数学复习:反比例函数

合集下载

反比例函数复习课教案

反比例函数复习课教案

反比例函数复习课教案第一章:反比例函数的定义及性质1.1 反比例函数的定义引导学生回顾反比例函数的定义:形如y = k/x (k 为常数,k ≠0) 的函数,称为反比例函数。

强调反比例函数中x 和y 成反比例关系,即xy = k。

1.2 反比例函数的性质分析反比例函数的图像特征:反比例函数的图像是一条通过原点的曲线,称为双曲线。

探讨反比例函数的渐近线:当x 趋向于正无穷或负无穷时,y 趋向于0,x 轴和y 轴是反比例函数的渐近线。

讲解反比例函数的单调性:在第一象限和第三象限,反比例函数是减函数;在第二象限和第四象限,反比例函数是增函数。

第二章:反比例函数的图像与几何意义2.1 反比例函数的图像利用图形软件绘制反比例函数的图像,引导学生观察图像的形状和特点。

引导学生理解反比例函数图像的四个象限特点:当k > 0 时,图像位于第一象限和第三象限;当k < 0 时,图像位于第二象限和第四象限。

2.2 反比例函数的几何意义解释反比例函数表示的是点(x, y) 在坐标平面上的分布情况,且这些点满足xy = k。

引导学生思考反比例函数与面积的关系:反比例函数图像与坐标轴围成的封闭区域的面积等于k 的绝对值。

第三章:反比例函数的性质与应用3.1 反比例函数的性质引导学生利用反比例函数的性质解决问题,如判断两个函数是否为反比例函数、确定反比例函数的单调区间等。

3.2 反比例函数的应用举例说明反比例函数在实际问题中的应用,如物理学中的电流与电压的关系、化学中的浓度与体积的关系等。

引导学生运用反比例函数解决实际问题,培养学生的数学应用能力。

第四章:反比例函数的运算4.1 反比例函数的基本运算复习反比例函数的基本运算规则,如反比例函数的加减乘除、乘积和商的运算。

4.2 反比例函数的复合运算讲解反比例函数的复合运算,如反比例函数与一次函数、二次函数的复合运算。

引导学生运用反比例函数解决复合运算问题,提高学生的数学运算能力。

初三数学反比例函数知识点归纳-复习必备打印背熟

初三数学反比例函数知识点归纳-复习必备打印背熟

反比例函数是什么?反比例函数相关知识1:反比例函数是什么?反比例函数的定义域和值域因为x在分母上,所以x≠0,即自变量X的取值范围为非零实数。

而且常数k≠0,因此y≠0,即因变量y的`取值范围为非零实数。

反比例函数的图像及其性质形状:反比例函数的图象是两条双曲线,每一条曲线都无限向X轴Y轴延伸但不与坐标轴相交。

增减性:当k>0时,双曲线的两支分别位于第一、三象限,在每个象限内y随x的增大而减小;当k<0时,双曲线的两支分别位于第二、四象限,在每个象限内y随x的增大而增大。

对称性:反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x和y=-x,对称中心是坐标原点。

2:反比例函数知识点1、反比例函数的表达式X是自变量,Y是X的函数y=k/x=k?1/xxy=ky=k?x^(-1)(即:y等于x的负一次方,此处X必须为一次方)y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n2、函数式中自变量取值的范围①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。

解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k?1/xxy=ky=k?x^(-1)y=kx(k为常数(k≠0),x不等于0)3、反比例函数图象反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

4、反比例函数中k的几何意义是什么?有哪些应用?过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值_y的.绝对值=(x_y)的绝对值=|k|研究函数问题要透视函数的本质特征。

反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM?PN=|y|?|x|=|xy|=|k|。

人教版数学九年级下册反比例函数专题复习

人教版数学九年级下册反比例函数专题复习

的解析式为
思维点拨
y
平行线间距离处处相等 同底Box
4.如图,点A是反比例函数y= (x<0)图象上的一点,过点A作▱ABCD,使点B,C 在x轴上,点D在y轴上,则▱ABCD的面积为 .
6.如图,点A在双曲线 上,点B在双曲线 (k≠0)上,AB∥x轴,交y轴于点C. 若AB=2AC,则k的值为 .
P A'
D
①② ③

区区 区

域域 域

拓展延伸
变式:如图,在直角坐标系xoy中,一次函数y=
k1x+b的图象与反比例函数 交于A(1,4)、B(3,m)两点。
的图象
(1)求一次函数的解析式;
(2)根据图象直接写出
(3)求△AOB的面积 (4)在x轴上找一点P,使PA+PB最短,求点P的坐 标.
知识点四 反比例函数的实际应用 例5
C
知识点五
反比例函数与一次函数的综合运用
图像共存问题
例6. (永州中考)函数 y=x+k与
中的图象可能是(B )
在同一条直角坐标系
A
B
C
D
比较函数值
例7、观察图象,直接写出关于x的不等式
的解集______________
y
(-2,4)
0
x
(4,-1)
① ②③ ④ 区 区区 区 域 域域 域
三角形面积
例3.如图,在平面直角坐标系中,A为y轴正半轴上一点,过A作x轴
的平行线,交函数
的图象于B,交函数

图象于C,过C作y轴的平行线交x轴于D.四边形BODC的面积7


链接中考
例4、如图:点A是反比例函数

中考数学:反比例函数复习

中考数学:反比例函数复习

y P(m,n) o A x
SOAP
1 1 1 OA AP | m | | n | | k | 2 2 2
(2)过P分别作x轴、y轴的垂线,垂足 分别为A、B,则有:
y
B
P(m,n)
o
A
x
S矩形OAPB =OA AP= mn k
(3)设P(m,n)关于原点的对称点是P’(-m,-n), 过P作x轴的垂线与过P作y轴的垂线交于点A,则 有:
(12安徽12分)甲、乙两家商场进行促销活动,甲商 场采用“满200减100”的促销方式,即购买商品的总 金额满200元但不足400元,少付100元;…,乙商 场按顾客购买商品的总金额打6折促销。 (2)若顾客在甲商场购买商品的总金额为x(400≤x <600)元,优惠后得到商家的优惠率为p(p=优惠 金额/购买商品的总金额),写出p与x之间的函数关 系式,并说明p随x的变化情况;
x x x
A B C D
k1>k2>k3 k3>k2>k1 k2>k1>k3 k3>k1>k2
k 如图,A、B是双曲线 y x (k 0) ,A、B两点
的横坐标分别为1、2,线段AB的延长线交x 轴于点C,若△AOC的面积为6,求k的值。
y A
B o
c
x
(12攀枝花,8分)某校根据《学校卫生工作条例》, 为预防“手足口病”,对教室进行“薰药消毒”。已 知药 物在燃烧机释放过程中,室内空气中每立方米含药量 (毫克)与燃烧时间(分钟)之间的关系如图所示 (即图中线段OA和双曲线在A点及其右侧的部分), 根据图象所示信息,解答下列问题: (1)写出从药物释放开始,与之间的函数关系式及 自变量的取值范围;

中考数学考点专题复习课件反比例函数的图象和性质

中考数学考点专题复习课件反比例函数的图象和性质

解:(1)过点 D 作 x 轴的垂线,垂足为 F,∵点 D 的坐标为(4,3),∴OF
=4,DF=3,∴OD=5,∴AD=5,∴点 A 坐标为(4,8),∴k=xy=4×8
=32,∴k=32 (2)将菱形 ABCD 沿 x 轴正方向平移,使得点 D 落在函数 y=3x2(x>0)的
图象 D′点处,过点 D′做 x 轴的垂线,垂足为 F′.∵DF=3,∴D′F′=3,∴ 点 D′的纵坐标为 3,∵点 D′在 y=3x2的图象上,∴3=3x2,解得:x=332,即 OF′=332,∴FF′=332-4=230,∴菱形 ABCD 平移的距离为230
3.(2015·苏州)若点 A(a,b)在反比例函数 y=2x的图象上,则代数式 ab
-4 的值为( B)
A.0 B.-2 C.2 D.-6
4.(2015·牡丹江)在同一直角坐标系中,函数 y=-xa与 y=ax+1(a≠0)
的图象可能是( B )
,A)
,B)
,C)
,D)
5.(2015·青岛)如图,正比例函数 y1=k1x 的图象与反 比例函数 y2=kx2的图象相交于 A,B 两点,其中点 A 的横坐标为 2,当
①ACMN =||kk12||; ②阴影部分面积是12(k1+k2); ③当∠AOC=90°时,|k1|=|k2|; ④若 OABC 是菱形,则两双曲线既关于 x 轴对称,也关于 y 轴对称.
其中正确的是①__④__.(把所有正确的结论的序号都填上)
(3)(2015·宿迁)如图,在平面直角坐标系中,已知点 A(8,1),B(0,-3), 反比例函数 y=kx(x>0)的图象经过点 A,动直线 x=t(0<t<8)与反比例函数 的图象交于点 M,与直线 AB 交于点 N.

初三数学《反比例函数》复习题

初三数学《反比例函数》复习题

9(上)第五章 反比例函数复习(一)一、 反比例函数的定义例1 下列函数中是反比例函数的是( )A y=x+1,B y=x8, C y= —2x, D y=2x 2 【说明】本题的四个选项呈现了一次函数、反比例函数、正比例函数(也是一次函数)、二次函数的表达形式,应让学生会识别、区分它们。

本题答案:B例2 已知函数12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当1x =时,1y =-;当3x = 时,5y =.求y 关于x 的函数关系式.【说明】由于正比例函数定义式是y=kx,反比例函数定义式是y=xk,两式都使用了字母k,受此影响,学生解答此题时易犯的错误是:设y 1=kx 、设y 2=xk,而本题中的正比例和成反比例的比例系数未必相同,因此应设y 1=k 1x 、设y 2=xk 2,以示两个比例系数的不同。

尽管本题最后结论y 关于x 的函数关系式是复合函数的形式,但这类型的题目还是比较常见的,有时也会考到这种题型,还是建议在复习中作补充训练。

本题答案:y=2x-x3二、 反比例函数的图像和性质例3(1)图象经过点(2,-3)的反比例函数是( )A y= -x 6B y=x 6C y= x 23D y=-x23 (2) 已知反比例函数y=xk的图象经过点(2,3),那么下列在函数的图象上的点是( )A (4,1)B (21,-1)C (-23,-11) D (-3 ,-21)【说明】本例是已知图像上一点的坐标,用待定系数法确定反比例函数解析式。

例4(1)已知反比例函数21m y x-=的图象在一,三象限,那么m 的 取值范围是______________.(2)已知反比例函数xm21-=y 的图像上两点A (x 1,y 1)、B (x 2,y 2),当x 1<0<x 2是,有y 1<y 2.则m 的取值范围是( ).A.m <0, B .m >0,C.m<21,D.m>21【说明】本例是考察对反比例函数图像和性质的理解,并与解不等式知识结合。

中考数学专题复习7反比例函数及其运用(解析版)

反比例函数及其运用复习考点攻略考点一 反比例函数的概念1.反比例函数的概念:一般地.函数ky x=(k 是常数.k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数.函数的取值范围也是一切非零实数. 2.反比例函数k y x =(k 是常数.k ≠0)中x .y 的取值范围:反比例函数ky x=(k 是常数.k ≠0)的自变量x 的取值范围是不等于0的任意实数.函数值y 的取值范围也是非零实数. 【例1】下列函数中.y 与x 之间是反比例函数关系的是 A .xyB .3x +2y =0C .y =D .y =【答案】A考点二 反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线.它有两个分支.这两个分支分别位于第一、三象限.或第二、四象限.由于反比例函数中自变量x ≠0.函数y ≠0.所以.它的图象与x 轴、y 轴都没有交点.即双曲线的两个分支无限接近坐标轴.但永远达不到坐标轴.(2)性质:当k >0时.函数图象的两个分支分别在第一、三象限.在每个象限内.y 随x 的增大而减小.当k <0时.函数图象的两个分支分别在第二、四象限.在每个象限内.y 随x 的增大而增大.2kx 21x +表达式 ky x=(k 是常数.k ≠0) kk >0k <0大致图象所在象限 第一、三象限第二、四象限增减性在每个象限内.y 随x 的增大而减小在每个象限内.y 随x 的增大而增大反比例函数的图象既是轴对称图形.又是中心对称图形.其对称轴为直线y =x 和y =-x .对称中心为原点. 【注意】(1)画反比例函数图象应多取一些点.描点越多.图象越准确.连线时.要注意用平滑的曲线连接各点.(2)随着|x |的增大.双曲线逐渐向坐标轴靠近.但永远不与坐标轴相交.因为反比例函数ky x=中x ≠0且y ≠0. (3)反比例函数的图象不是连续的.因此在谈到反比例函数的增减性时.都是在各自象限内的增减情况.当k >0时.在每一象限(第一、三象限)内y 随x 的增大而减小.但不能笼统地说当k >0时.y 随x 的增大而减小.同样.当k <0时.也不能笼统地说y 随x 的增大而增大.【例2】一次函数与反比例函数在同一坐标系中的图象可能是( ) A . B .C .D .y ax a =-(0)ay a x=≠【答案】D【解析】当时..则一次函数经过一、三、四象限.反比例函数经过一 、三象限.故排除A.C 选项; 当时..则一次函数经过一、二、四象限.反比例函数经过二、四象限.故排除B 选项.故选:D .【例3】若点.在反比例函数的图象上.且.则的取值范围是( )A .B .C .D .或【答案】B【解析】解:∵反比例函数.∴图象经过第二、四象限.在每个象限内.y 随x 的增大而增大.①若点A 、点B 同在第二或第四象限.∵.∴a -1>a+1.此不等式无解;②若点A 在第二象限且点B 在第四象限.∵.∴.解得:; ③由y 1>y 2.可知点A 在第四象限且点B 在第二象限这种情况不可能. 综上.的取值范围是.故选:B .考点三 反比例函数解析式的确定1.待定系数法:确定解析式的方法仍是待定系数法.由于在反比例函数ky x=中.只有一个待定系数.因此只需要一对对应值或图象上的一个点的坐标.即可求出k 的值.从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤 (1)设反比例函数解析式为ky x=(k ≠0); (2)把已知一对x .y 的值代入解析式.得到一个关于待定系数k 的方程; (3)解这个方程求出待定系数k ;(4)将所求得的待定系数k 的值代回所设的函数解析式.【例4】点A 为反比例函数图象上一点.它到原点的距离为5.到x 轴的距离为3.若点A 在第二象限内.则这个函数的解析式为( )0a >0a -<y ax a =-(0)ay a x=≠0a <0a ->y ax a =-(0)ay a x=≠()11,A a y -()21,B a y +(0)ky k x=<12y y >a 1a <-11a -<<1a >1a <-1a >(0)ky k x=<12y y >12y y >1010a a -⎧⎨+⎩<>11a -<<a 11a -<<A.y=12xB.y=-12xC.y=112xD.y=-112x【答案】B【解析】设A点坐标为(x.y).∵A点到x轴的距离为3.∴|y|=3.y=±3.∵A点到原点的距离为5.∴x2+y2=52.解得x=±4.∵点A在第二象限.∴x=-4.y=3.∴点A的坐标为(-4.3).设反比例函数的解析式为y=.∴k=-4×3=-12.∴反比例函数的解析式为y=.故选B.考点四反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时.可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①.S△ABC=2S△ACO=|k|;(2)如图②.已知一次函数与反比例函数kyx=交于A、B两点.且一次函数与x轴交于点C.则S△AOB=S△AOC+S△BOC=1||2AOC y⋅+1||2BOC y⋅=1(||||)2A BOC y y⋅+;(3)如图③.已知反比例函数kyx=的图象上的两点.其坐标分别为()A Ax y,.k x 12 x-()B B x y ,.C 为AB 延长线与x 轴的交点.则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.【例5】如图.已知双曲线经过直角三角形OAB 斜边OB 的中点D .与直角边AB 相交于点C .若△OBC 的面积为9.则k =__________.【答案】6【解析】如图.过点D 作x 轴的垂线交x 轴于点E .∵△ODE 的面积和△OAC 的面积相等.∴△OBC 的面积和四边形DEAB 的面积相等且为9. 设点D 的横坐标为x .纵坐标就为. ∵D 为OB 的中点.∴EA =x .AB =. ∴四边形DEAB 的面积可表示为:(+)x =9;k =6. 故答案为:6.【例6】如图.A 、B 两点在双曲线y x=的图象上.分别经过A 、B 两点向轴作垂线段.已知1S =阴影.则12S S +=ky x=k x 2k x12k x 2k xA .8B .6C .5D .4【答案】B【解析】∵点A 、B 是双曲线y =上的点.分别经过A 、B 两点向x 轴、y 轴作垂线段.则根据反比例函数的图象的性质得两个矩形的面积都等于|k |=4.∴S 1+S 2=4+4-1×2=6.故选B .考点五 反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时.联立两个解析式.构造方程组.然后求出交点坐标.针对12y y >时自变量x 的取值范围.只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如.如下图.当12y y >时.x 的取值范围为A x x >或0B x x <<;同理.当12y y <时.x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从几何角度看.一次函数与反比例函数的交点由k 值的符号来决定. ①k 值同号.两个函数必有两个交点;②k 值异号.两个函数可能无交点.可能有一个交点.也可能有两个交点;(2)从代数角度看.一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.【例7】已知抛物线y =x 2+2x +k +1与x 轴有两个不同的交点.则一次函数y =kx ﹣k 与反比例函数y =在同一坐标系内的大致图象是( )4xA.B.C.D.【解析】∵抛物线y=x2+2x+k+1与x轴有两个不同的交点.∴△=4﹣4(k+1)>0.解得k<0.∴一次函数y=kx﹣k的图象经过第一二四象限.反比例函数y=的图象在第二四象限.故选:D.考点六反比例函数的实际应用解决反比例函数的实际问题时.先确定函数解析式.再利用图象找出解决问题的方案.特别注意自变量的取值范围.【例8】如图.△OAC和△BAD都是等腰直角三角形.∠ACO=∠ADB=90°.反比例函数y=k在第一象限的图象经过点B.若xOA2−AB2=12.则k的值为______.【解析】设B点坐标为(a,b).∵△OAC和△BAD都是等腰直角三角形.∴OA=√2AC.AB=√2AD.OC=AC.AD=BD.∵OA2−AB2=12.∴2AC2−2AD2=12.即AC2−AD2=6.∴(AC+AD)(AC−AD)=6.∴(OC+BD)⋅CD=6.∴a⋅b=6.∴k=6.故答案为:6..(其中mk≠0)图象交于【例9】如图.一次函数y=kx+b与反比例函数y=mxA(−4,2).B(2,n)两点.(1)求一次函数和反比例函数的表达式;(2)求△ABO的面积;(3)请直接写出当一次函数值大于反比例函数值时x 的取值范围.【解析】(1)∵一次函数y =kx +b 与反比例函数y =m x(mk ≠0)图象交于A(−4,2).B(2,n)两点.根据反比例函数图象的对称性可知.n =−4. ∴{2=−4k +b−4=2k +b .解得{k =−1b =−2.故一次函数的解析式为y =−x −2. 又知A 点在反比例函数的图象上.故m =−8. 故反比例函数的解析式为y =−8x ; (2)在y =−x −2中.令y =0.则x =−2. ∴OC =2.∴S △AOB =12×2×2+12×2×4=6; (3)根据两函数的图象可知:当x <−4或0<x <2时.一次函数值大于反比例函数值.第一部分 选择题一、选择题(本题有10小题.每题4分.共40分)1.下列函数:①2x y =;②2y x =;③12y x=-;④12y x -=中.是反比例函数的有( ) A .1个 B .2个 C .3个D .4个【答案】C【解析】①不是正比例函数.②③④是反比例函数.故选C .2.点A 为反比例函数图象上一点.它到原点的距离为5.则x 轴的距离为3.若点A 在第二象限内.则这个函数的解析式为( )A .y =12xB .y =-12xC .y =112xD .y =-112x【答案】C【解析】∵反比例函数y =-中.k =-6.∴只需把各点横纵坐标相乘.结果为-6的点在函数图象上.四个选项中只有C 选项符合.故选C . 3. 已知点A (1.m ).B (2.n )在反比例函数(0)ky k x=<的图象上.则( ) A .0m n << B .0n m << C .0m n >>D .0n m >>【答案】A【解析】∵反比例函数(0)k y k x =<.它的图象经过A (1.m ).B (2.n )两点.∴m =k <0.n =2k<0.∴0m n <<.故选A .4. 如图.等腰三角形ABC 的顶点A 在原点.顶点B 在x 轴的正半轴上.顶点C 在函数y =kx(x >0)的图象上运动.且AC =BC .则△ABC 的面积大小变化情况是( )A .一直不变B .先增大后减小C .先减小后增大D .先增大后不变【答案】A【解析】如图.作CD ⊥AB 交AB 于点D .则S △ACD =.∵AC =BC .∴AD =BD .∴S △ACD =S △BCD . ∴S △ABC =2S △ACD =2×=k .∴△ABC 的面积不变.故选A .6x 2k2k5.如图.点.点都在反比例函数的图象上.过点分别向轴、轴作垂线.垂足分别为点..连接...若四边形的面积记作.的面积记作.则( )A .B .C .D .【答案】C【解析】解:点P (m.1).点Q (−2.n )都在反比例函数y =的图象上. ∴m×1=−2n =4.∴m =4.n =−2.∵P (4.1).Q (−2.−2).∵过点P 分别向x 轴、y 轴作垂线.垂足分别为点M.N.∴S 1=4.作QK ⊥PN.交PN 的延长线于K.则PN =4.ON =1.PK =6.KQ =3. ∴S 2=S △PQK −S △PON −S 梯形ONKQ =×6×3−×4×1−(1+3)×2=3.∴S 1:S 2=4:3.故选:C .6. 已知一次函数y 1=kx +b 与反比例函数y 2=kx在同一直角坐标系中的图象如图所示.则当y 1<y 2时.x 的取值范围是( )(,1)P m (-2,)Q n 4y x=P x y M N OP OQ PQ OMPN 1S POQ △2S 12:2:3S S =12:1:1S S =12:4:3S S =12:5:3S S =4x121212A .x <-1或0<x <3B .-1<x <0或x >3C .-1<x <0D .x >3【答案】B【解析】根据图象知.一次函数y 1=kx +b 与反比例函数y 2=kx的交点是(-1.3).(3.-1).∴当y 1<y 2时.-1<x <0或x >3.故选B .7.如图.在平面直角坐标系xOy 中.函数()0y kx b k =+≠与()0my m x=≠的图象相交于点()()2,3,6,1A B --.则不等式mkx b x+>的解集为( )A .6x <-B 60x -<<.或2x >C .2x >D 6x <-.或02x <<8. 如图.直线l ⊥x 轴于点P .且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A .B .连接OA .OB .已知△OAB 的面积为2.则k 1-k 2的值为( )A .2B .3C .4D .-4【答案】C【解析】根据反比例函数k 的几何意义可知:△AOP 的面积为12k .△BOP 的面积为22k. ∴△AOB 的面积为12k −22k . ∴12k −22k =2.∴k 1–k 2=4.故选C . 9. 一次函数y =ax +b 与反比例函数a by x-=.其中ab <0.a 、b 为常数.它们在同一坐标系中的图象可以是( )A .B .C .D .【答案】C【解析】A .由一次函数图象过一、三象限.得a >0.交y 轴负半轴.则b <0.满足ab <0. ∴a −b >0.∴反比例函数y =a bx-的图象过一、三象限.所以此选项不正确; B .由一次函数图象过二、四象限.得a <0.交y 轴正半轴.则b >0.满足ab <0. ∴a −b <0.∴反比例函数y =a bx-的图象过二、四象限.所以此选项不正确; C .由一次函数图象过一、三象限.得a >0.交y 轴负半轴.则b <0.满足ab <0.∴a −b >0.∴反比例函数y =a bx的图象过一、三象限.所以此选项正确; D .由一次函数图象过二、四象限.得a <0.交y 轴负半轴.则b <0.满足ab >0.与已知相矛盾. 所以此选项不正确.故选C .10. 如图.一次函数与x 轴.y 轴的交点分别是A(−4,0).B(0,2).与反比例函数的图象交于点Q .反比例函数图象上有一点P 满足:①PA ⊥x 轴;②PO =√17(O 为坐标原点).则四边形PAQO 的面积为( )A. 7B. 10C. 4+2√3D. 4−2√3【答案】C【解析】∵一次函数y =ax +b 与x 轴.y 轴的交点分别是A(−4,0).B(0,2). ∴−4a +b =0.b =2. ∴a =12.∴一次函数的关系式为:y =12x +2. 设P(−4,n).∴√(−4)2+n 2=√17. 解得:n =±1.由题意知n =−1.n =1(舍去). ∴把P(−4,−1)代入反比例函数y =mx . ∴m =4.反比例函数的关系式为:y =4x .解{y =12x +2y =4x 得.{x =−2+2√3y =√3+1.{x =−2−2√3y =1−√3. ∴Q(−2+2√3,√3+1).∴四边形PAQO 的面积=12×4×1+124×2+12×2×(−2+2√3)=4+2√3. 故选:C .第二部分 填空题二、填空题(本题有6小题.每题4分.共24分)11.若正比例函数的图象与某反比例函数的图象有一个交点的纵坐标是2.则该反比例函数的解析式为________. 【答案】 【解析】令y=2x 中y=2.得到2x=2.解得x=1.∴正比例函数的图象与某反比例函数的图象交点的坐标是(1,2). 设反比例函数解析式为.将点(1,2)代入.得. ∴反比例函数的解析式为.故答案为:. 12.如图.直线y =x 与双曲线()0ky k x=>的一个交点为A .且OA =2.则k 的值为__________.【答案】2【解析】∵点A 在直线y =x 上.且OA =2.∴点A的坐标为把得.∴k=2.故答案为:2. 13. 已知(),3A m 、()2,B n -在同一个反比例函数图像上.则m n =__________.【答案】23-【解析】设反比例函数解析式为()0ky k x=≠.将(),3A m 、()2,B n -分别代入.得 3k m =.2k n =-. 2y x =2y x=2y x =ky x=122k =⨯=2y x =2y x=(22),(22),ky x=22=∴2332k m k n ==--. 故答案为:23-. 14.平面直角坐标系xOy 中.点A (a .b )(a >0.b >0)在双曲线y =上.点A 关于x 轴的对称点B 在双曲线y =.则k 1+k 2的值为__________. 【答案】0【解析】∵点A (a .b )(a >0.b >0)在双曲线y =上.∴k 1=ab ; 又∵点A 与点B 关于x 轴对称.∴B (a .–b ).∵点B 在双曲线y =上.∴k 2=–ab ;∴k 1+k 2=ab +(–ab )=0.故答案为:0. 15.如图.点A 是反比例函数图象上的一点.过点A 作轴.垂足为点C .D 为AC 的中点.若的面积为1.则k 的值是【答案】4【解析】点A 的坐标为(m.2n ).∴.∵D 为AC 的中点.∴D (m.n ). ∵AC ⊥轴.△ADO 的面积为1.∴. ∴.∴ 16. 如图.反比例函数y =24x(x >0)的图象与直线y =32x 相交于点A .与直线y =kx(k ≠0)相交于点B .若△OAB 的面积为18.则k 的值为______.【答案】41k x2k x1k x2k x y x=AC x ⊥AOD ∆2mn k =x ()ADO11121222S AD OC n n m mn =⋅=-⋅==2mn =24k mn ==【解析】:由题意得.{y =24xy =32x .解得:{x 1=4y 1=6.{x 2=−4y 2=−6(舍去). ∴点A(4,6).(1)如图1.当y =kx 与反比例函数的交点B 在点A 的下方. 过点A 、B 分别作AM ⊥x 轴.BN ⊥x 轴.垂足分别为M 、N . 设点B 坐标为(b,24b ).则ON =b .BN =24b.∴点A(4,6).∴OM =4.AM =6;∵S △AOB =S △AOM +S 梯形AMNB −S △BON =S 梯形AMNB . ∴18=12(6+24b)(b −4).解得.b 1=8.b 2=−2(舍去) ∴点B(8,3).代入y =kx 得. k =38; (2)如图2.当y =kx 与反比例函数的交点B 在点A 的上方. 过点A 、B 分别作AM ⊥y 轴.BN ⊥y 轴.垂足分别为M 、N . 设点B 坐标为(b,24b ).则ON =24b.BN =b .∴点A(4,6).∴OM =6.AM =4;∵S △AOB =S △AOM +S 梯形AMNB −S △BON =S 梯形AMNB . ∴18=12(b +4)(24b −6). 解得.b 1=2.b 2=−8(舍去) ∴点B(2,12).代入y =kx 得. k =6;故答案为:6或38.第三部分 解答题三、解答题(本题有6小题.共56分)17. 如图.已知A (–4.n ).B (2.–4)是一次函数y =kx +b 和反比例函数y =的图象的两个交点.(1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.【答案】(1)y =–x –2.y =–;(2)6【解析】(1)∵B (2.–4)在y =图象上. ∴m =–8.∴反比例函数的解析式为y =–. ∵点A (–4.n )在y =–图象上. ∴n =2. ∴A (–4.2).∵一次函数y =kx +b 图象经过A (–4.2).B (2.–4).∴.解得.∴一次函数的解析式为y =–x –2;(2)如图.令一次函数y =–x –2的图象与y 轴交于C 点.mx8xmx 8x8x4224k b k b -+=+=-⎧⎨⎩12k b =-=-⎧⎨⎩当x=0时.y =–2. ∴点C (0.–2). ∴OC =2.∴S △AOB =S △ACO +S △BCO =×2×4+×2×2=6. 18.如图.已知反比例函数y x=与一次函数y =x +b 的图象在第一象限相交于点A (1.-k +4). (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标.并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【答案】(1).y =x +1;(2)B 的坐标为(-2.-1).x <-2或0<x <1 【解析】(1)∵已知反比例函数经过点A (1.-k +4). ∴.即-k +4=k . ∴k =2.∴A (1.2).∵一次函数y =x +b 的图象经过点A (1.2). ∴2=1+b .∴b =1.∴反比例函数的表达式为. 一次函数的表达式为y =x +1.12122y x=ky x=41kk -+=2y x=(2)由.消去y .得x 2+x -2=0. 即(x +2)(x -1)=0. ∴x =-2或x =1. ∴y =-1或y =2.∴或.∵点B 在第三象限. ∴点B 的坐标为(-2.-1).由图象可知.当反比例函数的值大于一次函数的值时.x 的取值范围是x <-2或0<x <1. 19.如图.一次函数的图象与反比例函数(为常数且)的图象相交于.两点.(1)求反比例函数的表达式;(2)将一次函数的图象沿轴向下平移个单位.使平移后的图象与反比例函数的图象有且只有一个交点.求的值.【答案】(1);(2)b 的值为1或9. 【解析】(1)由题意.将点代入一次函数得: 将点代入得:.解得 则反比例函数的表达式为; (2)将一次函数的图象沿轴向下平移个单位得到的一次函数的解析式为联立整理得: 12y x y x ⎧=+⎪⎨=⎪⎩21x y ⎧=-⎨=-⎩12x y ⎧=⎨=⎩5y x =+ky x=k 0k ≠(1,)A m -B 5y x =+y b (0)b >ky x=b 4y x=-(1,)A m -5y x =+154m =-+=(1,4)A -∴(1,4)A -ky x=41k =-4k =-4y x =-5y x =+y b 5y x b =+-54y x by x =+-⎧⎪⎨=-⎪⎩2(5)40x b x +-+=一次函数的图象与反比例函数的图象有且只有一个交点 关于x 的一元二次方程只有一个实数根此方程的根的判别式解得则b 的值为1或9.20.如图.一次函数y =kx +b (k 、b 为常数.k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点.且与反比例函数y =(n 为常数.且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴.垂足为D .若OB =2OA =3OD =12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E .求△CDE 的面积; (3)直接写出不等式kx +b ≤的解集.【答案】(1)y =–2x +12;(2)140;(3)x ≥10.或–4≤x <0 【解析】(1)由已知.OA =6.OB =12.OD =4.∵CD ⊥x 轴.∴OB ∥CD .∴△ABO ∽△ACD . ∴=.∴=.∴CD =20. ∴点C 坐标为(–4.20).∴n =xy =–80. ∴反比例函数解析式为:y =–. 把点A (6.0).B (0.12)代入y =kx +b 得:.解得.∴一次函数解析式为:y =–2x +12; (2)当–=–2x +12时.解得x 1=10.x 2=–4; 当x =10时.y =–8.∴点E 坐标为(10.–8). ∴S △CDE =S △CDA +S △EDA =×20×10+×8×10=140; 5y x b =+-4y x=-∴2(5)40x b x +-+=∴2(5)440b ∆=--⨯=121,9b b ==nxnxOA AD OBCD 61012CD80x0612k b b =+=⎧⎨⎩212k b =-=⎧⎨⎩80x1212(3)不等式kx +b ≤.从函数图象上看.表示一次函数图象不高于反比例函数图象; ∴由图象得.x ≥10.或–4≤x <0. 21.如图.一次函数y =k 1x +b 的图象与反比例函数y=的图象相交于A 、B 两点.其中点A 的坐标为(–1.4).点B 的坐标为(4.n ).(1)根据图象.直接写出满足k 1x +b >的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上.且S △AOP ∶S △BOP =1∶2.求点P 的坐标. 【答案】(1)x <–1或0<x <4;(2)y =–(3)P (.)【解析】(1)∵点A 的坐标为(–1.4).点B 的坐标为(4.n ).由图象可得:k 1x +b >的x 的取值范围是x <–1或0<x <4; (2)∵反比例函数y =的图象过点A (–1.4).B (4.n ). ∴k 2=–1×4=–4.k 2=4n .∴n =–1.∴B (4.–1). ∵一次函数y =k 1x +b 的图象过点A .点B .∴. 解得k =–1.b =3.∴直线解析式y =–x +3.反比例函数的解析式为y =–; (3)设直线AB 与y 轴的交点为C .∴C (0.3).∵S △AOC =×3×1=. ∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=. n x2k x 2k xx 332k x2k x 11441k b k b -+=+=-⎧⎨⎩4x 12321212152∵S△AOP :S △BOP =1:2.∴S △AOP =×=. ∴S △COP =–=1.∴×3x P =1.∴x P =. ∵点P 在线段AB 上.∴y =–+3=.∴P (.).22.如图.反比例函数1k y x=和一次函数2y mx n =+相交于点()1,3A .()3,B a -. (1)求一次函数和反比例函数解析式;(2)连接OA.试问在x 轴上是否存在点P.使得OAP ∆为以OA 为腰的等腰三角形.若存在.直接写出满足题意的点P 的坐标;若不存在.说明理由.【答案】(1)22y x =+(2)见解析【解析】(1)∵反比例函数1k y x =和一次函数2y mx n =+相交于点()1,3A .()3,B a -. ∴k=1×3=3.∴13y x=. ∴-3a=3.解得:a=-1.∴B(-3.-1).∴331m n m n +=⎧⎨-+=-⎩.解得:12m n =⎧⎨=⎩. ∴22y x =+;(2)设P(t.0).∵()1,3A .∴222(1)(03)(1)9t t -+-=-+t 221310+. 15213525232122323732373∵OAP ∆为以OA 为腰的等腰三角形.∴OA=AP 或OA=OP.当OA=AP 时.22(1)9(10)t -+=.解得:1220t t ==,(不符合题意.舍去). ∴P(2.0);当OA=OP 时.t 10解得:10.∴10.0)或P(10.0).综上所述:存在点P.使OAP ∆为以OA 为腰的等腰三角形.点P 坐标为:(2.0) 或10.0)或(10.0).。

人教版数学九年级下册第26章《反比例函数》复习课件

(2)找出满足反比例函数解析式的点P(a,b); (3)将P(a,b)代入解析式得 k=ab; (4)确定反比例函数解析式 y =
ab x
真题专练
(2015安徽21题12分)如图,已知反比例函数y
k1 与
x
一次函数y=k2x+b的图象交于A(1,8),B(-4,m).源自(1)求k1、k2、b的值;
(2)求△AOB的面积;
y= k
K>0
K<0
x
图 象
当k>0时,函数图象的两 当k<0时,函数图象的两
性 质
个分支分别在第一、三象 个分支分别在第二、四象
限,在每个象限内,y随x 限,在每个象限内,y随x
的增大而减小.
的增大而增大.
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和 y=-x。对称中心是:原点
(1)求p与S之间的函数关系式;
用 (2)求当S=0.5m2时物体承受的压强p ;
(3)求当p=2500Pa时物体的受力面积S.
p(Pa)
4000 3000 2000
A(0.25,1000)
1000
O 0.1 0.2 0.3 0.4 S(m2)
【及时归纳】 求反比例函数解析式的步骤
(1)设出反比例函数解析式 y = k ; x
反比例函数的图象及性质(常考)
函数的图象经过点
A(1,-2),则k的值为
()
A. 1
2
B. 1 C. 2
2
D. -2
反比例函数解析式的确定(常考)
点P(1,a)在反比例函数的图象上,它关于y 轴的对称点在一次函数y=2x+4的图象上,求
此反比例函数的解析式.

反比例函数复习讲义

反比例函数复习讲义知识点一:反比例函数的概念ﻫ 一般地,如果两个变量x 、y 之间的关系可以表示成k y x=(k为常数,)的形式,那么称y 是x 的反比例函数.注:(1)反比例函数k y x =中的k x 是一个分式,自变量x ≠0, k y x=也可写成1y kx -=或xy k =,其中k≠0;ﻫ (2)在反比例函数1y kx -=(k≠0)中,x 的指数是-1。

如,5y x=也写成:15y x -=;ﻫ (3)在反比例函数k y x=(k ≠0)中要注意分母x的指数为1,如21y x=就不是反比例函数。

ﻫ知识点二:反比例函数的图象反比例函数(0)ky k x=≠的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.ﻫ 注: (1)观察反比例函数(0)ky k x=≠的图象可得:x和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点. (2)用描点法画反比例函数y=kx的图象时,应注意自变量x 的取值不能为0,一般应从1或-1开始对称取点.ﻫ (3)在一个反比例函数图象上任取两点P ,Q ,过点P ,Q分别作x 轴,y 轴的平行线,与两坐标轴分别围成的矩形面积为S 1,S2 则S 1=S 2. 知识点三:反比例函数的性质 1.图象位置与函数性质当k>0时,x 、y 同号,图象在第一、三象限,且在每个象限内,y 随x 的增大而减小;当k<0时,x 、y 异号,图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.2.若点(a ,b)在反比例函数(0)ky k x=≠的图象上,则点(-a,-b )也在此图象上,故反比例函数的图象关于原点对称;正比例函数反比例函数解析式图 像直线 有两个分支组成的曲线(双曲线)位 置k>0,一、三象限; k<0,二、四象限 k >0,一、三象限 k <0,二、四象限增减性k>0,y 随x 的增大而增大 k<0,y 随x 的增大而减小k>0,在每个象限,y 随x的增大而减小ﻫk<0,在每个象限,y随x的增大而增大4.反比例函数y =kx 中k 的意义 反比例函数y = k x (k ≠0)中比例系数k 的几何意义,即过双曲线y = kx(k≠0)上任意一点引x轴、y 轴垂线,所得矩形面积为│k│.ﻫ知识点四:反比例函数解析式的确定ﻫ 反比例函数解析式的确定方法是待定系数法.由于在反比例函数关系式(0)ky k x=≠中,只有一个待定系数k,确定了k的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入(0)ky k x =≠中即可求出k 的值,从而确定反比例函数的解析式.ﻫ知识点五:应用反比例函数解决实际问题须注意以下几点1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题。

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)知识点总结1. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。

②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。

这个三角形的面积等于2k 。

2. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。

3. 反比例函数与一次函数的不等式问题: 若反比例函数()0≠=k x ky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk +>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk+<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。

反比例函数与一次函数的交点把自变量分成三部分。

练习题1、(2022•日照)如图,矩形OABC 与反比例函数y 1=xk1(k 1是非零常数,x >0)的图像交于点M ,N ,与反比例函数y 2=xk2(k 2是非零常数,x >0)的图像交于点B ,连接OM ,ON .若四边形OMBN 的面积为3,则k 1﹣k 2=( )A .3B .﹣3C .23 D .﹣23【分析】根据矩形的性质以及反比例函数系数k 的几何意义即可得出结论. 【解答】解:∵y 1、y 2的图像均在第一象限, ∴k 1>0,k 2>0,∵点M 、N 均在反比例函数y 1=(k 1是非零常数,x >0)的图像上,∴S △OAM =S △OCN =k 1,∵矩形OABC 的顶点B 在反比例函数y 2=(k 2是非零常数,x >0)的图像上,∴S 矩形OABC =k 2,∴S 四边形OMBN =S 矩形OABC ﹣S △OAM ﹣S △OCN =3, ∴k 2﹣k 1=3, ∴k 1﹣k 2=﹣3, 故选:B .2、(2022•牡丹江)如图,等边三角形OAB ,点B 在x 轴正半轴上,S △OAB =43,若反比例函数y =xk(k ≠0)图像的一支经过点A ,则k 的值是( )A .233 B .23C .433 D .43【分析】根据正三角形的性质以及反比例函数系数k 的几何意义,得出S △AOC =S △AOB =2=|k |,即可求出k 的值.【解答】解:如图,过点A 作AC ⊥OB 于点C , ∵△OAB 是正三角形, ∴OC =BC ,∴S △AOC =S △AOB =2=|k |,又∵k >0, ∴k =4,故选:D .3、(2022•郴州)如图,在函数y =x2(x >0)的图像上任取一点A ,过点A 作y 轴的垂线交函数y =﹣x8(x <0)的图像于点B ,连接OA ,OB ,则△AOB 的面积是( )A .3B .5C .6D .10【分析】根据反比例函数系数k 的几何意义进行计算即可. 【解答】解:∵点A 在函数y =(x >0)的图像上, ∴S △AOC =×2=1,又∵点B 在反比例函数y =﹣(x <0)的图像上, ∴S △BOC =×8=4, ∴S △AOB =S △AOC +S △BOC =1+4 =5, 故选:B .4、(2022•黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数y =x 3的图像上,顶点A 在反比例函数y =xk的图像上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .﹣1D .﹣2【分析】设B (a ,),根据四边形OBAD 是平行四边形,推出AB ∥DO ,表示出A 点的坐标,求出AB =a ﹣,再根据平行四边形面积公式列方程,解出即可.【解答】解:设B (a ,), ∵四边形OBAD 是平行四边形, ∴AB ∥DO , ∴A (,),∴AB =a ﹣,∵平行四边形OBAD 的面积是5, ∴(a ﹣)=5,解得k =﹣2, 故选:D .5、(2022•十堰)如图,正方形ABCD 的顶点分别在反比例函数y =xk 1(k 1>0)和y =xk 2(k 2>0)的图像上.若BD ∥y 轴,点D 的横坐标为3,则k 1+k 2=( )A .36B .18C .12D .9【分析】连接AC交BD于E,延长BD交x轴于F,连接OD、OB,设AE=BE=CE=DE =m,D(3,a),根据BD∥y轴,可得B(3,a+2m),A(3+m,a+m),即知k1=3(a+2m)=(3+m)(a+m),从而m=3﹣a,B(3,6﹣a),由B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,得k1=3(6﹣a)=18﹣3a,k2=3a,即得k1+k2=18﹣3a+3a=18.【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图像上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B .6、(2022•邵阳)如图是反比例函数y =x1的图像,点A (x ,y )是反比例函数图像上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )A .1B .C .2D .【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是.【解答】解:∵A (x ,y ), ∴OB =x ,AB =y ,∵A 为反比例函数y =图像上一点, ∴xy =1,∴S △ABO =AB •OB =xy =1=,故选:B .7、(2022•内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =x 8和y =xk的图像交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【分析】利用k 的几何意义解题即可. 【解答】解:∵直线l ∥y 轴, ∴∠OMP =∠OMQ =90°,∴S △OMP =×8=4,S △OMQ =﹣k . 又S △POQ =15, ∴4﹣k =15, 即k =11,∴k =﹣22. 故选:D .8、(2022•东营)如图,△OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数y =x1(x >0)的图像上,则经过点A 的函数图像表达式为 .【分析】作AD ⊥x 轴于D ,BC ⊥x 轴于C ,根据△OAB 是等腰直角三角形,可证明△BOC ≌△OAD ,利用反比例函数k 的几何意义得到S △OBC =,则S △OAD =,所以|k |=,然后求出k 得到经过点A 的反比例函数解析式. 【解答】解:如图,作AD ⊥x 轴于D ,BC ⊥x 轴于C , ∴∠ADO =∠BCO =90°,∵∠AOB =90°, ∴∠AOD +∠BOC =90°, ∴∠AOD +∠DAO =90°, ∴∠BOC =∠DAO , ∵OB =OA ,∴△BOC ≌△OAD (AAS ),∵点B 在反比例函数y =(x >0)的图像上, ∴S △OBC =, ∴S △OAD =, ∴k =﹣1,∴经过点A 的反比例函数解析式为y =﹣. 故答案为:y =﹣.9、(2022•盐城)已知反比例函数的图像经过点(2,3),则该函数表达式为 . 【分析】利用反比例函数的定义列函数的解析式,运用待定系数法求出函数的解析式即可. 【解答】解:令反比例函数为y =(k ≠0), ∵反比例函数的图像经过点(2,3), ∴3=, k =6,∴反比例函数的解析式为y =. 故答案为:y =.10、(2022•湖北)在反比例函数y =xk 1−的图像的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =的图像的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:∵整式x 2﹣kx +4是一个完全平方式,∴k =±4, ∵反比例函数y =的图像的每一支上,y 都随x 的增大而减小,∴k ﹣1>0, 解得k >1, ∴k =4,∴反比例函数的解析式为y =. 故答案为:y =.35.(2022•陕西)已知点A (﹣2,m )在一个反比例函数的图像上,点A '与点A 关于y 轴对称.若点A '在正比例函数y =21x 的图像上,则这个反比例函数的表达式为 .【分析】根据轴对称的性质得出点A '(2,m ),代入y =x 求得m =1,由点A (﹣2,1)在一个反比例函数的图像上,从而求得反比例函数的解析式. 【解答】解:∵点A '与点A 关于y 轴对称,点A (﹣2,m ), ∴点A '(2,m ),∵点A '在正比例函数y =x 的图像上, ∴m ==1,∴A (﹣2,1),∵点A (﹣2,1)在一个反比例函数的图像上, ∴反比例函数的表达式为y =﹣, 故答案为:y =﹣.11、(2022•攀枝花)如图,正比例函数y =k 1x 与反比例函数y =xk 2的图像交于A (1,m )、B 两点,当k 1x ≤xk2时,x 的取值范围是( )A .﹣1≤x <0或x ≥1B .x ≤﹣1或0<x ≤1C .x ≤﹣1或x ≥1D .﹣1≤x <0或0<x ≤1【分析】根据反比例函数的对称性求得B 点的坐标,然后根据图像即可求得. 【解答】解:∵正比例函数y =k 1x 与反比例函数y =的图像交于A (1,m )、B 两点,∴B (﹣1,﹣m ), 由图像可知,当k 1x ≤时,x 的取值范围是﹣1≤x <0或x ≥1,故选:A .37.(2022•东营)如图,一次函数y 1=k 1x +b 与反比例函数y 2=xk 2的图像相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为﹣1,则不等式k 1x +b <xk2的解集是( )A .﹣1<x <0或x >2B .x <﹣1或0<x <2C .x <﹣1或x >2D .﹣1<x <2【分析】根据两函数图像的上下位置关系结合交点横坐标,即可得出不等式k 1x +b <的解集,此题得解.【解答】解:观察函数图像可知,当﹣1<x <0或x >2时,一次函数y 1=k 1x +b 的图像在反比例函数y 2=的图像的下方,∴不等式k 1x +b <的解集为:﹣1<x <0或x >2,故选:A .12、(2022•朝阳)如图,正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =xk(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点,则不等式ax >xk的解集为( )A .x <﹣2或x >2B .﹣2<x <2C .﹣2<x <0或x >2D .x <﹣2或0<x <2【分析】根据关于原点对称的点的坐标特征求得B (2,﹣m ),然后根据函数的图像的交点坐标即可得到结论.【解答】解:∵正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点, ∴B (2,﹣m ),∴不等式ax >的解集为x <﹣2或0<x <2, 故选:D .13、(2022•无锡)一次函数y =mx +n 的图像与反比例函数y =xm的图像交于点A 、B ,其中点A 、B 的坐标为A (﹣m1,﹣2m )、B (m ,1),则△OAB 的面积是( ) A .3B .413C .27D .415【分析】根据反比例函数图像上点的坐标特征求出m ,进而求出点A 、B 的坐标,根据三角形的面积公式计算即可.【解答】解:∵点A (﹣,﹣2m )在反比例函数y =上, ∴﹣2m =,解得:m =2,∴点A 的坐标为:(﹣,﹣4),点B 的坐标为(2,1), ∴S △OAB =××5﹣××4﹣×2×1﹣×1=,故选:D .14、(2022•荆州)如图是同一直角坐标系中函数y 1=2x 和y 2=x2的图像.观察图像可得不等式2x >x2的解集为( )A .﹣1<x <1B .x <﹣1或x >1C .x <﹣1或0<x <1D .﹣1<x <0或x >1【分析】结合图像,数形结合分析判断.【解答】解:由图像,函数y 1=2x 和y 2=的交点横坐标为﹣1,1, ∴当﹣1<x <0或x >1时,y 1>y 2,即2x >, 故选:D .15、(2022•怀化)如图,直线AB 交x 轴于点C ,交反比例函数y =xa 1−(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )A.8B.9C.10D.11【分析】设点B的坐标为(m,),然后根据三角形面积公式列方程求解.【解答】解:设点B的坐标为(m,),∵S△BCD=5,且a>1,∴×m×=5,解得:a=11,故选:D.16、(2022•宁夏)在显示汽车油箱内油量的装置模拟示意图中,电压U一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V与电路中总电阻R总(R总=R+R0)是反比例关系,电流I与R总也是反比例关系,则I与V的函数关系是()A.反比例函数B.正比例函数C.二次函数D.以上答案都不对【分析】由油箱中油的体积V与电路中总电阻R总是反比例关系,电流I与R总是反比例关系,可得V=I(为常数),即可得到答案.【解答】解:由油箱中油的体积V与电路中总电阻R总是反比例关系,设V•R总=k(k为常数),由电流I与R总是反比例关系,设I•R总=k'(k为常数),∴=,∴V=I(为常数),∴I与V的函数关系是正比例函数,故选:B.17、(2022•宜昌)已知经过闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系.根据下表判断a和b的大小关系为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据等量关系“电流=”,即可求解.【解答】解:∵闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系,∴40a=80b,∴a=2b,∴a>b,故选:A.18、(2022•丽水)已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是()A.R至少2000ΩB.R至多2000ΩC.R至少24.2ΩD.R至多24.2Ω【分析】利用已知条件列出不等式,解不等式即可得出结论.【解答】解:∵电压U一定时,电流强度I(A)与灯泡的电阻为R(Ω)成反比例,∴I=.∵已知电灯电路两端的电压U为220V,∴I=.∵通过灯泡的电流强度I(A)的最大限度不得超过0.11A,∴≤0.11,∴R≥2000.故选:A.19、(2022•郴州)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=U,测得数据如下:那么,当电阻R=55Ω时,电流I=A.【分析】由表格数据求出反比例函数的解析式,再将R=55Ω代入即可求出答案.【解答】解:把R=220,I=1代入I=得:1=,解得U=220,∴I=,把R=55代入I=得:I==4,故答案为:4.20、(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图像如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.【分析】设p=,把(0.1,1000)代入得到反比例函数的解析式,再把S=0.25代入解析式即可解决问题.【解答】解:设p=,∵函数图像经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学复习:反比例函数反比例函数从代数定义上来说非常简单,即ky x=或xy k =,从函数的图像上来看就是分布在不同像限的两条曲线,简称双曲线.随着近几年各地中考的各种变式题型出现,对反比例函数“数形结合”的数学思想考查越来愈多.每一次的命题设计,其背后都有隐藏的二级定理和二级结论.数学的学习,总是在思考中归纳总结从而得出结论,站在结论的平台向上展望,看清命题者的命题逻辑,很多问题将会大大简化.本专题从反比例函数的本质入手,通过寻找反比例函数的不变特性来进行分析,力争化繁为简,并能在平常的训练中找到思考和结论的平衡点.第一讲 反比例函数的本质系数m 与面积关系在之前对正比例函数和反比例函数的理解中,似乎只有k xy=和k xy =,翻译成语言文字就是,当自变量扩大m 倍,则因变量也随即扩大m 倍,此为正比例函数;同理当自变量扩大m 倍,而因变量随即缩小m1,则为反比例函数.函数是一个连续的曲线,不是只分析单一定点,所以引入比例系数m 对研究函数大有帮助,正比例函数由于过于单调的形式和结论,所以没有成为命题重难点,那么反比例函数呢?【例1】如图,反比例函数)0(>=k xky 的图像与矩形OABC 的AB 、BC 边分别交于点M 、N ,延长MN 分别交坐标轴于点D 、E .(1)如图11-1-5,若2:1:=AB AM ,则=CB CN : ; (2)如图11-1-6,若4:1:=AB AM ,则=CB CN : ; (3)如图11-1-7,若n AB AM :1:=,则=CB CN : ;直线MN 与AC 的位置关系是 ,EN 与MD 的大小关系 .图11-1-5 图11-1-6 图11-1-7【例2】(2020•九龙坡月考)如图11-1-8,ABC Rt △的顶点A 和斜边中点D 在反比例函数(00)k y k x x =≠>,的图像上,若5k =,则ABC △的面积为( ) A.B.C .4 D .5xxx图11-1-8【例3】(2020•朝阳二模)如图11-1-11,在平面直角坐标系中,直线6y x =-+分别与x 轴、y 轴交于点A 、B ,与函数(00)k y k x x =>>,的图像交于点C 、D .若12CD AB =,则k 的值为( )A .9B .8C .427D .6图11-1-11思考 前面分析了一条直线与反比例函数图像交于一个像限的情况,那么一条直线与反比例函数图像交于两个像限会有怎样的几何性质呢? 【例4】(1)如图11-1-17,反比例函数)00(>>=x k xky ,的图像与直线DE 交于点M 、N ,y MA ⊥轴于点A ,x NC ⊥轴于点C ,请探究直线MN 与AC 的位置关系,线段EN 与MD 的大小关系. (2)如图11-1-18,反比例函数)0(>=k xky 的图像与直线EF 交于点M 、N ,y MA ⊥轴于点A ,x MC ⊥轴于点C ,y ND ⊥轴于点D ,x NB ⊥轴于点B ,请探究直线MN 与线段AB 、线段CD 的位置关系,以及线段ME 与FN 的大小关系.图11-1-17 图11-1-18【例5】如图11-1-19,一次函数b ax y +=的图像与x 轴,y 轴交于A 、B 两点,与反比例函数xky =的图像相交于C 、D 两点,分别过C 、D 两点作y 轴,x 轴的垂线,垂足为E 、F ,连接CF 、DE .有下列四个结论:①DEF CEF S S △△=;②FOE AOB ∽△△;③CDF DCE ≌△△;④BD AC =.其中正确的结论x是 .(把你认为正确结论的序号都填上)图11-1-19【例6】(1)如图11-1-26,BC AB =,AOB △的面积为3,则k 的值为 . (2)如图11-1-27,点A ,C 在双曲线xky =上运动,x AB ⊥轴,BC AC =. ①在运动过程中,ABC △的面积是不是定值?答: ; ②若32=k ,且ABC △是正三角形,则点A 的坐标为 .图11-1-26 图11-1-27【例7】(1)如图11-1-30, OABC 中,︒=∠60B ,3=OA ,双曲线经过点C 和AB 中点D ,则该双曲线的解析式为 .(2)如图11-1-31,正AOB △的边长为5,双曲线xky =经过点C 、D ,且OB CD ⊥,则k 的值为 .图11-1-30 图11-1-31【例8】如图11-1-34,反比例函数16(0)y x x=>的图像经过Rt △BOC 斜边上的中点A ,与边BC 交于点D ,连接AD ,则ADB △的面积为( ) A .12B .16C .20D .24图11-1-34【例9】(2020·威海中考)如图11-1-36,点)1(,m P ,点)2(n Q ,-都在反比例函数xy 4=的图像上.过点P 分别向x 轴、y 轴作垂线,垂足分别为点M ,N .连接OP ,OQ ,PQ .若四边形OMPN 的面积记作1S ,POQ △的面积记作2S ,则( )图11-1-36 A .3:2:21=S S B .1:1:21=S S C .3:4:21=S S D .3:5:21=S S【例10】(2020•龙华二模)如图11-1-38,已知直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,与双曲线(0)ky x x=>交于C 、D 两点,且AOC ADO ∠=∠,则k 的值为 .图11-1-38【例11】如图11-1-40,矩形OABC 的边2OA =,4OC =,点E 是边AB 上的一个动点(不与点A 、B 重合),过点E 的反比例函数(0)ky x x=>的图像与边BC 交于点F .当四边形AOFE 的面积最大时,FC 的长度为( ) A .8.0B .1C .6.1D .8.1图11-1-40【例12】如图11-1-41,A 、B 是函数x y 6=上两点,P 为一动点,作y PB //轴,x PA //轴,下列说法:①BOP AOP ≌△△;②BOP AOP S S △△=;③若OB OA =,则OP 平分AOB ∠;④若2=BOP S △,则4=ABP S △,正确有 .(填序号)图11-1-41【例13】如图11-1-45,点)31(,A 为双曲线x ky =上的一点,连接AO 并延长与双曲线在第三像限交于点B ,M 为y 轴正半轴上一点,连接MA 并延长与双曲线交于点N ,连接BM 、BN ,已知MBN △的面积为233,则点N 的坐标为 .图11-1-45【例14】如图11-1-47所示,PAB Rt △的直角顶点)43(,P 在函数(0)ky x x=>的图像上,顶点A 、B 在函数(00)ty x t k x=><<,的图像上,//PA y 轴,连接OP ,OA ,记OPA △的面积为OPA S △,PAB △的 面积为PAB S △,设OPA PAB w S S =-△△. ①求k 的值以及w 关于t 的表达式;②若用max w 和min w 分别表示函数w 的最大值和最小值,令max 2T w a a =+-,其中a 为实数,求min T .图11-1-47【例15】如图11-1-49,已知平面直角坐标系中A 点坐标为)40(,,以OA 为一边在第一像限作平行四边形OABC ,对角线AC 、OB 相交于点E ,OA AB 2=.若反比例函数x ky =的图像恰好经过点C 和点E ,则k的值为 .图11-1-49【同步训练】1.如图11-1-52,双曲线xky =与过原点的直线l 交于点A 、B ,点M 在双曲线上,直线AM 、BM 分别交y 轴于点P 、Q . 若设PM m AM ⋅=,QM n BM ⋅=,则=-n m .图11-1-522.如图11-1-53,在矩形OABC 中,)01(,A ,)20(,C ,双曲线)20(<<=k xky 分别交AB 、BC 于点E 、F ,连接OE 、OF 、EF ,BEF OEF S S △△2=,则k 的值为 .图11-1-53 图11-1-543.如图11-1-54,在平面直角坐标系xOy 中,OAB △的顶点A 在x 轴的正半轴上,AC BC 2=,点B 、C 在反比例函数)0(>=x xky 的图像上.若OBC △的面积等于12,则k 的值为 . 4.如图11-1-55,1P 、2P 是反比例函数xy 4=的图像上任意两点,过点1P 作y 轴的平行线,过点2P 作x 轴的平行线,两线相交于点N .若点)(n m N ,恰好在另一个反比例函数)00(>>=x k xky ,的图像上,且221=⋅NP NP ,则=k .图11-1-55 图11-1-565.(2020•江阴一模)如图11-1-56,在AOB ∆中,OC 平分AOB ∠,43OA OB =,反比例函数(0)ky k x=<图像经过点A 、C 两点,点B 在x 轴上,若AOB ∆的面积为7,则k 的值为( ) A .4-B .3-C .215-D .73-6.(2019•莲湖期末)如图11-1-57,双曲线k y x =经过Rt BOC △斜边上的点A ,且满足12AO AB =,与BC 交于点D ,4BOD S =△,则k 的值为( ) A . 19B .1C .2D .8图11-1-577.(2019•武侯模拟)双曲线x k y =1和)0(32>=k xky 在第一像限的图像如图11-1-58所示,过2y 上的任意一点A 作x 轴的平行线交1y 于B ,交y 轴于C ,过A 作x 轴的垂线交1y 于D ,交x 轴于E ,连结BD ,CE ,则有下列结论:①CE BD //; ②k S ABOD 2=四边形;③5:4:=BDEC ABD S S 四边形△;④DE CB =; 图11-1-58 ⑤2:1:=BOD ABD S S △△.其中正确的有 (填番号).8.(2019•杭州一模)一次函数b ax y +=的图像分别与x 轴、y 轴交于点M ,N ,与反比例函数xky =的图像相交于点A ,B .过点A 分别作x AC ⊥轴,y AE ⊥轴,垂足分别为C ,E ,过点B 分别作x BF ⊥轴,y BD ⊥轴,垂足分别为F ,D ,AC 与BD 交于点K ,连接CD .对于下述结论: ①CFBK AEDK S S 四边形四边形=;②BM AN =;③CD AB //; 不论点A ,B 在反比例函数xky =的图像的同一分支上 (如图11-1-59),还是点A ,B 分别在反比例函数xky =的图像的不同分支上(如图11-1-60),都正确的是( ) 图11-1-59 图11-1-60 A .①② B .①③ C .②③ D .①②③9.(2020•长春期末)如图11-1-61,在平面直角坐标系中,四边形ABCD 的顶点A 、B 在函数)0(>=x xmy 的图像上,顶点C 、D 在函数)0(>=x xny 的图像上,其中n m <<0,对角线y BD //轴,且AC BD ⊥于点P .已知点B 的横坐标为4. (1)当4=m ,20=n 时,①点B 的坐标为 ,点D 的坐标为 ,BD 的长为 . ②若点P 的纵坐标为2,求四边形ABCD 的面积. ③若点P 是BD 的中点,请说明四边形ABCD 是菱形.(2)当四边形ABCD 为正方形时,直接写出m 、n 之间的数量关系. 图11-1-61第二节 反比例函数的面积关系特殊到一般的转化上一讲提到了以原点为顶点的三角形面积转化,如果不过原点呢?答案还是要找准特殊的模特三角形,然后进行面积的转化.【例1】如图11-2-1,在平面直角坐标系中,A 是第一像限内一点,过A 作//AC y 轴交反比例函数(0)ky x x =>的图像于B 点,E 是y 轴上一点,AE 交反比例函数的图像于点D ,若B 是AC 的中点,:3:2DE AD =,且BDE △的面积为94,则k 的值为( ) A .7 B .215 C .8 D .217图11-2-1【例2】如图11-2-3,点A 、B 是反比例函数(0)ky k x=≠图像上的两点,延长线段AB 交y 轴于点C ,且点B 为线段AC 中点,过点A 作AD x ⊥轴于点D ,点E 为线段OD 的三等分点,且OE DE <.连接AE 、BE ,若7ABE S =△,则k 的值为( ) A .12-B .10-C .9-D .6-图11-2-3【例3】(2021·成都嘉祥)如图11-2-6,在直角坐标系中,已知)40(,A 、)42(,B ,C 为x 轴正半轴上一点,且OB 平分ABC ∠,过B 的反比例函数xky =交线段BC 于点D ,E 为OC 的中点,BE 与OD 交于点F ,若记BDF △的面积为1S ,OEF △的面积为2S ,则=21S S .图11-2-6前篇所有的面积和比值问题都来自辅助矩形和辅助比例系数m ,但不是每一个题目都是来自矩形的变x形,最近几年以平行四边形和反比例交点和面积问题也开始频繁出现,平行四边形和菱形上的两点与反比例函数相交,到底隐藏了多少秘密呢?【例4】(2017•南通)如图11-2-11,四边形OABC 是平行四边形,点C 在x 轴上,反比例函数(0)ky x x=>的图像经过点(512)A ,,且与边BC 交于点D .若AB BD =,则点D 的坐标为 .图11-2-11【例5】(2020•孝南二模)如图11-2-15,在平面直角坐标系中,O 为坐标原点,OC 在x 轴正半轴上,四边形OABC 为平行四边形,反比例函数k y x =的图像经过点A ,与BC 交于点D ,若154ABC S =△,2CD BD =,则k = .图11-2-15【例6】(2020•沙坪坝月考)如图11-2-18,平行四边形OABC 的顶点A 在x 轴的正半轴上,点D 在对角线2:3OB y x =上,且满足OD =(00)ky k x x==>>,的图像经过C 、D 两点.已知平行四边形OABC 的面积是203,则点B 的坐标为 .图11-2-18【例7】(2020•两江模拟)如图,双曲线(0)ky x x=>经过平行四边形OABC 的顶点A ,交边BC 于点D ,交对角线AC 于点E ,连接OE .若2BD CD =且OAE △的面积为163,则k 的值为( ) A.B .12C .10D.图平移问题小试牛刀【例8】(2020•西藏)如图,在平面直角坐标系中,直线y x =与反比例函数4(0)y x x=>的图像交于点A ,将直线y x =沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图像于点C .若2OA BC =,则b 的值为( )A .1B .2C .3D .4【例9】(2018•锦江区模拟)已知如图, 直线23y x =分别与双曲线(0,0)my m x x=>>、双曲线(0,0)n y n x x =>>交于点A ,点B ,且23BA OA =,将直线23y x =向左平移 6 个单位长度后, 与双曲线ny x=交于点C ,若4ABC S ∆=,则mn 的值为 .【同步训练】1.(2018•九龙坡区校级期末)如图,Rt ABC ∆中,30B ∠=︒,90ACB ∠=︒,点A 、C 在双曲线(0)ky k x=≠的图像上,//AB x 轴,AC 交x 轴于点F ,满足23AF CF =,10AC =,BC 交双曲线于点E ,连接AE ,则ACE ∆的面积为( )A .BCD .2.(2020•碑林区校级三模)如图,在平面直角坐标系中,O 为坐标原点,OC 在x 轴正半轴上,四边形OABC 为平行四边形,反比例函数ky x=的图像经过点A 与边BC 相交于点D ,若15ABC S ∆=,2CD BD =,则k = .3.(2020•苏州)如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点(3,2)D 在对角线OB 上,反比例函数(0,0)k y k x x =>>的图像经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为()A .8(4,)3B .9(2,3)C .10(5,)3D .24(5,16)54.(2020•相城区期末)如图,Rt OAB ∆中,90OAB ∠=︒,6OB =,反比例函数(0)ky k x=≠的图像经过点B ,将Rt OAB ∆沿着x 轴向右平移6个单位,得到Rt CDE ∆,反比例函数图像恰好经过CE 的中点F ,则k 的值为( )A B .C .D .5.(2020•宁波模拟)如图,点A ,B 是反比例函数6(0)y x x=>图像上的两点,延长线段AB 交x 轴于点C ,且点B 为线段AC 中点,过点A 作AD y ⊥轴于点D ,点E 为线段OD 上的点,且2DE OE =.连结AE ,BE ,则ABE ∆的面积为 .第三讲反比例函数隐藏的等角等边关系在反比例函数的背景下,隐藏了比值关系,我们在前两节已经给到了探讨和证明,那么反比例函数还有哪些矩形圈不住的性质呢?或者说不以比值系数m 相关的等量关系呢?下面我们来探讨一些等角和等边的性质.【例1】(2020•武汉模拟)如图,在平面直角坐标系中,(1,0)A ,(0,2)B -,将线段AB 平移得到线段CD ,当13AE AC =时,点C 、D 同时落在反比例函数(0)ky k x=<的图像上,则k 的值为 .【例2】(2018•十堰中考)如图1,直线x y -=与反比例函数xky =的图像交于A ,B 两点,过点B 作x BD //轴,交y 轴于点D ,直线AD 交反比例函数xky =的图像于另一点C ,求CB CA 的值.图1【例3】(2019•长沙)如图,函数(ky k x=为常数,0)k >的图像与过原点的O 的直线相交于A ,B 两点,点M 是第一像限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①ODM ∆与OCA ∆的面积相等;②若BM AM ⊥于点M ,则30MBA ∠=︒;③若M 点的横坐标为1,OAM ∆为等边三角形,则2k =+;④若25MF MB =,则2MD MA =.其中正确的结论的序号是 .(只填序号)x【例4】(2018•武汉模拟)如图,直线112y x =-+分别交x 轴、y 轴于A 、B 两点,将线段AB 绕点M 旋转180︒得到线段CD ,双曲线(0)ky k x=>恰好经过C 、D 、M 三点,则k 的值为( )A .43B .1C .98D .89【例5】已知双曲线x y 4=与直线x y 41=交于A 、B 两点(点A 在点B 的左侧).如图,点P 是第一像限内双曲线上一动点,AP BC ⊥于C ,交x 轴于F ,PA 交y 轴于E ,则2224EF BF AE +的值是_________.【例6】如图1,AB OA =,双曲线经过点C 、D 、E ,求证:AE AC AD ⋅=2.图1【同步训练】1.如图,点A ,B 在双曲线xky =上,AB 经过原点O ,过点A 作x AC //∥轴,连接BC 并延长,交双曲线于点D .①求证:CD AD =; ②求BD AD :的值.2.如图所示,平行四边形ABCD 的顶点A 、B 位于反比例函数xky =第一像限的图像上,点C 、D 分别位于x 轴正半轴和y 轴正半轴上. 证明:21∠=∠,43∠=∠.3.如图所示,已知四边形ABCD 是平行四边形,AB BC 2=,A 、B 两点的坐标分别是)01(,-和)20(,,C 、xxD 两点在反比例函数xky =长的图像上,则=k .4.如图所示,点A 在反比例函数)0(1>=x x k y 的图像上,点B 在反比例函数)0(2<=x xky 的图像上,124k k =,且直线AB 经过坐标原点,点C 在y 轴的正半轴上,直线CA 交x 轴于点E ,直线CB 交x 轴于点F .若3=AE AC ,则=CFBF.5.如图1,已知平行四边形ABCD ,A 、B 在反比例函数xky =上,C 、D 分别在x 轴、y 轴正半轴,且反比例图像经过平行四边形对角线的交点E ,已知平行四边形ABCD 面积为6,则=k .图1xxx6.(2020•宁德二模)如图,点A,B,C在反比例函数4yx=-的图像上,且直线AB经过原点,点C在第二像限上,连接AC并延长交x轴于点D,连接BD,若BOD∆的面积为9,则ACCD=.第四节 反比例函数的特殊等量关系和叠罗汉模型 一、平方关系二、乘积关系三、多个三角形矩形问题【例1】如图1,OAC ∆和BAD ∆都是等腰直角三角形,90ACO ADB ∠=∠=︒,反比例函数8y x=在第一像限的图像经过点B ,则OAC ∆与BAD ∆的面积之差为( ) A .1B .2C .3D .4图1【例2】如图1,在第一像限内,动点P 在反比例函数ky x=的图像上,以P 为顶点的等腰OPQ ∆,两腰OP 、PQ 分别交反比例函数my x=的图像于A 、B 两点,作PC OQ ⊥于点C ,BE PC ⊥于点E ,AD OQ ⊥于点D ,则以下说选正确的个数为( )个①AO PQ 为定值;②若4k m =,则A 为OP 中点;③2PEB k mS ∆-=;④222OA PB PQ +=;图1A .4B .3C .2D .1【例3】如图47所示,直线b x y +-=交y 轴于点B ,与双曲线)0(<=x xky 交于点A .若622=-OB OA ,则=k .图47【例4】如图49所示,点A 、B 为直线x y =上的两点,过A 、B 两点分别作y 轴的平行线交双曲线)0(1>=x xy 于点C 、D .若AC BD 2=,则224OD OC -的值为 .图49【例5】如图51所示,直线52-=x y 分别交x 轴、y 轴于点A 、B ,点M 是反比例函数)0(>=x xky 的图像上位于直线上方的一点,x MC //轴交AB 于点C ,MC MD ⊥交AB 于点D .已知5=⋅BD AC ,则k 的值为 .图51【例6】(2020•鄂州)如图53,点A 1,A 2,A 3…在反比例函数y =(x >0)的图像上,点B 1,B 2,B 3,…B n 在y 轴上,且∠B 1OA 1=∠B 2B 1A 2=∠B 3B 2A 3=…,直线y =x 与双曲线y =交于点A 1,B 1A 1⊥OA 1,B 2A 2⊥B 1A 2,B 3A 3⊥B 2A 3…,则B n (n 为正整数)的坐标是( )图53A .(2,0)B .(0,)C .(0,)D .(0,2)【例7】如图54,在y 轴的正半轴上,自O 点开始依次间隔相等的距离取点1A ,2A ,3A ,4A ,⋯,n A ,分别过这些点作y 轴的垂线,与反比例函数2(0)y x x=-<的图像相交于点1P ,2P ,3P ,4P ,⋯,n P ,作2111P B A P ⊥,3222P B A P ⊥,4333P B A P ⊥,⋯,111n n n n P B A P ---⊥,垂足分别为1B ,2B ,3B ,4B ,⋯,1n B -,连接12P P ,23P P ,34P P ,⋯,1n n P P -,得到一组Rt △112PB P ,Rt △223P B P ,Rt △334P B P ,⋯,Rt △11n n n P B P --,它们的面积分别记为1S ,2S ,3S ,⋯,1n S -,则12S S += ,1231n S S S S -+++⋯+= .图54【例8】(2015•贵港)如图55,已知点1A ,2A ,⋯,n A 均在直线1y x =-上,点1B ,2B ,⋯,n B 均在双曲线1y x =-上,并且满足:11A B x ⊥轴,12B A y ⊥轴,22A B x ⊥轴,23B A y ⊥轴,⋯,n n A B x ⊥轴,1n n B A y +⊥轴,⋯,记点n A 的横坐标为(n a n 为正整数).若11a =-,则2015a = .图55【例9】如图56所示,等腰三角形△11OA B ,△122B A B ,△233B A B ,⋯,△1(n n n B A B n -为正整数)的一直角边在x 轴上,双曲线ky x=经过所有三角形的斜边中点1C ,2C ,3C ,⋯,n C ,已知斜边1OA =点n A 的坐标为 .图56【同步训练】1.(2019秋•龙岗区校级期中)如图,BOD ∆是等腰直角三角形,过点B 作AB OB ⊥交反比例函数(0)ky x x=>于点A ,过点A 作AC BD ⊥于点C ,若3BOD ABC S S ∆∆-=,则k 的值为 .2.(2020•海门市二模)如图,在平面直角坐标系xOy 中,已知点(,)P a a ,过点P 作OP 的垂线交(0)ky x x=>的图像于点Q .若2212OP PQ -=,则k 的值为( )A .12B .9C .6D .33.(2018•越秀区二模)如图, 点A ,B 为直线y x =上的两点, 过A ,B 两点分别作y 轴的平行线交双曲线2(0)y x x=>于C ,D 两点 . 若3BD AC =,则229OC OD -的值为( )A . 16B . 27C . 32D . 484.(2017•十堰)如图, 直线6y =-分别交x 轴,y 轴于A ,B ,M 是反比例函数(0)ky x x=>的图像上位于直线上方的一点,//MC x 轴交AB 于C ,MD MC ⊥交AB 于D ,43AC BD =k 的值为( )A .3-B .4-C .5-D .6-5.(2013秋•洞头县期中)如图,△11POA 、△212P A A 、△323P A A 、⋯、△10099100P A A 是等腰直角三角形,点1P 、2P 、3P 、⋯、100P 在反比例函数4y x=的图像上,斜边1OA 、12A A 、23A A 、⋯、99100A A 都在x 轴上,则点100A 的坐标是 .6.如图,已知反比例函数1y x =的图像,当x 取1,2,3,n ⋯时,对应在反比例图像上的点分别为1M 、2M 、3n M M ⋯,则11222311P M M P M M Pn Mn MnSSS--++⋯= .7.(2015•威海一模)如图,在平面直角坐标系中,已知直线:1l y x =--,双曲线1y x=,在直线l 上取点1A ,过点1A 作x 轴的垂线交双曲线于点1B ,过点1B 作y 轴的垂线交直线l 于点2A ,过点2A 作x 轴的垂线交双曲线于点2B ,过点2B 作y 轴的垂线交直线l 于点3A ⋯,这样依次得到直线l 上的点1A ,2A ,3A ,4A ,⋯,n A ,⋯若点1A 的横坐标为2,则点2015A 的坐标为 .8.(2019•淄博)如图,△11OA B ,△122A A B ,△233A A B ,⋯是分别以1A ,2A ,3A ,⋯为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点11(C x ,1)y ,22(C x ,2)y ,33(C x ,3)y ,⋯均在反比例函数4(0)y x x=>的图像上.则1210y y y ++⋯+的值为( )A .B .6C ..达标训练1.如图所示,矩形ABCO 的顶点O 与坐标原点重合,点A 在x 轴上,点C 在y 轴上,反比例函数)0(≠=x xky 的图像分别与BC 、BA 的延长线交于E 、F 两点,连接AC . 证明:(1)EF AC //;(2)FH GE =.2.如图所示,平行四边形ABCD 的顶点A 、B 位于反比例函数xky =第一像限的图像上,点C 、D 分别位于y 轴负半轴和x 轴负半轴上,AD 交y 轴于点H ,BC 交x 轴于点G . 证明:(1)21∠=∠,43∠=∠;(2)四边形CDHG 是菱形.3.如图所示,A 、B 为反比例函数xky =第一像限图像上任意两点,连接OA 并延长交反比例函数图像另一支于点C ,连接BC 交x 轴于点G 、交y 轴于点F ,连接AB 并向两侧延长分别交x 轴于点E 、交y 轴于点D .证明:21∠=∠,43∠=∠.4.如图所示,□ABCD 的顶点A 、B 的坐标分别是)01(,-A 、)20(-,B ,顶点C 、D 在双曲线xky =上,边AD 交y 轴于点E ,且四边形BCDE 的面积是ABE △的面积的5倍,则=k .5.如图所示,矩形ABCD 的顶点C 、D 在反比例函数)00(>>=x k xky ,的图像上,顶点A 在y 轴上,顶点B 在x 轴上,连接OD .若︒=∠60ODC ,则=ADAB.6.如图,函数1(0)y x x =>和3(0)y x x=>的图像分别是1l 和2l .设点P 在2l 上,//PA y 轴交1l 于点A ,//PB x轴,交1l 于点B ,PAB ∆的面积为( )A .12B .23 C .13D .347.(2020•崇川一模)如图,直线y kx b =+与曲线3(0)y x x=>相交于A 、B 两点,交x 轴于点C ,若2AB BC =,则AOB ∆的面积是( ) A .3B .4C .6D .8yxAC BE D O y xBADCO8.(2019•双峰一模)如图,ABCD 的顶点A 、B 的坐标分别是(1,0)A -,(0,3)B -,顶点C 、D 在双曲线ky x=上, 边AD 交y 轴于点E ,且ABCD 的面积是ABE ∆面积的 8 倍, 则k = .8题图 9题图9.(2019•如东期末)如图,AOB ∆的顶点B 在x 轴上,点C 在AB 边上且2AC BC =,若点A 和点C 都在双曲线(0)ky x x=>上,AOC ∆的面积为4,则k 的值为 .10.(2017•孝义二模)如图,点A 是反比例函数(0)k y x x =>的图像上一点,OA 与反比例函数1(0)y x x=>的图像交于点C ,点B 在y 轴的正半轴上,且AB OA =,若ABC ∆的面积为6,则k 的值为 .11.(2017•慈溪模拟)如图,在平面直角坐标系中,O 为坐标原点,平行四边形ABOC 的对角线交于点M ,双曲线(0)ky x x=<经过点B 、M .若平行四边形ABOC 的面积为12,则k = .12.(2016•青羊月考)如图,已知点(4,3)P -是双曲线11(0k y k x=<,0)x <上一点,过点P 作x 轴、y 轴的垂线,分别交x 轴、y 轴于A 、B 两点,交双曲线221(0||)k y k k x=<<于E 、F 两点.记PEF OEF S S S ∆∆=-,则S 的取值范围是 .13.(2020•雨花期中)如图,在平面直角坐标系中,Rt AOB ∆的边OA 在y 轴上,OB 在x 轴上,反比例函数(0)ky k x=≠与斜边AB 交于点C 、D ,连接OD ,若:1:2AC CD =,14OBD S ∆=,则k 的值为 .14.(2020•常熟期末)如图,在平面直角坐标系中,ABO ∆的边AB 平行于y 轴,反比例函数(0)ky x x=>的图像经过OA 中点C 和点B ,且OAB ∆的面积为6,则k = .x15.(2020•随州中考)如图,直线AB 与双曲线(0)ky k x =>在第一像限内交于A 、B 两点,与x 轴交于点C ,点B 为线段AC 的中点,连接OA ,若AOC ∆的面积为3,则k 的值为 .16.(2020•平湖二模)如图,已知OAB ∆中,AB OB ⊥,以O 为原点,以BO 所在直线为x 轴建立坐标系.反比例函数的图像分别交AO ,AB 于点C ,D ,已知32OC AC =,ACD ∆的面积为169,则该反比例函数的解析式为 .17.如图所示,双曲线)0(4>=x xy 与直线EF 交于点A 、B ,且BF AB AE ==,线段AO 、BO 分别与双曲线)0(2>=x xy 交于点C 、D ,则: (1)AB 与CD 的位置关系是;(2)四边形ABDC 的面积为 .18.如图所示,在平面直角坐标系xOy 中,梯形ABCO 的底边AO 在x 轴上,AO BC //,AO AB ⊥,过点C 的反比例函数)0(>=x x k y 的图像交OB 于点D ,且21=DB OD .若16=OBC S △,k 的值是__________.19.如图所示,在平面直角坐标系xOy 中,点A 、B 在反比例函数)0(4>=x xy 的图像上,延长AB 交x 轴于点C ,且21=AB BC ,连接OA 交反比例函数)0(1>=x xy 的图像于点D ,则=ABD S △ .19题图 20题图20.(2019•鼓楼期末)如图,A 、B 是反比例函数ky x=图像上的两点,过点A 作AC y ⊥轴,垂足为C ,交OB 于点D ,且D 为OB 的中点,若ABO ∆的面积为4,则k 的值为 .21.(2017•长春模拟)如图,在平面直角坐标系中,点A 在x 轴的正半轴上,点B 在第一像限,点C 在线段AB 上,点D 在AB 的右侧,OAB ∆和BCD ∆都是等腰直角三角形,90OAB BCD ∠=∠=︒,若函数6(0)y x x=>的图像经过点D ,则OAB ∆与BCD ∆的面积之差为( )A .12B .6C .3D .222.(2020•广西)如图,点A ,B 是直线y x =上的两点,过A ,B 两点分别作x 轴的平行线交双曲线xy CB AD O1(0)y x x=>于点C ,D .若AC ,则223OD OC -的值为( )A .5B .C .4D .23.(2020•宁乡市一模)如图,点M 为双曲线1y x=上一点,过点M 作x 轴、y 轴的垂线,分别交直线2y x m =-+于D 、C 两点,若直线2y x m =-+交y 轴于A ,交x 轴于B ,则AD BC 的值为 .24.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点1A 、2A 、3A 、4A 、5A 分别作x 轴的垂线与反比例函数(0)4y x x=≠的图像相交于点1P 、2P 、3P 、4P 、5P ,得直角三角形11OP A 、122A P A ,233A P A ,344A P A ,455A P A ,并设其面积分别为1S 、2S 、3S 、4S 、5S ,则10S = .(1n 的整数)25.如图,在AOC ∆中,90OAC ∠=︒,AO AC =,2OC =,将AOC ∆放置于平面直角坐标系中,点O 与坐标原点重合,斜边OC 在x 轴上.反比例函数(0)ky x x=>的图像经过点A .将AOC ∆沿x 轴向右平移2个单位长度,记平移后三角形的边与反比例函数图像的交点为1A ,2A .重复平移操作,依次记交点为3A ,4A ,5A ,6A ⋯分别过点A ,1A ,2A ,3A ,4A ,5A ⋯作x 轴的垂线,垂足依次记为P ,1P ,2P ,3P ,4P ,5P ⋯若四边形11APP A 的面积记为1S ,四边形2233A P P A 的面积记为2S ⋯,则n S = .(用含n 的代数式表示,n 为正整数)26.如图所示,点1A ,2A ,3A ⋯⋯.n A 在x 轴上,且1121n n OA A A A A -==⋯⋯=,分别过点1A ,2A ,3A ⋯,n A ⋯作y 轴的平行线,与反比例函数8(0)y x x =>的图像分别交于点1B ,2B ,3n B B ⋯,分别过点1B ,2B ,3B ⋯⋯,.n B 作x 轴的平行线交y 轴交于点1C ,2C ,3:C ⋯⋯.n C ,连接1OB ,2OB ,3n OB OB ⋯,得到△11OB C ,△222D B E .△333D B E ⋯⋯△n n n D B E ,则△201820182018D B E 图面积等于 .27.(2016•抚顺模拟)如图,点11(P x ,1)y ,点22(P x ,2)y ,⋯,点(n nP x ,)n y 在函数1(0)y x x=>的图像上,△1POA ,△212P A A ,△323P A A ,⋯,△1n n n P A A -都是等腰直角三角形,斜边1OA ,12A A ,23A A ,⋯,1n n A A -都在x 轴上(n 是大于或等于2的正整数).若△11POA 的内接正方形1111B C D E 的周长记为1l ,△212P A A 的内接正方形的周长记为2l ,⋯,△1n n n P A A -的内接正方形n n n n B C D E 的周长记为n l ,则123n l l l l +++⋯+= (用含n 的式子表示).28.(2019•鞍山一模)如图,直线4y x =-+分别交x 轴、y 轴于A 、B 两点,P 是反比例函数(0)ky x x=>,图像上位于直线4y x =-+下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F ,并且4AF BE = (1)求k 的值; (2)若反比例函数ky x=与一次函数4y x =-+交于C 、D 两点,求三角形OCD 的面积.29.(2013秋•龙湾区校级月考)如图,点1P 、2P 、n P ⋯是反比例函数16y x=在第一像限图像上,点1A 、2n A A ⋯在x 轴上,若△11POA 、△212P A A ⋯△1n N N P A A -均为等腰直角三角形,则: (1)1P 点的坐标为 ; (2)求点2A 与点2P 的坐标; (3)直接写出点n A 与点n P 的坐标.30.(2018•景德镇二模)如图,四边形111OP A B 、1222A P A B 、2333A P A B 、⋯⋯、1n n n n A P A B -都是正方形,对角线1OA 、12A A 、23A A 、⋯⋯、1n n A A -都在y 轴上(2)n ,点11(P x ,1)y ,点22(P x ,2)y ,⋯⋯,点(n n P x ,)n y 在反比例函数(0)ky x x=>的图像上,已知1(1,1)B -. (1)反比例函数解析式为 ; (2)求点3P 和点2P 的坐标;(3)点n P 的坐标为( )(用含n 的式子表示),△n n P B O 的面积为 .31.(2020•江夏区模拟)如图,在平面直角坐标系中,函数(0)ky x x=>的图像经过菱形OACD 的顶点D 和边AC 上的一点E ,且2CE AE =,菱形的边长为8,则k 的值为 .32.(2018•武侯区模拟)如图,在平面直角坐标系中,平行四边形ABOC 的边OB 在x 轴上,过点(3,4)C 的双曲线与AB 交于点D ,且2AC AD =,则点D 的坐标为 .。

相关文档
最新文档