八年级数学下册第3章图形的平移与旋转 平移的定义及性质说课稿新版北师大版
八年级数学下册 第3章 图形的平移与旋转 3.1 图形的平移 第1课时 平移的认识及性质课件 北师大

1m 21m
图1
D 15m
C
25
变式:如图是一块长方形的草地, 长为21米.宽为 15米.在草地上有一条宽为1米的小道,长方形的草 地上除小道外长满青草.求长草部分的面积为多少?
A
1m
D
15m
B
21m
C
思路点拨:平移构成规则图形
教育ppt
26
练一练
2.如图所示,图中小正方形的边长为a,则阴
(3)平移的方向就是点C到点C'的方向;
(4)平移的距离就是线段AA'的长度.
教育ppt
19
练一练
1. 在图形平移中,下面说法中错误的是( D ) A. 图形上任意点移动的方向相同 B. 图形上任意点移动的距离相等 C. 图形上任意两点的连线的长度不变 D. 图形上可能存在不动点
教育ppt
20
例2:如图,经过平移,ΔABC的顶点A移到了点D ,作出平移后的三角形.
4.平移的方向是直尺PQ倾斜放置的方向,平移 的距离是BE的长度.
教育ppt
14
定点画平移后的图形
教育ppt
15
问题:△ABC沿着PQ的方向平移到 △A`B`C`的位置,
除了对应线段平行且相等外,你还发现了什么现象?
P A
R
Q
A
A'
A
BC的中点M平 移B到什么地方 B'
去了吗?
B M
B
M`
C
C
C'
C AA'//__B_B_'//_A_C_C_'
S
AA'=_B_B__' =_C_C__'
B
八年级数学下册 第三章 图形的平移与旋转 1 图形的平移教案 (新版)北师大版-(新版)北师大版初中

1 图形的平移一、教学目标1.知识与技能(1)认识平移、理解平移的基本内涵;(2)理解平移前后两个图形对应点连线平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等的性质;(3)经历对图形进行观察、分析、欣赏和动手操作、画图等过程,掌握有关画图的操作技能,学会平移作图,掌握作图的技巧.(1)经历观察、分析、操作、欣赏以及抽象概括等过程;(2)经历探索图形平移的性质的过程,以及与他人合作交流的过程,进一步发展空间观念,增强审美意识.(1)引导学生观察生活中的图形运动变化现象,自己加以数学上的分析,进而形成正确的数学观,进一步丰富学生的数学活动经验和体验.(2)通过自己动手设计图案,把所学知识加以实践应用,体会数学的实用价值.通过同学间的合作交流,培养学生的协作能力与学习的自主性.二、教学重点、难点重点:(1)探究平移变换的基本要素,画简单图形的平移图;(2)平移图形的规律,作图的顺序.难点:(1)决定平移的两个主要因素;(2)平行线的作法及对应点的连接.三、教具准备课件.四、教学过程(一)师生活动[师]展示与平移有关的图片,借助实物演示平移,用几何画板演示两个图形的平移.[生]学生分组讨论,如何将所看到的现象用简洁的语言叙述.[师]分析平移定义,探讨“沿某一方向”的意义,其实质是沿直线运动.[生]讨论“沿某一方向”的意义.[师]展示图片,让学生讨论图中的运动各在哪种情况下是平移,图中还有哪些图形可以通过平移得到.[生]分组讨论:(1)能否通过平移得到?(2)能平移得到的其基本图形是什么?有哪些方法?(二)探究新知例1如图1-1,将△ABE沿射线XY方向平移一定距离后得到△CDF.找出图中平行且相等的线段和全等的三角形.图1-1引导学生从“对应点所连线段”“对应线段”两个方面找平行且相等的线段.例2如图1-2,将∠ABC沿射线XY平移至∠A/B/C/,且BC与A/B/交点为D,图中有哪些相等的角?图1-2学生分组讨论解题思路,独立解答.提出问题:(课件演示)经过平移,线段AB的端点移到了点D,你能作出线段AB平移后的图形吗?图1-3[师]引导学生归纳总结作图的方法.(如图1-3)[生]讨论并交流对多边形特征的认识.例3如图1-4,经过平移,△ABC 的顶点A 移到了点D ,请作出平移后的三角形.图1-4分析:因为A 与D 是对应点,而平移的对应点的连线段平行且相等所以平移方向——射线AD ,平移距离——线段AD 的长. 作法:①分别过点B 、C 沿AD 方向作线段BE 、CF ,使它们与AD 平行且相等.②顺次连接D 、E 、F .则△DEF 即为所求.(如图1-5)图1-5例4 如图1-6,已知在Rt△ABC 中,∠C=90°,BC=4,AC=4,现将△ABC 沿CB 方向平移到△A’B’C’的位置.图1-6(1)若平移距离为3,求△ABC 与△A’B’C’的重叠部分的面积; (2)若平移距离为x (40≤≤x ),求△ABC 与△A’B’C’的重叠部分的面积y ,并写出y 与x 的关系式.解:(1)由题意CC’=3,BB’=3,所以BC’=1,又由题意易得重叠部分是一个等腰直角三角形,所以其面积为211121=⨯⨯;(2)2)4(21x y -= 说明:这里应用了平移的定义及对应线段平行的性质.(三)延伸应用1.运用所过的轴对称及图形的平移知识设计一幅图案,或画出生活中所见到的图案.2.如图1-7,有两个村庄A 和B 被一条河隔开,现要架一座桥(桥与河岸垂直),请你设计一种方案,使由A 到B 的路程最短.图1-7(四)课堂小结谈谈你这节课有什么收获.(五)教学反思。
初中数学北师大八年级下册(2023年修订) 图形的平移与旋转旋转教案

第三章 图形的平移与旋转2.图形的旋转(二)本节课的主要内容是通过实例进一步认识旋转变换,探索、理解旋转的特征,并应用旋转的特征作图、解决简单的图形问题。
课前热身:1. 旋转的定义: 这个定点称为_____,转动的角称为____.旋转不改变图形的________.2.旋转的基本性质:对应点到旋转中心的距离对应点与旋转中心所连线段的夹角等于旋转前、后的图形图形的旋转是由 和旋转方向和旋转角度决定(注意:请准备好圆规、三角板、量角器和铅笔)3.关于点的旋转(1)点A 绕点O 逆时针旋转60° OA 4.关于线段的旋转(1)画出线段AB 绕着端点A 顺时针旋转60度后的线段(2)画出线段AB 绕着端点O 顺时针旋转90度后的线段 讲授新知:关于三角形的旋转类型一:已知旋转中心与旋转角作旋转后的图形例1.试着画△ABC 绕O 点逆时针旋转60°后所得的三角形.变式.如图,△ABC 绕O 点旋转后,顶点A 的对应点为点D ,试确定顶点B ,C 对应点的位置,以及旋转后的三角形A B B A O总结:“旋转”作图的步骤:一连:连接已知点与旋转中心二定:确定旋转方向三量:测量旋转角度四截:在旋转角的另一条边上,以旋转中心为一端点截取等于对应线段长度的线段五画:顺次连接所得的点,从而画出旋转得到的图形例2(格点问题)如图,正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,△OAB 的三个顶点O(0,0),A(4,1),B(4,4)均在格点上画出△OAB绕原点O顺时针旋转90°后得到的△OA1B1,并写出点A1的坐标变式(坐标系中的旋转)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么点A(-2,5)的对应点A′的坐标是________.类型二:已知旋转后的图形,反过来寻找旋转中心和旋转角的位置例1.如图,在方格纸上,△DEF是由△ABC绕定点P顺时针旋转得到的,如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2)B.(2,5)C.(2,1)D.(1,2)变式:如图,四边形ABCD和四边形CDFE是边长相等的两个正方形,其中A、D、F 和B、C、E各成一直线,将正方形ABCD绕着一点旋转一定的角度后与正方形CDFE重合,这样的旋转中心共有多少个?确定旋转中心与旋转角的方法:在图形的旋转过程中,判断谁是旋转中心,要看旋转中心是在图形上还是不在图形上;若在图形上,哪一点在旋转过程中位置没有改变,这一点就是旋转中心;若不在图形上,对应点连线的垂直平分线的交点就是旋转中心,旋转角等于对应点与旋转中心所连线段的夹角.随堂练习:1.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图是在万花筒中看到的一个图案.图中所有小三角形均是全等的等边三角形,其中的四边形AEFG可以看成是四边形ABCD以A为旋转中心() A.顺时针旋转60°得到的B.顺时针旋转120°得到的C.逆时针旋转60°得到的D.逆时针旋转120°得到的2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心是()A.点A B.点B C.点C D.点D课堂小结课后作业:请完成《英才课堂》59~60页1~10题必做,11、12题选做。
北师大版八年级数学下册第三章图形的平移与旋转3.2图形的旋转第1课时旋转的定义和性质【名师教案】

3.2 图形的旋转第1课时旋转的定义和性质【教学目标】【知识与技能】了解图形的旋转的有关概念并理解它的基本性质以及简单平面图形旋转后的图形的作法.【过程与方法】1.通过具体事例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.2.通过画图,培养学生旋转作图的动手操作能力.【情感态度】通过具体实例认识旋转,理解旋转前后两个图形对应点到旋转中心距离相等,对应点与旋转中心的连线所成的角彼此相等的性质,对具有旋转特征的图形进行观察、分析、画图过程中,发展初步的审美能力.【教学重点】1.了解图形的旋转的有关概念并理解它的基本性质.2.掌握旋转、旋转中心和旋转角的概念,并理解旋转的性质.【教学难点】掌握旋转、旋转中心和旋转角的概念,并理解旋转的性质.【教学过程】一、情境导入问题1:下列一组图形变换属于旋转变换的是()问题2:飞行中的飞机的螺旋桨、高速运转中的电风扇等均属于旋转现象.你还能举出类似现象吗?问题3:大家来看一面小旗子(出示小旗子,然后一边演示一边叙述),把这面小旗子绕旗杆底端旋转90°后,这时小旗子的位置发生了变化,形成了新的图案,你能把这时的图案画出来吗?这面小旗子是结构简单的平面图形,在方格纸上大家能画出它绕点O旋转后的图形,那么在没有方格纸或旋转角不是特殊角的情况下,能否也画出简单平面图形旋转后的图形呢?这节课我们就来研究:简单的旋转作图.二、合作探究探究点一:旋转的定义【类型一】旋转的认识如图,将左边叶片图案旋转180°后,得到的图形是( )解析:将叶片图案旋转任何角度和A、B中的图案均不重合;不旋转或旋转360°后和C中的图案重合,不合要求;顺时针或逆时针旋转180°后只和D中的图案重合,故选 D.【类型二】旋转图形的识别下列图形:线段、等边三角形、正方形、等腰梯形、正五边形、圆,其中是旋转对称图形的有哪些?解析:由旋转对称图形的定义逐一判断求解.解:线段、等边三角形、正方形、正五边形、圆都是旋转对称图形.方法总结:判断一个图形是否是旋转对称图形,其关键是要看这个图形能否找到一个旋转中心,且图形能绕着这个旋转中心旋转一定角度与自身重合.【类型三】旋转角的判断如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD 的位置,则旋转的角度为( )A.30°B.45°C.90°D.135°解析:对应点与旋转中心的连线的夹角,就是旋转角,∠BOD,∠AOC都是旋转角.由图可知,OB、OD是对应边,∠BOD是旋转角,所以,旋转角∠BOD=90°.故选C.探究点二:旋转的性质【类型一】旋转性质的理解如图,四边形ABCD是边长为4的正方形且DE=1,△ABF是△ADE旋转后的图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连接EF,那么△AEF是怎样的三角形?解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的,∴B是D的对应点,又∵∠DAB=90°,∴旋转了90°.(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=2 2.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠B E′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.四、教学反思教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,体会图形变换思想.在教学的全过程中,通过提问、指导学生操作等方式引导学生发现规律,通过让学生回顾自己的作画过程和观察自己的画图作品体会、归纳出特征,有效地培养了学生的合作交流、独立思考问题、解决问题的能力.练习的设计,遵循由浅入深的原则,循序渐进地让学生逐步熟练应用旋转特征,解决生活与实际问题,从而体现数学的价值;同时,不同难度的习题可以满足不同层次学生的需要,让“不同的人在数学上得到不同的发展”.。
八年级数学下册第三章图形的平移与旋转图形的平移 教案北师大版

第三章图形的平移与旋转1 图形的平移第2课时【教学目标】知识技能目标:通过“变化的鱼”探究横向(或纵向)平移一次,其坐标变化的规律,认识图形变换与坐标之间的内在联系. 过程性目标:在活动过程中,提高学生的探究能力和方法.情感态度目标:通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣;通过欣赏生活中平移图形与学生自己设计平移图案,使学生感受数学的美.【重点难点】重点:通过“变化的鱼”探究横向(或纵向)平移一次,其坐标变化的规律难点:坐标的变化与点的平移之间的关系【教学过程】一、创设情境图中的“鱼”是将坐标为(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)的点用线段依次连接而成的,将这条“鱼”向右平移5个单位长度.(1)画出平移后的新“鱼”.(2)在图中尽量多选取几组对应点,并将它们的坐标填入下表:原来的“鱼”( , ) ( , ) ( , ) …向右平移5个单位长度后的( , ) ( , ) ( , ) …新“鱼”(3)你发现对应点的坐标之间有什么关系?如果将原来的“鱼”向左平移4个单位长度呢?请你先想一想,然后再具体做一做.二、探究归纳活动一:探求坐标系中的平移变换想一想:如果将图中的“鱼”向上平移3个单位长度,那么平移前后的两条“鱼”中,对应点的坐标之间有什么关系?如果将图中的“鱼”向下平移2个单位长度呢?做一做:(1)将图中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别加3,再将得到的点用线段依次连接起来,从而画出一条新“鱼”,这条新“鱼”与原来的“鱼”相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢?(2)将图中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别加3,所得到的新“鱼”与原来的“鱼”相比又有什么变化?如果横坐标保持不变,纵坐标分别减2呢?例题讲解议一议:在平面直角坐标系中,一个图形沿x轴方向平移a(a>0)个单位长度后的图形与原图形对应点的坐标之间有什么关系?如果图形沿y轴方向平移a(a>0)个单位长度呢?与同伴交流.归纳总结如下:1.一个图形沿x轴方向平移a(a>0)个单位长度:(x,y)向右平移a个单位(x+a,y)向左平移a个单位(x-a,y)2.一个图形沿y轴方向平移a(a>0)个单位长度:(x,y)向上平移a个单位(x,y+a)向下平移a个单位(x,y-a)三、交流反思通过一条“鱼”的平移,探究“鱼”横向或纵向平移一次的坐标变化,进一步感受平移的实质,渗透平移的三要素,即“基本图形、方向、距离”.操作性强又富有挑战性的数学活动,激发了学生学习的兴趣,对平移的基本内涵和基本性质这两个重点,学生掌握得比较好.四、检测反馈1.四边形ABCD的顶点坐标分别是A(0,3),B(-3,0),C(0,-3),D(3,0)(1)将四边形ABCD向右平移6个单位长度,得到四边形A1B1C1D1,写出四边形A1B1C1D1各顶点的坐标;(2)将四边形A1B1C1D1向上平移6个单位长度,得到四边形A2B2C2D2,写出四边形A2B2C2D2各顶点的坐标.2.(1)将第1题中的四边形A2B2C2D2各顶点的纵坐标不变,横坐标分别减4,得到四边形A3B3C3D3,它与四边形A2B2C2D2相比有什么变化?(2)将四边形A3B3C3D3各顶点的横坐标不变,纵坐标分别减4,得到四边形A4B4C4D4,它与四边形A3B3C3D3相比有什么变化?五、布置作业.课本P70 3.2习题六、板书设计七、教学反思1.注意学生活动的指导教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.2.给学生空间最后提出的一个挑战性问题,虽不能解决,让学生更加急迫地要充实新知识解决未解决的问题,从而使自己获得更大的成功,以成良性循环的学习模式.。
北师大版八年级数学下册 第三章 图形的平移与旋转 课件

探究2:在直角坐 标系中描出以下
各点:(0,0) (5,4)
(3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0) 并用线段依次连 接,看一看是什
么图案.
y
5 原图形被向右平移 2个单位 4
3
2
问1:纵坐标保 持不变,将各 坐标的横坐标 加2又会怎样?
1
0 1 2 3 4 5 6 7 8 9 10
y 6 5 4 3 2 A3 1
度,得到点A3(
-2 , 1 );
4.将点A(-2,-3)向下平移2个单位长
度,得到点A4( -2 , -5 ).
-6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6 x -1 -2 A -3 -4 A4 -5 -6
总结归纳
点的平移规律
向上平移b个单位 对应点P3(x,y+b)
解析:点A的坐标为(-3,-5),将点A向上平移4个单 位,再向左平移3个单位到点B,点B的横坐标是-3-3 =-6,纵坐标为-5+4=-1,即(-6,-1).
归纳
点的平移变换:左右移动改变点的横坐标,左减右 加;上下移动改变点的纵坐标,下减上加.
1.将点A(-3,3)向左平移5个单位长度, 得到对应点坐标是 (-8,3)
问2:纵坐标 保持不变,将 各坐标的横坐 标减2,图案 会变成什么样?
x
则坐标变化为: (0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0)
(x,y)
–4 –5
–3
(x-2,y) (-2,0) (3,4) (1,0) (3,1) (3,-1) (1,0) (2,-2) (-2,0)
2. 连接两个对应点,所 得图形即为所求平移图 形.
北师大版数学八年级下册第三章图形的平移与旋转3.1图形的平移(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了图形平移的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对图形平移的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.学会使用平移工具,解决实际问题,培养空间想象能力和创新意识。
本节课将结合教材内容,通过讲解、示范、练习等环节,使学生掌握图形的平移概念,并能运用平移性质解决实际问题。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的空间观念:通过学习图形的平移,让学生在实际操作中感受和认识平移现象,提高对空间位置关系的理解和判断能力。
此外,学生在进行实验操作时,对平移工具的使用还不够熟练。我应该在操作前给予更详细的指导,让学生在实践中更好地掌握工具的使用方法。
在小组讨论环节,我发现有的学生比较内向,不愿意主动发表意见。为了鼓励他们,我可以在课堂上创造更多的机会,让每个人都有机会表达自己的观点。同时,也可以通过设置一些简单的问题,引导他们逐步参与到讨论中来。
五、教学反思
在今天的教学中,我发现学生们对图形平移的概念和性质有了初步的理解,但在实际应用中还存在一些困惑。通过观察他们的讨论和操作,我发现几个值得注意的地方。
首先,学生在理解平移向量时,对向量的方向和大小关系把握不准。在今后的教学中,我需要更加直观地展示向量与平移的关系,例如,可以使用实际的物体进行演示,让学生更直观地感受到向量的作用。
-平移与旋转的区分:学生可能会将平移与旋转混淆,难点在于明确两者之间的区别,平移是沿直线移动,而旋转是围绕某一点或轴进行旋转。
初中八年级数学下册第三章图形的平移与旋转教案新版北师大版
初中八年级数学下册第三章图形的平移与旋转教案1 图形的平移一、教学目标1.知识与技能(1)认识平移、理解平移的基本内涵;(2)理解平移前后两个图形对应点连线平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等的性质;(3)经历对图形进行观察、分析、欣赏和动手操作、画图等过程,掌握有关画图的操作技能,学会平移作图,掌握作图的技巧.2.过程与方法(1)经历观察、分析、操作、欣赏以及抽象概括等过程;(2)经历探索图形平移的性质的过程,以及与他人合作交流的过程,进一步发展空间观念,增强审美意识.3.情感态度及价值观(1)引导学生观察生活中的图形运动变化现象,自己加以数学上的分析,进而形成正确的数学观,进一步丰富学生的数学活动经验和体验.(2)通过自己动手设计图案,把所学知识加以实践应用,体会数学的实用价值.通过同学间的合作交流,培养学生的协作能力与学习的自主性.二、教学重点、难点重点:(1)探究平移变换的基本要素,画简单图形的平移图;(2)平移图形的规律,作图的顺序.难点:(1)决定平移的两个主要因素;(2)平行线的作法及对应点的连接.三、教具准备课件.四、教学过程(一)师生活动[师]展示与平移有关的图片,借助实物演示平移,用几何画板演示两个图形的平移.[生]学生分组讨论,如何将所看到的现象用简洁的语言叙述.[师]分析平移定义,探讨“沿某一方向”的意义,其实质是沿直线运动.[生]讨论“沿某一方向”的意义.[师]展示图片,让学生讨论图中的运动各在哪种情况下是平移,图中还有哪些图形可以通过平移得到.[生]分组讨论:(1)能否通过平移得到?(2)能平移得到的其基本图形是什么?有哪些方法?(二)探究新知例1 如图1-1,将△ABE沿射线XY方向平移一定距离后得到△CDF.找出图中平行且相等的线段和全等的三角形.图1-1引导学生从“对应点所连线段”“对应线段”两个方面找平行且相等的线段.例2 如图1-2,将∠ABC沿射线XY平移至∠A/B/C/,且BC与A/B/交点为D,图中有哪些相等的角?图1-2学生分组讨论解题思路,独立解答.提出问题:(课件演示)经过平移,线段AB的端点移到了点D,你能作出线段AB平移后的图形吗?图1-3[师]引导学生归纳总结作图的方法.(如图1-3)[生]讨论并交流对多边形特征的认识.例3 如图1-4,经过平移,△ABC的顶点A移到了点D,请作出平移后的三角形.图1-4分析:因为A 与D 是对应点,而平移的对应点的连线段平行且相等所以平移方向——射线AD ,平移距离——线段AD 的长.作法:①分别过点B 、C 沿AD 方向作线段BE 、CF ,使它们与AD 平行且相等.②顺次连接D 、E 、F .则△DEF 即为所求.(如图1-5)图1-5例4 如图1-6,已知在Rt△ABC 中,∠C=90°,BC=4,AC=4,现将△ABC 沿CB 方向平移到△A’B’C’的位置.图1-6(1)若平移距离为3,求△ABC 与△A’B’C’的重叠部分的面积;(2)若平移距离为x (40≤≤x ),求△ABC 与△A’B’C’的重叠部分的面积y ,并写出y与x 的关系式.解:(1)由题意CC’=3,BB’=3,所以BC’=1,又由题意易得重叠部分是一个等腰直角三角形,所以其面积为211121=⨯⨯; (2)2)4(21x y -= 说明:这里应用了平移的定义及对应线段平行的性质.(三)延伸应用1.运用所过的轴对称及图形的平移知识设计一幅图案,或画出生活中所见到的图案.2.如图1-7,有两个村庄A 和B 被一条河隔开,现要架一座桥(桥与河岸垂直),请你设计一种方案,使由A到B的路程最短.图1-7(四)课堂小结谈谈你这节课有什么收获.(五)教学反思2图形的旋转一、教学目标(1)经历对生活中旋转现象的观察分析过程,引导学生用数学的眼光看待生活中的有关问题;(2)通过具体实例认识旋转,知道旋转的性质;(3)经历对具有旋转现象的图形的观察,操作,画图等过程,掌握好作图的基本技能. 二、教学重点、难点重点:通过具体实例认识旋转的性质.难点:探索旋转的性质,并能应用性质掌握作图技能.三、教具准备课件.四、教学过程(一)情境创设展示一些图片创设情境,让学生说说这些旋转现象有什么共同特征,还能不能再举出一些类似的例子?从学生熟悉的生活现象入手,帮助学生通过具体实例认识旋转,理解旋转的基本涵义,同时引导学生用数学的观点看待生活中的有关问题,发展学生的数学观.(二)探索活动(多媒体出示)活动一:将△ABC绕着点C旋转,记旋转后的三角形为△DEC.(如图2-1)问题1:你能说说BC旋转到了什么位置吗?AC旋转到了什么位置?问题2:点A与哪个点对应?点B与哪个点对应呢?问题3:旋转前与旋转后的两个三角形,什么发生了改变?又有哪些没有改变?学生小组内交流、讨论,教师巡视、指导.C BECO图2-1 图2-2(多媒体出示)活动二:将△ABC绕着点O旋转,记旋转后有的三角形为△DEF.(如图2-2)问题1:你知道点A旋转到了哪个点的位置吗?点B呢?点C呢?问题2:旋转前与旋转后的两个三角形,什么发生了改变?又有哪些没有改变?问题3:根据这两个活动,你知道什么叫做旋转吗?问题4:观察边AC的旋转痕迹,你能求出边AC旋转了多少度吗?BC呢?A点旋转到D点,转了多少度?B点转到E点,又转了多少度?问题5:如果继续旋转,你发现了什么?教师多媒体演示旋转,让学生仔细观察.师生共同探究.问题1:观察点C的旋转痕迹,你能测量出C点旋转了多少度吗?点A旋转了多度?点B 呢?问题2:如果取AC的中点M,那么点M会旋转到什么位置?你能画出来吗?那点M旋转了多少度?再继续旋转,你发现了什么?问题3:观察点C的旋转痕迹,你能说说点C是如何运动的吗?根据这个运动特点,你能说说点C与对应点F有什么关系吗?点A与点D,点B与点E是否也具有这种关系?讨论:你能说说旋转前与旋转后的两个之间有哪些会改变?又有哪些无论你怎么旋转,也不会改变?(三)新授通过以上探究活动,得出定义:在平面内,将一个图形绕着一个定点旋转一定的角度,这样的图形运动就叫做图形的旋转.这个定点就叫旋转中心,旋转的角度就叫旋转角.图形的旋转不改变图形大小与形状.性质:旋转前,旋转后的两个图形全等.对应点到旋转中心的距离相等.每一对对应点与旋转中心的连线所成的角彼此相等.思考:已知图形的旋转,如何测量出旋转角呢?(四)巩固练习1.如图2-3,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转一定的角度得到的.请指出图中的哪一点是旋转中心?测量旋转的角度.( A′ )D′C′图2-32.(1)如图2-4,画出将△ABC绕点A按逆时针方向旋转90°后的对应三角形.CAB图2-4(2)如果点D是AC的中点,那么经过上述旋转后,点D旋转到什么位置?请在所画图中将点D的对应点D′表示出来.3.如图2-5,在正方形ABCD中,E是BC上一点,将△AB E旋转后得到△A DF.FDBG图2-5(1)旋转中心是哪一点?旋转了多少度?说说你是怎么测量的.(2)如果G点是AB上的一点,点G应旋转到什么时候位置?请在图中将点G的对应点G′表示出来.(五)操作训练已知A点与点O,画出点A绕着点O旋转30°后的点A′.拓展一:已知线段AB与点O,画出将线段AB绕着点O按逆时针方向旋转80°后得到的图形.拓展二:已知△ABC和点O,画出将△ABC绕着点O按逆时针方向旋转80°后得到的图形. 拓展三:若改成多边形呢?你能总结出旋转作图的方法吗?4.思考:如图2-6,△ABC绕着点O旋转后,点A到达点D的位置,你能画出旋转后的三角形吗?D图2-6(六)课堂小结通过本节课的学习,你知道什么是旋转了吗?你认为旋转有哪些性质?,你能作出符合某一条件旋转后的图形吗?3 中心对称一、教学目标1.知识与技能(1)通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成;(2)掌握成中心对称的两个图形的性质,以及利用两种不同方式来作出中心对称的图形.2.过程与方法利用中心对称的特征作出某一图形成中心对称的图形,确定对称中心的位置.3.情感态度及价值观经历对日常生活中与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识.二、教学重点、难点重点:中心对称的性质及初步应用.难点:中心对称与旋转之间的关系.三、教具准备课件.四、教学过程(一)创设情境,导入新课导语一:在前一节中我们学习了图形的旋转,那么旋转后的图形有哪些性质?(旋转前后图形全等,对应点到旋转中心的距离相等,旋转角均相等.)导语二:观察图3-1中三个图形旋转的角度,发现哪个图形与其他两个不同?(1)(2)(3)图3-1(二)合作交流,解读探究1.解读信息,引出课题:教师指出在生活中有许许多多的图形都具有以上特征,在各个领域中都有广泛的应用.它都能给人以一种美的享受.本节我们就来研究这些图形的形成——中心对称.探究:如图3-2,旋转三角板,画关于点O对称的两个三角形;第一步,画出△ABC;第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A'B'C';第三步,移开三角板.这样画出的△ABC与△A'B'C',关于点O对称.分别连接对应点AA'、BB'、CC'.点O在线段AA'上吗?如果在,在什么位置?△ABC与△A'B'C'有什么关系?图3-2我们可以发现:(1)点O是线段AA’的中点;(2)△ABC≌△A'B'C'.上述发现的证明如下.(1)点A'是由点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA',所以点O在线段A A'上,且OA=O A',即点O是线段AA'的中点.(2)在△AOB与△A'OB'中,OA=OA',OB=OB',∠AOB=∠A'OB',∴△AOB≌△A'OB'.∴AB=A'B'.同理BC=B'C',AC=A'C'.∴△ABC≌△A'B'C'.2.[探索]图3-3中△A'B'C'与△ABC关于点O是成中心对称的,你能从图中找到那些等量关系?(多媒体出示图形)图3-3师生共同探索.结论:(1)关于中心对称的两个图形中,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.议一议:中心对称与轴对称有什么区别?又有什么联系?3.画已知图形关于已知点的中心对称图形.试一试:点与点对称的作法.已知点A和点O,试作出点A关于点O的对称点.生1:利用中心对称的定义,把OA绕点O旋转180°便可得到.师:要确定对称点A'的位置,关键是点A'满足的性质,然后利用它的性质来确定.生2:延长AO到A',使OA'=OA,则点A'就是所要作的点.师:为什么?生:利用中心对称的性质.思考:比较以上两种方法,你打算今后在作图中使用哪种方法?(第二种简洁,易于作图)做一做:如图3-4,已知线段AB和点O,画线段A'B',使它与线段AB关于点O成中心对称.图3-4构思:关键是作出A,B两点关于点O的对称点A',B'.实践:(1)连接AO,并延长AO到A',使得A'O=OA;(2)连接BO,并延长BO到B',使得B'O=OB;(3)连接A'B'.则线段A'B'就是线段AB关于点O的对称线段.想一想:回顾以上作图过程,总结作中心对称的图形的一般步骤是什么?(1)确定“代表性的点”;(2)作出每个代表性的点的对称点;(3)顺次连接.做一做:如图3-5,选择点O为对称中心,画出与△ABC关于点O对称的△A'B'C'.图3-5解:如图3-6,作出点A,点B,点C关于点O的对称点A',B',C',依次连接A'B',B'C',C'A',就可以得到与△ABC关于点O对称的△A'B'C'.图3-6练习:如图3-7,已知四边形ABCD和点O,画四边形A'B'C'D',使它与已知四边形关于这一点对称.图3-7(三)应用迁移,巩固提高1.如图3-8,已知△ABC与△A'B'C'中心对称,求出它们的对称中心O.图3-8(四)课堂小结1.中心对称,中心对称图形的概念.2.成中心对称的图形的性质.(五)教学反思4简单的图案设计一、教学目标1.知识与技能(1)了解图案最常见的构图方式:轴对称、平移、旋转……理解简单图案设计的意图;(2)认识和欣赏平移、旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案.2.过程与方法经历对生活中的典型图案进行观察、分析、欣赏等过程,进一步发展空间观念、增强审美意识.3.情感态度及价值观(1)经历对生活中的典型图案进行观察、分析、欣赏等过程,进一步发展空间观念、增强审美意识;(2)通过学生之间的交流、讨论、培养学生的合作精神.二、教学重点、难点重点:灵活运用平移、旋转与轴对称的组合进行简单的图案设计.难点:灵活运用平移、旋转与轴对称的组合进行简单的图案设计.三、教具准备课件.四、教学过程(一)复习旧知,引入新课活动内容:复习全等变换中所学的图案设计方法.提问:1.我们已经具备了简单图案设计的基本知识与技能:用最基本的几何元素——点、线设计与制作图案;用最简单的几何图形——三角形、矩形设计、制作图案;割补、无缝隙拼接.2.图4-1的图案是怎样设计出来的?(1)(2)(3)图4-1活动目的:在学生熟悉的问题中,复习简单图案设计的基本知识与技能;创设问题情境,激发兴趣,调动学生的学习积极性,让学生充分感知轴对称、平移、旋转变换实际上就是所学过的全等变换,培养学生善于观察、善于总结、乐于探索研究的学习品质.(二)探索新知各小组充分讨论教材所示图案的形成过程.在生活中,我们经常见到一些美丽的图案:你能用平移、旋转或轴对称分析如图4-2中各个图案的形成过程吗?你是怎样分析的?与同伴交流.(1)(2)(4)(5)(6)图4-2对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向.其中图(1)(2)(3)(4)(5)(6)都可以看作是由“基本图案”通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)(3)(5)也可以看作是由“基本图案”通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),图(2)还可以看作是由“基本图案”通过平移形成.通过对漂亮图案的欣赏、分析,使学生逐步领略图案设计的奇妙,逐步掌握一些简单的图案设计技能.通过学生的讨论交流,让学生自己探索出图形变化的过程,为后面分析较复杂图案所运用的几何变换的规律和特征奠定了基础.在教学中,只要学生分析的合情合理即可. (三)合作交流,解决问题1.欣赏图4-3中的图案,分析这个图案形成的过程,仿照图中的某个标志设计一个图案,与同伴交流,并简述你的设计意图.图4-3例 1 欣赏图4-4 的图案,并分析这个图案形的过程.提问:(1)基本图案是什么?有几个?(2)分析同色“爬虫”、异色“爬虫”之间的关系.图4-4教师引导学生发现:这个图案是由三个“基本图案”组成的,它们分别是三种不同颜色的“爬虫”(绿、白、黑),形状、大小完全相同.在图中,同色的“爬虫”之间是平移关系,所有同色的“爬虫”可以通过其中一只经过平移而得到;相邻的不同色的“爬虫”之间可以通过旋转而得到,其中,旋转角度为120°,旋转中心为“爬虫”头上、腿上或脚趾上一点.(四)练习与提高1.图4-5是由12个全等三角形组成的,利用平移、轴对称或旋转分析这个图案的形成过程.图4-5这个图形可以按照以下步骤形成的.(1)以一个三角形的一条边为对称轴作与它对称的图形.(2)将得到的这组图形以一条边的中点为旋转中心旋转180 °.(3)分别以图4-6这两组图形为平移的“基本图案”,各平移两次,即可得到最终的图形.图4-62.欣赏:(五)课堂小结鼓励学生结合本节课的学习,谈自己的收获与感想(学生畅所欲言,教师给予鼓励).(六)教学反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
平移的定义及性质
一、教材的地位和作用
图形的变换是空间与图形领域中一块重要的内容。通过图形的变换是图形动起来,有助于在
运动的过程中发现图形的不变性。因此,图形的变换是研究几何问题,发现结论的有效工具。
而今天,我要说的平移是北师版八年级下册第三章第1节<<图形的平移》。一方面是考虑将
其作为平行线的一个应用,另一面是考虑引入平移变换,可以尽早渗透图形的变换思想,使学
生尽早尝试利用平移知识分析和解决问题。而本章主要讨论的是平移变换的基本性质,要求
学生对平移有一个初步的认识,因为将为第六章实数中,在实数范围内进一步研究用坐标表
示平移,第十九章四边形中将对平移的性质作理论指导。在第二十三章旋转中,将综合运用平
移轴对称、旋转的变换进行图案设计。所以,本节课是本套教材引进的第一个图形变换。起
作用是不言而喻的,
二、教学目标
1知识目标
了解平移的特征,能发现特殊图形的共同点。
能发现、归纳图形平移的特征。
2能力目标
让学生经历观察、操作、探究、归纳等过程,总结平移的基本特征,进一步发展学生的抽象概
括能力。
3情感目标
让学生经历操作、实验、发现归纳等数学活动,感受数学活动的探索性和创造性。激发学生
的探究人情,感受数学的美。
三、教学重点、难点
重点 平移的特征
难点 探究平移的特征,并能用语言完善的表达出来
。四教法与学法
本节课采用的是开放式和探究式的教学方法,让学生通过探究,了解平移的特征,建构平移的
概念,并采用多媒体辅助教学,演示平移变换的过程,激发学生的积极形,通过展示图片,体现
数学的美的存在。
五教学过程性
创设情景,引入新课
展示一组图形的运动的科见,请同学们观察思考交流回答为题