初中数学优课---反比例函数的图象和性质--教学设计(韦莎莎)

合集下载

人教版九年级数学下册《反比例函数的图象和性质》教学设计

人教版九年级数学下册《反比例函数的图象和性质》教学设计

反比例函数的图象和性质(二)三维目标一、知识与技能进一步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质.二、过程与方法1.经历用反比例函数的图象和性质解决数学问题的过程.2.进一步体会分类讨论思想特别是数形结合思想的运用.三、情感态度与价值观1.积极参与数学活动、注意多与同伴交流看法.2.在参与数学活动的过程中,体会探索、创新的乐趣,养成乐于探索的习惯.教学重点用反比例函数的图象和性质解决数学中的简单问题.教学难点数形结合的思想在解题中的应用.教具准备多媒体课件.教学过程创设问题情境,引入新课活动11.•作反比例函数图象的基本步骤是:•(•1)•________;•(•2)•_________;•(•3)_________.2.反比例函数y=kx的图象是由_______组成的,通常称为_______,当k>0•时______位于________;当k<0时,_________位于________.3.反比例函数y=kx的图象,当k>0时,在每一个象限内,y的值随x值的增大而________;当k<0时,在每一个象限内,y的值随x的增大而________.4.反比例函数y=kx的图象上任取一点,过这一点分别作x轴、y轴的平行线,与坐标轴围成的矩形的面积是________.5.知识结构反比例函数的图象与性质(1)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩反比例函数的图象是__________(1)当k>0时_________ (2)性质(2)当k<0时__________设计意图:帮助学生回忆节上节课研究过的反比例函数的图象和性质,进一步让学生体会数形结合的思想.师生行为:由学生回答,教师引导学生进一步归纳总结.此活动中,教师应重点关注:①学生能否顺利地完成填空;②学生是否能由反比例函数的图象和性质整合起来理解.二、讲授新课活动2问题:【例3】已知反比例函数的图象经过点A(2,6).(1)这个函数的图象分布在哪些象限?y随x的增大如何变化?(2)点B(3,4),C(-212,-445)和D(2,5)是否在这个函数的图象上?设计意图:根据已知条件确定反比例函数的解析式,并根据函数解析式判断点是否在函数图象上.师生行为:学生独立思考,自己解答.教师巡视解答过程并给予引导.在此活动中,教师应重点关注:①是否理解反比例函数解析式的确定就是k值的确定.②点是否在图象上,只需将点的横、纵坐标代入解析式,看是否符合解析式,即可判断. 生:解:(1)设这个反比例函数为y=k x ,因为它经过点A ,把点A 的坐标(2,6)代入函数式,得6=2k ,解得k=12. 这个反比例函数的表达式为y=12x. 因为k>0,所以这个函数的图象在第一、第三象限,在每个象限内,y 随x 的增大而减小.(2)把点B 、C 和D 的坐标代入y=12x,可知点B 、点C 的坐标满足函数关系式.点D•的坐标不满足函数关系式,所以点B 、点C 在函数y=12x 的图象上,点D 不在这个函数的图象上.活动3问题:【例4】如下图是反比例函数y=5m x的图象的一支,根据图象回答下列问题:(1)图象的另一支在哪个象限?常数m 的取值范围是什么?(2)如上图的图象上任取点A (a ,b )和点B (a ′,b ′)如果a>a ′,那么b 和b ′有怎样的大小关系?设计意图:熟练运用反比例函数的图象和性质解答数学问题,特别强调让学生注意数形结合思想的应用.师生行为:让学生先观察图象,然后结合反比例函数的性质完成此题.教师应给学生充分交流的时间和空间.在此活动中,教师应重点关注:①学生能否从图象的特点得到m-5的符号;②学生能否从图象的特点,结合函数的性质解决问题;③学生能否独立思考问题.生:解:(1)反比例函数的图象的分布只有两种可能,分布在第一、•第三象限,或者分布在第二、四象限,在这个函数的图象的一支在第一象限,则另一支必在第三象限.因此这个函数的图象分布在第一、三象限,所以m-5>0,解得m>5.(2)由函数的图象可知,在双曲线的一支上,y 随x 的增大而减小.所以当a>a ′时,b<b ′.三、巩固提高活动4练习:1.练习反比例函数的图象经过点A (3,-4).(1)这个函数的图象分布在哪些象限?在图象的每一支上,y 随x 的增大如何变化?(2)点B (-3,4),点C (-2,6)和点D (3,4)是否在这个函数的图象上?2.如下图是反比例函数y=7n x的图象的一支,根据图象回答下列问题:(1)图象的另一支在哪个象限?常数n 的取值范围是什么?(2)在图象上任取一点A (a ,b )和B (a ′,b ′),如果a<a ′,那么b 和b ′有怎样的大小关系?设计意图:进一步熟悉由数得到形的特点,由形得到数的特点,渗透数形结合的思想.师生行为:由学生独立思考完成,教师进一步根据学生的情况进行评析.在此活动中,教师应重点关注:①学生是否具有数形结合的意识.②学生能否有独立思考问题的习惯.生:解:1.(1)设这个反比例函数为y=k x ,因它经过点A (3,-4),把点A 的坐标代入函数式,得-4=3k .解得k=-12.这个反比例函数的表达式为y=-12x.因为k<0,所以这个函数的图象在第二、四象限,在每个象限内,y随x的增大而增大.(2)把点B、C、D的坐标代入y=-12x,可知点B、点C的坐标满足函数关系式,点D的坐标不满足函数关系式,所以点B,点C在函数y=-12x的图象上,点D不在这个函数图象上.2.(1)因为反比例函数的图象的分布只有两种可能,分布在第一、三象限,•或者分布在第二、四象限,这个函数的图象的一支在第二象限,则另一支必在第四象限.因此这个函数的图象分布在第二、第四象限,所以n+7<0,n<-7.(2)由函数的图象可知,在双曲线的一支上,y随x的增大而增大,所以当a<a′时,b<b′.活动5问题:如下图,点A、B在反比例函数y=kx的图象上,且点A、B的横坐标分别为a,2a(a>0),AC⊥x轴,垂足为点C,且△AOC的面积为2.(1)求该反比例函数的解析式.(2)若点(-a,y1),(-2a,y2)在该反比例函数的图象上,试比较y1与y2的大小.设计意图:综合函数与几何知识,提高学生综合运用知识的能力.师生行为:先由学生独立思考,寻找解题的途径.教师应给予适当的引导,特别对于“学困生”.在此活动中,教师应重点关注:①综合运用数学知识的能力;②学生面对困难,有无面对困难的勇气和克服困难的坚强意志;③学生能否借助于新旧知识的联系,转化迁移旧知识.师生共析:通过Rt△AOC的面积S=12OC·AC=2,可知x A·y A=4.又因为点A在双曲线上,所以x A·y A=k,•可求出函数的解析式,再根据反比例函数的性质,k>0,y随x的增大而减小知,•自变量x 越大,函数值反而小,通过比较-a与-2a的大小可知y1与y2的大小.生:(1)解:因为点A在反比例函数y=kx的图象上,设点A的坐标为(a,ka).∵a>0,k>0,∴AC=ka,OC=a,又∵S△AOC=12OC·AC=2.∴12·a·ka=2,k=4,y=4x.即此反比例函数的解析式为y=.(2)∵A点,B点横坐标分别为a;2a(a>0)∴2a>a,即-2a<-a<0.由于点(-2a,y1),(-a,y2)在双曲线上,根据反比例函数的性质k>0,y随x•增大而减小知y1<y2.四、课时小结活动6谈谈你本节课有什么新的收获?掌握反比例函数的性质;会利用待定系数法求函数解析式.设计意图:这种形式的小结,激发学生主动参与的意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功体验的机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要.师生行为:让学生小组讨论、交流本节课的收获.教师根据学生的情况汇总.在活动中,教师应重点关注:①不同层次学生对本节知识的认识程度;②学生独立面对困难和克服困难的能力.板书设计17.1.2反比例函数的图象和性质(二)1.反比例函数①定义②图象③主要性质2.反比例函数的图象和性质的应用例3例43.练习4.小结活动与探究已知力F 所做的功是15焦,则力F 与物体在力的方向上通过的距离s 的图象大致是() 过程:在物理学中,功W=F ·s ,所以F=W s,又因为W=15为定值,所以F 是s 的反比例函数,因为W=15>0,s>0,所以其图象在第一象限.结果:应选B .习题详解习题17.11.(1)S=V h,此函数为反比例函数. (2)y=S x.此函数为反比例函数.2.B 是反比例函数,k=-3 3.(1)>,减小.(2)<,增大,(3)k=3,减小.4.如果y 是x 的反比例函数,那么x 也是y 的反比例函数.5.y 与x 具有正比例函数关系.6.y 与x 具有反比例函数关系.7.(1)设正比例函数y=x 的图象与反比例函数y=k x的图象的交点坐标为(a ,2),则 2,2,4.2;a a k k a =⎧=⎧⎪⎨⎨==⎩⎪⎩解得 所以反比例函数的解析式为y=4x . 当x=-3时,y=-43. (2)反比例函数y=4x 的图象在第三象限函数值y 随x 的增大而减小. 当x=-3时,y=-43;当x=-1时,y=-4. 所以-3<x<-1时,y 的取值范围是-4<y<-43. 8.BD9.(1)y=m x的图象的一支在第一象限,图象的另一支在第三象限,所以>0,得(2)的图象在第一、三象限,所以在每个象限y 随x 的增大而减小,所以b>b ′,•有a<a ′.备课资料参考练习1.如果k>0,那么函数y=k x的图象大致是下图中的( )2.已知y=(a-1)x a 是反比例函数,则它的图象在( )A .第一,三象限B .第二,四象限C .第一,二象限D .第三,四象限3.对于反比例函数y=-2x,下列结论错误的是( ) A .当x>0时,y 随x 的增大而增大B .当x<0时,y 随x 的增大而增大C .x=-1时的函数值小于x=1时的函数值D .在函数图象所在的每个象限内,y 随x 的增大而增大4.对于函数y=-12x,当x>0时,函数的这部分图象在第______象限. 5.若点(-2,-1)在反比例函数y=k x 的图象上,•则当x>•0•时,•y•值随x•值的增大而______.6.如果函数y=kx 222k k +-的图象是双曲线,且在第二、四象限内,那么k=_______.7.已知点P (1,a )在反比例函数y=k x (k ≠0)的图象上,其中a=m 2+2m+3(m 为实数),•则这个函数的图象在第________象限.8.设函数y=(m-2)x 255m m -+.当m 取何值时,它是反比例函数?它的图象位于哪些象限?•在每个象限内,y 随x 的增大而增大还是减小?画出其图象;并利用图象求当12≤x ≤2时,•y 的取值范围. 答案:1.C2.B3.C4.第四象限5.减小6.k=-17.第一、三象限8.m=3时,它是反比例函数,当m=3时,它的图象位于第一、三象限,在每一个象限y 随x•的增大而减小.图略,12≤y ≤2.。

6.2反比例函数的图象与性质(教案)

6.2反比例函数的图象与性质(教案)
6.2反比例函数的图象与性质(教案)
一、教学内容
6.2反比例函数的图象与性质:本节课我们将学习反比例函数的图象特点及其性质。内容包括:
1.反比例函数的定义:y = k/x(k≠0);
2.反比例质:
a.图象在第一、三象限;
b.图象关于原点对称;
c.当k>0时,图象在第一、三象限;当k<0时,图象在第二、四象限;
3.提高学生的参与度,通过设立奖项、小组竞赛等形式,激发学生的学习兴趣。
4.加强课堂提问和反馈,及时了解学生的学习情况,帮助他们巩固所学知识。
在今后的教学中,我会不断总结经验,努力提高教学质量,让每一位学生都能在学习反比例函数的过程中,感受到数学的魅力。
3.重点难点解析:在讲授过程中,我会特别强调反比例函数的定义和图象性质这两个重点。对于难点部分,如反比例函数图象的走势和性质,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与反比例函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示反比例函数图象的绘制及其性质。
2.教学难点
-反比例函数图象的理解:学生需要理解反比例函数图象为双曲线,且曲线与坐标轴无交点。
-反比例函数性质的掌握:如何记住并理解在不同象限内,函数值的变化规律。
-图形变换的应用:将反比例函数图象进行平移、缩放等变换时,如何快速判断变换后的图象。
举例:
a.难点一:通过动态图象演示或手绘图象,帮助学生直观地理解反比例函数图象为双曲线,并解释为何曲线与坐标轴无交点。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y = k/x(k≠0)的函数。它在描述现实生活中的反比关系方面具有重要意义。

反比例函数的图象及性质第一课时教案

反比例函数的图象及性质第一课时教案

反比例函数的图象及性质一、素质教育目标(一)知识教学点1.使学生了解反比例函数的概念;2.使学生能够根据问题中的条件确定反比例函数的解析式;3.使学生理解反比例函数的性质,会画出它们的图像,以及根据图像指出函数值随自变量的增加或减小而变化的情况;4.会用待定系数法确定反比例函数的解析式.(二)能力训练点1.培养学生的作图、观察、分析、总结的能力;2.向学生渗透数形结合的教学思想方法.(三)德育渗透点1.向学生渗透数学来源于实践又反过来作用于实践的观点;2.使学生体会事物是有规律地变化着的观点.(四)美育渗透点通过反比例函数图像的研究,渗透反映其性质的图像的直观形象美,激发学生的兴趣,也培养学生积极探求知识的能力.二、学法引导教师采用类比法、观察法、练习法学生学习反比例函数要与学习其他函数一样,要善于数形结合,由解析式联想到图像的位置及其性质,由图像和性质联想比例系数k的符号.三、重点·难点·疑点及解决办法1.教学重点:反比例的概念、图像、性质以及用待定系数法确定反比例函数的解析式.因为要研究反比例函数就必须明确反比例函数的上述问题.2.教学难点:画反比例函数的图像.因为反比例函数的图像有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难.3.教学疑点:(1)反比例函数为何与x轴,y轴无交点;(2)反比例函数的图像只能说在第一、三象限或第二、四象限,而不能说经过第几象限,增减性也要说明在第几象限(或说在它的每一个象限内).4.解决办法:(1)中隐含条件是或;(2)双曲线的两个分支是断开的,研究函数的增减性时,要将两个分支分别讨论,不能一概而论.四、教学步骤(一)教学过程提问:小学是否学过反比例关系?是如何叙述的?由学生先考虑及讨论一下.答:小学学过:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例的量,它们的关系叫做反比例关系.看下面的实例:(出示幻灯)1.当路程s一定时,时间t与速度v成反比例;2.当矩形面积S一定时,长a与宽b成反比例;它们分别可以写成(s是常数),(S是常数)写在黑板上,用以得出反比例函数的概念:(板书)一般地,函数(k是常数,)叫做反比例函数.即在上面的例子中,当路程s是常数时,时间t就是速度v的反比例函数,能否说:速度v是时间t的反比例函数呢?通过这个问题,使学生进一步理解反比例函数的概念,只要满足(k是常数,)就可以.因此可以说速度v是时间t的反比例函数,因为(s是常量).对第2个实例也一样.练习一:教材P129中1? 口答.P130? 1根据前面学习特殊函数的经验,研究完函数的概念,跟着要研究的是什么?答:图像和性质.通过这个问题,使学生对课本上给出的知识的发生、发展过程有一个明确的认识,以后学生要研究其他函数,也可以按照这种方式来研究.下面,我们就来看一个例题:(出示幻灯)例1? 画出反比例函数与的图像.提问:1.画函数图像的关键问题是什么?答:合理、正确地选值列表.2.在选值时,你认为要注意什么问题?答:(1)由于函数图像的特点还不清楚,多选几个点较好;(2)不能选,因为时函数无意义;(3)选整数较好计算和描点.这个问题中最核心的一点是关于的问题,提醒学生注意.3.你能不能自己完成这道题呢?学生在练习本上列表、描点、连线,教师在黑板上板演,到连线时可暂停,让学生先连完线之后,找一名同学上黑板连线,然后就这名同学的连线加以评价、总结:注意:(1)一般地,反比例函数的图像由两条曲线组成,叫做双曲线;(2)这两条曲线不相交;(3)这两条曲线无限延伸,无限靠近x轴和y轴,但永不会与x轴和y轴相交.关于注意(3)可问学生:为什么图像与x和y轴不相交?通过这个问题既可加深学生对反比例函数图像的记忆,又可培养学生思维的灵活性和深刻性.再让学生观察黑板上的图,提问:1.当时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化?2.当时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化?这两个问题由学生讨论总结之后回答,教师板书:对于双曲线(1)当:(1)当时,双曲线的两分支位于一、三象限,y随x的增大而减少;(2)当时,双曲线的两分支位于二、四象限,y随x的增大而增大.3.反比例函数的这一性质与正比例函数的性质有何异同?通过这个问题使学生能把学过的相关知识有机地串联起来,便于记忆和应用.练习二:教材P129中2 由学生在练习本上完成,教师巡回指导.P130中2、3填在书上面,我们讨论了反比例函数的概念、图像和性质,下面我们再来看一个不同类型的例题:(出示幻灯)例2 已知y与成反比例,并且当时,,求时,y的值.用提问的方式对此题加以分析:(1)y与成反比例是什么含义?由学生讨论这一问题,最后归结为根据反比例函数的概念,这句话说明了: .(2)根据这个式子,能否求出当时,y的值?(3)要想求出y的值,必须先知道哪个量呢?(4)怎样才能确定k的值?用什么条件?答:用待定系数法,把时代入,求出k的值.(5)你能否自己完成这道例题:由一名同学板演,其他同学在练习本上完成.例3?? 已知:,与x成正比例,与x成反比例,当时,时,,求y与x的解析式.分析:一定要先写出y与x的函数表达式,要用x分别把,表示出来得,要注意不能写成k,∴解:设,.由题意得∴ .(二)总结、扩展教师提问,学生思考回答:1.什么是反比例函数?2.反比例函数的图像是什么样的?3.反比例函数的性质是什么?4.命题方向及题型设置,反比例函数也是中考命题的主要考点,其图像和性质,以及其函数解析式的确定,常以填空题、选择题出现,在低档题中,近两年各省、市的中考试卷中出现不少将反比例函数与一次函数、几何知识、三角知识等综合编拟的解答题,丰富了压轴题的形式和内容.五、布置作业1.教材P130中4,5,62.选做:P130中B1,2六、板书设计。

九年级数学上册第六章反比例函数6.2反比例函数的图象与性质教案(新版)北师大版

九年级数学上册第六章反比例函数6.2反比例函数的图象与性质教案(新版)北师大版
(3)反比例函数的图象可能与x轴相交吗?可能与y轴相交吗?为什么?
学生观察,同桌交流,大胆发言,发表见解。
二、自主探究、领悟规律
议一议
考察当k=-2,-4,-6时,反比例函数 的图象,它们有哪些共同特征?
学生通过相互交流、补充和修正。
性质:反比例函数 的图象,当k>0时,在每个象限内,y的值随x值的增大而减小;当k<0时,在每一象限内,y的值随x值的增大而增大。
四、布置作业
九年级数学上册第六章反比例函数6.2反比例函数的图象与性质教案(新版)北师大版
6.2.2反比例函数的图象与性质(2)
课 题
6.2.2 反比例函数目标
1.经历观察、归纳、交流的过程,逐步提高从函数图象中获取信息的能力,探索反比例函数的主要性质。
2.提高学生的观察、分析能力和对图形的感知水平,使学生从整体上领会研究函数的一般要求。
五、布置作业
三、课堂总结
在进行函数的列表,描点作图的活动中,就已经渗透了反比例函数图象的特征,因此在作图象的过程中,大家要进行积极的探索。另外,(1)反比例函数的图象是非线性的,它的图象是双曲线;(2)反比例函数y= 的图像,当k>0时,它的图像位于一、三象限内,当k<0时,它的图像位于二、四象限内;(3)反比例函数既是中心对称图形,又是轴对称图形。
学生动手画图,相互观摩。
想一想
观察 和 的图象,它们有什么相同点和不同点?
学生小组讨论,弄清上述两个图象的异同点。
交流讨论
反比例函数图象是中心对称图形吗?如果是,请找出对称中心.反比例函数图象是轴对称图形吗?如果是,请指出它的对称轴.
二、随堂练习
教材随堂练习
[探索与交流]
对于函数 ,两支曲线分别位于哪个象限内?对于函数 ,两支曲线又分别位于哪个象限内?怎样区别这两个函数的图象。学生分四人小组全班探索。

反比例函数的图象与性质教案

反比例函数的图象与性质教案

反比例函数的图象与性质教案反比例函数的图象与性质教案反比例函数的图象与性质教案1教学目标知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。

2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。

3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。

过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力.情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。

教学重点教学难点 1) 重点:画反比例函数图象并认识图象的特点.2)难点:画反比例函数图象.教学关键教师画图中要规范,为学生树立一个可以学习的模板教学方法激发诱导,探索交流,讲练结合三位一体的教学方式教学手段教师画图,学生模仿教具三角板,小黑板学法学生动手,动眼,动耳,采用自主,合作,探究的学习方法教学过程(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)内容设计意图一:课前检测:1.什么叫做反比例函数;(一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。

)2.反比例函数的定义中需要注意什么?(1)k为常数,k0(2)从y= 中可知x作为分母,所以x不能为零.二:激发兴趣导入新课问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的?y=kx+b y=kxK0 一、二、三一、三b0 一、三、四K0 一、二、四二、四b0 二、三、四问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?可以问题3:画图象的步骤有哪些呢?(1)列表(2)描点(3)连线(教学片断:师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。

反比例函数的图象和性质(教案)

反比例函数的图象和性质(教案)

反比例函数的图象和性质(1)【课型】 新授课 【教学目标】1.会用描点法画反比例函数的图象2.结合图象分析并掌握反比例函数的性质3.体会函数的三种表示方法,领会数形结合的思想方法 【教学重点】理解并掌握反比例函数的图象和性质. 【教学难点】正确画出图象,通过观察、分析,归纳出反比例函数的性质 【教学过程】 一、探求新知1、提出问题:(1)一次函数y =kx +b (k 、b 是常数,k ≠0)的图象是什么?其性质有哪些?正比例函数y =kx (k ≠0)呢?(2)画函数图象的方法是什么?其一般步骤有哪些?应注意什么? (3)反比例函数的图象是什么样呢?例1、画出反比例函数y 6=与y 6-=的图象.小;② 当k <0时,图象的两支分别位于二、四象限,在每个象限内y 随x 的增大而增大;③ 图象的两个分支都无限接近x 轴、y 轴,但都与x 轴、y 轴不相交;④ k 越大,图象的弯曲度越小,曲线越平直,越远离坐标轴;⑤ 图象关于直线y =±x 对称.注:双曲线的两个分支是断开的,研究反比例函数的增减性时,要对两个分支分别讨论,不能一概而论.二、例题分析例2.见教材P48,用描点法画图,注意强调: (1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴例3.(补充)已知反比例函数32)1(--=m x m y 的图象在第二、四象限,求m 值,并指出在每个象限内y 随x 的变化情况?分析:此题要考虑两个方面,一是反比例函数的定义,即1-=kx y (k ≠0)自变量x 的指数是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k <0,则m -1<0,不要忽视这个条件解:∵ 32)1(--=m xm y 是反比例函数∴ m 2-3=-1,且m -1≠0又∵ 图象在第二、四象限∴ m -1<0解得2±=m 且m <1 ∴ 2-=m例4.(补充)如图,过反比例函数xy 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定分析:从反比例函数xky =(k ≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积k xy S ==,由此可得S 1=S 2 =21,故选B三、课堂练习1.已知反比例函数xky -=3,分别根据下列条件求出字母k 的取值范围 (1)函数图象位于第一、三象限(2)在第二象限内,y 随x 的增大而增大 2.函数y =-ax +a 与xay -=(a ≠0)在同一坐标系中的图象可能是( )3.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为四、课后作业1.课本习题第2、3题.2.若函数x m y )12(-=与xmy -=3的图象交于第一、三象限,求m 的取值范围. 3. 反比例函数xy 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 ; 当x >-2时;y 的取值范围是4. 已知反比例函数y a x a=--()226,当x >0时,y 随x 的增大而增大,求该函数关系式. 五、课堂小结1、反比例函数的图象及性质.2、双曲线的两个分支是断开的,研究反比例函数的增减性时,要对两个分支分别讨论.3、在解决函数问题时,注意数形结合. 【课后反思】。

《反比例函数的图象和性质》教学设计

《反比例函数的图象和性质》教学设计

《反比例函数的图象和性质》教学设计反比例函数的图象和性质一、背景分析1.对教材的分析本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。

本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

本节课前一课时是在具体情境中领会反比例函数的意义和概念。

函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。

同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。

传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。

本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。

因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。

在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。

这也充分体现了重视获取知识过程体验的新课标的精神。

(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

(3)难点:探索并掌握反比例函数的主要性质。

2、对学情的分析九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用Z+Z智能教育平台进行教学,比较形象,便于学生接受。

反比例函数的图像与性质教案

反比例函数的图像与性质教案

反比例函数的图像与性质教案教案标题:反比例函数的图像与性质教学目标:1. 理解反比例函数的定义及其特点;2. 掌握绘制反比例函数图像的方法;3. 理解反比例函数图像的性质。

教学准备:1. 教师:准备反比例函数的定义、性质和图像的讲解材料;2. 学生:准备笔、纸和计算器。

教学过程:导入(5分钟):1. 引入反比例函数的概念,与学生一起回顾比例函数的定义及其性质;2. 提问:你们对反比例函数有什么了解?它与比例函数有何不同?讲解(15分钟):1. 讲解反比例函数的定义:y = k/x,其中k为常数且不等于0;2. 解释反比例函数的性质:当x增大时,y减小;当x减小时,y增大;3. 通过实例演示如何计算反比例函数的值,并讨论k的正负对函数图像的影响;4. 讲解反比例函数图像的特点:曲线经过第一象限的原点,且与坐标轴无交点。

练习(15分钟):1. 学生在纸上绘制反比例函数y = 3/x的图像,并标出至少5个点;2. 学生计算并填写表格:x取1、2、3、4、5时,对应的y值;3. 学生观察表格数据,并总结反比例函数图像的特点。

拓展(10分钟):1. 引导学生思考:如果反比例函数的定义中的k为负数,图像会有什么变化?2. 学生尝试绘制反比例函数y = -2/x的图像,并与之前的图像进行比较;3. 学生讨论负数k对反比例函数图像的影响,并总结出结论。

归纳(5分钟):1. 教师与学生一起总结反比例函数的图像与性质;2. 学生回答以下问题:反比例函数图像经过哪个象限的原点?与坐标轴是否有交点?作业:1. 学生完成课堂练习的剩余部分,并绘制反比例函数y = -4/x的图像;2. 学生回答书面问题:反比例函数图像的性质与比例函数图像的性质有何不同?评估:1. 教师检查学生在课堂练习中的图像绘制情况;2. 教师评估学生对反比例函数图像与性质的理解程度。

教学延伸:1. 学生可以进一步探索反比例函数的应用,如在实际问题中的应用;2. 学生可以尝试绘制更多不同参数的反比例函数图像,比较它们之间的差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

26.1.2 反比例函数的图象和性质(1)广西南宁市天桃实验学校韦莎莎一、内容和内容解析1.内容反比例函数的图象和性质.2.内容解析反比例函数是这一学段教材安排的最后一类函数,与研究一次函数、二次函数的过程一样,我们得到反比例函数的概念后,研究它的图象和性质。

通过图象,可以直观地得到函数的性质,结合解析式,可以进一步认识函数的性质。

图象和解析式结合研究函数的性质是数形结合的重要方面。

研究函数的图象,主要是研究函数的形状、位置;研究函数的性质,是对函数描述的变化规律的进一步认识。

类比研究二次函数2axy=()0≠a图象和性质的过程,对反比例函数图象的研究,我们也是根据k的正负进行分类。

重点研究k>0时的情形,先从具体的k值:6,12等开始,逐步归纳k>0时,函数的图象特征和性质;完全类比k>0时的研究,我们研究k<0时的情况,同样遵循从特殊到一般的过程。

我们仍然采用“描点”法画反比例函数的图象。

要对k的正负性予以区别,体现分类思想;在对图象的研究和分析时,用“描点”法画出函数图象,体现数形结合思想;在归纳反比例函数的性质时,体现从特殊到一般的思想。

探究反比例函数性质的思路是:类比前面研究函数的方法,确定从k>0和k<0两种情况进行研究。

研究的方法是选取特殊的反比例函数,通过“描点”法画出函数图象,再通过对图象的探究,归纳得出反比例函数的性质,并加以应用。

基于以上分析,本节课的教学重点是:由反比例函数的图象,并结合解析式,探究反比例函数的性质。

二、目标和目标解析1.目标(1)会根据解析式画反比例函数的图象,归纳得到反比例函数的图象特征和性质。

(2)在画出反比例函数的图象,并探究其性质的过程中,体会“分类讨论”“数形结合”以及“从特殊到一般”的数学思想。

2.目标解析:达成目标(1)的标志是:会根据解析式使用“描点”法画出反比例函数的图象,分析图象特征,归纳得到反比例函数的性质。

达成目标(2)的标志是:画反比例函数的图像时类比画二次函数2axy=()0≠a的方法,分k>0和k<0两种情况;在画反比例函数图象、探究反比例函数性质时,体会“数”与“形”的相互转化:解析式与图象;通过具体的图象并结合解析式,归纳得到反比例函数的性质。

三、教学问题诊断分析授课班级的学生刚上九年级,基础扎实,思维灵活,具备一定的探索数学问题的能力。

观察能力已有所发展,能按照教学的要求有意识地较长时间地观察,但观察和表达的精确性,深入性不够。

抽象思维处于发展期,同时形象思维还时有表现,其抽象思维还需要感性经验的支持。

在知识基础方面,学生已经学习了一次函数、二次函数,会用描点法绘制函数图象,能够借助函数图象描述出函数的性质,能够理解函数的解析式、图象和性质之间的内在联系。

对于用“描点”法画反比例函数图象时,常遇到如下问题:(1)“列表”选点时x的取值缺乏代表性,容易忽略x≠0的条件;(2)“连线”时,由于前面所学函数图象是直线或抛物线,容易使学生产生知识上的负迁移,把双曲线跨象限连接;(3)对双曲线与x轴、y轴“越来越靠近”但不相交的趋势不易理解。

教学时,应注意有针对性的引导,注意从解析式的分析入手,让学生先进行“数”(x≠0,y≠0,k≠0)、“式”(解析式中x,y的反比例关系)的分析,进而过渡到对“形”(图象)的认识。

在前面学习函数图象的时候,学生已经历过观察、分析图象特征,抽象、概括函数性质的过程,对研究函数性质的方法也有一定的了解。

因此通过类比方法,结合反比例函数的图象探究性质,从方法上不会存在障碍。

但反比例函数图象与一次函数图象、二次函数图象相比,具有自变量取值不为0的特殊性,函数在x=0没有定义,对图象不过x=0这一点在认识上还存在一定的困难。

教学中应注重引导学生体会由“数”到“形”、由“形”到“数”的转化关系,以“数”与“形”的转化为途径,展开探究活动。

基于以上分析本节课的教学难点是:对x≠0的理解,以及结合解析式理解反比例函数的性质。

四、教学支持条件分析本节教学需要借助多媒体、几何画板。

五、教学过程设计1.学习导入复习提问 (1)我们学习了反比例函数的定义,什么样的函数是反比例函数?(2)大家以前还学过哪些函数?研究这些函数时,我们是从哪几个方面入手的?(3)我们已经学习了反比例函数的定义,接下来还应研究它哪方面的知识呢?(4)回顾对二次函数2ax y =()0≠a 的图象和性质的探究过程。

师生活动:教师提出问题,学生思考、回答.教师引导学生复习研究二次函数 2ax y =()0≠a 的图象和性质的方法和过程,进而提出问题:反比例函数xk y =中比例 系数k ≠0,那么应该如何分类讨论?学生回答。

设计意图:引导学生回忆解析式的形式和自变量、函数值、k 值的取值范围。

结合复习研究函数的一般方法,引出本节课的学习内容。

同时,复习二次函数2ax y =()0≠a 的图象和性质的学习过程时,先对a 的正负不同进行分类讨论,再回忆画函数图象的步骤和注意事项,接着观察图象的特征(形状、位置、变化趋势等),最后归纳得到函数的性质。

让学生类比这一过程去探究反比例函数的图象和性质,为学习反比例函数的图象和性质作好铺垫.2.探究新知【探究一】 同桌分工,分别画出反比例函数xy 6=与x y 12=的图象. 师生活动:(1)学生独立操作,用“描点”法画函数图象,教师巡视,收集并展示学生画出的典型图象.(2)针对所展示的作图里出现的问题,让学生互相完善和补充。

教师适时提问:选取自变量的值时,要注意什么?连线时要注意什么?图象延伸的趋势是怎样的?为什么?教师引导学生思考和回答。

(3)教师小结作图的注意事项,并通过课件演示作图规范。

设计意图:图象是直观地描述和研究函数的重要工具,通过经历用“描点”法画出反比例函数图象的基本步骤,可以使学生对反比例函数的性质有一个初步的、整体的感性认识。

列表时,关注学生是否注意到自变量的取值应使函数有意义(即x ≠0)。

同时,所取的点既要使自变量的取值有一定的代表性,又不至于使自变量对应的函数值太大或太小,以便于描点和全面反映图象的特征;连线时按照自变量从小到大的顺序顺次连接各点,注意图象末端的延伸和延伸的趋势,得到反比例函数的图象。

根据学生作图容易出现图象末端延伸趋势有误的问题,结合作图实例的对比,有针对性的引导学生从解析式的分析入手,让学生先进行“数”( x ≠0,y ≠0,k ≠0)或“式”(解析式中x ,y 的反比例关系)的分析,进而过渡到对“形”(图象)的认识。

使学生初步理解双曲线与x 轴、y 轴“越来越靠近”但不相交的趋势。

同时为探究函数的性质做好准备。

问题1 观察反比例函数xy 6=和x y 12=的图象,它们有哪些共同特征? 师生活动:学生观察,思考,四人小组讨论,归纳.学生代表发表观点和看法,互相交流和补充,形成统一的认识。

教师引导和评价,给出双曲线的名称.设计意图:学生感受“形”的特征,类比对二次函数2ax y =()0≠a 图象和性质的学习,容易观察得到函数图象的形状、位置和变化趋势,对反比例函数的图象和性质形成初步的印象。

反比例函数具有丰富的性质,且九年级学生思维能力强,适当放开,以小组讨论的形式给学生充分交流,既激发学生探究问题的主动性和热情,又给学生一个更广阔的思维空间,培养了学生的合作交流能力。

注意把握好“度”,对双曲线的渐进性、对称性以及相对于原点的位置等等,若学生有所发现,教师给予肯定,但不作基本要求。

问题2 你能由列表中数值的关系,或者由函数解析式来解释这些性质吗?师生活动:学生先独立思考,再四人小组合作交流.学生回答,教师引导和评价. 设计意图:函数的表示法有解析式法、列表法和图象法。

函数图象是研究函数性质的直观载体,从图象上较容易整体把握函数的性质,但是难以深入局部和细节;而解析式可以对函数性质进行无限“解读”,但不够直观。

学生观察函数图象,归纳得到函数的性质后,引导学生结合列表中数值的关系,或者观察解析式的特点,去解释说明这些性质,这样结合函数图象和解析式去研究函数的性质,既深化了学生对函数性质的认识,又体现了数形结合的思想。

追问1 对于一般的k >0的反比例函数,是否也具有同样的性质呢?师生活动:学生猜想,教师演示几何画板,在k >0的前提下赋予不同的k 值,学生观察所得到的反比例函数图象的特征,引导学生发现“变化中的规律性”。

设计意图:通过几何画板演示,验证猜想,使学生经历从特殊到一般的过程,归纳得到k >0时,反比例函数的图象特征和性质。

问题 3 猜想反比例函数xk y =(k <0)的图象和性质是怎样的呢?你是怎么猜的?师生活动:学生猜想,回答.设计意图:引导学生根据已有经验猜想,使学生巩固在探究一中获得的经验和思考方法。

同时,引出对k <0的反比例函数的图象和性质的探究。

【探究二】 请类比刚才的探究过程,探究反比例函数x k y =(k <0)的图象和性质,验证一下你的猜想。

追问1 类比k >0的情况,你能归纳k <0时函数的性质吗?师生活动:学生自选一个k <0的反比例函数,借鉴画反比例函数x y 6=或x y 12=的图象的经验,自主画出函数图象,教师巡视指导。

作图完成后,展示作品,学生说出函数的图象特征和性质。

教师演示几何画板,赋予k 不同的负值,引导学生发现“变化中的规律性”。

设计意图:通过再次画出反比例函数的图象,使学生巩固作图经验。

同时,在总结说出反比例函数的图象特征的过程中,使学生增强对图象的观察、感知、分析、概括的能力,以及经历画出函数图象,并利用函数图象研究函数性质的过程。

问题4 反比例函数xy 6=与x y 6-=的图象有什么共同特征?有什么不同点? 追问1 不同点由什么决定?师生活动:教师启发学生对比、思考,引导学生关注反比例系数k 的作用。

设计意图:学生通过观察比较,总结这两个反比例函数图象的特征,为总结反比例函数xk y =()0≠k 的图象和性质做准备。

【小结归纳】函数图象形状图象位置变化趋势xky=师生活动:教师帮助学生梳理、归纳。

设计意图:通过归纳,培养学生的抽象概括能力。

3.应用新知(1)下列图象中是反比例函数图象的是().(2)如图所示的图象对应的函数解析式为().A. xy5=B. 32+=xyC.xy4=D.xy3-=第(2)题图第(3)题(3)填空:①反比例函数xy5=的图象在第______象限.②反比例函数xky=的图象如图所示,则k____0;在图象的每一支上,y随x 的增大而______.师生活动:师生问答,引导学生关注各题对应考查的知识点。

设计意图:通过练习,实现知识向能力的转化。

4.课堂小结师生共同回顾本节课所学主要内容,学生回答以下问题,最后教师总结各环节的xyO xyO学习方法和数学思想。

相关文档
最新文档