《等比数列》说课稿

合集下载

2023年《等比数列》说课稿

2023年《等比数列》说课稿

2023年《等比数列》说课稿2023年《等比数列》说课稿1一、大纲与教材等比数列前n项和一节是人教社高中数学必修教材试验修订本第一册第三章第五节的内容,教学对象为高一学生,教学时数2课时。

第三章《数列》是高中数学的重要内容之一,之所以在新大纲里保留下来,这是由其在整个高中数学领域里的重要地位和作用决定的。

1、数列有着广泛的实际应用。

例如产品的规格设计、储蓄、分期付款的有关计算等。

2、数列有着承前启后的作用。

数列是函数的延续,它实质上是一种特殊的函数;学习数列又为进一步学习数列的极限等内容打下基础。

3、数列是培养提高学生思维能力的好题材。

学习数列要经常观察、分析、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有利于学生数学能力的提高。

本节课既是__的重点,同时也是教材的重点。

等比数列前n项和前面承接了数列的定义、等差数列的知识内容,又是后面学习数列求和、数列极限的基础。

本节的重点是等比数列前n项和公式及应用,难点是公式的推导。

二、教学目标1、知识目标:理解等比数列前n项和公式的推导方法,掌握等比数列前n 项和公式及应用。

2、能力目标:培养学生观察问题、思考问题的能力,并能灵活运用基本概念分析问题解决问题的能力,锻炼数学思维能力。

3、思想目标:培养学生学习数学的积极性,锻炼学生遇到困难不气馁的坚强意志和勇于创新的精神。

三、教学程序设计1、导言:本节课是由印度国王西拉谟与国际象棋发明家的故事引入的,发明者要国王在他的棋盘上的64格中的第 1格放入1粒麦粒,第2格放入2粒麦粒,第3格放入4粒麦粒,第4格放入8粒麦粒……问应给发明家多少粒麦粒?这样引入课题有以下三点好处:(1)利用学生求知好奇心理,以一个小故事为切入点,便于调动学生学习本节课的趣味性和积极性。

(2)故事内容紧扣本节课教学内容的主题与重点。

(3)有利于知识的迁移,使学生明确知识的现实应用性。

2、讲授新课:本节课有两项主要内容,等比数列的前n项和公式的推导和等比数列的前n 项和公式及应用。

《等比数列的前 n 项和》 说课稿

《等比数列的前 n 项和》 说课稿

《等比数列的前 n 项和》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是《等比数列的前 n 项和》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析“等比数列的前 n 项和”是高中数学必修 5 第二章数列的重要内容。

等比数列在现实生活中有着广泛的应用,如银行利息计算、细胞分裂等。

而等比数列的前 n 项和公式则是解决这些实际问题的有力工具。

本节课是在学生已经学习了等比数列的定义、通项公式的基础上,进一步研究等比数列的前 n 项和。

通过本节课的学习,不仅可以深化学生对等比数列的理解,还能培养学生的逻辑推理能力和数学运算能力,为后续学习数列的综合应用打下坚实的基础。

二、学情分析在知识储备方面,学生已经掌握了等差数列的相关知识,以及等比数列的定义、通项公式,具备了一定的数列运算能力和逻辑推理能力。

但对于等比数列的前 n 项和公式的推导,可能会感到困难,需要引导他们从已有的知识和经验出发,逐步探索和理解。

在学习能力方面,高二学生已经具备了一定的自主学习能力和合作探究能力,但在抽象思维和数学建模方面还需要进一步培养和提高。

三、教学目标1、知识与技能目标(1)理解等比数列前 n 项和公式的推导方法。

(2)掌握等比数列前 n 项和公式,并能熟练运用公式解决相关问题。

2、过程与方法目标(1)通过等比数列前 n 项和公式的推导,培养学生的逻辑推理能力和数学运算能力。

(2)让学生经历从特殊到一般、类比、归纳等数学思想方法,提高学生的数学思维能力。

3、情感态度与价值观目标(1)通过对等比数列前n 项和公式的探究,激发学生的学习兴趣,培养学生勇于探索、敢于创新的精神。

(2)在解决问题的过程中,培养学生的应用意识和数学素养。

四、教学重难点1、教学重点等比数列前 n 项和公式的推导及应用。

2、教学难点等比数列前 n 项和公式的推导过程,特别是错位相减法的理解和运用。

《等比数列的前 n 项和》 说课稿

《等比数列的前 n 项和》 说课稿

《等比数列的前 n 项和》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是“等比数列的前 n 项和”。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析“等比数列的前 n 项和”是高中数学数列这一章节的重要内容。

它不仅是等比数列知识的一个重要应用,也为后续学习数列求和的其他方法以及数学归纳法等知识奠定了基础。

在教材的编排上,通过引导学生从特殊到一般,逐步探究等比数列前 n 项和的公式推导,培养学生的逻辑推理和数学运算能力。

同时,教材中的例题和习题也有助于学生巩固所学知识,提高应用能力。

二、学情分析学生已经学习了等比数列的定义、通项公式等相关知识,具备了一定的数列运算和推理能力。

但对于等比数列前 n 项和公式的推导,可能会存在一定的困难,需要教师引导学生通过类比、归纳等方法进行探究。

此外,学生在数学学习中可能存在思维定式,对于新的数学方法和思路的接受需要一定的时间和过程。

因此,在教学中要注重启发式教学,引导学生积极思考,主动参与到知识的构建过程中。

三、教学目标1、知识与技能目标(1)理解等比数列前 n 项和公式的推导过程。

(2)掌握等比数列前 n 项和公式,并能熟练运用公式解决相关问题。

2、过程与方法目标(1)通过公式的推导,培养学生的逻辑推理和数学运算能力。

(2)让学生经历从特殊到一般、类比、归纳等数学思想方法的运用过程,提高学生的数学思维能力。

3、情感态度与价值观目标(1)通过探究等比数列前 n 项和公式,激发学生的学习兴趣和求知欲。

(2)培养学生勇于探索、敢于创新的精神,以及严谨的科学态度。

四、教学重难点1、教学重点等比数列前 n 项和公式的推导及应用。

2、教学难点等比数列前 n 项和公式的推导过程中错位相减法的理解和运用。

五、教法与学法1、教法为了突出重点,突破难点,我将采用启发式、探究式的教学方法。

引导学生通过自主探究、合作交流等方式,逐步推导等比数列前 n 项和公式。

2024《等比数例》说课稿范文

2024《等比数例》说课稿范文

2024《等比数例》说课稿范文敬爱的各位领导,亲爱的同事们:大家好!我今天要说的课程是《等比数例》。

一、说教材1、《等比数例》是2024年人教版初一数学上册第三章的内容。

这是一篇关于等比数列的知识点,它是初中数学中的重要知识,也是学生后续学习更高级数学的基础。

2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解等比数列的定义和概念,掌握等比数列的性质和特点。

②能力目标:能够判断数列是否为等比数列,能够计算等比数列的公比和项数。

③情感目标:培养学生对数学的兴趣和自信,激发学生学好数学的动力。

3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:理解等比数列的定义和概念,能够判断数列是否为等比数列。

难点是:能够计算等比数列的公比和项数。

二、说教法学法本节课我将采用启发式教学法和问题导入法进行教学,并结合学生的实际生活进行案例分析和讨论,激发学生的思维和探究兴趣。

学法上,我将引导学生主动参与课堂活动,通过小组合作、讨论和展示等方式进行学习。

三、说教学准备严禁复制为了更好地展示教学素材和激发学生的学习兴趣,我将使用多媒体辅助教学。

我准备了相关的教学课件和练习题,以及一些实际生活中应用等比数列的例子,以便学生更好地理解和掌握知识。

四、说教学过程1、导入新课我将以一个问题作为本节课的导入活动:“小明每天放学后都去操场跑步,第一天跑了1公里,第二天跑了2公里,第三天跑了4公里,第四天跑了8公里,以此类推,请问小明第十天跑了多少公里?”通过这个问题,我将引导学生思考数列中的规律和特点,并让他们了解到这是一个等比数列。

2、学习新知在学生了解等比数列定义之后,我将通过实际生活中的例子来让学生更好地理解等比数列的应用。

我会给学生出示一些场景,例如一个花朵的绽放过程、复利计算问题等,让学生思考这些问题是否符合等比数列的规律,并让他们自己找到公比和项数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《等比数列》说课稿
《等比数列》说课稿
作为一名优秀的教育工作者,很有必要精心设计一份说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。

如何把说课稿做到重点突出呢?以下是小编收集整理的《等比数列》说课稿,仅供参考,希望能够帮助到大家。

《等比数列》说课稿1
一、地位作用
数列是高中数学重要的内容之一,等比数列是在学习了等差数列后新的一种特殊数列,在生活中如储蓄、分期付款等应用较为广泛,在整个高中数学内容中数列与已学过的函数及后面的数列极限有密切联系,它也是培养学生数学能力的良好题材,它可以培养学生的观察、分析、归纳、猜想及综合解决问题的能力。

基于此,设计本节的数学思路上:
利用类比的思想,联系等差数列的概念及通项公式的学习方法,采取自学、引导、归纳、猜想、类比总结的教学思路,充分发挥学生主观能动性,调动学生的主体地位,充分体现教为主导、学为主体、练为主线的教学思想。

二、教学目标
知识目标:1)理解等比数列的概念
2)掌握等比数列的通项公式
3)并能用公式解决一些实际问题
能力目标:培养学生观察能力及发现意识,培养学生运用类比思想、解决分析问题的能力。

三、教学重点
1)等比数列概念的理解与掌握关键:是让学生理解“等比”的特点
2)等比数列的通项公式的推导及应用
四、教学难点
“等比”的理解及利用通项公式解决一些问题。

五、教学过程设计
(一)预习自学环节。

(8分钟)
首先让学生重新阅读课本105页国际象棋发明者的故事,并出示预习提纲,要求学生阅读课本P122至P123例1上面。

回答下列问题
1)课本中前3个实例有什么特点?能否举出其它例子,并给出等比数列的定义。

2)观察以下几个数列,回答下面问题:
1,,,,……
-1,-2,-4,-8……
1,2,-4,8……
-1,-1,-1,-1,……
1,0,1,0……
①有哪几个是等比数列?若是公比是什么?
②公比q为什么不能等于零?首项能为零吗?
③公比q=1时是什么数列?
④q>0时数列递增吗?q<0时递减吗?
3)怎样推导等比数列通项公式?课本中采取了什么方法?还可以怎样推导?
4)等比数列通项公式与函数关系怎样?
(二)归纳主导与总结环节(15分钟)
这一环节主要是通过学生回答为主体,教师引导总结为主线解决本节两个重点内容。

通过回答问题(1)(2)给出等比数列的定义并强调以下几点:
①定义关键字“第二项起”“常数”;
②引导学生用数学语言表达定义: =q(n≥2);③q=1时为非零常数数列,既是等差数列又是等比数列。

引申:若数列公比为字母,分q=1和q≠1两种情况;引入分类讨论的思想。

④q>0时等比数列单调性不定,q<0为摆动数列,类比等差数列
d>0为递增数列,d<0为递减数列。

通过回答问题(3)回忆等差数列的推导方法,比较两个数列定义的不同,引导推出等比数列通项公式。

法一:归纳法,学会从特殊到一般的方法,并从次数中发现规律,培养观察力。

法二:迭乘法,联系等差数列“迭加法”,培养学生类比能力及新旧知识转化能力。

《等比数列》说课稿2
今天我说的课题是《等比数列及其通项公式》。

主要研究两类问题:一、等比数列内容的介绍及通项公式的推导。

二、激发学生的探索精神,培养独立思考和善于总结的优良习惯,达到新课程标准中提出的“关注学生体验、感悟和实践活动的要求”。

下面我就五个方面阐述这节课。

一、教材分析:
本节授课内容为等比数列的定义及其通项公式的推导。

1、教材的地位和作用:
等比数列是数列的重要组成部分,掌握了它及其通项公式,有利于进一步研究等比数列的性质及前n项和的推导以及应用,从而极大提高学生利用数列知识解决实际问题的能力。

同时,这节课的内容和教学过程对进一步培养学生观察、分析和归纳问题的能力具有重要的意义。

2、教材的`处理:
结合教参与学生的学习能力,我将《等比数列及其通项公式》安排了2节课时。

本节课是第一课时。

根据目前高一学生的状况以及以往的经验,发现虽然这节课的内容比较简单,但由于老师的讲解过多,导致学生丢失了很多重要的知识。

为了激发学生的学习热情,实施趣味教学,我利用一个初中自然学科中的“细胞分裂”的问题以及课本第109页的一个典故引出等比数列的定义及其通项公式。

之后,再由浅入深,由低到高地设置了三个层次的问题,逐步加深学生对等比数列及其通项公式的记忆和理解。

由此,我对教材的引入、例题、练习
做了适当的补充和修改。

3、教学重点与难点及解决办法:
根据学生现状、教学要求及教材内容,确立本节课的教学重点为:等比数列的定义及通项公式。

解决的办法是:归纳类比;叠乘法。

根据学生的实际情况——运用所学的知识分析、解决问题的能力校差,我把这节课的难点定为:等比数列的定义及通项公式的深刻理解。

要突破这个难点,关键在于紧扣定义,类比等差数列的相关知识,来发现解决问题的方法。

二、教学目标的分析:
根据教学要求,教材的地位和作用,以及学生现有的知识水平和数学能力,我把本节课的教学目的定为如下四个方面:
(一)知识教学目标:
使学生掌握等比数列的定义及通项公式,发现等比数列的性质,并能运用定义及其通项公式解决一些实际问题。

(二)能力训练目标:
培养运用归纳类比的方法去发现并解决问题的能力及运用方程的思想的计算能力。

(三)德育渗透目标:
培养积极动脑,明辨是非的学习作风,掌握取其精华、去其糟粕的能力及互助的精神。

(四)美育渗透目标:
等比、等差的相似美及结构美。

三、教法与学法分析:
现代教学论指出:“教学是师生的多边活动,在教师的‘反馈——控制’的同时,每个学生也都在进行着微观的‘反馈——控制’。

”由于任何教学都必须通过学生自身的学习建构活动才有成效,故本节课采用“发现式教学法、类比分析法”来组织课堂教学。

全班同学分成十二组,每组4—5人,按异质分组,每组都有上、中、下三种程度不同的学生,进行分组讨论。

这样,可充分调动学生的学习积极性和能动性,突出学生的主体作用,并培养学生互助合作的精神。

这堂课
用类比的方法学习等比数列是一种较好的学法。

因此,在教学过程中应着重提醒学生重视等比与等差数列的对比。

四、教学手段:
计算机课件辅助教学。

五、教学过程和时间安排:
1、复习提问:(4分钟)
(1)等差数列的定义是什么?
(2)等差数列的通项公式怎样?
(3)简单回答等差数列定义及其通项公式的运用。

目的:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点。

2、导入新课:(9分钟)
在教学过程中,提出两个问题:问1、细胞分裂:一个细胞,每隔一分钟后一分为二,第8分钟后有几个细胞?问2、课本第109页的典故由同学阅读。

引导学生通过“观察、分析、归纳”得出等比数列的定义及其通项公式。

教师用计算机课件演示其填充过程,并给出等比数列的定义及其通项公式。

目的:由特殊到一般,由具体到抽象,由低级到高级的认识顺序引出定义,这很自然,学生比较容易接受,同时,通过趣味性的问题,来提高学生的学习兴趣,激发学生发现等比数列的定义及其通项公式的强烈欲望。

3、创设问题(27分钟)
第一层次:(6分钟)
(抢答):判断下列数列哪些是等比数列,如果是,求出公比和通项公式,如果不是,请说明为什么?
1)1,-1,1,-1,……
2)0,2,0,2,0,……
3)1,3,5,7,9,……
4)3,3,3,3,3,……
目的:充分调动学生学习的主动性及学习热情,活跃课堂气氛,
同时培养学生的口头表达能力和临场应变能力。

第二层次:(6分钟)
已知等比数列的首项是-5,公比是-2,问这个数列的第几项的值为80?
目的:使学生进一步理解通项公式中每一个字母所代表的数学含义及它们之间的相互关系,同时培养学生的逆性思维能力,解决学生定性思维顽疾。

第三层次:(15分钟)
一个等比数列的第3项为9,第5项为81,求它的首项和公比?
目的:让学生深刻理解等比数列定义其通项公式,并在应用过程中发现公比的取值情况。

一个等比数列的第2项是10,第3项是20,求它首项和第4项?
目的:总领以上三层次全部知识,并使集体智慧个人化,书本知识灵活化:同时培养学生独立思考的能力。

4、小结:(3分钟)教师引导,学生总结
为了让学生将获得的知识进一步条理化、系统化,同时培养学生的归纳总结能力及练习后进行再认识的能力,教师引导学生对本节课进行总结:
1)等比数列定义是什么?怎样判断一个数列是否是等比数列?
2)等比数列通项公式怎样?其中每个字母所代表的含义是什么?
3)等比数列应注意哪些问题?(an≠0、q≠0)
5、布置作业:(2分钟)
为了让学生对本节课内容进一步巩固、提高,我布置作业如下:课本p128:l、1) 3)
2、1) 2)
4、
思考题:
已知:{an}、{bn}是项数相同的等比数列,求证:{anbn}也是等比数列。

6、板书设计(略)。

相关文档
最新文档