压力容器设计准则

合集下载

压力容器的常规设计和分析设计

压力容器的常规设计和分析设计
◇科技论坛◇
科 技 圈 向导
21年第 2 期 02 l
压力容器的常规设计和分析设计
高 峰 f 矿 煤 化 工 程有 限公 司 山东 兖
【 摘
兖州
22 O ) 7 1 0
要】 当前 , 分析设计 目前 已成为压 力容 器的重要设计方 法。 文首先 阐述 了压力容器分析设计与常规设计的不同。 本 然后 分析设 计中应
形 而破坏 。一次应力又分总体薄膜应力 、 一次弯 曲应力 和局部 薄膜应 力 例如承受内压圆筒 的器壁 中的环 向应力 即为 总体薄膜应力: 平封 头或 顶盖 中央部分在 内压作用下产生 的应力 即为 一次弯曲应力: 壳体 在 固定支座或接管处 由外载荷和力矩产生的应力为局部薄膜应力 : 二 是二次应力 。 二次应力是 由于容器部件的 自身约束或相邻部件 的约束 而产 生的正应 力或剪应力。它 的基本特点具有 “ 自限性 ” , 即局部屈服 和小量变形 就会使约束缓 和 、 变形协调 . 只要不反复加载 , 二次应力不 会引起容器结构破坏 : 三是峰值应力 峰值应力是 因局部结构不连续 1常规设计与分析设计 . 它具有最高 的应力值 它的基本特 过去压力容器及其部件 的设计基本上属于常规设计 . 我国现在执 或形状 突变 引起 的局部应力集 中。 自限性” 局部性”峰值 应力不会 引起容器 明显 的变形 和“ , 行 的相应的设计规范是《 钢制压力容器) i S — 9 1 常规设计的特 点具有“ ) n 0 ( G 8。 3常 规设 计 和 分 析 设 计 比较 . 点是: 简体及其部件 的应 力不 允许超过弹性范围 内的某一许用 值 如 果达到这一要求 . 为筒体或部件就是 比较可靠 的 这样做 比较简 即认 常规设计是一种简单易行的传统设计方法. 而分析设计则不 同. 它 单. 以现成 的设 计公 式及 曲线为依 据 . 多年来 一直按这样 的方 法进行 需要详尽 的应力分析报告为依据 需要近代 的分析计算 工具和实验技 设 计。 然而 , 这种方法 比较粗糙 . 许多重要因素都 未考虑进去 。以内压 术为手段, 因而提供 了充分的强度数 据对 新工艺 、 新材料 、 新结构 和新 圆筒为例 , 常规设计 时只考虑薄膜应力 , 在 至于 温差应力 、 边缘应力以 工况更具科 学性 和可靠性 分析设计提高 了许用应力. 降低了安全系 及 交变应 力引起 的疲劳等 问题均未考虑 所 以在规范 中 . 为了保证容 数 3 多年来 的实际运行表 明: O 采用分析设计的容器安全 可靠. 且具有 器 的安全可靠在设 计中就采用 了较高 的安全 系数 。最早 的安 全系数 经济 胜; 与常规设 计相 比, 可节省材料 2 %~ 0 在一定程 度上有效减 0 3 %. n 5 4 年代末改为 n 4 这样做实 际上是企 图以高 的安全系数来包罗 少制造加工量 、 : .0 =。 降低运输费用 但对 于选 材 、 制造 、 检验和验收规定 了 各 种因素 的影 响. 存在一些 问题 比常规设计更为严格的要求 下面是 常规设计与分析设计的对比 近年来 , 由于锅 炉、 石油 、 化工 等行 业 的发展 , 压力容器设计 参数 ① 比较项 目: 设计准则。 常规设计 : 弹性失效 : 只允许存在弹性变 提高. 使用条件也越来 越苛刻 . 如果 单纯依靠提高 安全系数 的办法来 分析设计 : 弹性失效 ' 塑性失效 ; j 单 允许 出现 局部 的、 可控制 的塑性变 保 证强度 . 导致设计变得不合理 。 会 为了防止这种现象 的发生 . 我们在 形 (. 1 极限载荷( 一次加载 2安定 载荷反复加载) . 。 结构型式 与材料方 面采取相应措施外 . 还必须从设计观 点和设 计方法 ② 比较项 目: 载荷 。 常规设计 : 静载荷 。 分析设计 : 静载荷 、 交变载 上加以改进和发展 目前世 界上一些先进 的国家都在运用应力分析方 荷 。 法 . 国也 于 19 年颁 布 了f 我 95 钢制压 力容器一一 分析设计 标准) B 7 ( 4 J ③ 比较项 目: 分析方法。 常规设计 : 薄膜理论 、 材料力学方法 、 简化 犯 一 9 ) 要求把零部件 中的应力较为准确地设计 出来或用应 力测试 公式加经验 系数 。分析设计 : 5. 弹性或塑性力学分析f 理论方 法、 数值方 法 测定 出来 。其次是引入 了极 限分析与安定性分析 的概念 , 对求得的 法 、 实验方法)板壳理论 。 、 应力 加以分类和加 以限制 ④ 比较项 目: 应力评定。 常规设计 : 应力不分类 、 同一 的许用应力 、 分析设计和常规设计 的主要 区别如下: 用第一强度理论 、 基本安全系数较大 。分析设计 : 力分类 、 应 用应力强 用第 基本安全系数较小。 ①分 析设计 比常规设 计在选材 、 结构 、 设计 、 制造 、 检脸和使 用等 度对各类应力进行评定 、 三强度理论 、 方 面都提 出了较高 的要求和较多的限击峰件。 ⑤ 比较项 目: 材料。 常规要求 。 分析设计 : 质、 优 延性好 、 性能稳定 ②分析设计考虑容器低循环疲劳失效 。 而常规设计并未包 括疲劳 ⑥ 比较项 目: 制造 、 检验。 常规设计 : 常规要求。 分析设计 : 整体 陛、 连续性 、 相贯处光滑过渡 、 全焊透、0 % 10 探伤 。 分 析。 ③分 析设计考虑疲劳分析时要求详细计算温差应力 . 而常规设计 分析设计方法虽然合 理而先进- 却需要进行大量 复杂的分析计 f 旦 除个 别元件外一般无此要求 算. 需要计算机 才能完成, 因而提高 了设计 费用 和时间, 以。 所 只有当设 ④ 分析设计采用最 大剪应 力理论 . 而常规设计 . 最大主应 力 计高参数 、 采用 重要的容器时才 采用这种方法 。但有些容器必须采用分析 理论 。 设计而无其 它选 择 对 一般的常规容器. 长期的实践证 明采用传 统的 ⑤ 分析设计原则上要 求对容器元 件各个部位 的应力进行详 细计 常规设计方法完全可以满足容器 的安全性。 如采用 分析设 计方法. 虽然 算 . 根据各种应力对 元件失效所起不 同的作用予 以分类 . 并 然后对 不 节省部分钢材, 却提高了设计 、 制造 费用, 实际上是不合算的。 因而美国 同类别 的应力采用不同的应力校核条件加以限制。 而常规设甘一般不 A M S E规范 同时规定 了上述两种设计准则 ’ 我国也颁 布了 G 10 19 B5— 98 计算 某些 局部应力 . 针对具体结构 引人 不 同的结构 系数 . 仅 也不对应 《 钢制压 力容器》 J 4 3 — 5 钢制压力容 器—— 分析设计标准 》 和 B 729 《 , 根 力进行分类 。 据不 同情况进行不同选择 分析设计是一个整体。 计准则的不 同. 设 要 求与之配套 的一 系列规 范和措 施也不同, 包括材料选用 、 制造工艺 、 检 2分 析 设计 中应 力分 类 及 其 应 用 . 分析设 计涉 及了各种可能失效模式 中一些 主要 的失效模式 , 计 验要求 、 程序 、 制造资格 等方面 ; 常规设计 方法 简单易行, 设 计算 设计 而 具 但 根据 所考虑 的失效模 式 比较详 细地 计算 了容器及受 压元件 的各 种应 有丰 富的使用经 验, 有时却无法解释压力容器 出现 的一些事 故 所 设计者应 根据实践 经验, 经济 通过 力 . 根据各种应力本身 的性质及对失效模 式所起的不同作用予 以分 以 常规设 计和分析设 计不能混用 , 并

压力容器设计(1)资料

压力容器设计(1)资料

目录一、概述 (2)二、适用范围 (2)三、设计参数的确定 (4)四.总图的主要内容 (7)五、无损检测 (8)六.焊后应进行整体热处理的压力容器: (11)七、总结 (12)一、概述1、压力容器设计应满足化工工艺要求,即完成指定的任务。

2、对于容器零部件机械设计,应满足如下要求:1)、强度 2)、刚度 3)、稳定性 4)、耐久性 5)、密封性3、压力容器的分类:1)、内压容器:指容器内部承受流体的压力者;2)、外压容器:指容器外部承受流体的压力者:外压容器中,当容器的内压力小于一个绝对大气压(约0.1MPa)时又称为真空容器。

4、根据其压力高低、工作介质的危害程度以及在生产过程中的重要作用,将压力容器划分为三类,其中第三类容器最为严格。

1)、第三类压力容器2)、第二类压力容器 3)、第一类压力容器5、第三类压力容器具有下列情况之一的,为第三类压力容器:1)、高压容器;2)、中压容器;3)、中压贮存容器;4)、中压反应容器;5)、低压容器;6)、高压、中压管壳式余热锅炉;7)、中压搪玻璃压力容器;8)、使用强度级别较高的材料制造的压力容器;9)、移动式压力容器,包括铁路罐车、罐式汽车和罐式集装箱等;10)、球形贮罐;11)、低温液体贮存容器。

6)、压力容器的失效形式及设计准则(一一对应的关系):7)、压力容器受压元件用钢材的质量及规格符合相应的国标、部标和有关技术条件要求,并应由平炉、电炉和氧化炉炼制;压力容器非受压元件用钢必须有良好的可焊性。

二、适用范围考虑容器的使用条件(如设计温度、设计压力、介质特性和操作特点)确定该设备应遵循的标准。

若同时需要满足几个标准时,应按较严格的执行。

《GB150-1998》适用设计压力≤35 Mpa的压力容器;(应力分析、验证性实验分析、用可比的已投入使用的结构进行进行对比经验设计)设计温度范围按钢材允许的使用温度确定;不适用直接用火焰加热的容器;核能装置中的容器;旋转或往复运动的机械设备(如泵、压缩机、涡轮机、液压缸等)中自成整体或作为部件的受压器室;经常搬运的容器;设计压力低于0.1 Mpa的容器;真空度低于0.02 Mpa的容器;内直径小于150 mm的容器;要求作疲劳分析的容器;已有其他行业标准的容器。

新GB150 压力容器设计基础、总论

新GB150 压力容器设计基础、总论
超高压容器设计准则: 全壁厚屈服失效和爆破失效准则
23
失效准则及设计理论基础
•压力容器设计理论基础
压力容器的结构部件应力状态的计算 GB150标准的计算方法 整体部件:薄膜无力矩理论;边缘区域总体上不考 虑(不排除个别区域的计及)。 JB4732标准的计算方法 整体部件:弹性力学的分析结果 ;局部区域采用应 力分析,或应力指数法。
6
设计管理与标准、法规的选用
压力容器设计依据
• GB150标准范围内的压力容器: 应依据GB150进行设计,并符合以GB150为基础标 准的相关标准的规定。当设计温度小于以钢材蠕变 控制其许用应力的相应温度时,还可选用JB4732标 准进行设计(单位和个人应具备相应资格)。当设 计的压力容器在《固容规》范围内时还必须符合 《容规》的规定。
s按Biblioteka 四强度理论的强度条件为2 1
2 2
2 3
1 2
2 3
1 3
[ ]
试验结果表明第四强度理论比第三强度理论与试验结果符合得更好。
22
失效准则及设计理论基础
•压力容器设计理论基础
压力容器的设计准则
GB150 常规设计: 弹性失效、第一强度理论;
JB4732 分析设计: 塑性或弹塑性失效、第三强度理论;
•压力容器相关法规体系构成 法律—行政法规—部门规章—安全技术规范—引用标准”五个层次。 第一层次:法律 根据宪法和立法法的规定,全国人民代表大会及其常委会制定法律。 如安全生产法、劳动法和已颁布的《特种设备安全法》。
9
压力容器相关法规及标准体系构成
《中华人民共和国特种设备安全法》由中华人民共和国 第十二届全国人民代表大会常务委员会第3次会议于 2013年6月29日通过,2013年6月29日中华人民共和国主 席令第4号公布。《中华人民共和国特种设备安全法》 分总则,生产、经营、使用,检验、检测,监督管理, 事故应急救援与调查处理,法律责任,附则7章101条, 自2014年1月1日起施行。

GB150-1998《《钢制压力容器》

GB150-1998《《钢制压力容器》
17
• 二.内压园筒和内压球壳: • ☆失效准则 • 容器从承载到载荷的不断加大最后破坏经 历弹性变形、塑性变形、爆破;因此容器 强度失效准则的三种观点: • 弹性失效 • 弹性失效准则认为壳体内壁产生屈服即达 到材料屈服限时该壳体即失效,将应力限 制在弹性范围,按照强度理论把筒体限制 在弹性变形阶段。认为圆筒内壁面出现屈 服时即为承载的最大极限。
2
• • • • • • • • • •
5.总论: (1)容器管辖范围:(3.3.1节~3.3.4节) (2)定义:(3.4节) 1)压 力 除注明者外,压力均为表压力。 工作压力Pw 设计压力Pd 计算压力Pc 最大允许工作压力[Pw] 安全阀的开启压力Pz 爆破片的标定爆破压力Pb
3
• 2)温 度 • 金属温度 ;工作温度 ;最高、最低工作温 度;设计温度;试验温度 • (3)载荷:经常性载荷;选择性载荷; (3.5.4节) • (4)厚度:厚度的定义:计算厚度;设计 厚度;名义厚度;有效厚度等; (3.4.8节)
4
• • •
• •

厚度负偏差C1 腐蚀裕量C2 C2=NfхdC2; Nf—设计寿命。单 位:年; dC2—腐蚀速率。单位:毫米/ 年 腐蚀裕量考虑的原则 : 1)与工作介质接触的筒体、封头、接管、 人(手)孔及内部构件等,均应考虑腐蚀 裕量。 2)下列情况一般不考虑腐蚀裕量:
5
• a、介质对不锈钢无腐蚀作用时(不锈钢、不锈复 合钢板或有不锈钢堆焊层的元件); • b、可经常更换的非受压元件; • c、有可靠的耐腐蚀衬里; • d、法兰的密封表面; • e、管壳式换热器的换热管; • f、管壳式换热器的拉杆、定距管、折流板和支持 板等非受压元件; • g、用涂漆可以有效防止环境腐蚀的容器外表面 及其外部构件(如支座、支腿、底板及托架等, 但不包括裙座)。

压力容器主要由哪几部分组成

压力容器主要由哪几部分组成

1. 压力容器主要由哪几部分组成?分别起什么作用?答:压力容器由筒体、封头、密封装置、开孔接管、支座、安全附件六大部件组成。

筒体的作用:用以储存物料或完成化学反应所需要的主要压力空间。

封头的作用:与筒体直接焊在一起,起到构成完整容器压力空间的作用。

密封装置的作用:保证承压容器不泄漏。

开孔接管的作用:满足工艺要求和检修需要。

支座的作用:支承并把压力容器固定在基础上。

安全附件的作用:保证压力容器的使用安全和测量、控制工作介质的参数,保证压力容器的使用安全和工艺过程的正常进行。

2,《压力容器安全技术监察规程》的适用范围:○1最高工作压力≥0.1MPa (不含液体静压力);○2内直径(非圆形截面指其最大尺寸)≥0.15m ,且容积≥0.025m 3;○3盛装介质为气体、液化气体或最高工作温度高于等于标准沸点的液体。

GB150的适用范围:○10.1MPa ≤p ≤35MPa ,真空度不低于0.02MPa ;○2按钢材允许的使用温度确定(最高为700℃,最低为-196℃);○3对介质不限;○4弹性失效设计准则和失稳失效设计准则;○5以材料力学、板壳理论公式为基础,并引入应力增大系数和形状系数;○6最大应力理论;○7不适用疲劳分析容器。

1. 一壳体成为回转薄壳轴对称问题的条件是什么?答:几何形状、承受载荷、边界支承、材料性质均对旋转轴对称。

1. 试应用无力矩理论的基本方程,求解圆柱壳中的应力(壳体承受气体内压p ,壳体中面半径为R ,壳体厚度为t )。

若壳体材料由20R (MPa MPa s b 245,400==σσ)改为16MnR(MPa MPa s b 345,510==σσ)时,圆柱壳中的应力如何变化?为什么?解:○1求解圆柱壳中的应力 应力分量表示的微体和区域平衡方程式:δσσθφzp R R -=+21φσππφsin 220t r dr rp F k r z k=-=⎰圆筒壳体:R 1=∞,R 2=R ,p z =-p ,r k =R ,φ=π/2tpRpr tpR k 2sin 2===φδσσφθ○2壳体材料由20R 改为16MnR ,圆柱壳中的应力不变化。

13_压力容器设计_常规设计_圆筒封头设计

13_压力容器设计_常规设计_圆筒封头设计

大型锻件锻造现场
4.3 常规设计
4.3.2 圆筒设计
锻焊式: 在整体锻造的基础上,筒节 之间进行环焊缝连接,满足长度 方向的要求。对焊缝质量要求高。 对于厚板卷制圆筒制造的厚壁圆筒容器,工艺简 单,生产率高,但厚板质量不易保证。
4.3 常规设计
4.3.2 圆筒设计
钢板等离子数控切割下料
4.3 常规设计
4.3 常规设计
4.3.2 圆筒设计
(2) 内压圆筒的强度设计 (p112) ① 中低压薄壁圆筒厚度计算(弹性失效设计准则) 薄壁圆筒承受两向薄膜应力,有
pD pD 1 , 2 , 3 z 0 2 4
由最大主应力理论(见p103,4-3式),可得强度条件为
2 pso s ln K (2 52) 3 这里,筒壁厚度 Ro Ri Ri ( K 1) ,代入上式, 3 pso pso 2 s 解得, Ri e 1 ,这里,令工作压力 p , nso 3 nso p 得到计算壁厚 Ri e 2 s 1 (4 16)
4.3 常规设计
4.3.2 圆筒设计
① 单层式 对于中低压圆筒,直接用薄钢板卷制而成。每个 筒节有一道纵焊缝,筒节之间为环焊缝。 对于高压厚壁容器,结构形式有如下几种:
整体锻造式 质量得到保 证,材料损耗大, 尺寸小,成本高。
4.3 常规设计
4.3.2 圆筒设计
核反应器蒸汽发生器水室封头锻件
4.3 常规设计 常规设计 4.3.2 4.3.2圆筒设计 圆筒设计
4.3 常规设计
4.3.2 圆筒设计
(3) 设计技术参数的确定 压力容器设计技术参数主要有:设计压力、设计 温度、厚度、厚度附加量、焊缝系数和许用应力。

GB150.1-2011《压力容器.通用要求》-新GB150宣贯教材


GB150.1《压力容器 通用要求》
第二大类:长期失效模式(Long term failure modes) ● 蠕变断裂(Creep Rupture); ● 蠕变-在机械连接处的超量变形或导致不允许的载荷传 递(Creep-excessive deformations at mechanical joints or resulting in unacceptable transfer of load): ● 蠕变失稳(Creep instability) ● 冲蚀、腐蚀(Erosion,corrosion); ● 环境助长开裂如:应力腐蚀开裂、氢致开裂
GB150.1《压力容器 通用要求》
3.2.3 失效准则和强度理论
金属强度失效准则主要包含弹性失效准则、塑性失
效准则和爆破失效准则。
1、弹性失效准则;
2、塑性失效准则;
3、爆破失效准则。
爆破失效准则在超高压容器设计中得到了应用。按
爆破失效准则计算圆筒体爆破压力的计算方法中以福贝
尔公式最为典型,即为:
GB150.1《压力容器 通用要求》
3.2.2 标准所考虑的失效模式 失效模式与设计规范中所考虑的设计载荷和
使用工况有密切的联系,表1给出了世界各国标 准中所考虑的载荷条件对比分析:
GB150.1《压力容器 通用要求》
(1)以失效模式为依据的设计方法 ISO 16528[5]综合世界主要工业国家的技术
(Environmentally assisted cracking e.g. stress corrosion cracking,hydrogen induced cracking,etc)。
GB150.1《压力容器 通用要求》
第三大类:循环失效模式(Cyclic failure modes): ● 扩展性塑性变形 Progressive plastic deformation; ● 交替塑性 Alternating plasticity; ● 弹性应变疲劳(中周和高周疲劳)或弹-塑性应变 疲劳(低周疲劳) Fatigue under elastic strains

压力容器图样设计技术通用规定

1、围本标准是针对技术部各级设计人员设计、绘制压力容器施工图过程中所作出的一般规定,也是技术部各级设计人员在设计、绘制施工图时所必须遵循的基本准则。

此外,在设计、绘图时,还应执行现行的有关最新发布的标准、规及相关的行业标准。

2、总则施工图图面表示方法必须遵循下述标准:2.1图纸幅面及格式应符合GB/T14689的规定。

2.2图样的比例应符合GB/T14690规定。

2.3字体应符合GB/T14691规定。

2.4图线应符合GB4457.4规定。

2.5剖面符号应符合GB4457.5规定。

2.6表面粗糙度符号、代号及其标注应符合GB/T131的规定。

2.7焊缝符号的尺寸、比例及简化表示法应符合GB12212的规定2.8螺纹及螺纹紧固件的标注应符合GB/T4459.1的规定。

2.9图样的画法应符合GB4458.1的规定。

2.10尺寸标注方法应符合GB4458.5的规定。

2.11公差与配合的标注方法应符合GB4458.5的规定。

2.12形状和位置公差应符合GB/T1182、GB/T1184、GB/T4249、GB/T16671的规定。

3、分述3.1图纸幅面3.1.1图纸幅面一般为Al;Al,A2,A3,A4加长加宽幅面尽量不用。

3.1.2 A3幅面不允许单独竖放;A4幅面不允许横放;A5幅面不允许单独存在。

3.2字体a、文字、汉字为仿宋体,拉丁字母(英文字母)为B型直体。

b、阿拉伯数字为B型直体1,2,3……。

c、放大图序号为B型直体罗马数字I,II,Ⅲ……。

d、焊缝序号为阿拉伯数字。

e、焊缝符号及代号按国标或行业标准。

f、标题放大图用汉字表示。

g、剖视图、向视图符号以大写英文字母表示:如A向、A一A,B 一B等。

h、管口符号以小写的英文字母a,b,c……表示。

同一用途、规格的管口,数量以下标1,2,3表示。

3.3图样的画法3.3.1视图选择的原则:a、在明确表示物体的前提下,使视图(包括向视图、剖视图等)的数量应为最少。

《压力容器》_

5
第一部分:通用要求
GB/T 26929‐2011 《压力容器术语》 外压容器 vessel under external pressure 正常操作时,其外部压力高于内部压力的容器。 注:在外压容器中,如果容器内部介质压力(绝对压 力)小于环境大气压,即在真空状态下工作的容器, 这种容器又可称为真空容器(vacuum vessel)。 建造 construction 包括如下一系列工作的整个过程:材料选择、设计、 制造、检验、试验、验收、表面清理和涂覆、超压泄 放装置的选用以及合格出证等。
8
4
第一部分:通用要求
2. 修订 2.1 增加了标准引言,说明标准的性质和使用方法 GB150标准是全国锅炉压力容器标准化技术委员会负 责制订和归口的压力容器通用技术标准,用以规范在中 国境内建造或使用的压力容器设计、制造、检验和验收 的相关技术要求。 包括了压力容器建造过程中应遵循的强制性要求、 特殊禁用规定以及推荐性条款。
4
2
第一部分:通用要求
GB/T 26929‐2011 《压力容器术语》 压力容器 pressure vessel 压力作用下盛装流体介质的密闭容器。 注:“密闭”在这里是指以容器对外连接管口为界限 的范围内能够形成一个独立的承压空间。 常压容器 atmospheric vessel atmospheric vessel 与环境大气直接连通或工作(表)压力为零的容器。 注:在我国压力容器标准体系中,压力在大于‐0.02 、小于0.1 MPa (g)之间的压力容器称为“常压容器”。
15
第一部分:通用要求
2. 6 增加或优化若干设计方法 a ) 增加基于分析设计的筒体径向平齐接管的补强设计方 法(开孔率适用范围可达0.9); b ) 增加钢带错绕筒体设计方法; c ) 增加偏心锥壳; d ) 低压平封头等元件的设计计算方法; e ) 增加整体法兰和按整体法兰计算的任意法兰的刚度校 核计算要求等; f ) 调整了部分平盖的K系数; g ) 修订了双锥密封结构的设计计算方法,扩大了结构的 适用范围等。

压力容器的分析设计


过渡区或 与筒体连 接处 平 盖 中 心 区




与 筒 体 连 接 处


局部薄膜应力一次应力 弯曲应力二次应力
PL Q
表4-15 压力容器典型部位的应力分类
接 管 接 管 壁 內 压 一次总体薄膜应力 局部薄膜应力一次应力 弯曲应力二次应力 峰值应力 薄膜应力二次应力 弯曲应力二次应力 峰值应力 Pm PL Q F Q Q F Q F
4.4.2.1 应力分类
一次应力P (3)一次局部薄膜应力PL 在结构不连续区由内压或其它机械载荷产生的薄膜应力和 结构不连续效应产生的薄膜应力统称为一次局部薄膜应力。 作用范围是局部区域 。 具有一些自限性,表现出二次应力的一些特征,从保守 角度考虑,仍将它划为一次应力。
实例:壳体和封头连接处的薄膜应力; 在容器的支座或接管处由外部的力或力矩引起的薄膜应力。
一次总体薄膜应力强度SⅠ;
一次局部薄膜应力强度SⅡ; 一次薄膜(总体或局部)加一次弯曲应力(PL+Pb)强度SⅢ; 一次加二次应力(PL+Pb+Q)强度SⅣ; 峰值应力强度SⅤ(由PL+Pb+Q+F算得)。
4.4.3 应力强度计算
应力强度计算步骤 除峰值应力强度外 ,其余四类应力强度计算步骤为: (1)在所考虑的点上,选取一正交坐标系, 如经向、环向与法向分别用下标x 、q 、z表示, 用x、q和z表示该坐标系中的正应力, txq、txz、tzq表示该坐标系中的剪应力。 (2)计算各种载荷作用下的各应力分量,并根据定义将各 组应力分量分别归入以下的类别:一次总体薄膜应力 Pm;一次局部薄膜应力PL;一次弯曲应力Pb;二次应 力Q;峰值应力F。
4.4.3 应力强度计算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压力容器设计准则(课件)
压力容器设计准则
失效准则(设计准则)
·一个问题的两个方面,采用何种设计准则就是采用何种失效准则的问题。

·一种设计上的共识,且经过实践验证的。

·防止某一(几)种失效模式发生,不意味着符合某种失效准则时容器就破坏了。

·针对具体的失效模式,选择不同的设计准则,是设计者应该掌握的技能。

2.1 弹性失效准则
为防止容器总体部位发生屈服变形,将总体部位的最大应力限制在材料的屈服点以下,保证容器的总体部位始终处于弹性状态而不会发生弹性失效。

1)规定屈服极限是容器失效的应力,考虑安全系数后,容器实际应力处在弹性范围内。

2)主要着眼于限制容器中的最大薄膜应力或其他由机械载荷直接产生的弯曲应力及剪应力等。

3)应用:常规设计方法准则,如,
GB150、ASME VI I 1-1:内压圆筒、凸形封头等元件设计。

2.2 塑性失效准则
容器某处(如厚壁筒的内壁)弹性失效后并不意味着容器失去承载能力。

将容器总体部位进入整体屈服时的状态或局部区域沿整个壁厚进入全屈服状态称为塑性失效状态,若材料符合理想塑性假设,载荷不需继续增加,变形会无限制发展下去,称此载荷为极限载荷。

Treaca屈服条件或
Mises屈服条件
1)外载荷<极限载荷:结构塑性变形是局部、可控的;
2)将极限载荷作为设计准则的判据加以限制,防止总体塑性变形,又称极限分析(设计)。

如何求的极限载荷,是该准则的基础。

3)准则应用:
·JB 4732、ASME Vffl-2;
·GB 150:平板、整体法兰(含按整体法兰设计的任意式法兰)连接的圆筒径部等元件设计或
应力计算公式。

4)适用范围:材料,载荷
5)极限载荷设计原理的保守性
·用矩形截面梁极限状态作为依据,梁只需要一个塑性铰即到达极限状态,而压力容器可近似看作多个矩形截面梁拼合而成,即需要多个塑性铰才能塑性失效。

是偏安全的。

极限载荷设计原理
将板、壳看作由若干受拉弯作用下的矩形截面梁,材料为理想弹塑性;当拉伸为0时考察纯弯梁应力随M的变化:
1)弹性阶段;
2)当上下表面(R eL或R p0.2)时,对应的最大弯矩:
3)当继续增加载荷从弹性层减少,塑性层增加,直到整个截面屈服,此时不增加载荷截面梁
变形也无限増大,即形成“塑性铰”,此时:
“塑性铰”:梁某截面全部进入塑性状态后,该处曲率可以任意増大,称该点出现了一个塑性铰。

此时M’即为极限载荷,对应的应力:
2.3 弹塑性失效设计准则
1)如果容器的某一局部区域,一部分材料发生了屈服,而其他大部分区域仍为弹性状态,而弹性部分又能约束着塑性区的塑性流动变形,结构处于这种弹塑性状态可以认为并不一定意味着失效。

2)只有当容器某一局部弹塑性区域内的塑性区中应力超过了由“安定性原理”确定的许用值(安定载荷)时才认为结构丧失了“安定性”而发生了弹塑性失效。

3)安定性原理作为弹塑性失效的设计准则,亦称安定性准则。

4)概念:
·安定性一结构除在初始阶段少数几个载荷循环中产生一定的塑性变形外,在继续施加的循环外载荷作用下不再发生新的塑性变形,或者说不出现塑性疲劳或棘轮现象。

此时结构处于安定状态。

·棘轮现象:构件受机械载荷、热应力或二者同时作用的循环作用,产生递増的非弹性变形的现象。

·安定载荷—安定与不安定的临界状态对应的载荷变化范围。

5)与极限载荷的区别:载荷达到安定载荷时,只是损伤累积的开始,到达破坏还有缓慢的过程,因此对“安定”不加安全系数,只要施加的载荷小于安定载荷。

2.4 爆破失效设计准则
1)非理想塑性材料屈服后还有增强的能力,对于厚壁容器在整体屈服后仍有继续增强的承载能力,直到容器达到爆破时的载荷才为最大载荷。

2)以容器爆破作为失效状态,以爆破压力作为设计的判据加以限制,以防止发生爆破,这就是容器的爆破失效设计准则。

3)应用:超高压容器设计。

2.5 疲劳失效设计准则
1)定义:为防止容器发生疲劳失效,将容器应力集中部位的最大交变应力的应力幅限制在由低周疲劳设计曲线确定的许用应力幅之内时才能保证在规定的循环周次内不发生疲劳失效。

2)压力容器的疲劳属于高应变(即在屈服点以上的)低周次(循环次数小于105次)的疲劳失效,亦称“低周疲劳”。

3)根据大量实验研究和理论分析建立了安全应力幅(Sa)与许用循环周次(N)的低周疲劳设计曲线,即Sa—N曲线。

2.6 失稳失效设计准则
1)外压容器的失稳皱折需按照稳定性理论进行稳定性校核,这就是失稳失效的设计准则。

2)大型直立设备(如塔设备)在风载与地震载荷下的纵向稳定性校核也属此类。

3)应用:
GB 150、JB 4732外压容器设计。

2.7 其他失效设计准则
脆性断裂失效设计准则
1)即“防脆断失效设计准则”,按断裂力学概念,以造成容器低应力脆断的应力或裂纹尺寸作为临界状态的一种计算准则。

2)为防止缺陷导致低应力脆断,可按断裂力学限制缺陷的尺寸或对材料提出必须达到的韧性指标,这是防脆断设计。

3)准则应用:安全评定;寿命评估;
蠕变失效设计准则
1)定义:将高温容器筒体的蠕变变形量(或按蠕变方程计算出的相应的应力)限制在某一允许的范围之内,以保证高温容器在规定的使用期内不发生蠕变失效。

2)应用:GB150
JB 4732不适用。

例:Q245R、Q345R
刚度失效设计准则
1)为保证结构有足够的刚度,通过对结构的变形分析,将结构中特定点的线位移及角位移限制在允许的范围内。

2)例:大型板式塔内大直径塔盘
法兰设计
泄漏失效设计准则:通过法兰设计方法和特殊密封结构的设计方法,结构要求以及对密封垫片和螺柱、螺母的要求,防止接头泄漏的发生。

2.8 失效准则的选择
2)其他失效准则的应用(设计者需要考虑)
·选材;
·结构优化;
·制造要求;
·使用控制;
例如:低温容器,“防脆断失效设计准则”
高温容器,“蠕变失效准则”
不锈钢制压力容器,“腐蚀失效准则”
压力容器的设计准则发展
·以上设计准则都是近代化工容器中已被采用的,除弹性失效设计准则、塑性失效设计准则、爆破失效设计准则和失稳失效设计准则在20世纪60年代以前就逐步成熟运用于容器的工程设计之外,弹塑性失效设计准则、疲劳失效设计准则、断裂失效设计准则以及蠕变失效设计准则均是这个年代及以后逐步出现并成熟起来的,反映出设计理论的进展与突破。

·腐蚀失效所对应的设计准则比较复杂,它所涉及的不是一个独立的准则。

各种不同的腐蚀失效形态所对应的设计准则是多种多样的,有些还没有相应的设计准则。

相关文档
最新文档