uc3842 电压维修
电动车充电器工作原理及常见故障维修

电动车充电器工作原理及常见故障维修(总8页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除电动车充电器工作原理及常见故障维修电动车如今已进入我们的生活,方便了我们的出行,而且还环保,正是我国目前提倡的“低碳生活”;但它的充电器故障率较高,很是一件令人头疼的事。
出于这个缘故,根据本人多年的维修经验,写了这篇文章,希望对电子电器维修人员和广大的电子爱好者,提供维修资料,供维修参考用。
为了方便说明,本文还是从原理开始说起。
一.工作原理我们目前用的电动车充电器大部分都是脉冲式充电器。
就目前来说,以UC3842为主控芯片的充电器还是占绝大多数,当然也有不少是以TL494为主控芯片的充电器,对于采用这种芯片的充电器本文不做阐述(因这两种充电器的维修基本上是大同小异的)。
这类充电器的原理与开关电源的原理是基本相同的220V 的交流电经交流滤波电路滤除外来的杂波信号(同时也防止电源本身产生的高频杂波对电网的干扰),再经二极管桥式整流电路和滤波电路,整流滤波后得到约300V的直流电,送给功率变换电路进行功率转换。
功率变换电路中的开关功率管(IGBT)就在脉冲宽度调制控制器(UC3842)输出的脉冲控制信号驱动下,工作在“开”“关”状态,从而将300V直流电切换成宽度可调的高频脉冲电压。
把高频脉冲电压送给高频脉冲变压器,其次级就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波;最后输出一个很平滑的直流电,供给蓄电池充电。
由于蓄电池刚开始充电时和充过一段时间后,蓄电池的容量和端电压均不一样,这就由充电器内部取样电路将取样信号通过光电耦合器(PC817)送入控制电路,经过脉宽调制芯片(UC3842)内部调制,由控制电路的输出端将变宽或变窄的驱动脉冲送到开关功率管的栅极,使变换电路产生的高频脉冲方波也随之变宽或变窄,使蓄电池的充电分别进入:恒流充电,恒压充电和浮充充电这三个充电阶段。
东芝彩超维修实例

一、电源电路故障3例故障现象:开机后,其控制键盘上的键盘灯间歇闪亮,监视器屏幕不亮,机器冷却风扇只是在送电瞬间转动一下,然后就不再转动。
故障排除:此B超机的故障应是机内开关电源不正常,无输出直流工作电压。
刚开机,机器冷却风扇转动一下然后就停下来,是由于机内电源电路有故障,保护电路动作引起的。
B超机操作键盘灯一亮一灭有规律的闪亮,也是机器内开关电源出现故障,闭环控制使机器直流工作电源建立不起来。
打开B超机电源箱,单独给电源箱送电,测量直流工作主电源 170V 正常,说明B板工作正常,也说明4#电路板工作基本正常,因为4#电路板工作若不正常,就不会向B板的半控桥全波整流电路的可控硅提供7.5V开关控制信号,也就不会有 170V直流主工作电源。
测量 5V直流电压端子,电压表指针在 2.5V至 4V之间不停的摆动。
通过上述现象分析,认为1#电路板也应当正常,因为1#电路板的输出受控于2#电路板。
测量±15V、 12V、±l0V,-5V各组直流工作电压都为0V。
由前面边检查、边测量、边分析后认为:故障应发生在2#或3#电路板上,二块电路板同时出现故障的可能性很小。
因为手中无电路图,只好先拔下2#、3#电路板对比着细查,每一个能测量到的元件都测量了一遍,没发现问题,但通过二块电路板的对比观察,发现这二块电路板电路结构极为相象,感觉可以将二块电路板互换位置试一下。
于是将3#电路板插到2#电路板的板槽上,并让3#电路板的板槽先空着,即先不把2#电路板接到电源箱上。
送电后测量1#电路板的5V直流输出电压正常,稳定(原故障状态是5V 直流电压在 2.5V至 4V之间不停的跳变),同时3#电路板直流电压±l5V,-l0V建立并有输出,说明3#电路板开关电源工作正常。
此时测量4#电路板的⑥脚电压为 12V,⑧脚电压为0V。
断电,拔下3#电路板,将2#电路板插到电路板槽上,但无论是将2#电路板插到2#板槽上,还是插到3#板槽上,l#电路板没有 5V输出,2#电路板也无直流电压输出,说明此时l#、2#电路板都未工作。
3842开关电源不起振维修技巧

3842开关电源不起振维修技巧3842开关电源是一种常用的电源模块,它具有高效、稳定的特点,被广泛应用于各种电子设备中。
然而,在使用过程中,我们有时会遇到开关电源不起振的情况。
本文将介绍一些常见的维修技巧,帮助大家解决3842开关电源不起振的问题。
一、检查输入电源我们需要检查输入电源是否正常。
可以使用万用表或者示波器等工具来检测输入电压是否稳定,是否符合开关电源的要求。
同时,还要检查输入电源的连接是否牢固,插头是否松动,以及输入端是否存在短路等情况。
如果发现问题,及时排除故障即可。
二、检查输出负载如果输入电源正常,但开关电源仍然不起振,那么我们需要检查输出负载。
首先,可以尝试断开输出负载,观察开关电源是否能够正常起振。
如果能够正常起振,说明输出负载存在问题,需要进一步检查负载电路、负载电阻等。
如果无法起振,说明问题可能出现在其他地方。
三、检查反馈电路开关电源的工作原理是通过反馈电路来调节输出电压。
因此,反馈电路的故障也可能导致开关电源不起振。
我们可以检查反馈电路的连接是否正常,电阻、电容等元件是否损坏,以及反馈信号是否正确等。
如果发现问题,及时更换或修复故障元件。
四、检查开关管、变压器等开关电源中的开关管和变压器也是常见的故障点。
我们可以使用万用表等工具检测开关管是否损坏,是否存在短路等情况。
同时,还需要检查变压器的绕组是否正常,是否存在短路或开路等问题。
如果发现故障,需要及时更换相应的元件。
五、检查控制电路我们还需要检查开关电源的控制电路。
控制电路通常由主控芯片、驱动电路等组成,如果其中任何一个部分出现问题,都可能导致开关电源不起振。
我们可以检查主控芯片的引脚连接是否正常,是否存在短路或开路等情况。
同时,还需要检查驱动电路的工作状态是否正常,是否存在故障等问题。
如有问题,及时修复或更换故障元件。
当我们遇到3842开关电源不起振的情况时,可以按照以上步骤逐一排查故障原因。
通过检查输入电源、输出负载、反馈电路、开关管、变压器和控制电路等部分,定位故障点并进行修复,最终恢复开关电源的正常工作。
电动车充电器工作原理及常见故障维修

电动车充电器工作原理及常见故障维修电动车如今已进入我们的生活,方便了我们的出行,而且还环保,正是我国目前提倡的“低碳生活”;但它的充电器故障率较高,很是一件令人头疼的事。
出于这个缘故,根据本人多年的维修经验,写了这篇文章,希望对电子电器维修人员和广大的电子爱好者,提供维修资料,供维修参考用。
为了方便说明,本文还是从原理开始说起。
一.工作原理我们目前用的电动车充电器大部分都是脉冲式充电器。
就目前来说,以UC3842为主控芯片的充电器还是占绝大多数,当然也有不少是以TL494为主控芯片的充电器,对于采用这种芯片的充电器本文不做阐述(因这两种充电器的维修基本上是大同小异的)。
这类充电器的原理与开关电源的原理是基本相同的220V的交流电经交流滤波电路滤除外来的杂波信号(同时也防止电源本身产生的高频杂波对电网的干扰),再经二极管桥式整流电路和滤波电路,整流滤波后得到约300V的直流电,送给功率变换电路进行功率转换。
功率变换电路中的开关功率管(IGBT)就在脉冲宽度调制控制器(UC3842)输出的脉冲控制信号驱动下,工作在“开”“关”状态,从而将300V直流电切换成宽度可调的高频脉冲电压。
把高频脉冲电压送给高频脉冲变压器,其次级就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波;最后输出一个很平滑的直流电,供给蓄电池充电。
由于蓄电池刚开始充电时和充过一段时间后,蓄电池的容量和端电压均不一样,这就由充电器内部取样电路将取样信号通过光电耦合器(PC817)送入控制电路,经过脉宽调制芯片(UC3842)内部调制,由控制电路的输出端将变宽或变窄的驱动脉冲送到开关功率管的栅极,使变换电路产生的高频脉冲方波也随之变宽或变窄,使蓄电池的充电分别进入:恒流充电,恒压充电和浮充充电这三个充电阶段。
二.常见故障分析及维修由于电动车充电器的输入部分工作在高压,大电流的状态下,故障率最高,如高压大电流整流二极管,滤波电容,开关功率管等较易损坏。
电动车48V充电器维修经验

电动车48V充电器维修经验我们目前用的电动车充电器大部分都是脉冲式充电器。
就目前来说,以UC3842为主控芯片的充电器还是占绝大多数,当然也有不少是以TL494为主控芯片的充电器,对于采用这种芯片的充电器本文不做阐述(因这两种充电器的维修基本上是大同小异的)。
这类充电器的原理与开关电源的原理是基本相同的220V的交流电经交流滤波电路滤除外来的杂波信号(同时也防止电源本身产生的高频杂波对电网的干扰),再经二极管桥式整流电路和滤波电路,整流滤波后得到约300V的直流电,送给功率变换电路进行功率转换。
功率变换电路中的开关功率管(IGBT)就在脉冲宽度调制控制器(UC3842)输出的脉冲控制信号驱动下,工作在“开”“关”状态,从而将300V直流电切换成宽度可调的高频脉冲电压。
把高频脉冲电压送给高频脉冲变压器,其次级就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波;最后输出一个很平滑的直流电,供给蓄电池充电。
由于蓄电池刚开始充电时和充过一段时间后,蓄电池的容量和端电压均不一样,这就由充电器内部取样电路将取样信号通过光电耦合器(PC817)送入控制电路,经过脉宽调制芯片(UC3842)内部调制,由控制电路的输出端将变宽或变窄的驱动脉冲送到开关功率管的栅极,使变换电路产生的高频脉冲方波也随之变宽或变窄,使蓄电池的充电分别进入:恒流充电,恒压充电和浮充充电这三个充电阶段。
一、故障及处理方法1. 充电器由KA3842和HY358双运算放大器组成,故障为无48V电压输出,拆开外壳检查发现63V470uf电容爆液,更换后,接着检查有无损坏的元器件和短路,经仔细检查后,通电测试,输出正常,移动电路板后,又测电压变为67V,与实际输出过高,有2秒钟后,63V电容微微冒烟,温度升高,眼看爆炸,立即断电.经查发现TL431一脚虚焊,造成稳压失控,烧坏63V电容.2.拆开充电器,由LM324 贴片IC KA3842组成电路.保险熔断,不敢通电测试,经查,有两只整流管IN5399 IN5398击穿,开关场效应管GFP8N60两脚击穿,IN5399用RL207代换,开关管8N60用PHX7NQ60E代换.然后,保险处接上灯泡,通电灯泡一亮即灭,测量电压正常55.2V,取下灯泡接上保险,给电动车充电,刚接上不到10秒钟,听到叭的一声,保险又烧断.经查,开关管,又击穿了,测得KA3842第5脚接地与第6脚短路.更换K3842,接上灯泡测试充电,灯泡,以1HZ的频率一闪一闪的,充电器也停了又启,启了又停.取下灯泡,接上保险,一直正常充电,问题排除.3. 48V 1.8A充电器保险完好,测开关管,电容正常,通电测试,红绿灯同时有频率的一闪一闪,刚启动输出电压为54.5正常,又等一会儿,电压慢慢下降30-36V之间.测TL431,光藕正常,检查其它电阻,都正常阻值.依次更换,开关管8N60,TL431,光藕,63V电容,测得400V电容有320V电压,最后更换PFC电感,电容,均无正常电压输出.并且仔细测量各个限流电阻,与实际阻值相差多的,也更换.还是不能解决.最后从电脑主板上拆下LM324更换后,通电测试电压输出正常,红绿灯显示正常,但没有进行下一步带负载充电测试.4. 拆开后发现烧毁不少地方:进线电路板铜箔烧毁2处,14007整流二极管坏了4个,贴片电阻270坏。
ka3842开关电源维修

在国产的显示器中,电源PWM控制电路最常用的集成电路型号就是UC3842(或KA3842).下面简单介绍一下UC3842好坏的判断方法:在更换完外围损坏的元器件后,先不装开关管,加电测UC3842的7脚电压,若电压在10-17V间波动,其余各脚也分别有波动的电压,则说明电路已起振,UC3842基本正常;若7脚电压低,其余管脚无电压或不波动,则UC3842已损坏.在UC3842的7、5脚间外加+17V左右的直流电压,若测8脚有+5V电压,1、2、4、6脚也有不同的电压,则UC3842基本正常,工作电流小,自身不易损坏.它损坏的最常见原因是电源开关管短路后,高电压从G极加到其6脚而致使其烧毁.而有些机型中省去了G极接地的保护二极管,则电源开关管损坏时,UC3842和G极外接的限流电阻必坏.此时直接更5脚:地线;电压:0V6脚:开关管驱动脉冲输出;电压:1.3V,7脚:电源;电压:15V8脚:5V基准电压;电压:5V主要检测7脚的电压和5脚的电压是否正常就知道了3842电源使用频率是非常高的,除了稳定性比较好外,价格低廉估计也是大多数国产机的首选它的设计比较简单,1误差放大器补偿2误差电压输入,具有软启动保护功能3开关管电流检测,具有过流保护功能4外接开关电源振荡定时元件5地线6开关管驱动冲输出7接电源/欠压保护检测85V基准电压输出以mag796PF为例故障现象一般为完全不工作和开机哒哒响,指示灯闪。
排除300V,虚焊,负载短路后,首先查7脚供电应在14~15V而且非常平稳如果极低,或者为0,检查启动电阻R904保护作用的稳压管ZD901,7脚是否短路,最近发现D906短路也会把7脚拉低;电压波动很大,保护电路在工作;电压低且在逐渐上升,到达工作电压或者表笔碰到7脚时开机了~~7脚上的滤波电容坏保护电路一般设在1:7脚上的18V稳压管,有些机型用一只三极管和一只稳压管将电压稳定在15V再提供给7脚,这些都是保护3842的工作电压不至太高,实际上3842内部7脚也具有自动稳压和电源保护作用2开关管(场效应管,可用7N60)D脚对地稳压管38脚上的保护电路,一般由2只三极管组成,作用是电源不正常时直接把5V拉低,必要时可以断开保护检查。
UC3842开关电源
标签:杂谈分类:应用技术电流信号送到3842的第3脚来实现保护。
当电源过载时,3842保护动作,使占空比减小,输出电压降低,3842的供电电压Vaux也跟着降低用UC3842做的开关电源的典型电路见图1。
过载和短路保护,一般是通过在开关管的源极串一个电阻(R4),把电流信号送到3842的第3脚来实现保护。
当电源过载时,3842保护动作,使占空比减小,输出电压降低,3842的供电电压Vaux也跟着降低,当低到3842不能工作时,整个电路关闭,然后靠R1、R2开始下一次启动过程。
这被称为“打嗝”式(hiccup)保护。
在这种保护状态下,电源只工作几个开关周期,然后进入很长时间(几百ms到几s)的启动过程,平均功率很低,即使长时间输出短路也不会导致电源的损坏。
由于漏感等原因,有的开关电源在每个开关周期有很大的开关尖峰,即使在占空比很小时,辅助电压Vaux也不能降到足够低,所以一般在辅助电源的整流二极管上串一个电阻(R3),它和C1形成RC 滤波,滤掉开通瞬间的尖峰。
仔细调整这个电阻的数值,一般都可以达到满意的保护。
使用这个电路,必须注意选取比较低的辅助电压Vaux,对3842一般为13~15V,使电路容易保护。
f=1.8/(RT×CT)在本系统中RT和CT分别选用了10kΩ和0.045μF,根据公式:可以计算得其工作频率约为40kHz,符合开关电源的要求。
图1是使用最广泛的电路,然而它的保护电路仍有几个问题:1. 在批量生产时,由于元器件的差异,总会有一些电源不能很好保护,这时需要个别调整R3的数值,给生产造成麻烦;2. 在输出电压较低时,如3.3V、5V,由于输出电流大,过载时输出电压下降不大,也很难调整R3到一个理想的数值;3. 在正激应用时,辅助电压V aux虽然也跟随输出变化,但跟输入电压HV的关系更大,也很难调整R3到一个理想的数值。
这时如果采用辅助电路来实现保护关断,会达到更好的效果。
以UC3842为例 一种通用芯片好坏识别法
以UC3842为例一种通用芯片好坏识别法毫无疑问,UC3842是目前功能最为强大的出门类芯片之一。
其超高的使用率使其在各大论坛和网站都拥有很高的搜索热度,这也表明了在使用过程中人们遭遇的与UC3842有关的问题也非常多。
如何针对UC3842进行好坏检测就是问题之一,如何在使用之前就确定芯片的好坏?本文就将为大家提供一种方法,感兴趣的朋友快来看一看吧。
简单介绍一下uc3842好坏的判断方法: 在更换完外围损坏的元器件后先不装开关管,而是加电测试uc3842的7脚电压,若电压在10-17V间波动,其余各脚也分别有波动的电压,则说明电路已起振,uc3842基本正常;若7脚电压低,其余管脚无电压或不波动,则uc3842已损坏。
在uc3842的7、5脚间外加+17V左右的直流电压,若测8脚有+5V电压,1、2、4、6脚也有不同的电压,则uc3842基本正常,工作电流小,自身不易损坏。
它损坏的最常见原因是电源开关管短路后,高电压从G极加到其6脚而致使其烧毁.而有些机型中省去了G极接地的保护二极管,则电源开关管损坏时,uc3842和G极外接的限流电阻必坏,此时直接更换即可。
需要注意的是,电源开关管源极(S极)通常接1个小阻值,大功率的电阻作为过流保护检测电阻。
此电阻的阻值一般在0.2-0.6之间,大于此值会出现带不起负载的现象(就是次极电压偏低)。
由于uc3842(KA3842)的工作电压和输出功率均与UC3843(KA3843)相差甚远,3842系列和3843系列在启动电压和关闭电压方面也存在着较大的区别。
前者的启动电压为16V,关闭电压为10V;后者的启动电压为8.5V,关闭电压为7.6V。
这两个系列的IC不能直接代换。
如确有必要用后。
非常详细的3842开关电源维修讲解
非常详细的3842开关电源维修讲解3842开关电源是一种常见的电源设计,广泛应用于各种电子设备中。
它具有高效率、稳定性好、体积小等优点,因此备受青睐。
然而,由于各种原因,3842开关电源在使用过程中可能会出现一些故障。
本文将从维修的角度,详细讲解3842开关电源的常见问题及解决方法。
我们需要了解3842开关电源的基本工作原理。
3842开关电源的核心是一个PWM控制器,它通过控制开关管的导通和关断来实现对输出电压的调节。
在正常工作时,PWM控制器会不断检测输出电压,一旦发现电压异常,就会采取相应的措施来保证电源的稳定性。
在实际维修工作中,常见的故障包括输出电压过高、过低,输出电流不稳定或无输出等。
下面我们将针对这些问题进行详细讲解。
首先是输出电压过高的问题。
当我们检测到这个故障时,首先要检查输出电压反馈电路是否正常工作。
可以通过测量反馈电路中的电压来判断,如果电压偏高,可能是反馈电阻的值变大或失效,需要更换;如果电压偏低,可能是反馈电阻的值变小或失效,同样需要更换。
另外,还需要检查输出电容是否损坏,如果损坏,也需要更换。
接下来是输出电压过低的问题。
这种情况下,首先要检查输出电容是否损坏或连接不良,如果是,需要更换或重新连接。
另外,还需要检查反馈电路是否正常工作,可以通过测量反馈电路中的电压来判断。
如果电压偏高,可能是反馈电阻的值变小或失效,需要更换;如果电压偏低,可能是反馈电阻的值变大或失效,同样需要更换。
还可能出现输出电流不稳定的问题。
这种情况下,首先要检查开关管是否工作正常。
可以通过测量开关管的导通和关断时间来判断。
如果时间偏长,可能是开关管老化或损坏,需要更换;如果时间偏短,可能是开关管损坏或接触不良,同样需要更换或重新连接。
另外,还需要检查滤波电容是否损坏,如果损坏,也需要更换。
最后是无输出的问题。
这种情况下,首先要检查输入电源是否正常工作。
可以通过测量输入电源的电压和电流来判断。
如果电压和电流都为零,可能是输入电源故障,需要修复或更换;如果电压或电流为零,可能是输入电源线路接触不良,需要重新连接。
UC3842充电器原理与维修
UC3842充电器原理与维修UC3842充电器原理与维修以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1 为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V),C10为低压滤波电容,D5为12V稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。
充电器常见的故障有三大类。
1:高压故障 2;低压故障 3:高压,低压均有故障。
高压故障的主要现象是指示灯不亮,其特征有保险丝熔断,整流二极管D1击穿,电容C11鼓包或炸裂。
Q1击穿,R25开路。
U1的7脚对地短路。
R5开路,U1无启动电压。
更换以上元件即可修复。
若U1的7脚有11V以上电压,8脚有5V电压,说明U1基本正常。
应重点检测Q1和T1的引脚是否有虚焊。
若连续击穿Q1,且Q1不发烫,一般是D2,C4失效,若是Q1击穿且发烫,一般是低压部分有漏电或短路,过大或UC3842的6脚输出脉冲波形不正常,Q1的开关损耗和发热量大增,导致Q1过热烧毁。
高压故障的其他现象有指示灯闪烁,输出电压偏低且不稳定,一般是T1的引脚有虚焊,或者D3,R12开路,TL3842及其外围电路无工作电源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UC3842芯片小功率开关电源资料 UC3842芯片作为小功率开关电源的PWM脉宽调制芯片,在进行开关电源http://www.haojdwx.cn/Article/ShowInfo.asp?InfoID=792'>维修过程中,经常会遇到由于故障引起的uc3842/uc3844不能正常工作,现将电源不能起振或轻微起振(测量输出端电压低),但没有正常工作(表现为8Pin无5V)可能的原因作如下总结: 1、首先检查7Pin所连接的电解电容(或者反馈线圈所连接的电解电容),查看其容量是否符合要求,如该电容容量明显减小,更换后应该不起振的故障就能恢复;如该电容正常,进行下一步检查。 2、在电路板上单独给uc3842/uc3844的7Pin加16V电压,测量其8Pin是否有5V,如果测量8Pin有5V电压存在,则说明此芯片没有问题;如没有5V电压,须将uc3842/uc3844拆下来单独加电16V至7Pin,测量8Pin是否有5V,如果仍然没有5V,则可证明芯片已经损坏;如果测量8Pin有5V存在,则应该是与8Pin相连接的外围元器件与地之间有短路存在。此步骤主要是检测uc3842/uc3844芯片本身是否损坏,如果芯片没有损坏,基本可以排除故障出在初级部分,可以进行下一步检查。(附:检测uc3842/uc3844芯片损坏与否的另一种方法为:在检测完芯片外围元器件(或更换完外围损坏的元器件)后,先不装电源开关管,加输入电测uc3842/uc3844的7Pin电压,若电压在10—17V间波动,其余各脚分别也有电压波动,则说明电路已起振,uc3842基本正常,若7脚电压低,其余管脚无电压或电压不波动,则uc3842/uc3844已损坏。) 3、检查次级侧,推测应该是次级由于输出过载或短路,导致电流增大,进而反映到初级侧使uc3842/uc3844芯片的3Pin实现保护,这就需要对次级侧实现过流保护功能的电子元器件进行逐一测量,直至查出故障。 现将uc3842/uc3844芯片正常工作时主要引脚电压列于下面: 1Pin:1.545V 2Pin:2.488V 3Pin:0.005V 6Pin:1.05V 7Pin:14.094V 8Pin:4.988 电流控制型脉宽调制器UC3842在开关电源中的应用
开关稳压电源被誉为“新型高效节能电源”,它代表着稳压电源的发展方向。由于内部器件工作在高频开关状态,因此本身消耗的能量极低,电源效率可以达到80%以上,比串连调整线性稳压电源的效率提高近一倍。随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、集成化的方向发展,高效率的开关稳压电源已得到越来越广泛的应用。本文首先概述开关稳压电源的基本工作原理,接着介绍电流型脉宽调制器UC3842芯片,着重论述了UC3842在开关稳压电源中的应用,并以一个实际应用实例分析了电源电路的构成和参数计算。
开关电源的基本工作原理 相对于线性稳压电源功耗较大的缺点,开关电源的效率可达90%以上,而且造价低、体积小。开关电源的工作原理如图1所示,它由调整管、滤波电路、比较器、三角波发生器、比较放大器和基准源等构成。
在图1中,三角波发生器的输出波形加到比较器的反相端,其同相端接比较放大器的输出Vf。当三角波的幅度小于比较器的同相输入时,比较器输出高电平,对应调整管导通的时间为ton。反之,当三角波的幅度大于比较器的同相输入时,对应调整管的截至时间为toff。为了稳定电压输出,按电压负反馈方式引入反馈,以确定基准源和比较放大器之间的联系。假设输出电压增加,则FVo增加,比较放大器的输出Vf减小,那么比较器的输出波形中toff增加,从而使调整管的导通时间减小,输出电压下降,起到稳压的作用。如果忽略电感的直流电阻,那么输出电压Vo为调整管发射极电压Ve的平均分量,于是有: 其中,q为占空比。在输入电压一定的时候,输出电压与占空比正比,通过改变比较器输出波形的占空比就可以控制输出电压的幅值。
图1 开关电源的工作原理 UC3842的工作原理 UC3842是美国Unitorde公司生产的一种性能优良的电流控制型脉宽调制芯片。该调制器单端输出,能直接驱动双极型的功率管或场效应管。其主要优点是管脚数量少,外围电路简单,电压调整率可达0.01%,工作频率高达500kHz,启动电流小于1mA,正常工作电流为5mA,并可利用高频变压器实现与电网的隔离。该芯片集成了振荡器、具有温度补偿的高增益误差放大器、电流检测比较器、图腾柱输出电路、输入和基准欠电压锁定电路以及PWM锁存器电路。其内部结构及基本外围电路如图2所示。
图2 UC3842的内部结构及基本外围电路 UC3842是8脚的双列直插的封装形式。如图2所示,第1脚为补偿脚,内部误差放大器的输出端,外接阻容元件以确定误差放大器的增益和频响。第2脚是反馈脚,将采样电压加到误差放大器的反相输入端,再与同相输入端的基准电压进行比较,产生误差电压,控制脉冲的宽度。第3脚为电流传感端,在功率管的源极串接一个小阻值的采样电阻,构成过流保护电路。当电源电压异常时,功率管的电流增大,当采样电阻上的电压超过1V时,UC3842就停止输出,有效地保护了功率管。第4脚为锯齿振荡器外部定时电阻R与定时电容C的公共端。第5脚为地。第6脚为图腾柱式输出电压,当上面的三极管截止的时候下面的三极管导通,为功率管关断时提供了低阻抗的反向抽取电流回路,加速了功率管的关断。第7脚为输入电压,开关电源启动的时候需要在该引脚加一个不低于16V的电压,芯片工作后,输入电压可以在10~30V之间波动,低于10V时停止工作。第8脚为内部5.0V的基准电压输出,电流可达50mA。
。 电路上电时,外接的启动电路通过引脚7提供芯片需要的启动电压。在启动电源的作用下,芯片开始工作,脉冲宽度调制电路产生的脉冲信号经6脚输出驱动外接的开关功率管工作。功率管工作产生的信号经取样电路转换为低压直流信号反馈到3脚,维护系统的正常工作。电路正常工作后,取样电路反馈的低压直流信号经2脚送到内部的误差比较放大器,与内部的基准电压进行比较,产生的误差信号送到脉宽调制电路,完成脉冲宽度的调制,从而达到稳定输出电压的目的。如果输出电压由于某种原因变高,则2脚的取样电压也变高,脉宽调制电路会使输出脉冲的宽度变窄,则开关功率管的导通时间变短,输出电压变低,从而使输出电压稳定,反之亦然。锯齿波振荡电路产生周期性的锯齿波,其周期取决于4脚外接的RC网络。所产生的锯齿波送到脉冲宽度调制器,作为其工作周期,脉宽调制器输出的脉冲周期不变,而脉冲宽度则随反馈电压的大小而变化。
实际应用电路
图3 开关稳压电源系统总体框图 根据UC3842的特点,设计一个30~36V可调的开关型稳压电源,其总体结构框图如图3所示。 交流输入后通过整流滤波得到直流电压,经过LM317后获得16.5V的直流电压,作为UC3842芯片的启动电压。芯片启动后通过脉宽调制控制功率管的开关从而实现稳压输出。控制电路的核心是UC3842,其后级的高速开关功率管要求满足一定的耐压值和足够大的额定电流。这里可以选用IRF540,其耐压值高达100V,额定电流可以达到33A。高频变压器的升压系数为1.2,采用双桥间距为0.3mm的铁氧铁芯,由直径0.65mm的铜丝绕制而成。高频变压器出来的脉动直流电压,先通过二极管整理,再通过3个50V/3300μF的电解电容,和由一个33μH电感和2个104的电容构成∏型滤波器进行滤波后输出。其UC3842的核心电路如图4所示。
图4 UC3842的核心电路图 如图4所示,UC3842的工作频率由4脚和8脚间的RT和CT决定的。理论上,其内部的振荡频率最高可达500kHz。在本系统中RT和CT分别选用了10kΩ和0.045μF,根据公式:
可以计算得其工作频率约为40kHz,符合开关电源的要求。在UC3842的2脚处接上一个10kΩ的电位器,通过调节电位器的阻值改变反馈电压,使脉宽的占空比发生变化,从而可以实现输出电压30~36V的连续可调变化。
结语 利用电流控制型脉宽调制芯片UC3842为核心设计的开关稳压电源,电路结构简单、成本低、体积小、易实现,并且可以克服电压型脉宽调制器开关稳压电源频响慢、电压调整率低和负载调整率低的缺点,具有广阔的应用前景。
基于UC3842的电流控制型开关电源
电压控制型开关电源会对开关电流失控,不便于过流保护,并且响应慢、稳定性差。与之相比,电流控制型开关电源是一个电压、电流双闭环控制系统,能克服电流失控的缺点,并且性能可靠、电路简单。据此,我们用UC3842芯片设计了一个电流控制型开关电源。为了提高输出电压的精度,系统没有采用离线式结构,而采用直接反馈式结构。本系统在设计上充分考虑了电磁兼容性和安全性,可广泛应用于工业、家电、视听和照明设备。 电流控制型开关电源的原理框图 电流型控制是针对电压型控制的缺点而发展起来的,在保留了电压控制型的输出电压反馈控制部分外,又增加了一个电流反馈环节,其原理框如图1所示。
图1 电流控制型开关电源的原理框图 电流控制型开关电源是一个电压、电流双闭环控制系统,内环为电流控制环,外环为电压控制环。当U O变化导致UF变化,或I变化导致US变化时,都会使PWM电路的输出脉冲占空比发生变化,从而改变UO,达到输出电压稳定的目的。
电流型控制芯片UC3842 UC3842是一块功能齐全、较为典型的单端电流型PWM控制集成电路,内包含误差放大器、电流检测比较器、PWM锁存器、振荡器、内部基准电源和欠压锁定等单元。它提供8端口双列直插塑料封装和14端口塑料表面贴装封装,内部结构如图2所示。
图2 UC3842内部电路 8端口双列直插塑料封装的UC3842各管端口功能简介。