浙江省衢州市中考数学真题及答案E
2020年衢州市中考数学试卷及答案(word解析版)

浙江省衢州市2020年中考数学试卷项,不选、多选、错选均不给分.)1.(3分)(2020•衢州)比1小2的数是()A.3B.1C.﹣1 D.﹣2考点:有理数的减法.分析:根据有理数的减法运算法则进行计算即可得解.解答:解:1﹣2=﹣1.故选C.点评:本题考查了有理数的减法,是基础题.2.(3分)(2020•衢州)下列计算正确的是()A.3a+2b=5ab B.a﹣a4=a4C.a6÷a2=a3D.(﹣a3b)2=a6b2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:根据同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;合并同类项,只把系数相加减,字母与字母的次数不变,对各选项分析判断后利用排除法求解.解答:解:A、3a+2b=5ab无法合并,故本选项错误;B、a﹣a4=a4,无法合并,故本选项错误;C、a6÷a2=a4,故本选项错误;D、(﹣a3b)2=a6b2,故本选项正确.故选:D.点评:本题考查了合并同类项,同底数幂的除法,幂的乘方的性质,熟练掌握运算性质是解题的关键.3.(3分)(2020•衢州)衢州新闻网2月16日讯,2020年春节“黄金周”全市接待游客总数为833100人次.将数833100用科学记数法表示应为()A.0.833×106B.83.31×105C.8.331×105D.8.331×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:833100=8.331×105,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2020•衢州)下面简单几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到简单几何体从左面看所得到的图形即可.解答:解:从左面看可得到左右两列正方形个数分别为:2,1.故选A.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.(3分)(2020•衢州)若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而增大,则m的取值范围是()A.m<﹣2 B.m<0 C.m>﹣2 D.m>0考点:反比例函数的性质.分析:根据反比例函数的性质可得m+2<0,再解不等式公式即可.解答:解:∵函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而增大,∴m+2<0,解得:m<﹣2,故选:A.点评:本题考查了反比例函数的性质.对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.6.(3分)(2020•衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cm B.6cm C.cm D.cm考点:含30度角的直角三角形;等腰直角三角形.分析:过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角直角边,再由等腰直角三角形求出最大边.解答:解:过点C作CD⊥AD,∴CD=3,在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×3=6,又三角板是有45°角的三角板,∴AB=AC=6,∴BC2=AB2+AC2=62+62=72,∴BC=6,故选:D.点评:此题考查的知识点是含30°角的直角三角形及等腰直角三角形问题,关键是先由求得直角边,再由勾股定理求出最大边.7.(3分)(2020•衢州)一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).组员日期甲乙丙丁戊方差平均成绩得分81 79 ■80 82 ■80那么被遮盖的两个数据依次是()A.80,2 B.80,C.78,2 D.78,考点:方差;算术平均数.分析:根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.解答:解:根据题意得:80×5﹣(81+79+80+82)=78,方差= [(81﹣80)2+(79﹣80)2+(78﹣80)2+(80﹣80)2+(82﹣80)2]=2.故选C.点评:本题考查了平均数与方差,掌握平均数和方差的计算公式是解题的关键,一般地设n 个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8.(3分)(2020•衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为()(结果精确到0.1m,≈1.73).A.3.5m B.3.6m C.4.3m D.5.1m考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:设CD=x,在Rt△ACD中求出AD,在Rt△CED中求出ED,再由AE=4m,可求出x 的值,再由树高=CD+FD即可得出答案.解答:解:设CD=x,在Rt△ACD中,CD=x,∠CAD=30°,则AD=x,在Rt△CED中,CD=x,∠CED=60°,则ED=x,由题意得,AD﹣ED=x﹣x=4,解得:x=2,则这棵树的高度=2+1.6≈5.1m.故选D.点评:本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,利用三角函数的知识表示出相关线段的长度.9.(3分)(2020•衢州)抛物线y=x2+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x﹣1)2﹣4,则b、c的值为()A.b=2,c=﹣6 B.b=2,c=0 C.b=﹣6,c=8 D.b=﹣6,c=2考点:二次函数图象与几何变换.分析:先确定出平移后的抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出平移前的抛物线的顶点坐标,然后写出平移前的抛物线的顶点式形式,然后整理成一般形式,即可得到b、c的值.解答:解:函数y=(x﹣1)2﹣4的顶点坐标为(1,﹣4),∵是向右平移2个单位,再向下平移3个单位得到,∴1﹣2=﹣1,﹣4+3=﹣1,∴平移前的抛物线的顶点坐标为(﹣1,﹣1),∴平移前的抛物线为y=(x+1)2﹣1,即y=x2+2x,∴b=2,c=0.故选B.点评:本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减,利用顶点的变化确定函数解析式可以使计算更加简便.10.(3分)(2020•衢州)如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.考点:动点问题的函数图象.分析:根据动点从点A出发,首先向点D运动,此时y不随x的增加而增大,当点p在DC 山运动时,y随着x的增大而增大,当点p在CB上运动时,y不变,据此作出选择即可.解答:解:当点P由点A向点D运动时,y的值为0;当点p在DC上运动时,y随着x的增大而增大;当点p在CB上运动时,y不变;当点P在BA上运动时,y随x的增大而减小.故选B.点评:本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.二、填空题(本大题共有6小题,每小题4分,共24分.)11.(4分)(2020•衢州)不等式组的解集是x≥2.考点:解一元一次不等式组.专题:计算题.分析:分别计算出每个不等式的解集,再求其公共部分.解答:解:,由①得,x≥2;由②得,x≥﹣;则不等式组的解集为x≥2.故答案为x ≥2. 点评: 本题考查了解一元一次不等式组,找到公共解是解题的关键,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.(4分)(2020•衢州)化简:=.考点:分式的加减法. 专题:计算题. 分析: 先将x 2﹣4分解为(x+2)(x ﹣2),然后通分,再进行计算. 解答:解:===.点评: 本题考查了分式的计算和化简.解决这类题关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分. 13.(4分)(2020•衢州)小芳同学有两根长度为4cm 、10cm 的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是 .考点: 概率公式;三角形三边关系. 分析: 由桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的有:10cm ,12cm 长的木棒,直接利用概率公式求解即可求得答案. 解答: 解:∵小芳同学有两根长度为4cm 、10cm 的木棒,∴桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的有:10cm ,12cm 长的木棒,∴从中任选一根,能钉成三角形相框的概率是:. 故答案为:. 点评: 此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比. 14.(4分)(2020•衢州)如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧()对应的圆心角(∠AOB )为120°,OC 的长为2cm ,则三角板和量角器重叠部分的面积为+2.考点:扇形面积的计算.专题:数形结合.分析:在Rt△OBC中求出OB、BC,然后求出扇形OAB及△OBC的面积即可得出答案.解答:解:∵∠AOB=120°,∴∠BOC=60°,在Rt△OBC中,OC=2cm,∠BOC=60°,∴∠OBC=30°,∴OB=4cm,BC=2cm,则S扇形OAB==,S△OBC=OC×BC=2,故S重叠=S扇形OAB+S△OBC=+2.故答案为:+2.点评:本题考查了扇形的面积计算,解答本题关键是求出扇形的半径,注意熟练掌握扇形的面积公式,难度一般.15.(4分)(2020•衢州)某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种10棵橘子树,橘子总个数最多.考点:二次函数的应用.分析:根据题意设多种x棵树,就可求出每棵树的产量,然后求出总产量y与x之间的关系式,进而求出x=﹣时,y最大.解答:解:假设果园增种x棵橙子树,那么果园共有(x+100)棵橙子树,∵每多种一棵树,平均每棵树就会少结5个橙子,∴这时平均每棵树就会少结5x个橙子,则平均每棵树结(600﹣5x)个橙子.∵果园橙子的总产量为y,∴则y=(x+100)(600﹣5x)=﹣5x2+100x+60000,∴当x=﹣=﹣=10(棵)时,橘子总个数最多.故答案为:10.点评:此题主要考查了二次函数的应用,准确分析题意,列出y与x之间的二次函数关系式是解题关键.16.(4分)(2020•衢州)如图,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD 各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是20;四边形A2020B2020C2020D2020的周长是.考点:中点四边形;菱形的性质.专题:规律型.分析:根据菱形的性质以及三角形中位线的性质以及勾股定理求出四边形各边长得出规律求出即可.解答:解:∵菱形ABCD中,边长为10,∠A=60°,顺次连结菱形ABCD各边中点,∴△AA1D1是等边三角形,四边形A2B2C2D2是菱形,∴A1D1=5,C1D1=AC=5,A2B2=C2D2=C2B2=A2D2=5,∴四边形A2B2C2D2的周长是:5×4=20,同理可得出:A3D3=5×,C3D3=AC=×5,A5D5=5×()2,C5D5=AC=()2×5,…∴四边形A2020B2020C2020D2020的周长是:=.故答案为:20,.点评:此题主要考查了菱形的性质以及矩形的性质和中点四边形的性质等知识,根据已知得出边长变化规律是解题关键.三、简答题(本大题共有8小题,共66分.务必写出解答过程.)17.(6分)(2020•衢州)﹣23÷|﹣2|×(﹣7+5)考点:实数的运算.专题:计算题.分析:先进行开方和乘方运算得到原式=2﹣8÷2×(﹣2),再进行乘除运算,然后进行加法运算.解答:解:原式=2﹣8÷2×(﹣2)=2+8=10.点评:本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.18.(6分)(2020•衢州)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.考点:一元二次方程的应用.专题:几何图形问题.分析:(1)边长为x的正方形面积为x2,矩形面积减去4个小正方形的面积即可.(2)依据剪去部分的面积等于剩余部分的面积,列方程求出x的值即可.解答:解:(1)ab﹣4x2;(2分)(2)依题意有:ab﹣4x2=4x2,(4分)将a=6,b=4,代入上式,得x2=3,(6分)解得x1=,x2=﹣(舍去).(7分)即正方形的边长为点评:本题是利用方程解答几何问题,充分体现了方程的应用性.依据等量关系“剪去部分的面积等于剩余部分的面积”,建立方程求解.19.(6分)(2020•衢州)如图,函数y1=﹣x+4的图象与函数y2=(x>0)的图象交于A(a,1)、B(1,b)两点.(1)求函数y2的表达式;(2)观察图象,比较当x>0时,y1与y2的大小.考点:反比例函数与一次函数的交点问题.分析:(1)由函数y1=﹣x+4的图象与函数y2=(x>0)的图象交于A(a,1)、B(1,b)两点,把A代入函数y1=﹣x+4,可求得A的坐标,继而求得函数y2的表达式;(2)观察图象可得即可求得:当x>0时,y1与y2的大小.解答:解:(1)把点A坐标代入y1=﹣x+4,得﹣a+4=1,解得:a=3,…(1分)∴A(3,1),把点A坐标代入y2=,∴k2=3,∴函数y2的表达式为:y2=;…(3分)(2)∴由图象可知,当0<x<1或x>3时,y1<y2,…(4分)当x=1或x=3时,y1=y2,…(5分)当1<x<3时,y1=y2.…(6分)点评:此题考查了一次函数与反比例函数的交点问题.此题难度适中,注意掌握方程思想与数形结合思想的应用.20.(8分)(2020•衢州)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,求AD:OC的值.考点:切线的判定;全等三角形的判定与性质;相似三角形的判定与性质.分析:(1)首选连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易证得△EDA∽△ECO,然后由相似三角形的对应边成比例,求得AD:OC的值.解答:(1)证明:连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.…(1分)又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.…(2分)在△COD和△COB中,,∴△COD≌△COB(SAS)…(3分)∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线.…(4分)(2)解:∵△COD≌△COB.∴CD=CB.…(5分)∵DE=2BC,∴ED=2CD.…(6分)∵AD∥OC,∴△EDA∽△ECO.…(7分)∴.…(8分)点评:此题考查了切线的判定、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.21.(8分)(2020•衢州)据《2012年衢州市国民经济和社会发展统计公报》(2020年2月5日发布),衢州市固定资产投资的相关数据统计图如下:根据以上信息,解答下列问题:(1)求2012年的固定资产投资增长速度(年增长速度即年增长率);(2)求2005﹣2012年固定资产投资增长速度这组数据的中位数;(3)求2006年的固定资产投资金额,并补全条形图;(4)如果按照2012年的增长速度,请预测2020年衢州市的固定资产投资金额可达到多少亿元(精确到1亿元)?考点:折线统计图;条形统计图;中位数.分析:(1)根据2012年和2011年投资进而求出增长率即可;(2)根据中位数的定义,按大小排列后找出最中间的两个求出平均数即可;(3)设2006年的固定资产投资金额为x亿元,进而得出280﹣x=12%x求出即可;(4)根据2012年的增长率,得出565×(1+13%)求出即可.解答:解:(1)根据题意得出:×100%=13%;答:2012年的固定资产投资增长速度为13%;(2)数据按大小排列得出:10.71%,12%,13%,13.16%,16.28%,18.23%,22.58,25%,∴中位数为:=14.72%;答:2005﹣2012年固定资产投资增长速度这组数据的中位数是14.72%;(3)设2006年的固定资产投资金额为x亿元,则有:280﹣x=12%x(或x﹣200=25%×200),解得:x=250,答:2006年的投资额是250亿元;如图所示;(4)565×(1+13%)=638.45≈638(亿元),答:预测2020年可达638亿元.点评:此题主要考查了折线图与条形图以及增长率和中位数的定义等知识,根据已知得出增长率求法是解题关键.22.(10分)(2020•衢州)【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC 与∠ACN的数量关系,并说明理由.考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.分析:(1)利用SAS可证明△BAM≌△CAN,继而得出结论;(2)也可以通过证明△BAM≌△CAN,得出结论,和(1)的思路完全一样.(3)首先得出∠BAC=∠MAN,从而判定△ABC∽△AMN,得到=,根据∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,得到∠BAM=∠CAN,从而判定△BAM∽△CAN,得出结论.解答:(1)证明:∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM和△CAN中,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN.(2)解:结论∠ABC=∠ACN仍成立.理由如下:∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM和△CAN中,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN.(3)解:∠ABC=∠ACN.理由如下:∵BA=BC,MA=MN,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴△ABC∽△AMN,∴=,又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,∴∠ABC=∠ACN.点评:本题考查了相似三角形的判定与性质、全等三角形的判定与性质,解答本题的关键是仔细观察图形,找到全等(相似)的条件,利用全等(相似)的性质证明结论.23.(10分)(2020•衢州)“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.(1)求a的值.(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?考点:一次函数的应用.分析:(1)根据原有的人数﹣a分钟检票额人数+a分钟增加的人数=520建立方程求出其解就可以;(2)设当10≤x≤30时,y与x之间的函数关系式为y=kx+b,由待定系数法求出函数的解析式,再将x=20代入解析式就可以求出结论;(3)设需同时开放n个检票口,根据原来的人数+15分进站人数≥n个检票口15分钟检票人数建立不等式,求出其解即可.解答:解:(1)由图象知,640+16a﹣2×14a=520,∴a=10;(2)设当10≤x≤30时,y与x之间的函数关系式为y=kx+b,由题意,得,解得:,y=﹣26x+780,当x=2时,y=260,即检票到第20分钟时,候车室排队等候检票的旅客有260人.(3)设需同时开放n个检票口,则由题意知14n×15≥640+16×15解得:n≥4,∵n为整数,∴n=5.答:至少需要同时开放5个检票口.点评:本题考查了待定系数法求一次函数的解析式的运用,一元一次不等式的运用,解答的过程中求出函数的解析式是关键,建立一元一次不等式是重点.24.(12分)(2020•衢州)在平面直角坐标系x、y中,过原点O及点A(0,2)、C(6,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动.设移动时间为t秒.(1)当点P移动到点D时,求出此时t的值;(2)当t为何值时,△PQB为直角三角形;(3)已知过O、P、Q三点的抛物线解析式为y=﹣(x﹣t)2+t(t>0).问是否存在某一时刻t,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)首先根据矩形的性质求出DO的长,进而得出t的值;(2)要使△PQB为直角三角形,显然只有∠PQB=90°或∠PBQ=90°,进而利用勾股定理分别分析得出PB2=(6﹣t)2+(2﹣t)2,QB2=(6﹣2t)2+22,PQ2=(2t﹣t)2+t2=2t2,再分别就∠PQB=90°和∠PBQ=90°讨论,求出符合题意的t值即可;(3)存在这样的t值,若将△PQB绕某点旋转180°,三个对应顶点恰好都落在抛物线上,则旋转中心为PQ中点,此时四边形PBQB′为平行四边形,根据平行四边形的性质和对称性可求出t的值.解答:解:(1)∵四边形OABC是矩形,∴∠AOC=∠OAB=90°,∵OD平分∠AOC,∴∠AOD=∠DOQ=45°,∴在Rt△AOD中,∠ADO=45°,∴AO=AD=2,OD=2,∴t==2;(2)要使△PQB为直角三角形,显然只有∠PQB=90°或∠PBQ=90°.如图1,作PG⊥OC于点G,在Rt△POG中,∵∠POQ=45°,∴∠OPG=45°,∵OP=t,∴OG=PG=t,∴点P(t,t)又∵Q(2t,0),B(6,2),根据勾股定理可得:PB2=(6﹣t)2+(2﹣t)2,QB2=(6﹣2t)2+22,PQ2=(2t﹣t)2+t2=2t2,①若∠PQB=90°,则有PQ2+BQ2=PB2,即:2t2+[(6﹣2t)2+22]=(6﹣t)2+(2﹣t)2,整理得:4t2﹣8t=0,精品试卷解得:t1=0(舍去),t2=2,∴t=2,②若∠PBQ=90°,则有PB2+QB2=PQ2,∴[(6﹣t)2+(2﹣t)2]+[(6﹣2t)2+22]=2t2,整理得:t2﹣10t+20=0,解得:t=5±.∴当t=2或t=5+或t=5﹣时,△PQB为直角三角形.解法2:①如图2,当∠PQB=90°时,易知∠OPQ=90°,∴BQ∥OD∴∠BQC=∠POQ=45°可得QC=BC=2,∴OQ=4,∴2t=4,∴t=2,②如图3,当∠PBQ=90°时,若点Q在OC上,作PN⊥x轴于点N,交AB于点M,则易证∠PBM=∠CBQ,∴△PMB∽△QCB∴=,∴CB•PM=QC•MB,∴2(t﹣2)=(2t﹣6)(t﹣6),化简得t2﹣10t+20=0,解得:t=5±,∴t=5﹣;③如图3,当∠PBQ=90°时,若点Q在OC的延长线上,作PN⊥x轴于点N,交AB延长线于点M,则易证∠BPM=∠MBQ=∠BQC,∴△PMB∽△QCB,∴=,∴CB•PM=QC•MB,∴2(t﹣2)=(2t﹣6)(t﹣6),化简得t2﹣10t+20=0,解得:t=5±,∴t=5+;(3)存在这样的t值,理由如下:将△PQB绕某点旋转180°,三个对应顶点恰好都落在抛物线上,则旋转中心为PQ中点,此时四边形PBQB′为平行四边形.∵PO=PQ,由P(t,t),Q(2t,0),知旋转中心坐标可表示为(t,t),∵点B坐标为(6,2),∴点B′的坐标为(3t﹣6,t﹣2),代入y=﹣(x﹣t)2+t,得:2t2﹣13t+18=0,解得:t1=,t2=2.精品试卷点评:本题考查了相似形综合题,涉及了动点问题,勾股定理的运用,矩形的性质,直角三角形的性质以及平行四边形的判定和性质,解答本题关键是讨论点P的位置,由题意建立方程从而求出符合题意的t值,同时要数形结合进行思考,难度较大.友情提示:一、认真对待每一次考试。
浙江省衢州市2021年中考数学试卷试题真题(Word版,含答案解析)

浙江省衢州市2021年中考数学试卷一、单选题(共10题;共30分)1.21的相反数是( )A. 21B. -21C. - 121D. 121 【答案】 B 【考点】相反数及有理数的相反数【解析】【解答】21的相反数是-21,故答案为:B.【分析】只有符号不同的两个数才是互为相反数,根据定义解答即可.2.如图是由四个相同的小正方体搭成的立体图形,它的主视图是( )A.B. C. D.【答案】 B 【考点】简单几何体的三视图【解析】【解答】从正面看可以看到有3列小正方形,从左至右小正方体的数目分别为1、2、1, 所以主视图为:,故答案为:B .【分析】观察几何体,从正面看可以看到有3列小正方形,从左至右小正方体的数目分别为1、2、1,即可得出答案。
3.2021年5月国家统计局公布了第七次人口普查结果,我国人口数约为1412000000,其中数据1412000000用科学记数法表示为( )A. 14.12×108B. 0.1412×1010C. 1.412×109D. 1.412×108【答案】 C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解: 1412000000=1.412×109 .故答案为:C.【分析】用科学记数法表示绝对值较大的数,一般表示为a×10n 的形式,其中1≤|a|<10, n 等于原数的整数位数-1.4.下列计算正确的是( )A. (x 2)3=x 5B. x 2+x 2=x 4C. x 2⋅x 3=x 5D. x 6÷x 3=x 2【答案】 C【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,积的乘方【解析】【解答】解:A 、 (x 2)3=x 6 ,故此选项错误;B 、 x 2+x 2=2x 2 ,故此选项错误;C 、 x 2⋅x 3=x 5 ,故此选项正确;D 、 x 6÷x 3=x 3 ,故此选项错误;故答案为:C.【分析】根据幂的乘方底数不变,指数相乘判断A ;根据合并同类项的法则判断B ;根据同底数幂的乘法法则计算判断C ;根据同底数幂的除法法则计算判断D.5.一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸出1个球,摸到白球的概率是( )A. 13B. 23C. 15D. 25【答案】 D【考点】概率公式,简单事件概率的计算【解析】【解答】解:∵布袋里放有3个红球和2个白球,它们除颜色外其余都相同,∴抽到每个球的可能性形同,∵共有5个小球,其中2个白球,∴布袋中任意摸出1个球,摸到白球的概率是 25 ,故答案为:D.【分析】由已知条件可知一共有5种结果数,布袋中任意摸出1个球,摸到白球的有2种情况,然后利用概率公式可求解.6.已知扇形的半径为6,圆心角为 150° .则它的面积是( ) A. 32π B. 3π C. 5π D. 15π【答案】 D【考点】扇形面积的计算【解析】【解答】解: S =150π×62360=15π .故答案为:D【分析】利用扇形的面积公式直接进行计算,可求出结果.7.如图,在 △ABC 中, AB =4 , AC =5 , BC =6 ,点D ,E ,F 分别是AB ,BC ,CA 的中点,连结DE ,EF ,则四边形ADEF 的周长为( )A. 6B. 9C. 12D. 15【答案】B【考点】平行四边形的判定与性质,三角形的中位线定理【解析】【解答】∵AB=4,AC=5,BC=6,点D,E,F分别是AB,BC,CA的中点,∴AD= 12AB=2,AF= 12AC=52,DE、EF为△ABC的中位线,∴EF= 12AB=2,DE== 12AC=52,∴四边形ADEF的周长=2+2+ 52+52=9,故答案为:B.【分析】利用三角形的中位线平行于第三边且等于第三边的一半可求出EF,DE的长,同时可证得四边形ADEF是平行四边形,即可求出四边形ADEF的周长.8.《九章算术》是中国传统数学的重要著作,书中有一道题“今有五雀六燕,集称之衡,雀俱重,燕俱轻;一雀一燕交而处,衡适平;并燕雀重一斤.问:燕雀一枚,各重几何?”译文:”五只雀、六只燕,共重1斤(占时1斤=16两).雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕重量各为多少?”设雀重x 两,燕重y两,可列出方程组()A. {5x+6y=164x+y=5y+x B. {5x+6y=104x+y=5y+xC. {5x+6y=105x+y=6y+x D. {5x+6y=165x+y=6y+x 【答案】A【考点】二元一次方程组的应用-和差倍分问题【解析】【解答】解:依题意,得:{5x+6y=164x+y=5y+x故答案为:A.【分析】抓住关键已知条件:五只雀、六只燕,共重1斤雀重燕轻,互换其中一只,恰好一样重,这里包含了两个等量关系,据此列方程组即可.9.如图.将菱形ABCD绕点A逆时针旋转∠α得到菱形AB′C′D′,∠B=∠β.当AC平分∠B′AC′时,∠α与∠β满足的数量关系是()A. ∠α=2∠βB. 2∠α=3∠βC. 4∠α+∠β=180°D. 3∠α+2∠β=180°【答案】C【考点】等腰三角形的性质,菱形的性质,旋转的性质【解析】【解答】∵四边形ABCD是菱形,∠B=∠β,∴AB=BC,∴∠BAC=∠BCA= 12(180°−∠B)= 12(180°−∠β),∵将菱形ABCD绕点A逆时针旋转∠α得到菱形AB′C′D′,∴∠CAC′=∠BAB′= ∠α,∵AC平分∠B′AC′,∴∠B′AC=∠CAC= ∠α,∴∠BAC=∠B′AC+∠BAB′=2 ∠α= 12(180°−∠β),∴4∠α+∠β=180°,故答案为:C.【分析】利用菱形的性质可证得AB=BC,利用等腰三角形的性质及三角形的内角和定理,可表示出∠BAC 和∠BCA;再利用旋转的性质可证得∠CAC′=∠BAB′= ∠α,利用角平分线的定义可得到∠B′AC=∠CAC= ∠α;然后根据∠BAC=∠B′AC+∠BAB′,代入计算,可得答案.10.已知A,B两地相距60km,甲、乙两人沿同一条公路从A地出发到B地,甲骑自行车匀速行驶3h到达,乙骑摩托车.比甲迟1h出发,行至30km处追上甲,停留半小时后继续以原速行驶.他们离开A地的路程y与甲行驶时间x的函数图象如图所示.当乙再次追上甲时距离B地()A. 15kmB. 16kmC. 44kmD. 45km【答案】 A【考点】一次函数的实际应用【解析】【解答】解:设 y 甲=kx ,将(3,60)代入表达式,得:60=3k ,解得: k =20 ,则 y 甲=20x ,当y=30km 时,求得x= 32ℎ ,设 y 乙=k 1x +b 1 (1≤x ≤32) ,将(1,0), (32,30) ,代入表达式,得: { k 1+b 1 =032k 1+b 1=30 ,得: { b 1=−60k 1=60 , ∴ y 乙=60x −60 (1≤x ≤32) ,∴ V 乙=60km/ℎ , T 乙=1ℎ ,∵乙在途中休息了半小时,到达B 地时用半小时,∴当 2≤x ≤52 时,设 y 乙=k 2x +b 2 ,将(2,30), (52,60) 代入表达式,得到:{2k 2+b 2 =3052k 2+b 2=60 ,得: { b 2=−90k 2=60 , ∴ y 乙=60x −90 ( 2≤x ≤52 ),则当 y 甲=y 乙 时, 20x =60x −90 ,解得: x =94 ,∴ y 甲=y 乙=45km ,∴当乙再次追上甲时距离A 地45km所以乙再次追上甲时距离 B 地 15km.故答案为:A.【分析】利用待定系数法求出y 甲与x 的函数解析式,求出当y=30时的x 的值,设 y 乙=k 1x +b 1 (1≤x ≤32) , 利用待定系数法求出y 乙与x 的函数解析式,同时求出乙的速度;乙在途中休息了半小时,到达B地时用半小时,利用待定系数法求出2≤x ≤52时的函数解析式;然后根据y 甲=y 乙 , 建立关于x 的方程,解方程求出x 的值,可求出对应的y 的值,可求出当乙再次追上甲时距离A 地45km ,由此可求解.二、填空题(共6题;共24分)11.若 √x −1 有意义,则x 的值可以是________.(写出一个即可)【答案】 3【考点】二次根式有意义的条件【解析】【解答】解:∵√x−1有意义,∴x−1≥0,解得:x≥1,∴x的值可以是3,故答案为:3【分析】利用二次根式有意义的条件:被开方数是非负数,可求出x的取值范围,根据其取值范围可得到符合题意的x的值.12.不等式2(y+1)<y+3的解为________.【答案】y<1【考点】解一元一次不等式【解析】【解答】解:2(y+1)<y+3去括号得:2y+2<y+3不等号两边同减y得:2y−y<3−2解得:y<1.故答案为:y<1【分析】先去括号,再移项,合并同类项,可求出不等式的解集.13.为庆祝建党100周年,某校举行“庆百年红歌大赛”.七年级5个班得分分别为85,90,88,95,92,则5个班得分的中位数为________分.【答案】90【考点】中位数【解析】【解答】解:将七年级5个班得分情况按从小到大排列为:85,88,90,92,95,∴这组数据的中位数为:90,故答案为:90.【分析】先将5个数据从小到大排列后,可知第3个数是中位数.14.如图,在正五边形ABCDE中,连结AC,BD交于点F,则∠AFB的度数为________.【答案】72°【考点】三角形内角和定理,等腰三角形的性质,正多边形的性质【解析】【解答】解:∵五边形ABCDE为正五边形,∴AB=BC=CD,∠ABC=∠BCD= (5−2)×180°=108°,5∴∠BAC=∠BCA=∠CBD=∠CDB=(180°−108°)÷2=36°,∴∠ABF=∠ABC-∠FBC=108°−36°=72°,∴∠AFB =180°-∠BAF-∠ABF=180°-36°-72°=72°.故答案为:72°.【分析】利用正五边形的性质可证得AB=BC=CD,可求出∠ABC和∠BCD的度数,利用等腰三角形的性质和三角形的内角和定理求出∠BAC、∠CBD的度数;再根据∠ABF=∠ABC-∠FBC,代入计算求出∠ABF的度数,然后利用三角形的内角和定理求出∠AFB的度数.15.将一副三角板如图放置在平面直角坐标系中,顶点A与原点O重合,AB在x轴正半轴上,且AB=4√3,点E在AD上,DE=14AD,将这副三角板整体向右平移________个单位,C,E两点同时落在反比例函数y=kx的图象上.【答案】12−√3【考点】解直角三角形,反比例函数-动态几何问题【解析】【解答】过E作EN⊥DB, 过C作CM⊥BD,∴∠DNE=90°,由三角板及AB=4√3,可知∠OBD=90°,BD=12,CM=BM= 12DB=6,∴C(4√3+6,6),∵∠DNE=90°,∠DNE=90°,∴EN//OB,∵DE=14AD∴EN=14OB=√3,DN=14DB=9,∴E(3√3,9).设将这副三角板整体向右平移m个单位,C,E两点同时落在反比例函数y=kx的图象上. ∵C(4√3+6,6),E(3√3,9),∴平移后 C ′(4√3+6+m,6) , E ′(3√3+m ,9) ,∴ {6=4√3+6+m 9=3√3+m , ∴ (4√3+6+m)×6=(3√3+m)×9 ,解得 m =12−√3 .经检验: m =12−√3 是原方程的根,且符合题意,故答案为: 12−√3 .【分析】过E 作EN ⊥DB, 过C 作CM ⊥BD ,利用解直角三角形可求出CM ,BM 的长,可得到点C 的坐标,再求出EN ,DN 的长,可得到点E 的坐标;设将这副三角板整体向右平移m 个单位,C ,E 两点同时落在反比例函数 y =kx 的图象上,利用点的坐标平移规律可得到平移后的点E 和点C 的坐标,利用待定系数法建立关于k ,m 的方程组,解方程组求出m 的值,即可求解.16.图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE 与地面平行,支撑杆AD ,BC 可绕连接点O 转动,且 OA =OB ,椅面底部有一根可以绕点H 转动的连杆HD ,点H 是CD 的中点,FA ,EB 均与地面垂直,测得 FA =54cm , EB =45cm , AB =48cm .(1)椅面CE 的长度为________cm.(2)如图3,椅子折叠时,连杆HD 绕着支点H 带动支撑杆AD ,BC 转动合拢,椅面和连杆夹角 ∠CHD 的度数达到最小值 30° 时,A ,B 两点间的距离为________cm (结果精确到0.1cm ).(参考数据: sin15°≈0.26 , cos15°≈0.97 , tan15°≈0.27 )【答案】 (1)40(2)12.5【考点】相似三角形的应用,解直角三角形的应用,三角形全等的判定(AAS )【解析】【解答】解:(1)过点C作CM垂直AF,垂足为M,∵椅面CE与地面平行,∴ΔMFC∽△AFB,∴CMAB =FMFA=FA−EBFA⇔CM48=54−4554,解得:CM=8cm,∴CE=AB-CM=48-8=40cm;故答案为:40;(2)在图2中,∵OA=OB,椅面CE与地面平行,∴∠BCE=∠ADM,∵AM=BE,∠AMD=∠BEC=90°,∴△AMD≌△BEC,∴DM=CE,∴MC=ED=8cm,∴CD=48−8−8=32cm,∵H是CD的中点,∴CH=HD=12CD=16,∵椅面CE与地面平行,∴△COD∽△BOA,∴COBO =CDAB=3248=23,图3中,过H点作CD的垂线,垂足为N,∵CH=HD=12CD=16,∠CHD=30°,∴∠CHN=∠DHN=15°,∴CD=2CHsin15°=8.32cm,∴COOB =CDAB⇔23=8.32AB,解得:AB=12.48≈12.5cm,故答案为:12.5.【分析】(1)过点C作CM垂直AF,垂足为M,利用椅面CE与地面平行,可证得△MFC∽△AFB,利用相似三角形的性质可求出CM的值,利用CE=AB-CM,可求出CE的长.(2)利用AAS可证得△AMD≌△BEC,利用全等三角形的性质,可证得DM=CE,MC=ED=8,同时可求出CD的长;再利用线段中点的定义求出CH的长;然后证明△COD∽△BOA,利用相似三角形的性质可求出CO与BO的比值;图3中,过H点作CD的垂线,垂足为N,利用解直角三角形求出CD的长,由此可求出AB的长.三、解答题(共8题;共66分)17.计算:√9+(12)0−|−3|+2cos60°.【答案】解:原式=3+1−3+2×12=2【考点】实数的运算,0指数幂的运算性质,特殊角的三角函数值【解析】【分析】先算乘方和开方运算,同时代入特殊角的三角函数值,再算乘法运算,然后算加减法.18.先化简,再求值:x2x−3+93−x,其中x=1.【答案】解:原式=x2x−3−9x−3=(x+3)(x−3)x−3=x+3当x=1时,原式=4【考点】利用分式运算化简求值【解析】【分析】先将原式转化为同分母的分式相减,再利用同分母分式相减,分母不变,把分子相减。
2020年浙江省衢州市中考数学试卷-含详细解析

2020年浙江省衢州市中考数学试卷一、选择题(本题共有10小题,每小题3分,共30分) 1.(3分)比0小1的数是( ) A .0B .﹣1C .1D .±12.(3分)下列几何体中,俯视图是圆的几何体是( )A .B .C .D .3.(3分)计算(a 2)3,正确结果是( ) A .a 5B .a 6C .a 8D .a 94.(3分)如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( )A .13B .14C .16D .185.(3分)要使二次根式√x −3有意义,则x 的值可以为( ) A .0B .1C .2D .46.(3分)不等式组{3(x −2)≤x −43x >2x −1的解集在数轴上表示正确的是( )A .B .C .D.7.(3分)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A.180(1﹣x)2=461B.180(1+x)2=461C.368(1﹣x)2=442D.368(1+x)2=4428.(3分)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A.B.C.D.9.(3分)二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是()A.向左平移2个单位,向下平移2个单位B.向左平移1个单位,向上平移2个单位C.向右平移1个单位,向下平移1个单位D.向右平移2个单位,向上平移1个单位10.(3分)如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为()A .√2B .√2+12C .√5+12D .43二、填空题(本题共有6小题,每小题4分,共24分) 11.(4分)一元一次方程2x +1=3的解是x = .12.(4分)定义a ※b =a (b +1),例如2※3=2×(3+1)=2×4=8.则(x ﹣1)※x 的结果为 .13.(4分)某班五个兴趣小组的人数分别为4,4,5,x ,6.已知这组数据的平均数是5,则这组数据的中位数是 .14.(4分)小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD 的边长为4dm ,则图2中h 的值为 dm .15.(4分)如图,将一把矩形直尺ABCD 和一块含30°角的三角板EFG 摆放在平面直角坐标系中,AB 在x 轴上,点G 与点A 重合,点F 在AD 上,三角板的直角边EF 交BC 于点M ,反比例函数y =kx (x >0)的图象恰好经过点F ,M .若直尺的宽CD =3,三角板的斜边FG =8√3,则k = .16.(4分)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O ,P 两点固定,连杆P A =PC =140cm ,AB =BC =CQ =QA =60cm ,OQ =50cm ,O ,P 两点间距与OQ 长度相等.当OQ 绕点O 转动时,点A ,B ,C 的位置随之改变,点B 恰好在线段MN上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).(1)点P到MN的距离为cm.(2)当点P,O,A在同一直线上时,点Q到MN的距离为cm.三、解答题(本题共有8小题,第17~19小题每小题6分,第20~21小题每小题6分,第22~23小题每小题6分,第24小题12分,共66分.请务必写出解答过程)17.(6分)计算:|﹣2|+(13)0−√9+2sin30°.18.(6分)先化简,再求值:aa−2a+1÷1a−1,其中a=3.19.(6分)如图,在5×5的网格中,△ABC的三个顶点都在格点上.(1)在图1中画出一个以AB为边的▱ABDE,使顶点D,E在格点上.(2)在图2中画出一条恰好平分△ABC周长的直线l(至少经过两个格点).20.(8分)某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.被抽样的学生视力情况频数表组别视力段频数A 5.1≤x≤5.325B 4.8≤x≤5.0115C 4.4≤x≤4.7mD 4.0≤x≤4.352(1)求组别C的频数m的值.(2)求组别A的圆心角度数.(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?21.(8分)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.22.(10分)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km?23.(10分)如图1,在平面直角坐标系中,△ABC的顶点A,C分別是直线y=−83x+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE⊥BC于点E,点F在边AB上,且D,F两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:①线段EF长度是否有最小值.②△BEF能否成为直角三角形.小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.(3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.24.(12分)【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当S1S2=13时,求ADAB的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的110时,请直接写出tan∠BAE的值.2020年浙江省衢州市中考数学试卷参考答案与试题解析一、选择题(本题共有10小题,每小题3分,共30分)1.(3分)比0小1的数是()A.0B.﹣1C.1D.±1【解答】解:0﹣1=﹣1,即比0小1的数是﹣1.故选:B.2.(3分)下列几何体中,俯视图是圆的几何体是()A.B.C.D.【解答】解:A、俯视图是圆,故此选项正确;B、俯视图是正方形,故此选项错误;C、俯视图是长方形,故此选项错误;D、俯视图是长方形,故此选项错误.故选:A.3.(3分)计算(a2)3,正确结果是()A.a5B.a6C.a8D.a9【解答】解:由幂的乘方与积的乘方法则可知,(a2)3=a2×3=a6.故选:B.4.(3分)如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A .13B .14C .16D .18【解答】解:由扇形统计图可得,指针落在数字“Ⅱ”所示区域内的概率是:120360=13.故选:A .5.(3分)要使二次根式√x −3有意义,则x 的值可以为( ) A .0B .1C .2D .4【解答】解:由题意得:x ﹣3≥0, 解得:x ≥3, 故选:D .6.(3分)不等式组{3(x −2)≤x −43x >2x −1的解集在数轴上表示正确的是( )A .B .C .D .【解答】解:{3(x −2)≤x −4①3x >2x −1②,由①得x ≤1; 由②得x >﹣1;故不等式组的解集为﹣1<x ≤1,在数轴上表示出来为:.故选:C .7.(3分)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A.180(1﹣x)2=461B.180(1+x)2=461C.368(1﹣x)2=442D.368(1+x)2=442【解答】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程:180(1+x)2=461,故选:B.8.(3分)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A.B.C.D.【解答】解:A、由作图可知,内错角相等两直线平行,本选项不符合题意.B、由作图可知,同位角相等两直线平行,本选项不符合题意.C、与作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、无法判断两直线平行,故选:D.9.(3分)二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是()A.向左平移2个单位,向下平移2个单位B.向左平移1个单位,向上平移2个单位C.向右平移1个单位,向下平移1个单位D .向右平移2个单位,向上平移1个单位【解答】解:A 、平移后的解析式为y =(x +2)2﹣2,当x =2时,y =14,本选项不符合题意.B 、平移后的解析式为y =(x +1)2+2,当x =2时,y =11,本选项不符合题意.C 、平移后的解析式为y =(x ﹣1)2﹣1,当x =2时,y =0,函数图象经过(2,0),本选项符合题意.D 、平移后的解析式为y =(x ﹣2)2+1,当x =2时,y =1,本选项不符合题意. 故选:C .10.(3分)如图,把一张矩形纸片ABCD 按所示方法进行两次折叠,得到等腰直角三角形BEF ,若BC =1,则AB 的长度为( )A .√2B .√2+12C .√5+12D .43【解答】解:由折叠补全图形如图所示, ∵四边形ABCD 是矩形,∴∠ADA '=∠B =∠C =∠A =90°,AD =BC =1,CD =AB , 由第一次折叠得:∠DAE =∠A =90°,∠ADE =12∠ADC =45°, ∴∠AED =∠ADE =45°, ∴AE =AD =1,在Rt △ADE 中,根据勾股定理得,DE =√2AD =√2, 故选:A .二、填空题(本题共有6小题,每小题4分,共24分) 11.(4分)一元一次方程2x +1=3的解是x = 1 .【解答】解;将方程移项得,2x=2,系数化为1得,x=1.故答案为:1.12.(4分)定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x﹣1)※x的结果为x2﹣1.【解答】解:根据题意得:(x﹣1)※x=(x﹣1)(x+1)=x2﹣1.故答案为:x2﹣1.13.(4分)某班五个兴趣小组的人数分别为4,4,5,x,6.已知这组数据的平均数是5,则这组数据的中位数是5.【解答】解:∵某班五个兴趣小组的人数分别为4,4,5,x,6,已知这组数据的平均数是5,∴x=5×5﹣4﹣4﹣5﹣6=6,∴这一组数从小到大排列为:4,4,5,6,6,∴这组数据的中位数是5.故答案为:5.14.(4分)小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD的边长为4dm,则图2中h的值为(4+√2)dm.【解答】解:∵正方形ABCD的边长为4dm,∴②的斜边上的高是2dm,④的高是1dm,⑥的斜边上的高是1dm,⑦的斜边上的高是√2dm,∴图2中h的值为(4+√2)dm.故答案为:(4+√2).15.(4分)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=kx(x>0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=8√3,则k=40√3.【解答】解:过点M作MN⊥AD,垂足为N,则MN=CD=3,在Rt△FMN中,∠MFN=30°,∴FN=√3MN=3√3,∴AN=MB=8√3−3√3=5√3,设OA=x,则OB=x+3,∴F(x,8√3),M(x+3,5√3),∴8√3x=(x+3)×5√3,解得,x=5,∴F(5,8√3),∴k=5×8√3=40√3.故答案为:40√3.16.(4分)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆P A=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O转动时,点A,B,C的位置随之改变,点B恰好在线段MN 上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).(1)点P到MN的距离为160cm.(2)当点P,O,A在同一直线上时,点Q到MN的距离为6409cm.【解答】解:(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.由题意:OP =OQ =50cm ,PQ =P A ﹣AQ =14﹣=60=80(cm ),PM =P A +BC =140+60=200(cm ),PT ⊥MN , ∵OH ⊥PQ ,∴PH =HQ =40(cm ), ∵cos ∠P =PH OP =PTPM, ∵4050=PT200,∴PT =160(cm ),∴点P 到MN 的距离为160cm , 故答案为160.(2)如图4中,当O ,P ,A 共线时,过Q 作QH ⊥PT 于H .设HA =xcm .由题意AT =PT ﹣P A =160﹣140=20(cm ),OA =P A ﹣OP =140﹣50=90(cm ),OQ =50cm ,AQ =60cm , ∵QH ⊥OA ,∴QH 2=AQ 2﹣AH 2=OQ 2﹣OH 2, ∴602﹣x 2=502﹣(90﹣x )2, 解得x =4609, ∴HT =AH +AT =6409(cm ), ∴点Q 到MN 的距离为6409cm .故答案为6409.三、解答题(本题共有8小题,第17~19小题每小题6分,第20~21小题每小题6分,第22~23小题每小题6分,第24小题12分,共66分.请务必写出解答过程) 17.(6分)计算:|﹣2|+(13)0−√9+2sin30°.【解答】解:原式=2+1﹣3+2×12 =2+1﹣3+1 =1.18.(6分)先化简,再求值:a a −2a+1÷1a−1,其中a =3.【解答】解:原式=a (a−1)2•(a ﹣1) =aa−1,当a =3时,原式=33−1=32.19.(6分)如图,在5×5的网格中,△ABC 的三个顶点都在格点上. (1)在图1中画出一个以AB 为边的▱ABDE ,使顶点D ,E 在格点上. (2)在图2中画出一条恰好平分△ABC 周长的直线l (至少经过两个格点).【解答】解:(1)如图平行四边形ABDE 即为所求(点D 的位置还有6种情形可取). (2)如图,直线l 即为所求、20.(8分)某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.被抽样的学生视力情况频数表组别视力段频数A 5.1≤x≤5.325B 4.8≤x≤5.0115C 4.4≤x≤4.7mD 4.0≤x≤4.352(1)求组别C的频数m的值.(2)求组别A的圆心角度数.(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?【解答】解:(1)本次抽查的人数为:115÷23%=500,m=500×61.6%=308,即m的值是308;(2)组别A的圆心角度数是:360°×25500=18°,即组别A的圆心角度数是18°;(3)25000×25+115500=7000(人),答:该市25000名九年级学生达到“视力良好”的有7000人,建议是:同学们应少玩电子产品,注意用眼保护.21.(8分)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =10,AC =6,连结OC ,弦AD 分别交OC ,BC 于点E ,F ,其中点E 是AD 的中点. (1)求证:∠CAD =∠CBA . (2)求OE 的长.【解答】(1)证明:∵AE =DE ,OC 是半径, ∴AĈ=CD ̂, ∴∠CAD =∠CBA .(2)解:∵AB 是直径, ∴∠ACB =90°, ∵AE =DE , ∴OC ⊥AD , ∴∠AEC =90°, ∴∠AEC =∠ACB , ∴△AEC ∽△BCA , ∴CE AC =AC AB ,∴CE 6=610,∴CE =3.6, ∵OC =12AB =5,∴OE =OC ﹣EC =5﹣3.6=1.4.22.(10分)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km?【解答】解:(1)C点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h.∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h).(2)①280÷20=14h,∴点A(14,280),点B(16,280),∵36÷60=0.6(h),23﹣0.6=22.4,∴点E(22.4,420),设BC的解析式为s=20t+b,把B(16,280)代入s=20t+b,可得b=﹣40,∴s=20t﹣40(16≤t≤23),同理由D(14,0),E(22,4,420)可得DE的解析式为s=50t﹣700(14≤t≤22.4),由题意:20t﹣40=50t﹣700,解得t=22,∵22﹣14=8(h),∴货轮出发后8小时追上游轮.②相遇之前相距12km时,20t﹣4﹣(50t﹣700)=12,解得t=21.6.相遇之后相距12km时,50t﹣700﹣(20t﹣40)=12,解得t=22.4,∴21.6h或22.4h时游轮与货轮何时相距12km.23.(10分)如图1,在平面直角坐标系中,△ABC的顶点A,C分別是直线y=−83x+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE⊥BC于点E,点F在边AB上,且D,F两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:①线段EF长度是否有最小值.②△BEF能否成为直角三角形.小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.(3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.【解答】解:(1)用描点法画出图形如图1,由图象可知函数类别为二次函数.(2)如图2,过点F ,D 分别作FG ,DH 垂直于y 轴,垂足分别为G ,H ,则∠FGK =∠DHK =90°,记FD 交y 轴于点K ,∵D 点与F 点关于y 轴上的K 点成中心对称,∴KF =KD ,∵∠FKG =∠DKH ,∴Rt △FGK ≌Rt △DHK (AAS ),∴FG =DH ,∵直线AC 的解析式为y =−83x +4,∴x =0时,y =4,∴A (0,4),又∵B (﹣2,0),设直线AB 的解析式为y =kx +b ,∴{−2k +b =0b =4, 解得{k =2b =4,∴直线AB的解析式为y=2x+4,过点F作FR⊥x轴于点R,∵D点的橫坐标为m,∴F(﹣m,﹣2m+4),∴ER=2m,FR=﹣2m+4,∵EF2=FR2+ER2,∴l=EF2=8m2﹣16m+16=8(m﹣1)2+8,令−8x3+4=0,得x=32,∴0≤m≤3 2.∴当m=1时,l的最小值为8,∴EF的最小值为2√2.(3)①∠FBE为定角,不可能为直角.②∠BEF=90°时,E点与O点重合,D点与A点,F点重合,此时m=0.③如图3,∠BFE=90°时,有BF2+EF2=BE2.由(2)得EF2=8m2﹣16m+16,又∵BR=﹣m+2,FR=﹣2m+4,∴BF2=BR2+FR2=(﹣m+2)2+(﹣2m+4)2=5m2﹣20m+20,又∵BE2=(m+2)2,∴(5m2﹣20m+8)+(8m2﹣16m+16)2=(m+2)2,化简得,3m2﹣10m+8=0,解得m1=43,m2=2(不合题意,舍去),∴m=4 3.综合以上可得,当△BEF为直角三角形时,m=0或m=4 3.24.(12分)【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当S1S2=13时,求ADAB的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的110时,请直接写出tan∠BAE的值.【解答】(1)解:如图1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF≌△AHG(ASA),∴AF=AG,∴△AFG是等腰三角形.(2)证明:如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.∵AF=AG,∴∠AFG=∠AGF,∵∠AGF=∠OGL,∴∠OGL=∠OLG,∴OG=OL,∵OL∥AB,∴△DLO∽△DFB,∴OLBF =DOBD,∵四边形ABCD是矩形,∴BD=2OD,∴BF=2OL,∴BF=2OG.(3)解:如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,∵∠DAK =∠CAD ,∴△ADK ∽△ACD ,∴DK AD =CD AC , ∵S 1=12•OG •DK ,S 2=12•BF •AD ,又∵BF =2OG ,S 1S 2=13, ∴DK AD =23=CD AC ,设CD =2x ,AC =3x ,则AD =2√5x , ∴AD AB =AD CD =√52.(4)解:设OG =a ,AG =k .①如图4中,连接EF ,当点F 在线段AB 上时,点G 在OA 上.∵AF =AG ,BF =2OG ,∴AF =AG =k ,BF =2a ,∴AB =k +2a ,AC =2(k +a ),∴AD 2=AC 2﹣CD 2=[2(k +a )]2﹣(k +2a )2=3k 2+4ka ,∵∠ABE =∠DAF =90°,∠BAE =∠ADF ,∴△ABE ∽△DAF ,∴BE AB =AE AD , ∴BE k+2a =k AD ,∴BE =k(k+2a)AD, 由题意:10×12×2a ×k(k+2a)AD =AD •(k +2a ), ∴AD 2=10ka ,即10ka =3k 2+4ka ,∴k =2a ,∴AD =2√5a ,∴BE =k(k+2a)AD =4√55a ,AB =4a , ∴tan ∠BAE =BE AB =√55. ②如图5中,当点F 在AB 的延长线上时,点G 在线段OC 上,连接EF .∵AF =AG ,BF =2OG ,∴AF =AG =k ,BF =2a ,∴AB =k ﹣2a ,AC =2(k ﹣a ),∴AD 2=AC 2﹣CD 2=[2(k ﹣a )]2﹣(k ﹣2a )2=3k 2﹣4ka ,∵∠ABE =∠DAF =90°,∠BAE =∠ADF ,∴△ABE ∽△DAF ,∴BE AB =AE AD , ∴BE k−2a =k AD ,∴BE =k(k−2a)AD, 由题意:10×12×2a ×k(k−2a)AD=AD •(k ﹣2a ),∴AD2=10ka,即10ka=3k2﹣4ka,∴k=143a,∴AD=2√1053a,∴BE=k(k−2a)AD=8√10545a,AB=83a,∴tan∠BAE=BEAB=√10515,综上所述,tan∠BAE的值为√55或√10515.。
2021年浙江省衢州市数学中考真题含答案解析(含答案)

12021年浙江省衢州市中考数学试卷
一、选择题:(本大题共10小题,每小题3分,共30分,请选出一个符号题意的正确的选项填涂在答题纸上,不选、多选、错选均不给分)1.(2012•衢州)下列四个数中,最小的数是( )
A.2 B.﹣2 C.0 D.﹣
2.(2012•衢州)衢州市是国家优秀旅游城市,吸引了众多的海内外游客.据衢州市2011年国民经济和社会发展统计报显示,全年旅游总收入达121.04亿元.将121.04亿元用科学记数法可表示为( ) A.12.104×109元 B.12.104×1010元 C.1.2104×1010元 D.1.2104×1011元
3.(2012•衢州)下列计算正确的是( ) A.2a2+a2=3a4 B.a6÷a2=a3 C.a6•a2=a12 D.(﹣a6)2=a12
4.(2012•衢州)函数的自变量x的取值范围在数轴上可表示为( ) A. B. C. D.5.(2012•衢州)某中学篮球队13名队员的年龄情况如下:年龄(单位:岁)15161718人数3451则这个队队员年龄的中位数是( ) A.15.5 B.16 C.16.5 D.17
6.(2012•衢州)如图,点A、B、C在⊙O上,∠ACB=30°,则sin∠AOB的值是( )
A. B. C. D. 2
7.(2012•衢州)下列调查方式,你认为最合适的是( ) A.日光灯管厂要检测一批灯管的使用寿命,采用普查方式 B.了解衢州市每天的流动人口数,采用抽查方式 C.了解衢州市居民日平均用水量,采用普查方式 D.旅客上飞机前的安检,采用抽样调查方式
8.(2012•衢州)长方体的主视图、俯视图如图所示,则其左视图面积为( )
A.3 B.4 C.12 D.169.(2012•衢州)用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )
A.cm B.3cm C.4cm D.4cm10.(2012•衢州)已知二次函数y=﹣x2﹣7x+,若自变量x分别取x1,x2,x3,且0<x1<x2
2022年浙江省衢州市中考数学必修综合测试试卷附解析

2022年浙江省衢州市中考数学必修综合测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.甲、乙两袋均有红、黄色球各一个,分别从两袋中任意取出一球,那么所取出的两球是同色球的概率为( ) A .23B .12C .13D .162.某校要了解八年级女生的体重以掌握她们的身体发育情况,从八年级500名女生中抽出50名进行检测.就这个问题,下面说法中.正确的是( ). A .500名女生是总体 B .500名女生是个体C .500名女生是总体的一个样本D .50是样本容量3.三角形的三边长a 、b 、c 满足等式22()2a b c ab +-=,则此三角形是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等边三角形4.若关于x 的方程652mx =-的根为 1,则m 等于( ) A . 1B . 8C .18D . 425.若x 满足2310x x ++=,则代数式221x x+的值是( ) A .37B .3C .949D .76.下列运算中,正确的是( ) A .2222(53)106ac b c b c ac +=+ B .232()(1)()()a b a b a b b a --+=---C .()(1)()()b c a x y x b c a y a b c a b c +-++=+-----+-D .2(2)(11b 2)(2)(3)5(2)a b a a b a b b a --=-+--7. 表示人面部表情的四幅图案,其中不是轴对称图形的是( ) 8.下列计算中,正确的是( ) A .2(1)(2)32m m m m --=-- B .2(12)(2)232a a a a -+=-+ C . 22()()x y x y x y +-=-D .22()()x y x y x y ++=+9.如图,在斜板上放一个长方体木块,那么这个木块的棱CD ( ) A .与地面水平线OB 平行 B .与地面水平线OB 垂直C .与斜板的一边OA 平行D .与斜板的一边OA 垂直10.方程63x -=,两边都除以-6,得( ) A .2x =B .2x =-C .12x =D .12x =-11.下列合并同类项正确的是( ) A .22523x x -= B .6713x y xy += C .2222a b a b a b -+= D .523x x -= 12.数6.25×104是 ( )A .三位数B . 四位数C .五位数D .六位数二、填空题13.如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指钝角)是度.14.如果2(7)|3|0a b -+-=,那么以a ,b 为边长的等腰三角形的周长为 . 15.写出生活中的一个随机事件: .16.从 1 到 9 这九个自然数中任取一个,既是 2的倍数又是 3 的倍数有 种可能. 17.说出一个可以用252x +表示结果的实际问题: . 18.长方形的面积为 56 cm 2,若长为x(cm),则长方形的宽为 cm. 19.常见的非负数的表示方式有 , .(用含字母 a 的式子表示). 20.若2(4)|2|0a b -+-=,则b a = ;2a ba b+-= . 三、解答题21.已知,如图,AB 和DE 是直立在地面上的两根立柱.AB=5m ,某一时刻AB 在阳光下的投影BC=3m.(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.22.如图,TB切圆O于B,连结OT,交⊙O于A.(1)设∠ABO=x,用x表示∠ABT及∠AOB的度数;(2)若AT=AB,求x的度数.OAxT23.如图所示的相似四边形中,求未知边 x、y的长度和角度α的大小.24.如图,在四边形ABCD中,∠B=∠C,AB 不平行CD,且AB=CD.求证:四边形ABCD 是等腰梯形.25.画出如图所示的几何体的三视图.26.新年晚会举办时是我们最快乐的时候,会场上悬挂着站五彩缤纷的小装饰品,其中有各种各样的立体图形,如图所示:请你数一下上面图中每一个立体图形具有的顶点数(V),棱数(E)和面数(F),并把结果填入下表中:名称 各面形状 顶点数(V) 面数(F) 棱数(E)V+F —E正四面体 正三角形 正方体 正方形正八面体正三角形正十二边形 正五边形伟大的数学家欧拉惊奇地发现F 、E 、V 三面存一个奇妙的相等关系,根据上面的表格,你能归纳出这个相等关系吗?27.如图 ,当∠1 = 50°,∠2 = 130°时,直线1l ,2l 平行吗?为什么?28.解方程组: (1)37528y x x y =-⎧⎨+=⎩;(2)32352x y x y -=-⎧⎨-=⎩;(3) 2783810x y x y -=⎧⎨-=⎩29.(1)观察图,填写下表:图形①②③④线段条数(2)(3)应用(2)中的结论计算线段AB上有10个点依次记作C1,C2,…,C10,那么以A,C1,C2,…,C10,B中的两点为端点的线段共有 ( )A.10条B.11条C.55条D.66条30.已知 a,b,c 为三角形的三边,且满足2222++=++,试判断这个三角形是什()3()a b c a b c么三角形,并说明理由.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.B4.C5.D6.D7.C8.C9.D10.D11.CC二、填空题13.12014.1715.略16.117.小明回家做数学作业用了x分钟,做语文作业用了25分钟,则252x+表示他这两门作业平均每门需要的时间答案不唯一,如:18.56x19.,2a,||a20.16,1三、解答题21.(1)略 (2)DE=10m.22.(1)∠ABT=90-x,∠AOB=180-2x;(2)x=60°.23.由于两个四边形相似,它们的对应边成比例,对应角相等,所以18467y x==,解得 x=31.5,y=27.α= 360°- (77°+83°+ 117°) =83°. 24.延长BA,CD交于P,证AD∥BC略26.4,4,6,2;8,6,12,2;6,8,12,2;20,12,30,2;V+F —E=227.平行.理由:∵∠2+∠3=180°,∠2=130°. ∴∠3=180-∠2=180°-130°=50°. ∵∠1=50°,∴∠3=∠1,∴1l ⊥2l28.(1)21x y =⎧⎨=-⎩,(2)13x y =⎧⎨=⎩,(3)6545x y ⎧=⎪⎪⎨⎪=-⎪⎩29.(1)1,3,6,10;(2)(1)2n n +;(3)D 30.等边三角形。
2021年浙江省衢州市中考数学试卷(含解析)

2021年浙江省衢州市中考数学试卷一、选择题(共10小题).1.21的相反数是()A.21B.﹣21C.D.﹣2.如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.3.2021年5月国家统计局公布了第七次人口普查结果,我国人口数约为1412000000.其中数据1412000000用科学记数法表示为()A.14.12×108B.0.1412×1010C.1.412×109D.1.412×1084.下列计算正确的是()A.(x2)3=x5B.x2+x2=x4C.x2•x3=x5D.x6÷x3=x25.一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸出1个球,摸到白球的概率是()A.B.C.D.6.已知扇形的半径为6,圆心角为150°,则它的面积是()A.πB.3πC.5πD.15π7.如图,在△ABC中,AB=4,AC=5,BC=6,点D,E,F分别是AB,BC,CA的中点,连结DE,EF,则四边形ADEF的周长为()8.《九章算术》是中国传统数学的重要著作,书中有一道题“今有五雀六燕,集称之衡,雀俱重,燕俱轻;一雀一燕交而处,衡适平;并燕雀重一斤.问:燕雀一枚,各重几何?”译文:“五只雀、六只燕,共重1斤(古时1斤=16两).雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕重量各为多少?”设雀重x两,燕重y两,可列出方程组()A.B.C.D.9.如图.将菱形ABCD绕点A逆时针旋转∠α得到菱形AB′C′D′,∠B=∠β.当AC 平分∠B′AC′时,∠α与∠β满足的数量关系是()A.∠α=2∠βB.2∠α=3∠βC.4∠α+∠β=180°D.3∠α+2∠β=180°10.已知A,B两地相距60km,甲、乙两人沿同一条公路从A地出发到B地,甲骑自行车匀速行驶3h到达,乙骑摩托车,比甲迟1h出发,行至30km处追上甲,停留半小时后继续以原速行驶.他们离开A地的路程y与甲行驶时间x的函数图象如图所示.当乙再次追上甲时距离B地()二、填空题(本题共有6小题,每小题4分,共24分)11.若有意义,则x的值可以是.(写出一个即可)12.不等式2(y+1)<y+3的解为.13.为庆祝建党100周年,某校举行“庆百年红歌大赛”.七年级5个班得分分别为85,90,88,95,92,则5个班得分的中位数为分.14.如图,在正五边形ABCDE中,连结AC,BD交于点F,则∠AFB的度数为.15.将一副三角板如图放置在平面直角坐标系中,顶点A与原点O重合,AB在x轴正半轴上,且AB=4,点E在AD上,DE=AD,将这副三角板整体向右平移个单位,C,E两点同时落在反比例函数y=的图象上.16.图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且OA=OB,椅面底部有一根可以绕点H转动的连杆HD,点H是CD的中点,FA,EB均与地面垂直,测得FA=54cm,EB=45cm,AB =48cm.(1)椅面CE的长度为cm.(2)如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角∠CHD的度数达到最小值30°时,A,B两点间的距离为cm(结果精确到0.1cm).(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)三、解答题(本题共有8小题,第17~19小题每小题6分,第20~21小题每小题6分,第22~23小题每小题6分,第24小题12分,共66分。
2021年浙江省衢州市中考数学试题(word版含答案)
初中学业水平考试(衢州卷)数学试题卷参考公式:二次函数2(,,0)y ax bx c a b c a 是常数,=++≠的图象经过的顶点坐标是(24,24b ac b a a ). 卷I一、选择题(本大题共10小题,每小题3分,共30分)1.比0小1的数是( )A. 0B. ﹣1C. 1D. ±1【答案】B【点睛】本题主要考查了有理数的减法,理清题意,正确列出算式是解答本题的关键.2.下列几何体中,俯视图是圆的几何体是( ) A. B.C. D.【答案】A3.计算()32a ,正确结果是( )A. 5aB. 6aC. 8aD. 9a【答案】B4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A. 13B. 14C. 16 D. 18【答案】A5.3x -x 的取值可以是( )A. 0B. 1C. 2D. 4【答案】D6.不等式组()324321x xx x⎧-≤-⎨>-⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C7.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A. 180(1﹣x)2=461B. 180(1+x)2=461C. 368(1﹣x)2=442D. 368(1+x)2=442【答案】B8.过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A. B.C. D.【答案】D9.二次函数y=x2图象平移后经过点(2,0),则下列平移方法正确的是()A. 向左平移2个单位,向下平移2个单位B. 向左平移1个单位,向上平移2个单位C. 向右平移1个单位,向下平移1个单位D. 向右平移2个单位,向上平移1个单位【答案】C10.如图,把一张矩形纸片ABCD 按所示方法进行两次折叠,得到等腰直角三角形BEF ,若BC =1,则AB 的长度为( )A. 2B. 21+C. 51+D. 43【答案】A 卷II二、填空题(本大题有6个小题,每小题4分,共24分) 11.一元一次方程2x +1=3的解是x =_____.【答案】112.定义(1)a b a b ⊗=+,例如232(31)248⊗=⨯+=⨯=,则(1)x x -⊗的结果是_______.【答案】21x -13.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.【答案】514.小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD 的边长为4dm ,则图2中h 的值为_____dm .【答案】4215.如图,将一把矩形直尺ABCD 和一块含30°角的三角板EFG 摆放在平面直角坐标系中,AB 在x 轴上,点G 与点A 重合,点F 在AD 上,三角板的直角边EF 交BC 于点M ,反比例函数y =k x(x >0)的图象恰好经过点F ,M .若直尺的宽CD =3,三角板的斜边FG =83,则k =_____.【答案】40316.图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O ,P 两点固定,连杆P A =PC =140cm ,AB =BC =CQ =QA =60cm ,OQ =50cm ,O ,P 两点间距与OQ 长度相等.当OQ 绕点O 转动时,点A ,B ,C 的位置随之改变,点B 恰好在线段MN 上来回运动.当点B 运动至点M 或N 时,点A ,C 重合,点P ,Q ,A ,B 在同一直线上(如图3).(1)点P 到MN 的距离为_____cm .(2)当点P ,O ,A 在同一直线上时,点Q 到MN 的距离为_____cm .【答案】 (1). 160 (2). 6409三、解答题(本大题有8小题,第17~19小题每小题6分,第20~21题每小题8分,第22~23题每小题10分,第24题12分,共66分,请务必写出解答过程)17.计算:|﹣2|+(13)09. 【详解】解:原式=2+1﹣3+2×12 =2+1﹣3+1=1.18.先化简,再求值:21211a a a a ÷-+-,其中a =3. 【详解】解:原式=2(1)a a -•(a ﹣1) =1a a -,当a=3时,原式=33=312-. 19.如图,在5×5的网格中,△ABC 的三个顶点都在格点上.(1)在图1中画出一个以AB 为边的▱ABDE ,使顶点D ,E 在格点上.(2)在图2中画出一条恰好平分△ABC 周长的直线l (至少经过两个格点).【详解】解:(1)如图平行四边形ABDE 即为所求(点D 的位置还有6种情形可取),;(2)如图,直线l 即为所求.20.某市在九年级“线上教学”结束后,为了了解学生的视力情况,抽查了部分学生进行视力检查.根据检查结果,制作下面不完整的统计图表.(1)求组别C 的频数m 的值.(2)求组别A 的圆心角度数.(3)如果势视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数,根据上述图表信息,你对视力保护有什么建议?【详解】解:(1)样本容量为1150.23500÷=,组别C 的频数5000.616308=⨯=m .(2)组别A 的圆心角度数为5%36018⨯=.(3)该市“视力良好”的学生人数约有(0.230.05)250007000+⨯=人.建议只要围绕“视力保护”展开即可:注意用眼卫生,注意坐姿习惯.21.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【详解】(1)证明:∵AE=DE,OC是半径,∴AC CD=,∴∠CAD=∠CBA;(2)解:如图:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC AC AB=,∴6 610 CE=,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.22.2020年5月16日,“钱塘江诗路”航道全线开通,一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km?【详解】解:(1)C点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h.∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h).(2)①280÷20=14h,∴点A(14,280),点B(16,280),∵36÷60=0.6(h),23﹣0.6=22.4,∴点E(22.4,420),设BC的解析式为s=20t+b,把B(16,280)代入s=20t+b,可得b=﹣40,∴s=20t﹣40(16≤t≤23),同理由D(14,0),E(22,4,420)可得DE的解析式为s=50t﹣700(14≤t≤22.4),由题意:20t﹣40=50t﹣700,解得t=22,∵22﹣14=8(h),∴货轮出发后8小时追上游轮.②相遇之前相距12km时,20t﹣4﹣(50t﹣700)=12,解得t=21.6.相遇之后相距12km时,50t﹣700﹣(20t﹣40)=12,解得t=22.4,∴21.6h或22.4h时游轮与货轮何时相距12km.23.如图1,在平面直角坐标系中,△ABC的顶点A,C分別是直线y=﹣83x+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE⊥BC于点E,点F在边AB上,且D,F两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:①线段EF长度是否有最小值.②△BEF能否成为直角三角形.小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.(3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.【详解】解:(1)用描点法画出图形如图1,由图象可知函数类别为二次函数.(2)如图2,过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,则∠FGK=∠DHK=90°,记FD交y轴于点K,∵D点与F点关于y轴上的K点成中心对称,∴KF=KD,∵∠FKG=∠DKH,∴Rt△FGK≌Rt△DHK(AAS),∴FG=DH,∵直线AC的解析式为y=﹣83x+4,∴x=0时,y=4,∴A(0,4),又∵B(﹣2,0),设直线AB 的解析式为y=kx+b,∴204k b b⎧-+=⎨=⎩,解得24k b,∴直线AB的解析式为y=2x+4,过点F作FR⊥x轴于点R,∵D点的橫坐标为m,∴F(﹣m,﹣2m+4),∴ER=2m,FR=﹣2m+4,∵EF2=FR2+ER2,∴l=EF2=8m2﹣16m+16=8(m﹣1)2+8,令﹣83x+4=0,得x=32,∴0≤m≤32.∴当m=1时,l的最小值为8,∴EF的最小值为22.(3)①∠FBE为定角,不可能为直角.②∠BEF=90°时,E点与O点重合,D点与A点,F点重合,此时m=0.③如图3,∠BFE=90°时,有BF2+EF2=BE2.由(2)得EF2=8m2﹣16m+16,又∵BR=﹣m+2,FR=﹣2m+4,∴BF2=BR2+FR2=(﹣m+2)2+(﹣2m+4)2=5m2﹣20m+20,又∵BE2=(m+2)2,∴(5m2﹣20m+8)+(8m2﹣16m+16)2=(m+2)2,化简得,3m2﹣10m+8=0,解得m1=43,m2=2(不合题意,舍去),∴m=43.综合以上可得,当△BEF为直角三角形时,m=0或m=43.24.【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当1213SS时,求ADAB的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的110时,请直接写出tan∠BAE的值.【详解】(1)解:如图1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF =∠AHG =90°,∵AH =AH ,∴△AHF ≌△AHG (ASA ),∴AF =AG ,∴△AFG 是等腰三角形.(2)证明:如图2中,过点O 作OL ∥AB 交DF 于L ,则∠AFG =∠OLG .∵AF =AG ,∴∠AFG =∠AGF ,∵∠AGF =∠OGL ,∴∠OGL =∠OLG ,∴OG =OL ,∵OL ∥AB ,∴△DLO ∽△DFB , ∴=OL DO BF BD, ∵四边形ABCD 是矩形,∴BD =2OD ,∴BF =2OL ,∴BF =2OG .(3)解:如图3中,过点D 作DK ⊥AC 于K ,则∠DKA =∠CDA =90°,∵∠DAK =∠CAD ,∴△ADK ∽△ACD ,∴=DK CD AD AC , ∵S 1=12•OG •DK ,S 2=12•BF •AD , 又∵BF =2OG ,121=3S S , ∴2==3DK CD AD AC,设CD =2x ,AC =3x ,则AD = 25x , ∴5==AD AD AB CD . (4)解:设OG =a ,AG =k .①如图4中,连接EF ,当点F 在线段AB 上时,点G 在OA 上.∵AF =AG ,BF =2OG ,∴AF =AG =k ,BF =2a ,∴AB =k +2a ,AC =2(k +a ),∴AD 2=AC 2﹣CD 2=[2(k +a )]2﹣(k +2a )2=3k 2+4ka ,∵∠ABE =∠DAF =90°,∠BAE =∠ADF ,∴△ABE ∽△DAF ,∴=BE AE AB AD, ∴=2BE k k a AD +, ∴()2=k k a BE AD+, 由题意:()211022k k a a AD +⨯⨯⨯=AD •(k +2a ), ∴AD 2=10ka ,即10ka =3k 2+4ka ,∴k =2a ,∴AD = 25a , ∴BE = ()2k k a AD += 455a ,AB =4a , ∴tan ∠BAE = 55BE AB =. ②如图5中,当点F 在AB 的延长线上时,点G 在线段OC 上,连接EF .∵AF =AG ,BF =2OG ,∴AF =AG =k ,BF =2a ,∴AB =k ﹣2a ,AC =2(k ﹣a ),∴AD 2=AC 2﹣CD 2=[2(k ﹣a )]2﹣(k ﹣2a )2=3k 2﹣4ka ,∵∠ABE =∠DAF =90°,∠BAE =∠ADF ,∴△ABE ∽△DAF ,∴BE AE AB AD=, ∴2BE k k a AD =-, ∴ ()2k k a BE AD-=, 由题意:()211022k k a a AD -⨯⨯⨯=AD •(k ﹣2a ), ∴AD 2=10ka ,即10ka =3k 2﹣4ka ,∴k = 143a ,∴AD = 3a ,∴()2k k a BE AD -==,AB = 83a ,∴tan ∠BAE = BE AB =综上所述,tan ∠BAE .。
2020年浙江省衢州市中考数学试卷(附答案解析)
2020年浙江省衢州市中考数学试卷一、选择题(本题共有10小题,每小题3分,共30分)1.(3分)比0小1的数是()A.0B.-1C.1D.±12.(3分)下列几何体中,俯视图是圆的几何体是()A.B.C.D.3.(3分)计算(a2)3,正确结果是()A.a5B.a6C.a8D.a94.(3分)如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A.B.C.D.5.(3分)要使二次根式有意义,则x的值可以为()A.0B.1C.2D.46.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A.180(1-x)2=461B.180(1+x)2=461C.368(1-x)2=442D.368(1+x)2=4428.(3分)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A.B.C.D.9.(3分)二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是()A.向左平移2个单位,向下平移2个单位B.向左平移1个单位,向上平移2个单位C.向右平移1个单位,向下平移1个单位D.向右平移2个单位,向上平移1个单位10.(3分)如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为()A.B.C.D.二、填空题(本题共有6小题,每小题4分,共24分)11.(4分)一元一次方程2x+1=3的解是x=.12.(4分)定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x-1)※x 的结果为.13.(4分)某班五个兴趣小组的人数分别为4,4,5,x,6.已知这组数据的平均数是5,则这组数据的中位数是.14.(4分)小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD 的边长为4dm,则图2中h的值为dm.15.(4分)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC 于点M,反比例函数y=(x>0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=8,则k=.16.(4分)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆P A=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O转动时,点A,B,C的位置随之改变,点B恰好在线段MN 上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).(1)点P到MN的距离为cm.(2)当点P,O,A在同一直线上时,点Q到MN的距离为cm.三、解答题(本题共有8小题,第17~19小题每小题6分,第20~21小题每小题6分,第22~23小题每小题6分,第24小题12分,共66分.请务必写出解答过程)17.(6分)计算:|-2|+()0-+2sin30°.18.(6分)先化简,再求值:÷,其中a=3.19.(6分)如图,在5×5的网格中,△ABC的三个顶点都在格点上.(1)在图1中画出一个以AB为边的▱ABDE,使顶点D,E在格点上.(2)在图2中画出一条恰好平分△ABC周长的直线l(至少经过两个格点).20.(8分)某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.被抽样的学生视力情况频数表组别视力段频数A 5.1≤x≤5.325B 4.8≤x≤5.0115C 4.4≤x≤4.7mD 4.0≤x≤4.352(1)求组别C(2)求组别A的圆心角度数.(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?21.(8分)如图,△A BC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.22.(10分)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km?23.(10分)如图1,在平面直角坐标系中,△ABC的顶点A,C分别是直线y=-x+4与坐标轴的交点,点B的坐标为(-2,0),点D是边AC上的一点,DE⊥BC于点E,点F在边AB上,且D,F两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:①线段EF长度是否有最小值.②△BEF能否成为直角三角形.小明尝试用“观察-猜想-验证-应用”的方法进行探究,请你一起来解决问题.(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.(3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.24.(12分)【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF ⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当=时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.【试题答案】一、选择题(本题共有10小题,每小题3分,共30分)1.B【解答】解:0-1=-1,即比0小1的数是-1.2.A【解答】解:A、俯视图是圆,故此选项正确;B、俯视图是正方形,故此选项错误;C、俯视图是长方形,故此选项错误;D、俯视图是长方形,故此选项错误.3.B【解答】解:由幂的乘方法则可知,(a2)3=a2×3=a6.4.A【解答】解:由游戏转盘划分区域的圆心角度数可得,指针落在数字“Ⅱ”所示区域内的概率是:=.5.D【解答】解:由题意得:x-3≥0,解得:x≥3.6.C【解答】解:,由①得x≤1;由②得x>-1;故不等式组的解集为-1<x≤1,在数轴上表示出来为:.7.B【解答】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程:180(1+x)2=461.8.D【解答】解:A、本选项作了角的平分线与等腰三角形,能得到一组内错角相等,从而可证两直线平行,故本选项不符合题意.B、本选项作了一个角等于已知角,根据同位角相等两直线平行,能判断是过点P且与直线l的平行直线,本选项不符合题意.C、由作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、作图只截取了两条线段相等,而无法保证两直线平行的位置关系,本选项符合题意.9.C【解答】解:A、平移后的解析式为y=(x+2)2-2,当x=2时,y=14,本选项不符合题意.B、平移后的解析式为y=(x+1)2+2,当x=2时,y=11,本选项不符合题意.C、平移后的解析式为y=(x-1)2-1,当x=2时,y=0,函数图象经过(2,0),本选项符合题意.D、平移后的解析式为y=(x-2)2+1,当x=2时,y=1,本选项不符合题意.10.A【解答】解:由折叠补全图形如图所示,∵四边形ABCD是矩形,∴∠ADA'=∠B=∠C=∠A=90°,AD=BC=1,CD=AB,由第一次折叠得:∠DAE=∠A=90°,∠ADE=∠ADC=45°,∴∠AED=∠ADE=45°,∴AE=AD=1,在Rt△ADE中,根据勾股定理得,DE=AD=,由第二次折叠知,CD=DE=,∴AB=.二、填空题(本题共有6小题,每小题4分,共24分)11. 1【解答】解;将方程移项得,2x=2,系数化为1得,x=1.12.x2-1【解答】解:根据题意得:(x-1)※x=(x-1)(x+1)=x2-1.13. 5【解答】解:∵某班五个兴趣小组的人数分别为4,4,5,x,6,已知这组数据的平均数是5,∴x=5×5-4-4-5-6=6,∴这一组数从小到大排列为:4,4,5,6,6,∴这组数据的中位数是5.14.(4+)【解答】解:∵正方形ABCD的边长为4dm,∴②的斜边上的高是2dm,④的高是1dm,⑥的斜边上的高是1dm,⑦的斜边上的高是dm,∴图2中h的值为(4+)dm.15. 40【解答】解:过点M作MN⊥AD,垂足为N,则MN=CD=3,在Rt△FMN中,∠MFN=30°,∴FN=MN=3,∴AN=MB=8-3=5,设OA=x,则OB=x+3,∴F(x,8),M(x+3,5),又∵点F、M都在反比例函数的图象上,∴8x=(x+3)×5,解得,x=5,∴F(5,8),∴k=5×8=40.16.【解答】解:(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.由题意:OP=OQ=50cm,PQ=PA-AQ=140-60=80(cm),PM=PA+BC=140+60=200(cm),PT⊥MN,∵OH⊥PQ,∴PH=HQ=40(cm),∵cos∠P==,∴=,∴PT=160(cm),∴点P到MN的距离为160cm,故答案为160.(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.由题意AT=PT-PA=160-140=20(cm),OA=PA-OP=140-50=90(cm),OQ=50cm,AQ=60cm,∵QH⊥OA,∴QH2=AQ2-AH2=OQ2-OH2,∴602-x2=502-(90-x)2,解得x=,∴HT=AH+AT=(cm),∴点Q到MN的距离为cm.故答案为.三、解答题(本题共有8小题,第17~19小题每小题6分,第20~21小题每小题6分,第22~23小题每小题6分,第24小题12分,共66分.请务必写出解答过程)17.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、二次根式的性质分别化简得出答案.【解答】解:原式=2+1-3+2×=2+1-3+1=1.18.【分析】直接利用分式的乘除运算法则化简进而代入数据求出答案.【解答】解:原式=•(a-1)=,当a=3时,原式==.19.【分析】(1)根据平行四边形的定义画出图形即可(答案不唯一).(2)利用数形结合的思想解决问题即可.【解答】解:(1)如图平行四边形ABDE即为所求(点D的位置还有6种情形可取).(2)如图,直线l即为所求、20.【分析】(1)根据统计图中的数据,可以得到本次抽查的人数,从而可以得到m的值;(2)根据(1)中的结果和频数分布表,可以得到组别A的圆心角度数;(3)根据统计图中的数据,可以得到该市25000名九年级学生达到“视力良好”的人数,并提出合理化建议,建议答案不唯一,只要对保护眼睛好即可.【解答】解:(1)本次抽查的人数为:115÷23%=500,m=500×61.6%=308,即m的值是308;(2)组别A的圆心角度数是:360°×=18°,即组别A的圆心角度数是18°;(3)25000×=7000(人),答:该市25000名九年级学生达到“视力良好”的有7000人,建议是:同学们应少玩电子产品,注意用眼保护.21.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出=,求出EC即可解决问题.【解答】(1)证明:∵AE=DE,OC是半径,∴=,∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴=,∴=,∴CE=3.6,∵OC=AB=5,∴OE=OC-EC=5-3.6=1.4.22.【分析】(1)根据图中信息解答即可.(2)①求出B,C,D,E的坐标,利用待定系数法求解即可.②分两种情形分别构建方程求解即可.【解答】解:(1)C点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h.∴游轮在“七里扬帆”停靠的时长=23-(420÷20)=23-21=2(h).(2)①280÷20=14h,∴点A(14,280),点B(16,280),∵36÷60=0.6(h),23-0.6=22.4,∴点E(22.4,420),设BC的解析式为s=20t+b,把B(16,280)代入s=20t+b,可得b=-40,∴s=20t-40(16≤t≤23),同理由D(14,0),E(22.4,420)可得DE的解析式为s=50t-700(14≤t≤22.4),由题意:20t-40=50t-700,解得t=22,∵22-14=8(h),∴货轮出发后8小时追上游轮.②相遇之前相距12km时,20t-40-(50t-700)=12,解得t=21.6.相遇之后相距12km时,50t-700-(20t-40)=12,解得t=22.4,∴21.6h或22.4h时游轮与货轮何时相距12km.23.【分析】(1)根据描点法画图即可;(2)过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,证明Rt△FGK≌Rt△DHK (AAS),由全等三角形的性质得出FG=DH,可求出F(-m,-2m+4),根据勾股定理得出l =EF2=8m2-16m+16=8(m-1)2+8,由二次函数的性质可得出答案;(3)分三种不同情况,根据直角三角形的性质得出m的方程,解方程求出m的值,则可求出答案.【解答】解:(1)用描点法画出图形如图1,由图象可知函数类别为二次函数.(2)如图2,过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,则∠FGK=∠DHK=90°,记FD交y轴于点K,∵D点与F点关于y轴上的K点成中心对称,∴KF=KD,∵∠FKG=∠DKH,∴Rt△FGK≌Rt△DHK(AAS),∴FG=DH,∵直线AC的解析式为y=-x+4,∴x=0时,y=4,∴A(0,4),又∵B(-2,0),设直线AB的解析式为y=kx+b,∴,解得,∴直线AB的解析式为y=2x+4,过点F作FR⊥x轴于点R,∵D点的橫坐标为m,∴F(-m,-2m+4),∴ER=2m,FR=-2m+4,∵EF2=FR2+ER2,∴l=EF2=8m2-16m+16=8(m-1)2+8,令-+4=0,得x=,∴0≤m≤.∴当m=1时,l的最小值为8,∴EF的最小值为2.(3)①∠FBE为定角,不可能为直角.②∠BEF=90°时,E点与O点重合,D点与A点,F点重合,此时m=0.③如图3,∠BFE=90°时,有BF2+EF2=BE2.由(2)得EF2=8m2-16m+16,又∵BR=-m+2,FR=-2m+4,∴BF2=BR2+FR2=(-m+2)2+(-2m+4)2=5m2-20m+20,又∵BE2=(m+2)2,∴(5m2-20m+20)+(8m2-16m+16)=(m+2)2,化简得,3m2-10m+8=0,解得m1=,m2=2(不合题意,舍去),∴m=.综合以上可得,当△BEF为直角三角形时,m=0或m=.24.【分析】(1)如图1中,△AFG是等腰三角形.利用全等三角形的性质证明即可.(2)如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.首先证明OG=OL,再证明BF=2OL即可解决问题.(3)如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,利用相似三角形的性质解决问题即可.(4)设OG=a,AG=k.分两种情形:①如图4中,连接EF,当点F在线段AB上时,点G在OA上.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.分别求解即可解决问题.【解答】(1)解:如图1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF≌△AHG(ASA),∴AF=AG,∴△AFG是等腰三角形.(2)证明:如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.∵AF=AG,∴∠AFG=∠AGF,∵∠AGF=∠OGL,∴∠OGL=∠OLG,∴OG=OL,∵OL∥AB,∴△DLO∽△DFB,∴=,∵四边形ABCD是矩形,∴BD=2OD,∴BF=2OL,∴BF=2OG.(3)解:如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,∵∠DAK=∠CAD,∴△ADK∽△ACD,∴=,∵S1=•OG•DK,S2=•BF•AD,又∵BF=2OG,=,∴==,设CD=2x,AC=3x,则AD=x,∴==.(4)解:设OG=a,AG=k.①如图4中,连接EF,当点F在线段AB上时,点G在OA上.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k+2a,AC=2(k+a),∴AD2=AC2-CD2=[2(k+a)]2-(k+2a)2=3k2+4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴=,即=,∴=,∴BE=,由题意:10××2a×=AD•(k+2a),∴AD2=10ka,即10ka=3k2+4ka,∴k=2a,∴AD=2a,∴BE==a,AB=4a,∴tan∠BAE==.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k-2a,AC=2(k-a),∴AD2=AC2-CD2=[2(k-a)]2-(k-2a)2=3k2-4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴=,即=,∴=,∴BE=,由题意:10××2a×=AD•(k-2a),∴AD2=10ka,即10ka=3k2-4ka,∴k=a,∴AD=a,∴BE==a,AB=a,∴tan∠BAE==,综上所述,tan∠BAE的值为或.。
浙江省衢州市2021年中考数学试题及答案解析(word版)
浙江省衢州市2021年中考数学试题及答案解析(word版)
2021年浙江省衢州市中考数学试卷
一、选择题(本题有10小题,每小题3分,共30分)
2.(3分)(2021 衢州)一个几何体零件如图所示,则它的俯视图是()
4.(3分)(2021 衢州)如图,在 ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()
5.(3分)(2021 衢州)某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数
7.(3分)(2021 衢州)数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()
8.(3分)(2021 衢州)如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°
,则花坛对角线AC的长等于()
9.(3分)(2021 衢州)如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm长的绑绳EF,
tanα=,则“人字梯”的顶端离地面的高度AD是()
10.(3分)(2021 衢州)如图,已知△ABC,AB=BC,以AB为直径的圆交AC 于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()。
浙江省衢州市2021年中考数学试卷(解析版)
2021年浙江省衢州市中考数学试卷一、选择题(本题共有10小题,每小题3分,共30分)1.(3分)21的相反数是()A.21 B.﹣21 C.D.﹣【分析】依据相反数的定义求解即可.【解答】解:21的相反数是﹣21,故选:B.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.【分析】根据主视图的意义,从正面看该组合体所得到的图形进行判断即可.【解答】解:从正面看该组合体,所看到的图形与选项A中的图形相同,故选:A.【点评】本题考查简单组合体的主视图,理解视图的意义,掌握三视图的画法是正确判断的前提.3.(3分)2021年5月国家统计局公布了第七次人口普查结果,我国人口数约为1412000000.其中数据1412000000用科学记数法表示为()A.14.12×108B.0.1412×1010C.1.412×109D.1.412×108【分析】根据把一个大于10的数记成a×10n的形式的方法进行求解,即可得出答案.【解答】解:1412000000=1.412×109.故选:C.【点评】本题主要考查了科学记数法,熟练掌握科学记数法表示的方法进行求解是解决本题的关键.4.(3分)下列计算正确的是()A.(x2)3=x5B.x2+x2=x4C.x2•x3=x5D.x6÷x3=x2【分析】A:根据幂的乘方法则进行计算即可得出答案;B:根据合并同类项法则进行计算即可得出答案;C:根据同底数幂的乘法法则进行计算即可得出答案;D:根据同底数幂的除法法则进行计算即可得出答案.【解答】解:A:因为(x2)3=x6,所以A选项错误;B:因为x2+x2=2x2,所以B选项错误;C:因为x2•x3=x2+3=x5,所以C选项正确;D:因为x6÷x3=x6﹣3=x3,所以D选项错误.故选:C.【点评】本题主要考查了同底数幂乘除法则、合并同类项及幂的乘方,熟练应用相关法则进行计算是解决本题的关键.5.(3分)一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸出1个球,摸到白球的概率是()A.B.C.D.【分析】根据概率公式,用白球的个数除以球的总个数即可.【解答】解:∵从放有3个红球和2个白球布袋中摸出一个球,共有5种等可能结果,其中摸出的球是白球的有2种结果,∴从布袋中任意摸出1个球,摸到白球的概率是,故选:D.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.6.(3分)已知扇形的半径为6,圆心角为150°,则它的面积是()A.πB.3πC.5πD.15π【分析】把已知数据代入扇形面积公式计算,即可得到答案.【解答】解:扇形面积=,故选:D.【点评】本题考查的是扇形面积计算,掌握扇形面积公式:是解决本题的关键.7.(3分)如图,在△ABC中,AB=4,AC=5,BC=6,点D,E,F分别是AB,BC,CA 的中点,连结DE,EF,则四边形ADEF的周长为()A.6 B.9 C.12 D.15【分析】根据三角形中位线定理、线段中点的概念分别求出AD、DE、EF、AF,根据四边形的周长公式计算即可.【解答】解:∵点D,E,F分别是AB,BC,CA的中点,∴DE=AC=2.5,AF=AC=2.5,EF=AB=2,AD=AB=2,∴四边形ADEF的周长=AD+DE+EF+AF=9,故选:B.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8.(3分)《九章算术》是中国传统数学的重要著作,书中有一道题“今有五雀六燕,集称之衡,雀俱重,燕俱轻;一雀一燕交而处,衡适平;并燕雀重一斤.问:燕雀一枚,各重几何?”译文:“五只雀、六只燕,共重1斤(古时1斤=16两).雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕重量各为多少?”设雀重x两,燕重y两,可列出方程组()A.B.C.D.【分析】根据“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重”,即可得出关于x,y的二元一次方程组.【解答】解:根据题意,得:,故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)如图.将菱形ABCD绕点A逆时针旋转∠α得到菱形AB′C′D′,∠B=∠β.当AC 平分∠B′AC′时,∠α与∠β满足的数量关系是()A.∠α=2∠βB.2∠α=3∠βC.4∠α+∠β=180°D.3∠α+2∠β=180°【分析】由菱形和旋转的性质可证:∠BAB'=∠B'AC=∠CAC'=∠DAC'=∠α,再根据AD∥BC,即可得出4∠α+∠β=180°.【解答】解:∵AC平分∠B′AC′,∴∠B'AC=∠C'AC,∵菱形ABCD绕点A逆时针旋转∠α得到菱形AB′C′D′,∴∠BAB'=∠CAC'=∠α,∵AC平分∠BAD,∴∠BAC=∠DAC,∴∠BAB'=∠DAC',∴∠BAB'=∠B'AC=∠CAC'=∠DAC'=∠α,∵AD∥BC,∴4∠α+∠β=180°,故选:C.【点评】本题考查了菱形的性质,以及旋转前后对应角相等等知识,熟记其性质是解题的关键.10.(3分)已知A,B两地相距60km,甲、乙两人沿同一条公路从A地出发到B地,甲骑自行车匀速行驶3h到达,乙骑摩托车,比甲迟1h出发,行至30km处追上甲,停留半小时后继续以原速行驶.他们离开A地的路程y与甲行驶时间x的函数图象如图所示.当乙再次追上甲时距离B地()A.15km B.16km C.44km D.45km【分析】根据图象信息先求出甲、乙速度,然后根据第二次乙追上甲时所走路程相同求出甲所用时间,再求距离B地的距离即可.【解答】解:由图象可知:甲的速度为:60÷3=20(km/h),乙追上甲时,甲走了30km,此时甲所用时间为:30÷20=1.5(h),乙所用时间为:1.5﹣1=0.5(h),∴乙的速度为:30÷0.5=60(km/h),设乙休息半小时再次追上甲时,甲所用时间为t,则:20t=60(t﹣1﹣0.5),解得:t=2.25,此时甲距离B地为:(3﹣2.25)×20=0.75×20=15(km),故选:A.【点评】本题考查了一次函数和一元一次方程的应用,关键是读取图象中信息求出甲、乙的速度.二、填空题(本题共有6小题,每小题4分,共24分)11.(4分)若有意义,则x的值可以是2(答案不唯一).(写出一个即可)【分析】由题意可得:x﹣1≥0,解不等式即可得出答案.【解答】解:由题意可得:x﹣1≥0,即x≥1.则x的值可以是大于等于1的任意实数.故答案为:2(答案不唯一).【点评】本题主要考查了二次根式有意义的条件,熟练应用二次根式有意义的条件进行计算是解决本题的关键.12.(4分)不等式2(y+1)<y+3的解集为y<1.【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得,注意移项要变号.【解答】解:2(y+1)<y+32y+2<y+32y﹣y<3﹣2y<1,故答案为:y<1.【点评】本题主要考查解一元一次不等式,严格遵循解不等式的基本步骤是解题的关键.13.(4分)为庆祝建党100周年,某校举行“庆百年红歌大赛”.七年级5个班得分分别为85,90,88,95,92,则5个班得分的中位数为90分.【分析】将这组数据重新排列,再根据中位数的定义求解即可.【解答】解:将这5个班的得分重新排列为85、88、90、92、95,∴5个班得分的中位数为90分,故答案为:90.【点评】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14.(4分)如图,在正五边形ABCDE中,连结AC,BD交于点F,则∠AFB的度数为72°.【分析】根据五边形的内角和公式求出∠ABC,根据等腰三角形的性质求出∠BCA和∠CBD,根据三角形的一个外角等于与它不相邻的两个内角的和进行计算即可.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD=∠ABC==108°,∵BA=BC,∴∠BAC=∠BCA=36°,同理∠CBD=36°,∴∠AFB=∠BCA+∠CBD=72°,故答案为:72°.【点评】本题考查的是正多边形的内角,熟练掌握正多边形的内角的计算公式和等腰三角形的性质是解题的关键.15.(4分)将一副三角板如图放置在平面直角坐标系中,顶点A与原点O重合,AB在x 轴正半轴上,且AB=4,点E在AD上,DE=AD,将这副三角板整体向右平移12﹣个单位,C,E两点同时落在反比例函数y=的图象上.【分析】求得C、E的坐标,然后表示出平移后的坐标,根据k=xy得到关于t的方程,解方程即可求得.【解答】解:∵AB=4,∴BD=AB=12,∴C(4+6,6),∵DE=AD,∴E的坐标为(3,9),设平移t个单位后,则平移后C点的坐标为(4+6+t,6),平移后E点的坐标为(3+t,9),∵平移后C,E两点同时落在反比例函数y=的图象上,∴(4+6+t)×6=(3+t)×9,解得t=12﹣,故答案为12﹣.【点评】本题考查了反比例函数图象上点的坐标特征坐标与图形变化﹣平移,表示出C、E的坐标,进而得到平移后的坐标是解题的关键.16.(4分)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且OA=OB,椅面底部有一根可以绕点H 转动的连杆HD,点H是CD的中点,F A,EB均与地面垂直,测得F A=54cm,EB=45cm,AB=48cm.(1)椅面CE的长度为40cm.(2)如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角∠CHD的度数达到最小值30°时,A,B两点间的距离为12.5cm(结果精确到0.1cm).(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)【分析】(1)由平行线的性质可得∠ECB=∠ABF,由锐角三角函数可得,即可求解;(2)如图2,延长AD,BE交于点N,由“ASA”可证△ABF≌△BAN,可得BN=AF,可求NE的长,由锐角三角函数可求DE的长,即可求DH的长,如图3,连接CD,过点H作HP⊥CD于P,由锐角三角函数和等腰三角形的性质,可求DC的长,通过相似三角形的性质可求解.【解答】解:(1)∵CE∥AB,∴∠ECB=∠ABF,∴tan∠ECB=tan∠ABF,∴,∴,∴CE=40(cm),故答案为:40;(2)如图2,延长AD,BE交于点N,∵OA=OB,∴∠OAB=∠OBA,在△ABF和△BAN中,,∴△ABF≌△BAN(ASA),∴BN=AF=54(cm),∴EN=9(cm),∵tanN=,∴=,∴DE=8(cm),∴CD=32(cm),∵点H是CD的中点,∴CH=DH=16(cm),∵CD∥AB,∴△AOB∽△DOC,∴===,如图3,连接CD,过点H作HP⊥CD于P,∵HC=HD,HP⊥CD,∴∠PHD=∠CHD=15°,CP=DP,∵sin∠DHP==sin15°≈0.26,∴PD≈16×0.26=4.16,∴CD=2PD=8.32,∵CD∥AB,∴△AOB∽△DOC,∴,∴,∴AB=12.48≈12.5(cm),故答案为:12.5.【点评】本题考查了解直角三角形的应用,相似三角形的判定和性质,全等三角形的判定和性质等知识,求出CD的长是解题的关键.三、解答题(本题共有8小题,第17~19小题每小题6分,第20~21小题每小题6分,第22~23小题每小题6分,第24小题12分,共66分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省衢州市中考数学真题及答案E一、选择题(本题有10小题,每小题3分,共30分)1.-3的相反数是( )A.3B.-3C.1 3D.-1 3解析:-3的相反数是3.答案:A2.一个几何体零件如图所示,则它的俯视图是( )A.B.C.D.解析:这个几何体零件的俯视图是一个正中间有一个小正方形的矩形,所以它的俯视图是选项C中的图形.答案:C3. 下列运算正确的是( )A.a3+a3=2a6B.(x2)3=x5C.2a6÷a3=2a2D.x3·x2=x5解析:A、应为a3+a3=2a3,故本选项错误;B、应为(x2)3=x6,故本选项错误;C、应为2a6÷a3=2a3,故本选项错误;D、x3·x2=x5正确.答案:D4.如图,在平行四边形ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于( )A.8cmB.6cmC.4cmD.2cm解析:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC-BE=4cm.答案:C5.某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是( )A.7B.6C.5D.4解析:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5, ∴x=5×7-4-4-5-6-6-7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.答案:C.6.下列四个函数图象中,当x>0时,y随x的增大而减小的是( )A.B.C.D.解析:当x>0时,y随x的增大而减小的是.答案:B7.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是( )A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径解析:由作图痕迹可以看出O为AB的中点,以O为圆心,AB为直径作圆,然后以B为圆心BC=a 为半径花弧与圆O交于一点C,故∠ACB是直径所对的圆周角,所以这种作法中判断∠ACB是直角的依据是:直径所对的圆心角是直角.答案:B8.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于( )3B.6米3D.3米解析:∵四边形ABCD为菱形,∴AC ⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=24÷4=6(米),∵∠BAD=60°,∴△ABD 为等边三角形,∴BD=AB=6(米),OD=OB=3(米),在Rt △AOB 中,根据勾股定理得:OA=2263-=33(米),则AC=2OA=63米.答案:A 9.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm 长的绑绳EF,tan α=52,则“人字梯”的顶端离地面的高度AD 是( )A.144cmB.180cmC.240cmD.360cm解析:如图:根据题意可知:△AFO ∽△ABD,OF=12EF=30cm,∴OF AF DC AC =,∴30 2.56DC =,∴CD=72cm, ∵tan α=52,∴AD DC =52,∴AD=52×72=180cm. 答案:B10.如图,已知△ABC,AB=BC,以AB 为直径的圆交AC 于点D,过点D 的⊙O 的切线交BC 于点E.若CD=5,CE=4,则⊙O 的半径是( )A.3B.4C.256D.258 解析:如图1,连接OD 、BD,∵DE ⊥BC,CD=5,CE=4,∴2254 ∵AB 是⊙O 的直径,∴∠ADB=90°,∵S △BCD =BD ·CD ÷2=BC ·DE ÷2,∴5BD=3BC,∴BD=35BC, ∵BD 2+CD 2=BC 2,∴(35BC)2+52=BC 2,解得BC=254, ∵AB=BC,∴AB=254,∴⊙O 的半径是;254÷2=258. 答案:D.二、填空题(本题有6小题,每小题4分,共24分)11.从小明、小聪、小惠和小颖四人中随机选取1人参加学校组织的敬老活动,则小明被选中的概率是 .解析:∵从小明、小聪、小惠和小颖四人中随机选取1人参加学校组织的敬老活动,∴小明被选中的概率是:14.答案:1 412.如图,小聪与小慧玩跷跷板,跷跷板支架高EF为0.6米,E是AB的中点,那么小聪能将小慧翘起的最大高度BC等于米.解析:∵EF⊥AC,BC⊥AC,∴EF∥BC,∵E是AB的中点,∴F为AC的中点,∴BC=2EF,∵EF=0.6米,∴BC=1.2米,答案:1.213.写出一个解集为x>1的一元一次不等式 .解析:移项,得x-1>0(答案不唯一).答案:x-1>0.14.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于 m.解析:如图:∵AB=1.2m,OE ⊥AB,OA=1m,∴AE=0.8m,∵水管水面上升了0.2m,∴AF=0.8-0.2=0.6m,∴CF=2222106C OF -=-.=0.8m,∴CD=1.6m.答案:1.615.已知,正六边形ABCDEF 在直角坐标系内的位置如图所示,A(-2,0),点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过2015次翻转之后,点B 的坐标是 .解析:∵正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°, ∴每6次翻转为一个循环组循环,∵2015÷6=335余5, ∴经过2015次翻转为第336循环组的第5次翻转,点B 在开始时点C 的位置,∵A(-2,0),∴AB=2,∴翻转前进的距离=2×2015=4030,如图,过点B 作BG ⊥x 于G,则∠BAG=60°,所以,AG=2×12=1,BG=233所以,OG=4030+1=4031,所以,点B 的坐标为3答案:(4031,3)16.如图,已知直线y=-34x+3分别交x轴、y轴于点A、B,P是抛物线y=-12x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=-34x+3于点Q,则当PQ=BQ时,a的值是 .解析:设点P的坐标为(a,-12a2+2a+5),则点Q为(a,-34a+3),点B为(0,3),当点P在点Q上方时2234a a⎛⎫⎪⎝⎭+54a,PQ=-12a2+2a+5-(-34a+3)=-12a2+114a+2,∵PQ=BQ,∴54a=-12a2+114a+2,整理得:a2-3a-4=0,解得:a=-1或a=4,当点P在点Q下方时2234a a⎛⎫⎪⎝⎭+54a,PQ=-34a+3-(-12a2+2a+5)=12a2-114a-2,∵PQ=BQ,∴54a=12a2-114a-2,整理得:a2-8a-4=0,解得:5或5.综上所述,a的值为:55答案:55三、解答题(本题有8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分。
请务必写出解答过程)122)0-4sin60°.解析:先化简二次根式,绝对值,计算0指数幂以及代入特殊角的三角函数值,再进一步计算加减即可.答案:原式=23-2+1-4×32=-1.18.先化简,再求值:(x2-9)÷3xx-,其中x=-1.解析:原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.答案:原式=(x+3)(x-3)·3xx-=x(x+3)=x2+3x,当x=-1时,原式=1-3=-2.19. 如图,已知点A(a,3)是一次函数y1=x+b图象与反比例函数y2=6x图象的一个交点.(1)求一次函数的解析式;(2)在y轴的右侧,当y1>y2时,直接写出x的取值范围.解析:(1)将点A的坐标代入反比例函数的解析式,求得a值后代入一次函数求得b的值后即可确定一次函数的解析式;(2)y1>y2时y1的图象位于y2的图象的上方,据此求解.答案:(1)将A(a,3)代入y2=6x得a=2,∴A(2,3),将A(2,3)代入y1=x+b得b=1,∴y1=x+1.(2)∵A(2,3),∴根据图象得在y轴的右侧,当y1>y2时,x>2.20.某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?请补全条形统计图;(2)求出图1中表示文学类书籍的扇形圆心角度数;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?解析:(1)根据已知条件列式计算即可,如图2所示,先计算出其它类的频数,再画条形统计图即可;(2)根据已知条件列式计算即可;(3)根据已知条件列式计算即可.答案:(1)8÷20%=40(本),其它类;40×15%=6(本),补全条形统计图,如图所示:(2)文学类书籍的扇形圆心角度数为:360×1440=126°;(3)普类书籍有:1240×1200=360(本).21.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF 折叠,使顶点A落在折痕DE上的点G处.再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE 上的点H处.如图2.(1)求证:EG=CH ;(2)已知2,求AD 和AB 的长.解析:(1)由折叠的性质及矩形的性质可知AE=AD=EG,BC=CH,再根据四边形ABCD 是矩形,可得AD=BC,等量代换即可证明EG=CH ;(2)由折叠的性质可知∠ADE=45°,∠FGE=∠A=90°2,那么2,利用勾股定理求出DF=2,于是可得2+2;再利用AAS 证明△AEF ≌△BCE,得到AF=BE,于是222+2.答案:(1)由折叠知AE=AD=EG,BC=CH,∵四边形ABCD 是矩形,∴AD=BC,∴EG=CH ;(2)∵∠ADE=45°,∠FGE=∠A=90°2,∴2,DF=2,∴2+2; 由折叠知∠AEF=∠GEF,∠BEC=∠HEC,∴∠GEF+∠HEC=90°,∠AEF+∠BEC=90°,∵∠AEF+∠AFE=90°,∴∠BEC=∠AFE,在△AEF 与△BCE 中,90AFE BEC A B AE BC ∠=∠∠=∠=⎧⎩︒⎪⎪=⎨,,,∴△AEF ≌△BCE(AAS),∴AF=BE,∴222+2.22.小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a 1x 2+b 1x+c 1(a 1≠0,a 1,b 1,c 1是常数)与y=a 2x 2+b 2x+c 2(a 2≠0,a 2,b 2,c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则称这两个函数互为“旋转函数”.求函数y=-x 2+3x-2的“旋转函数”.小明是这样思考的:由函数y=-x 2+3x-2可知,a 1=-1,b 1=3,c 1=-2,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”. 请参考小明的方法解决下面问题:(1)写出函数y=-x2+3x-2的“旋转函数”;(2)若函数y=-x2+43mx-2与y=x2-2nx+n互为“旋转函数”,求(m+n)2015的值;(3)已知函数y=-12(x+1)(x-4)的图象与x轴交于点A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分布是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=-12(x+1)(x-4)互为“旋转函数.”解析:(1)根据“旋转函数”的定义求出a2,b2,c2,从而得到原函数的“旋转函数”;(2)根据“旋转函数”的定义得到43m=-2n,-2+n=0,再解方程组求出m和n的值,然后根据乘方的意义计算;(3)先根据抛物线与坐标轴的交点问题确定A(-1,0),B(4,0),C(0,2),再利用关于原点对称的点的坐标特征得到A1(1,0),B1(-4,0),C1(0,-2),则可利用交点式求出经过点A1,B1,C1的二次函数解析式为y=12(x-1)(x+4)=12x2+32x-2,再把y=-12(x+1)(x-4)化为一般式,然后根据“旋转函数”的定义进行判断.答案:(1)∵a1=-1,b1=3,c1=-2,∴-1+a2=0,b2=3,-2+c2=0,∴a2=11,b2=3,c2=2,∴函数y=-x2+3x-2的“旋转函数”为y=x2+3x+2.(2)根据题意得43m=-2n,-2+n=0,解得m=-3,n=2,∴(m+n)2015=(-3+2)2015=-1.(3)当x=0时,y=-12(x+1)(x-4)=2,则C(0,2),当y=0时,-12(x+1)(x-4)=0,解得x1=-1,x2=4,则A(-1,0),B(4,0),∵点A、B、C关于原点的对称点分布是A1,B1,C1,∴A1(1,0),B1(-4,0),C1(0,-2),设经过点A1,B1,C1的二次函数解析式为y=a2(x-1)(x+4),把C1(0,-2)代入得a2·(-1)·4=-2,解得a2=12,∴经过点A1,B1,C1的二次函数解析式为y=12(x-1)(x+4)=12x2+32x-2,而y=-12(x+1)(x-4)=-12x2+32x+2,∴a1+a2=-12+12=0,b1=b2=32,c1+c2=2-2=0,∴经过点A1,B1,C1的二次函数与函数y=-12(x+1)(x-4)互为“旋转函数.23.高铁的开通,给衢州市民出行带来了极大的方便,“五一”期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车站,然后再转车出租车取游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当颖颖达到杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?解析:(1)利用路程除以时间得出速度即可;(2)首先分别求出两函数解析式,进而求出2小时乐乐行驶的距离,进而得出距离游乐园的路程;(3)把y=216代入y=80t,得t=2.7,进而求出私家车的速度.答案:(1)v=24021-=240.答:高铁的平均速度是每小时240千米;(2)设y=kt+b,当t=1时,y=0,当t=2时,y=240,得:2402k bk b=+⎧⎨=+⎩,,解得:240240kb=⎧⎨=-⎩,,故把t=1.5代入y=240t-240,得y=120,设y=at,当t=1.5,y=120,得a=80,∴y=80t,当t=2,y=160,216-160=56(千米),∴乐乐距离游乐园还有56千米.(3)把y=216代入y=80t,得t=2.7,2.7-1860=2.4(小时),2162.4=90(千米/时).∴乐乐要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.24.如图,在△ABC中,AB=5,AC=9,S△ABC=272,动点P从A点出发,沿射线AB方向以每秒5个单位的速度运动,动点Q从C点出发,以相同的速度在线段AC上由C向A运动,当Q点运动到A 点时,P、Q两点同时停止运动,以PQ为边作正方形PQEF(P、Q、E、F按逆时针排序),以CQ 为边在AC上方作正方形QCGH.(1)求tanA的值;(2)设点P运动时间为t,正方形PQEF的面积为S,请探究S是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当t为何值时,正方形PQEF的某个顶点(Q点除外)落在正方形QCGH的边上,请直接写出t的值.解析:(1)如图1,过点B作BM⊥AC于点M,利用面积法求得BM的长度,利用勾股定理得到AM 的长度,最后由锐角三角函数的定义进行解答;(2)如图2,过点P作PN⊥AC于点N.利用(1)中的结论和勾股定理得到PN2+NQ2=PQ2,所以由正方形的面积公式得到S关于t的二次函数,利用二次函数的顶点坐标公式和二次函数图象的性质来求其最值;(3)需要分类讨论:当点E在边HG上、点F在边HG上、点P边QH(或点E在QC上)、点F 边C上时相对应的t的值.答案:(1)如图,过点B作BM⊥AC于点M,∵AC=9,S △ABC =272,∴12AC ·BM=272,即12×9·BM=272,解得BM=3. 由勾股定理,得AM=222253AB BM -=-=4,则tanA=34BM AM =; (2)存在.如图2,过点P 作PN ⊥AC 于点N.依题意得AP=CQ=5t.∵tanA=34,∴AN=4t,PN=3t.∴QN=AC-AN-CQ=9-9t. 根据勾股定理得到:PN 2+NQ 2=PQ 2,S 正方形PQEF =PQ 2=(3t)2+(9-9t)2=90t 2-162t+81(0<t <95). ∵1629229010b a --==⨯在t 的取值范围之内, ∴S 最小值=2244908116281449010ac b a -⨯⨯-==⨯;(3)①如图3,当点E在边HG上时,t1=9 14;②如图4,当点F在边HG上时,t2=9 11;③如图5,当点P边QH(或点E在QC上)时,t3=1;④如图6,当点F边C上时,t4=9 7 .。