形为等边三角形,再利用弧长公式计算.【解答】解:连接OC,∵OA=OC,∠CAO=60°,∴△OAC是等边三角形,∴∠COB=80°,∵OA=6,∴的长,故选B【点评】此题主要考查了学生对等边三角形的判定和弧长公式,关键是得到△OAC是等边三角形.二、填空题(本大题共4个小题,每小题4分,共16分)11.代数式在实数范围内有意义,则x的取值范围是x≥3.【考点】二次根式有意义的条件.【分析】直接利用二次根式的定义得出x﹣3≥0,进而求出答案.【解答】解:∵代数式在实数范围内有意义,∴x﹣3≥0,解得:x≥3,∴x的取值范围是:x≥3.故答案为:x≥3.【点评】此题主要考查了二次根式有意义的条件,正确得出x﹣3的取值范围是解题关键.12.分解因式:2x2﹣8x+8=2(x﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提公因式2,再用完全平方公式进行因式分解即可.【解答】解:原式=2(x2﹣4x+4)=2(x﹣2)2.故答案为2(x﹣2)2.【点评】本题考查了提公因式法与公式法的综合运用,是基础知识要熟练掌握.13.二次函数y=3x2﹣6x+2的图象的对称轴为直线x=1,顶点坐标为(1,﹣1).【考点】二次函数的性质.【分析】直接利用配方法求出函数的对称轴和顶点坐标即可.【解答】解:y=3x2﹣6x+2=3(x2﹣2x)+2=3(x﹣1)2﹣1.故二次函数y=3x2﹣6x+2的图象的对称轴为:直线x=1,顶点坐标为:(1,﹣1).故答案为:直线x=1,(1,﹣1).【点评】此题主要考查了二次函数的性质,正确进行配方运算是解题关键.14.如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,AC=200.4米,BD=100米,∠α=30°,∠β=70°,则AE的长度约为160米.(参考数据:sin70≈0.94,cos70°≈0.34,tan70°≈2.25).【考点】解直角三角形的应用.【分析】在Rt△BFD中,根据正弦的定义求出DF的长,得到CG的长,进一步得到AG,再在Rt△AGE中,根据正弦的定义求出AE的长,即可得到答案.【解答】解:如图,作DF⊥BC,在Rt△BFD中,∵sin∠DBF=,∴DF=100×=50米,∴GC=DF=50米,∴AG=AC﹣GC=200.4﹣50=150.4米,在Rt△AGE中,∵sin∠AEG=,∴AE===160米.故答案为:160.【点评】本题考查的是解直角三角形的应用,掌握锐角三角函数的概念和坡角的概念是解题的关键,解答时注意:正确作出辅助线构造直角三角形准确运用锐角三角函数的概念列出算式.三、解答题(本大题共6个小题,共54分)15.(12分)(•武侯区模拟)(1)计算: +(﹣1)2﹣4cos30°﹣||(2)解不等式组,并将它的解集在下面的数轴上表示出来.【考点】实数的运算;在数轴上表示不等式的解集;解一元一次不等式组;特殊角的三角函数值.【分析】(1)分别利用有理数的乘方运算法则结合特殊角的三角函数值和绝对值的性质、二次根式的性质以及立方根的性质分别化简求出答案;(2)分别解不等式,进而得出不等式组的解集即可.【解答】解:(1)+(﹣1)2﹣4cos30°﹣||=2+1﹣4×﹣3=﹣2;(2)解不等式①得:x≥﹣1,解不等式②得:x<2,故不等式组的解集为:﹣1≤x<2,.【点评】此题主要考查了有理数的乘方运算、特殊角的三角函数值和绝对值的性质、二次根式的性质以及立方根的性质、不等式组的解法等知识,正确把握相关性质是解题关键.16.先化简,再求值:(1﹣)÷,其中a=.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•=,当a=+1时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.在如图所示的平面直角坐标系中,△ABC的三个顶点都在小正方形的顶点处,请结合图完成下列各题:(1)填空:tan∠ABC=;AB=(结果保留根号).(2)将△ABC绕原点O旋转180°,画出旋转对应的△A′B′C′,并求直线A′C′的函数表达式.【考点】作图-旋转变换.【分析】(1)把∠ABC放到格点直角三角形中,利用正切的定义求它的正切值,然后利用勾股定理计算AB的长;(2)利用关于原点对称的点的坐标特征写出A′、B′、C′点的坐标,然后描点即可得到△A′B′C′,再利用待定系数法求直线A′C′的函数表达式.【解答】解:(1)tan∠ABC=;AB==;故答案为,;(2)如图,A′(1,﹣4),B′(3,﹣1),C′(2,﹣1),△A′B′C′为所作;设直线A′C′的函数表达式为y=kx+b,把A′(1,﹣4),C′(2,﹣1)代入得,解得,所以直线A′C′的函数表达式为y=3x﹣7.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了待定系数法求一次函数解析式.18.如图,在菱形ABCD中,E、F分别是AB和BC上的点,且BE=BF.(1)求证:△ADE≌△CDF;(2)若∠A=40°,∠DEF=65°,求∠DFC的度数.【考点】菱形的性质;全等三角形的判定与性质.【分析】(1)根据菱形的性质和全等三角形的判定方法“SAS”即可证明△ADE≌△CDF;(2)根据△ADE≌△CDF,得到DE=DF,再求出∠EDB=∠FDB=25°,根据四边形ABCD 是菱形,∠A=40°,求出∠ADB=70°,∠ADE=45°,再根据三角形的内角和为180°,即可解答.【解答】解:(1)∵四边形ABCD是菱形,∴∠A=∠C,AB=CB,AD=DC,∵BE=BF,∴AE=CF,在△ADE和△CDF中,∴△ADE≌△CDF;(2)∵△ADE≌△CDF,∴DE=DF,∵∠DEF=65°,∴∠EDB=∠FDB=25°,∵四边形ABCD是菱形,∴AB=AD,∵∠A=40°,∴∠ADB=70°,∴∠ADE=70°﹣25°=45°,∴∠DFC=180°﹣40°﹣45°=95°.【点评】本题主要考查菱形的性质,同时综合利用全等三角形的判定方法及等腰三角形的性质,解决本题的关键是熟记菱形的性质.19.(10分)(•武侯区模拟)全面二孩政策定于1月1日正式实施,武侯区某年级组队该年级部分学生进行了随机问卷调查,其中一个问题是“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有300名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“非常愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“非常满意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)用选D的人数除以它所占的百分比即可得到调查的总人数,再用总人数乘以选B所占的百分比得到选B的人数,然后用总人数分别减去选B、C、D的人数得到选A 的人数,再补全条形统计图;(2)利用样本估计总体,用300乘以样本中选A和选B所占的百分比可估计全年级支持的学生数;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图展示所有12种等可能的结果数,再找出选取到两名同学中刚好有这位男同学的结果数,然后根据概率公式计算.【解答】解:(1)20÷50%=40(名),所以本次问卷调查一共调查了40名学生,选B的人数=40×30%=12(人),选A的人数=40﹣12﹣20﹣4=4(人)补全条形统计图为:(2)300×=120,所以估计全年级可能有120名学生支持;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图为:共有12种等可能的结果数,其中选取到两名同学中刚好有这位男同学的结果数为6,所以选取到两名同学中刚好有这位男同学的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.20.(10分)(•武侯区模拟)如图1,△ABC内接于⊙O,∠BAC的平分线AD交⊙O于点D,交BC于点E,过点D作DF∥BC,交AB的延长线于点F.(1)求证:△BDE∽∠ADB;(2)试判断直线DF与⊙O的位置关系,并说明理由;(3)如图2,条件不变,若BC恰好是⊙O的直径,且AB=6,AC=8,求DF的长.【考点】圆的综合题.【分析】(1)由AD平分∠BAC,易得∠BAD=∠CAD=∠CBD,又由∠BDE是公共角,即可证得:△BDE∽∠ADB;(2)首先连接OD,由AD平分∠BAC,可得=,由垂径定理,即可判定OD⊥BC,又由BC∥DF,证得结论;(3)首先过点B作BH⊥AD于点H,连接OD,易证得△BDH∽△BCA,然后由相似三角形的对应边成比例,求得BH的长,继而求得AD的长,然后证得△FDB∽△FAD,又由相似的性质,求得答案.【解答】(1)证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠DAC=∠DBC,∴∠DBC=∠BAD,∵∠BDE=∠ADB,∴△BDE∽∠ADB;(2)相切.理由:如图1,连接OD,∵∠BAD=∠DAC,∴=,∴OD⊥BC,∵DF∥BC,∴OD⊥DF,∴DF与⊙O相切;(3)如图2,过点B作BH⊥AD于点H,连接OD,则∠BHD=90°,∵BC是直径,∴∠BAC=90°,∴∠BHD=∠BAC,∵∠BDH=∠C,∴△BDH∽△BCA,∴=,∵AB=6,AC=8,∴BC==10,∴OB=OD=5,∴BD==5,∴=,∴BH=3,∴DH==4,AH==3,∴AD=AH+DH=7,∵DF与⊙O相切,∴∠FDB=∠FAD,∵∠F=∠F,∴△FDB∽△FAD,∴===,∴AF=DF,BF=DF,∴AB=AF﹣BF=DF﹣DF=6,解得:DF=.【点评】此题属于圆的综合题.考查了切线的判定与性质、圆周角定理、垂径定理、弦切角定理、相似三角形的判定与性质以及勾股定理等知识.注意准确作出辅助线是解此题的关键.四、填空题21.若实数m满足=m+1,且0<m<,则m的值为.【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质化简进而得出关于m的等式即可得出答案.【解答】解:∵=m+1,且0<m<,∴2﹣m=m+1,解得:m=.故答案为:.【点评】此题主要考查了二次根式的性质与化简,正确开平方是解题关键.22.若关于x的分式方程=﹣有增根,则k的值为或﹣.【考点】分式方程的增根.【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到最简公分母为0求出x 的值,代入整式方程求出k的值即可.【解答】解:去分母得:5x﹣5=x+2k﹣6x,由分式方程有增根,得到x(x﹣1)=0,解得:x=0或x=1,把x=0代入整式方程得:k=﹣;把x=1代入整式方程得:k=,则k的值为或﹣.故答案为:或﹣【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.23.在平面直角坐标系中,横坐标,纵坐标都为正数的点称为整点,正方形边长的整点称为边整点,如图,第一个正方形有4个边整点,第二个正方形有8个边整点,第三个正方形有12个边整点,…,按此规律继续作下去,若从内向外共作了5个这样的正方形,那么其边整点的个数共有60个,这些边整点落在函数y=的图象上的概率是.【考点】列表法与树状图法.【分析】利用整点的个数与正方形的序号数的关系可得到第四个正方形有4×4个边整点,第五个正方形有5×4个边整点,则可计算出其边整点的个数为60个,然后根据反比例函数图象上点的坐标特征可确定这些边整点落在函数y=的图象上的个数,再利用概率公式求解.【解答】解:第一个正方形有1×4个边整点,第二个正方形有2×4个边整点,第三个正方形有3×4个边整点,第四个正方形有4×4个边整点,第五个正方形有5×4个边整点,所以其边整点的个数共有4+8+12+16+20=60个,这些边整点落在函数y=的图象上的有(1,4),(4,1),(2,2),(﹣1,﹣4),(﹣4,﹣1),(﹣2,﹣2),所以些边整点落在函数y=的图象上的概率==.故答案为60,.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了解决规律型问题的方法和反比例函数图象上点的坐标特征.24.如图1,有一张矩形纸片ABCD,已知AB=10,AD=12,现将纸片进行如下操作:现将纸片沿折痕BF进行折叠,使点A落在BC边上的点E处,点F在AD上(如图2);然后将纸片沿折痕DH进行第二次折叠,使点C落在第一次的折痕BF上的点G处,点H在BC 上(如图3),给出四个结论:①AF的长为10;②△BGH的周长为18;③=;④GH的长为5,其中正确的结论有①③④.(写出所有正确结论的番号)【考点】四边形综合题.【分析】过G点作MN∥AB,交AD、BC于点M、N,可知四边形ABEF为正方形,可求得AF的长,可判断①,且△BNG和△FMG为等腰三角形,设BN=x,则可表示出GN、MG、MD,利用折叠的性质可得到CD=DG,在Rt△MDG中,利用勾股定理可求得x,再利用△MGD∽△NHG,可求得NH、GH和HC,则可求得BH,容易判断②③④,可得出答案.【解答】解:如图,过点G作MN∥AB,分别交AD、BC于点M、N,∵四边形ABCD为矩形,∴AB=CD=10,BC=AD=12,由折叠可得AB=BE,且∠A=∠ABE=∠BEF=90°,∴四边形ABEF为正方形,∴AF=AB=10,故①正确;∵MN∥AB,∴△BNG和△FMG为等腰直角三角形,且MN=AB=10,设BN=x,则GN=AM=x,MG=MN﹣GN=10﹣x,MD=AD﹣AM=12﹣x,又由折叠的可知DG=DC=10,在Rt△MDG中,由勾股定理可得MD2+MG2=GD2,即(12﹣x)2+(10﹣x)2=102,解得x=4,∴GN=BN=4,MG=6,MD=8,又∠DGH=∠C=∠GMD=90°,∴∠NGH+∠MGD=∠MGD+∠MDG=90°,∴∠NGH=∠MDG,且∠DMG=∠GNH,∴△MGD∽△NHG,∴==,即==,∴NH=3,GH=CH=5,∴BH=BC﹣HC=12﹣5=7,故④正确;又△BNG和△FMG为等腰直角三角形,且BN=4,MG=6,∴BG=4,GF=6,∴△BGF的周长=BG+GH+BH=4+5+7=12+4,==,故②不正确;③正确;综上可知正确的为①③④,故答案为:①③④.【点评】本题为四边形的综合应用,涉及知识点有矩形的性质、正方形的判定和性质、等腰直角三角形的性质、相似三角形的判定和性质、折叠的性质及方程思想等.过G点作AB的平行线,构造等腰直角三角形,利用方程思想在Rt△GMD中得到方程,求得BN的长度是解题的关键.本题考查知识点较多,综合性质较强,难度较大.25.如图,线段AB=16,以AB为直径的半圆上有一点C,连接BC并延长到点D,使DC=2BC,连接OD、AC交于点E,当∠B=2∠D时,线段OE的长为.【考点】相似三角形的判定与性质;圆周角定理.。