反比例函数及性质

合集下载

实际生活中的反比例函数

实际生活中的反比例函数

实际生活中的反比例函数
实际生活中的反比例函数
主要内容:
(一)反比例函数的性质:
反比例函数(k 是常数,)
当时,图象的两个分支分别位于第一、三象限。

在每一个象限内,y 的值随x 值的增大而减小。

当时,图象的两个分支分别位于第二、四象限。

在每一个象限内,y 的值随x 值的增大而增大。

(二)能利用反比例函数及其性质解决实际问题,解释一些生活中的现象,体会数学的价值。

比如:使劲踩气球时,气球为什幺会爆炸?
因为在温度不变的情况下,气球内气体的压强p(Pa)与它的体积V
(m3)的乘积是一个常数k。

即pV=k(k 为常数,k>0)
在温度不变的情况下,气球内气体的压强p 是气球体积V 的反比例函数,即。

根据反比例函数的性质
当k>0 时,p 随V 的减小而增大。

如果用力踩气球,气球的体积会变小,压强会变大。

当压强大到一定程度时,气球便会爆炸。

【典型例题】
例1. 某一电路中,保持电压U 不变,电流I(安培)与电阻R(欧姆)之。

反比例函数的图像及性质

反比例函数的图像及性质

解题技巧归纳
判断函数类型
通过观察函数表达式,判断其是否为反比例 函数。
利用对称性
利用反比例函数图像的对称性,可以简化一 些复杂问题的求解过程。
分析图像特征
根据 $k$ 的正负判断双曲线所在的象限, 并理解其增减性。
结合其他知识点
在解题过程中,可能需要结合一次函数、二 次函数等其他知识点进行综合分析。
表达式
反比例函数的一般表达式为y=k/x( k≠0),其中k是比例系数,x是自变 量,y是因变量。
自变量取值范围
由于分母不能为0,因此反比例函数 的自变量x不能为0,即x的取值范围 是x≠0。
反比例函数的定义域是除去使分母为0 的点以外的所有实数。
函数值变化规律
当x>0时,随着x的增大,y的值逐渐减小,但永远不会等于0;当x<0时 ,随着x的减小,y的值逐渐增大,也永远不会等于0。
综合应用探讨
解决问题类型
反比例函数和一次函数在解决实际问题时具有广泛的应用。例如,反比例函数可用于描述速度、密度等物理量之间的 关系;一次函数则可用于描述线性增长或下降的问题,如直线运动、均匀变化等。
建模方法
在建立反比例函数和一次函数的模型时,需要根据问题的实际背景和条件,确定函数的表达式和参数。通过比较和分 析不同函数的图像和性质,可以选择最合适的函数模型来描述问题的本质和规律。
反比例函数的图像及性质
汇报人:XXX 2024-01-22
contents
目录
• 反比例函数基本概念 • 反比例函数图像特征 • 反比例函数性质分析 • 反比例函数应用举例 • 反比例函数与一次函数比较 • 总结回顾与拓展延伸
01
反比例函数基本概念
定义与表达式

反比例函数的图象和性质

反比例函数的图象和性质

P(a,b)
X>0
例5.已知函数y=k/x 的图象如下右图,则y=k x-2 的图象大致是( D )
y y o (B) y y o x x y o x x
(A)
o
x
o
(C)
(D)
练一练
1.所受压力为F (F为常数且F≠ 0) 的物体,所受压 强P与所受面积S的图象大致为( B)
P (A) P (B) O P (C) O S O (D) S S
8. 如图点P 是反比例函数y= 4/x 的图象上的任意 点,PA垂直于x轴,设三角形AOP的面积为S,则 S=_____
4 2
P
-5
O
A
5
-2
9。已知反比例函数y =k/x 和一次函数 y=kx+b 的图象都经过点(2,1) (1)分别求出这个函数的解析式 (2)试判断是A(-2, -1)在哪个函数的图象上 (3)求这两个函数的交点坐标
P C
A B
o Q x
1.5 8 1 1、反比例函数y , y , y 的共同点是 ( C) x x 4x (A)图像位于同样的象限 (B)自变量取值是全体实数 (C)图像都不与坐标轴相交 (D)函数值都大于0
2、以下各图表示正比例函数y=kx与反比例函数 y y o (B) x o (C)
y
0
y x
0
x
如果两个变量x,y之间的关系可以表示成 (k为常数,k≠0)的形式,那么称y是x的反比例 函数,其中自变量不能为0。
y
k x
函数名称
函数解 析式和 自变量 取值范 围
正比例函数 y=kx(k≠0,k是 常数) x取一切实数 K>0 K<0 y x o y随着x 增大而 减小 x o

反比例函数的意义及性质

反比例函数的意义及性质
反比例函数的实际应用
#O5
#2022
在物理学中的应用
电流与电阻的关系
01
在电路中,电流与电阻成反比关系,即当电阻增大时,电流减小;反之,当电阻减小时,电流增大。这一规律在电子设备、电力系统和电路分析等领域有着广泛的应用。
声学中的声压级
02
在声学中,声压级与距离声源的距离成反比关系。这意味着随着距离声源的距离增加,声压级会减小。这一规律在噪声控制、音响设计和声音传播等领域具有实际意义。
反比例函数在现实生活中的应用
物理学中的电阻定律 当导体的长度和截面积一定时,其电阻与电阻率成反比,即 R = k/S,其中 R 是电阻,S 是截面积,k 是电阻率。 经济生活中的供需关系 在一定条件下,商品的需求量与价格成反比,即需求量 = k/价格,其中 k 是常数。 化学中的反应速率 在一定条件下,化学反应的速率与反应物的浓度成反比,即速率 = k/浓度,其中 k 是常数。
生物种群数量变化
感谢您的观看
THANKS FOR
WATCHING
反比例函数的图像
#O2
#2022
反比例函数的图像特点
无限接近x轴和y轴
反比例函数的图像位于x轴和y轴的两侧,随着x的增大或减小,y的值会无限接近于0,但永远不会等于0。
双曲线形状
反比例函数的图像是双曲线,其形状取决于比例系数k的正负。当k>0时,图像位于第一、三象限;当k<0时,图像位于第二、四象限。
渐近线
反比例函数的图像有两条渐近线,分别是x轴和y轴。
反比例函数图像的绘制方法
确定k的值 描点 连线 验证 首先需要确定比例系数k的值,根据k的正负确定图像所在的象限。 在坐标系上选取一些特定的x值,计算对应的y值,并描出对应的点。 使用平滑的曲线将这些点连接起来,形成反比例函数的图像。 通过代入一些已知的x值来验证所绘制的图像是否准确。

反比例函数的性质与计算

反比例函数的性质与计算

反比例函数的性质与计算反比例函数是数学中重要的一类函数,指的是函数中的两个变量在其取值之间存在着一种相反的关系。

本文将介绍反比例函数的性质以及如何进行相关计算。

一、反比例函数的定义与性质一个函数y = k/x(其中k为常数)被称为反比例函数。

反比例函数具有以下性质:1. 输入与输出的关系:反比例函数表示两个变量之间的相互关系,其中,当一个变量的值增加时,另一个变量的值将减少,反之亦然。

这种关系可以用直观的比喻来理解,比如:行驶的速度越快,所需要的时间就越短;倒数是反比例函数中常见的表达方式之一。

2. 定义域与值域:反比例函数的定义域为实数除去0,因为在反比例函数中,分母不能为零。

而函数的值域则可以是任意的实数。

所以,反比例函数的图像通常不包含y轴上的点(0, 0)。

3. 特殊情况:当k等于0时,反比例函数退化为y = 0,即一条水平的直线,其图像为x轴。

二、反比例函数的计算方法在计算反比例函数时,我们通常会遇到以下几个重要的问题。

1. 求解常数k的值:当已知反比例函数图像上的一个点坐标(x1, y1)时,可以通过代入求解的方法得到常数k的值。

具体步骤如下:(1) 将已知点的坐标代入反比例函数的表达式中,得到方程y1 =k/x1;(2) 通过变形将方程转化为k = x1 * y1的形式,从而得到k的具体值。

2. 求解反比例函数上某一点的坐标:当已知反比例函数的常数k的值与一个变量的值x时,我们可以通过代入计算的方法求解相应的y值。

具体步骤如下:(1) 将已知的x的值代入反比例函数的表达式中,得到方程y = k/x;(2) 将x的值代入方程,计算出对应的y值,从而得到点坐标(x, y)。

3. 求解满足条件的反比例函数:有时候,我们需要找到一个满足特定条件的反比例函数。

例如,已知反比例函数通过点A(x1, y1)和点B(x2, y2),我们可以通过以下步骤确定满足条件的反比例函数:(1) 利用求解常数k的值的方法,分别求解两个点的常数k1和k2;(2) 将求解得到的两个常数代入反比例函数的表达式中,得到两个反比例函数的具体表达式为y1 = k1/x、y2 = k2/x;(3) 利用两个点的图像,可以画出两个反比例函数的图像,并找到它们的交点C(xc, yc);(4) 通过观察交点C的坐标,可以确定满足条件的反比例函数的具体表达式。

反比例函数的图象与性质定

反比例函数的图象与性质定
增。
奇偶性
反比例函数是奇函数,因为对于所 有 x,都有 f(-x) = -f(x)。
无界性
由于反比例函数的值域为 y ≠ 0 和 y ≠ -∞,因此其图象在 x = 0 处无 界。
反比例函数的性质
01
02
03
分母不为零
反比例函数的分母不能为 零,因此其定义域为 x ≠ 0。
无界性
反比例函数的值域为 y ≠ 0 和 y ≠ -∞,因此其图象 在 x = 0 处无界。
当$x<0$时,反比例函数的图象位于 第三象限,与直线$y=kx+b$相交于 一点,这一点也是它们的切点。
与二次函数的关系
二次函数是形如 $y=ax^2+bx+c$的函数,其 中$a, b, c$是常数且$a neq 0$

反比例函数的图象是一个双曲 线,分布在第一和第三象限。
二次函数的图象是一个抛物线 ,可以开口向上或向下。
反比例函数的图象与性质
目 录
• 反比例函数概述 • 反比例函数的图象特点 • 反比例函数的性质分析 • 反比例函数的应用 • 反比例函数与其他函数的关系 • 反比例函数的扩展知识
01 反比例函数概述
反比例函数的定义
反比例函数定义
反比例函数的值域
反比例函数是一种数学函数,其定义 为 f(x) = k/x,其中 k 是常数且 k ≠ 0。
磁场强度与电流
在电磁学中,磁场强度与电流之间的关系可以用反比例函数 描述,通过分析反比例函数的特性,可以研究电磁感应和电 磁波的传播。
与其他数学知识的结合
代数方程
反比例函数可以与其他代数方程 结合,用于解决代数问题,例如 求解代数方程的根或解决代数不 等式问题。

反比例函数概念与性质

反比例函数概念与性质

反比例函数概念与性质反比例函数的概念与性质一、反比例函数的概念1.反比例函数可以写成y=k/x的形式,其中自变量x的指数为-1.在解决有关自变量指数问题时,应特别注意系数。

2.反比例函数也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。

3.反比例函数的自变量不能为0,故函数图象与x轴、y轴无交点。

二、反比例函数的图象1.在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称)。

2.反比例函数的图象是双曲线。

随着k的增大,图象的弯曲度越小,曲线越平直;随着k的减小,图象的弯曲度越大。

3.反比例函数的图象与坐标轴没有交点,称两条坐标轴是双曲线的渐近线。

当k>0时,图象的两支分别位于第一、第三象限内,在每个象限内,y随x的增大而减小;当k<0时,图象的两支分别位于第二、第四象限内,在每个象限内,y随x的增大而增大。

4.反比例函数的图象关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在另一支上。

5.反比例函数的k值的几何意义是:如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B 点,则矩形PBOA的面积是k;如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥XXX的延长线于C,则三角形PQC的面积也是k。

6.反比例函数的增减性需要将两个分支分别讨论,不能一概而论。

7.直线y=k与双曲线y=k/x的关系:当k>0时,两图象必有两个交点,且这两个交点关于原点成中心对称;当k=0时,两图象有一个公共点O;当k<0时,两图象没有交点。

8.反比例函数与一次函数的联系:当k=0时,反比例函数变为一次函数y=0.求反比例函数的解析式的方法主要有三种:待定系数法、反比例函数k的几何意义、实际问题。

四、反比例函数解析式的确定一、反比例函数的定义:反比例函数是指函数表达式为y=k/x的函数,其中k为非零常数。

反比例函数图像和性质

反比例函数图像和性质

VS
化学反应中的浓度问题
在某些化学反应中,反应物的浓度与反应 时间可能成反比例关系。可以利用反比例 函数来分析这种关系,并求解相关问题, 如反应速率、反应时间等。
05
反比例函数与其他类型函数关系探讨
与一次函数关系
反比例函数与一次函数的交点
在某些特定条件下,反比例函数和一次函数可能会有交点。这些交点可以通过解方程组 来找到。
06
总结回顾与拓展延伸
关键知识点总结回顾
反比例函数定义:形如 $y = frac{k}{x}$ ($k$ 为常数 ,$k neq 0$)的函数称为反比例函数。
反比例函数性质
当 $k < 0$ 时,在每个象限内,随着 $x$ 的增大, $y$ 值逐渐增大。
反比例函数图像:反比例函数的图像是双曲线,且以原 点为对称中心。当 $k > 0$ 时,双曲线位于第一、三 象限;当 $k < 0$ 时,双曲线位于第二、四象限。
图像法
通过观察反比例函数的图像,可以发 现其关于原点对称,这也是奇函数的 一个特征。
周期性讨论
周期性定义
周期函数是指函数在某个特定的非零周期长度内重复出现的性质。对于反比例函数,由于其图像不呈 现周期性变化,因此不是周期函数。
非周期性证明
可以通过反证法证明反比例函数的非周期性。假设反比例函数是周期函数,那么在其周期内应该存在 两个相同的点,但是根据反比例函数的定义和性质,这是不可能的。因此,反比例函数不是周期函数 。
变速直线运动
在某些情况下,物体做变速直线运动时,其速度与时间也可能成反比例关系。同样可以利用反比例函数来进行分 析和求解。
浓度问题建模与求解
溶液稀释问题
在溶液稀释过程中,溶质的质量与溶液 的体积成反比例关系。可以通过反比例 函数来描述这种关系,并求解相关问题 ,如稀释后的浓度、所需溶质的质量等 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数及性质
(1) 形如x
k y =( k 是常数,k≠0)的形式,那么y 就称为x 的反比例函数。

自变量x 的取值范围是不等于0的一切实数。

.反比例函数的三种不同表达形式:① ②

(2) 反比例函数 y=k/x (k≠0)的图象是由两支曲线组成的,这两支曲线常称为 .
说明:①双曲线的两个分支不能够连接起来;
②两个分支无限靠近x 轴和y 轴,但是永远与 不相交;
③图象既是 ,对称轴是 ;
也是 ,对称中心是 ;
④画反比例函数图象时通常先画出一个分支,然后根据对称性画出另一个分支.
(3)反比例函数的性质:
1、函数经过的象限及增减性:
①当k>0时, ;。

②当k<0 时, ;。

2、反比例函数x
k y =( k 是常数,k≠0)图象上任一点向x 轴、y 轴作垂线段得到的基本矩形面积 ;基本三角形面积 。

3、反比例函数x
k y 1=(1k 是常数,1k ≠0)与正比例函数)0(22的常数≠=k x k y 交点坐标就是方程组 的解,且这两个点关于
成中心对称。

4、反比例函数x
k y 1=(1k 是常数,1k ≠0)与一次函数)0(222≠+=k b k b x k y 是常数,与的交点坐标就是方程组 即:
b x k x
k +=21,同乘x 得: ,若这个一元二次方有2个不同的实数根则它们就有 ;若有2个相等的实数根则它
们就有 ;若无解则它们就 。

函数解析式联立的方程组的解就是函数图象交点坐标;函数图象交点的坐标就是解析式联立
成方程组的解;
二、填空(每题3分共30分)
1、已知y 与(2x+1)成反比例且当x=0时,y=2,那么当x=-1时,y=________。

2、如果反比例函数的图象经过点(3,1),那么k=_______
3、设反比例函数
的图象经过点(x 1,y 1)和(x 2,y 2)且有y 1>y 2,则k 的取值范围是______。

4、若点(2,
1)是反比例的图象上一点,当y=6时,则x=_______。

5、函数
与y=-2x 的图象的交点的坐标是____________。

6、如果点(m,-2m)在双曲线上,那么双曲线在_________象限。

7、已知一次函数y=ax+b 图象在一、二、三象限,则反比例函数y=的函数值随x 的增大而__________。

8、已知,那么y 与x 成_________比例,k=________,其图象在第_______象限。

9、菱形面积为12cm 2
,且对角线长分别为x cm 和y cm ,则y 关于x 的函数关系式是_________。

10、反比例函数
,当x >0时,y 随x 的增大而增大,则m 的值是 。

11.已知与 成反比例,且当 时,,那么当 时, . 12.(2012·山东潍坊中考)点P 在反比例函数(k ≠0)的图象上,点Q (2,4)与点P 关于y 轴对称,则反比例函数的解析式为 .
13.已知反比例函数x
m y 33-=,当______m 时,其图象的两个分支在第一、三象限内;当______m 时,其图象在每个象限内y 随x 的增大而增大. 14.若反比例函数x
k y 3-=的图象位于第一、三象限内,正比例函数x k y )92(-=的图象过第二、四象限,则k 的整数值是________.
15.现有一批救灾物资要从A 市运往B 市,如果两市的距离为500千米,车速为每小时千米,从A 市到B 市所需时间为小时,那么与之间的函数关系式为_________,是的
________函数.
16.(2012·河南中考)如图所示,点A 、B 在反比例函数(k >
0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、
N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积
为6,则k 的值为 .
17. 若点A (m ,-2)在反比例函数4y x
=
的图象上,则当函数值
时,自变量x 的取值范围是___________.
18.在同一直角坐标系中,正比例函数x k y 1=的图象与反比例函 数x
k y 2=的图象有公共点,则21k k 0(填“>”、“=”或“<”). 三、解答题(共46分)
19.(6分)已知一次函数kx y =与反比例函数x y 3=的图象都经过点A (m ,1).求: (1)正比例函数的解析式;
(2)正比例函数与反比例函数的图象的另一个交点的坐标.
20.(6分)如图,正比例函数12y x =的图象与反比例函数k y x
=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知△
的面积为1. (1)求反比例函数的解析式;
(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),
且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.
21.(6分)如图所示是某一蓄水池的排水速度h )与排完水池中的水所用的时间t (h )之间的函数关系图象.
(1)请你根据图象提供的信息求出此蓄水池的蓄水量;
(2)写出此函数的解析式;
(3)若要6 h 排完水池中的水,那么每小时的排水量应该是多少?
(4)如果每小时排水量是,那么水池中的水要用多少小时排完?
22.(7分)若反比例函数x k y =
与一次函数42-=x y 的图象都经过点A (a ,2). (1)求反比例函数x
k y =的解析式; (2) 当反比例函数x
k y =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围.
23.(7分)(2012·天津中考)已知反比例函数y=(k 为常数,k ≠1).
(1)其图象与正比例函数y=x 的图象的一个交点为P ,若点P 的纵
坐标是2,求k 的值;
(2)若在其图象的每一支上,y 随x 的增大而减小,求k 的取值范围;
(3)若其图象的一支位于第二象限,在这一支上任取两点 A (x 1,y 1)、
B (x 2,y 2),当y 1>y 2时,试比较x 1与x 2的大小.
24.(7分)如图,已知直线1y x m =+与x 轴、y 轴分别交于
点A 、B ,与反比例函数2k y x =(x )的图象分别交于点
C 、
D ,且C 点的坐标为(1-,2).
⑴分别求出直线AB 及反比例函数的解析式;
⑵求出点D 的坐标;
⑶利用图象直接写出:当x 在什么范围内取值时,1y >2y .
25.(7分)制作一种产品,需先将材料加热达到60 ℃
后,再进行操作.设该材料温度为y (℃),从加热开始
计算的时间为x (min ).据了解,当该材料加热时,温
度y 与时间x 成一次函数关系;停止加热进行操作时,
温度y 与时间x 成反比例关系(如图).已知该材料在操作加热前的温
度为15 ℃,加热
5分钟后温度达到60 ℃.
(1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;
(2)根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从
开始加热到停止
操作,共经历了多少时间?。

相关文档
最新文档