继电保护基础知识
继电保护基础知识

后备保护:一般动作延时较长,是当主保护拒动或断路器 拒动时,以大于主保护的动作时限动作切除故障。
近后备保护:主保护拒动时,由本设备的另一保护实现 远后备保护:保护拒动或断路器拒动时,由上一级设备 或线路保护实现。
2、 速动性 为了限制短路电流的破坏范围和对电气设备的损坏 程度,减小用户处电压下降的时间,提高自动重合闸的成功 率,要求保护装置应尽可能快地切除短路故障。
电力系统由于受到自然环境的影响,以及设备在制造、 安装、检修、运行过程中各种主、客观因素的影响,难免会 发生故障和不正常运行状态。 常见的故障:相间短路、接地短路和断线。 故障的危害性极大,过大的短路电流流过电器设备,将 损坏甚至烧坏设备,造成大面积停电。 常见的不正常运行状态:过负荷。 设备长期运行,可能使载流部分过热,损坏绝缘,缩短 设备使用寿命,甚至发展成为故障。 中性点非直接接地系统当发生单相接地时,使未接地相 对地电压提高至原对地电压的根号3倍,它往往是导致短路 故障的一个原因。
三、对继电保护装置的基本要求 选择性、速动性、灵敏性、可靠性。 1、选择性: 当电力系统发生故障时,保护装置应只切除故障元件, 而保持其他非故障元件的继续运行,称为保护装置的选择性。 主保护:按照电力系统的安全性要求,以最短的时限和 最小的停电范围动作切除故障,保证电力系统和设备的安 全。备损伤,避免造成设备无法修 复的损坏; 减小故障影响时间,减少用户在低电压情况下的工作时 间,避免用户电动机转速严重下降、甚至自启动失败; 防止系统稳定性破坏,提高电力系统运行的稳定性。
故障切除时间等于保护装臵动作时间和断路器动作时间之和。
3、灵敏性 继电保护装置的灵敏度是指对保护范围内发生故障和不 正常工作状态的反应能力,在保护装置保护范围内,不管故 障点的位置和性质如何,保护装置都应该迅速、正确地运作。 灵敏系数必须大于1。 4、可靠性 是指当电力系统发生故障时,保护装置准确、可靠地动作 的程度,它有两个含义,即该动作时不拒动;不该动作时不 误动。
三、电力系统继电保护基础知识

电力系统继电保护基础知识一、电力系统继电保护的基本概念1. 继电保护的3个组成部分:•测量回路•逻辑回路•执行回路2. 继电保护的3个基本任务:•切除故障元件•反映不正常运行状态•与其他自动装置配合3. [判断题] 电力系统的继电保护是通过监视电力系统中的电气量的变化从而判断系统是否出现故障。
(×)4. 可靠性包括安全性(不误动)和可信赖性(不拒动),主要取决于保护装置本身的制造质量。
5. 选择性是通过合理地选择保护方案、正确地进行整定计算以及精确地调整试验而获得的。
6. 灵敏性并不是越大越好,有时与安全性相矛盾。
7. 保护的整定时间是通过时间继电器来整定的,所以整定的动作时间是指时间继电器的动作时间。
8. 电力系统安全自动装置包括:•低周、低压减负荷装置•自动重合闸•故障录波器•备自投装置•系统解列9. 逻辑回路包括:•“或”回路•“与”回路•“延时启动”回路•“记忆”回路10. 最早出现的是过电流保护类型的熔断器装置,以后经历了机电型、晶体管型、集成电路型、微机型四个阶段。
11. 微机保护软件是由初始化模块、故障检出模块、故障计算模块组成。
12. 不通电时闭合的触点叫常闭触点,不通电时断开的触点叫常开触电。
二、电网的电流保护No.1 单侧电源网络相间短路的电流保护1、(瞬时)电流速断保护校验时要求最小保护范围不小于本线路全长的15%~20%。
2、限时电流速断保护要求灵敏系数大于1.3~1.5。
3、定时限过电流保护要求近后备的灵敏系数大于1.3~1.5,远后备的灵敏系数大于1.23。
4、时间阶梯∆t为0.5s。
5、对于线路-变压器组接线,电流速断可以保护线路全长。
可以只装设电流速断和过流保护。
6、相间电流速断保护比零序电流速断保护范围小,因为零序阻抗较大,其电流曲线陡。
7、运行方式的变化对电流保护有影响,对低电压保护、距离保护等均无影响。
8、定时限过电流保护整定:其中,Krel=1.15~1.25,Kre=0.85~0.95。
继电保护基础知识培训-演示文档

优点
具有较高的选择性,能够区分 正反方向故障。
缺点
需要准确测量电流方向,易受 系统运行方式和负荷变化的影
响。
04
继电保护系统运行与管理
继电保护系统的运行要求
01
继电保护系统应按照规 定的技术要求和运行规 程进行配置、安装和调 试,确保其正常运行。
02
继电保护系统的运行应 遵循安全、可靠、高效 的原则,确保电力系统
和处理。
05
继电保护发展趋势与展望
智能电网对继电保护的影响
智能电网的信息化、自动化和互动化特性对继电保护提出了更高的要求,需要更高 的可靠性和更快的动作速度。
智能电网中的分布式电源、储能装置等新型设备对继电保护的配置和整定带来了新 的挑战。
智能电网中的信息交互技术有助于提高继电保护的协同和自适应能力,提升保护性 能。
考虑继电保护装置的兼容性和扩 展性,以便于未来电网升级和改 造。
根据被保护设备的参数和运行要 求,确定保护装置的参数和整定 值。
根据电网的故障类型和运行风险 ,配置相应的后备保护和辅助保 护。
பைடு நூலகம் 03
继电保护技术
电流保护技术
原理
基于电流的异常变化来检测故障,通 过切断电流来保护设备。
优点
易受系统运行方式影响,可能误动作 或拒动。
输出。
继电保护装置的分类
按保护对象分
发电机保护、变压器保护、输电线路保护、电 动机保护等。
按保护功能分
电流保护、电压保护、距离保护、方向保护、 差动保护等。
按动作原理分
电磁型、晶体管型、集成电路型、微机型等。
继电保护装置的选择与配置
根据电网结构和运行特点,选择 合适的继电保护装置类型和配置 方案。
继电保护最全面的知识详解,赶紧收藏

继电保护最全面的知识详解,赶紧收藏当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备。
实现这种自动化措施的成套设备,一般通称为继电保护装置。
本期就为大家详细介绍继电保护的基本原理、基本要求、基本任务、分类和常见故障分析及其处理。
一、基本原理继电保护装置必须具有正确区分被保护元件是处于正常运行状态还是发生了故障,是保护区内故障还是区外故障的功能。
保护装置要实现这一功能,需要根据电力系统发生故障前后电气物理量变化的特征为基础来构成。
电力系统发生故障后,工频电气量变化的主要特征是:1)电流增大短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流。
2)电压降低当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。
3)电流与电压之间的相位角改变正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60°~85°,而在保护反方向三相短路时,电流与电压之间的相位角则是180°+(60°~85°)。
4)测量阻抗发生变化测量阻抗即测量点(保护安装处)电压与电流之比值。
正常运行时,测量阻抗为负荷阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大。
不对称短路时,出现相序分量,如两相及单相接地短路时,出现负序电流和负序电压分量;单相接地时,出现负序和零序电流和电压分量。
这些分量在正常运行时是不出现的。
利用短路故障时电气量的变化,便可构成各种原理的继电保护。
此外,除了上述反应工频电气量的保护外,还有反应非工频电气量的保护,如瓦斯保护。
二、基本要求继电保护装置为了完成它的任务,必须在技术上满足选择性、速动性、灵敏性和可靠性四个基本要求。
继电保护基础知识

可靠性:要求继电保护在不需要它动作时可靠不动作,即不发生误动; 要求继电保护在规定的保护范围内发生了பைடு நூலகம்该动作的故障时 可靠动作,即不拒动。
四、发展历程
1、熔断器: 19世纪的最后25年里,作为最早的继电保护装置熔断器已开始应用。 2、电磁型继电保护装置 电力系统的发展,电网结构日趋复杂,短路容量不断增大,到20世纪 初期产生了作用于断路器的电磁型继电保护装置。 3、电子型静态继电保护装置 虽然在1928年电子器件已开始被应用于保护装置,但电子型静态继电 器的大量推广和生产,只是在50年代晶体管和其他固态元器件迅速发 展之后才得以实现。 4、微机继电保护装置 1965年出现了应用计算机的数字式继电保护。大规模集成电路技术的 飞速发展,微处理机和微型计算机的普遍应用,极大地推动了数字式继 电保护技术的开发。
二、继电保护装置的分类
4、按保护动作原理分类 过电流保护、低电压保护、过电压保护、功 率方向保护、距离保护、差动保护、高频(载波) 保护等 5、按保护作用的范围 (1)继电保护装置:仅作用于电力系统内单个元件。 (2)安全自动装置:作用于电力系统。如:低周解 列装置、振荡解列装置
三、继电保护装置的要求
继电保护基础知识宣贯
阿坝州电力调度中心 2013年8月6日
一、什么是继电保护
定义: 由继电器和其它辅助元件构成的能反应电力系统 设备故障和不正常运行状态并作用于断路器跳闸或发 出信号的一种自动装置。 组成: 测量元件:测量从被保护对象输入的有关物理 量并与已给定的整定值进行比较,从而判断保护是否 应该启动。 逻辑元件:根据测量部分输出量的情况使保护 装置按一定逻辑关系工作,最后确定是否应跳闸或发 信号,并将有关命令传给执行元件。 执行元件:根据逻辑元件传送的信号,最后完 成保护装置所担负的任务
继电保护整定计算基础知识

3
4
整定计算运行方式的选择原则
规程相关条目
目录
3-110kV电网典型结构及保护配合保护配置
典型接线图
3-110kV电网典型结构及保护配合保护配置
保护配置图
01
相间距离
02
接地距离
03
四段零序
04
纵联保护
05
相间距离
06
接地距离
07
四段零序
08
3-110kV电网典型结构及保护配合保护配置
继电保护整定的规定
~110 kV 电网继电保护装置运行整定规程
继电保护运行整定的基本原则
一般规定
1.一般规定
整定计算所需的阻抗参数采用换算到额定频率的数值或实测值的分类 常见运行方式和特殊运行方式的处理 有些假设条件对一般短路电流计算是许可的
继电保护装置整定的具体规定
1.110kV 线路零序电流保护
*
整定计算运行方式的选择原则
总体原则
确定运行方式变化的限度,就是确定最大和最小运行方式。它应以满足常见运行方式为基础,在不影响保护效果的前提下,适当加大变化范围,其一般原则如下: 必须考虑检修与故障两种状态的重叠出现,但不考虑两个短路故障同时出现。 不考虑极少见的特殊运行方式。因为出现特殊运行方式的时间较少,不能因此恶化了大部分时间的保护效果。必要时,可采取临时的特殊措施加以解决。
继电保护整定计算基本原则
只切除故障设备。 尽可能缩小停电范围(主保护拒动)
近后备(双重化、失灵)、远后备 反映两侧电气量 通过原理 反映单侧电气量 通过整定计算
选择性
选择性:有选择的切除故障。 利用一定的延时使本线路的主保护和后备保护能够正确配合 相邻元件后备保护之间能够正确配合 上级元件后备保护灵敏度 < 下级元件后备保护灵敏度 上级元件后备保护动作时间 > 下级元件后备保护动作时间
学习继电保护必须掌握的基础知识
学习继电保护必须掌握的基础知识1.什么是继电保护装置答:当电力系统中的电力元件如发电机、线路等或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备,一般通称为继电保护装置;2.继电保护在电力系统中的任务是什么答:继电保护的基本任务:1当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响,并满足电力系统的某些特定要求如保持电力系统的暂态稳定性等;2反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同例如有无经常值班人员发出信号,以便值班人员进行处理,或由装置自动地进行调整,或将那些继续运行会引起事故的电气设备予以切除;反应不正常工作情况的继电保护装置允许带一定的延时动作;3.简述继电保护的基本原理和构成方式;答:继电保护主要利用电力系统中元件发生短路或异常情况时的电气量电流、电压、功率、频率等的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高;大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分和定值调整部分、逻辑部分、执行部分;4.电力系统对继电保护的基本要求是什么答:继电保护装置应满足可靠性、选择性、灵敏性和速动性的要求:这四“性”之间紧密联系,既矛盾又统一;1可靠性是指保护该动体时应可靠动作;不该动作时应可靠不动作;可靠性是对继电保护装置性能的最根本的要求;2选择性是指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护、线路保护或断路器失灵保护切除故障;为保证对相邻设备和线路有配合要求的保护和同一保护内有配合要求的两元件如启动与跳闸元件或闭锁与动作元件的选择性,其灵敏系数及动作时间,在一般情况下应相互配合;3灵敏性是指在设备或线路的被保护范围内发生金属性短路时,保护装置应具有必要的灵敏系数,各类保护的最小灵敏系数在规程中有具体规定;选择性和灵敏性的要求,通过继电保护的整定实现;4速动性是指保护装置应尽快地切除短路故障,其目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围,提高自动重合闸和备用电源或备用设备自动投入的效果等;一般从装设速动保护如高频保护、差动保护、充分发挥零序接地瞬时段保护及相间速断保护的作用、减少继电器固有动作时间和断路器跳闸时间等方面入手来提高速动性;5.如何保证继电保护的可靠性答:继电保护的可靠性主要由配置合理、质量和技术性能优良的继电保护装置以及正常的运行维护和管理来保证;任何电力设备线路、母线、变压器等都不允许在无继电保护的状态下运行;220kV及以上电网的所有运行设备都必须由两套交、直流输入、输出回路相互独立,并分别控制不同断路器的继电保护装置进行保护;当任一套继电保护装置或任一组断路器拒绝动作时,能由另一套继电保护装置操作另一组断路器切除故障;在所有情况下,要求这购套继电保护装置和断路器所取的直流电源都经由不同的熔断器供电;6.为保证电网继电保护的选择性,上、下级电网继电保护之间逐级配合应满足什么要求:答:上、下级电网包括同级和上一级及下一级电网继电保护之间的整定,应遭循逐级配合的原则,满足选样性的要求,即当下一级线路或元件故障时,故障线路或元件的继电保护镇定值必须在灵敏度和动作时间上均与上一级线路或元件的继电保护整定值相互配合,以保证电网发生故障时有选择性地切除故障;7.在哪些情况下允许适当牺牲继电保护部分选择性答:遇到如下情况时允许适当牺牲继电保护部分选择性:1接入供电变压器的终端线路,无论是一台或多台变压器并列运行包括多处T接供电变压器或供电线路,都允许线路侧的速动段保护按躲开变压器其他侧母线故障整定;需要时,线路速动段保护可经一短时限动作;2对串联供电线路,如果按逐级配合的原则将过分延长电源侧保护的动作时间,则可将容量较小的某些中间变电所按T接变电所或不配合点处理,以减少配合的级数.缩短动作时间;3双回线内部保护的配合,可按双回线主保护例如横联差动保护动作,或双回线中一回线故障时两侧零序电流或相电流速断保护纵续动作的条件考虑;确有困难时,允许双回线中一回线故障时,两回线的延时保护段间有不配合的情况;4在构成环网运行的线路中,允许设置预定的一个解列点或一回解列线路;8.为保证灵敏度,接地故障保护最末一段定值应如何整定答:接地故障保护最末一段例如零序电流保护IV段,应以适应下述短路点接地电阻值的接地故障为整定条件:220kV线路,100Ω;330kV线路,150Ω,500kV线路,300Ω;对应于上述条件,零序电流保护最末一段的动作电流整定值应不大于300A;由线路末端发生高电阻接地故障时,允许由两侧线路继电保护装置纵续动作切除故障;对于110kV线路,考虑到在可能的高电阻接地故障情况下的动作灵敏度要求,其最末一段零序电流保护的电流暂定值一般也不应大于300A一次值,此时,允许线路两侧零序电流保护纵续动作切除故障;9.系统最长振荡周期一般按多少考虑答:除了预定解列点外,不允许保护装置在系统振荡时误动作跳闸;如果没有本电网的具体数据,除大区系统间的弱联系联络线外,系统最长振荡周期一般按1.5s考虑;10.简述220kV及以上电网继电保护整定计算的基本原则和规定;答:1对于220kV及以上电压电网的线路继电保护一般都采用近后备原则;当故障元件的一套继电保护装置拒动时,由相互独立的另一套继电保护装置动作切除故障,而当断路器拒绝动作时,启动断路器失灵保护,断开与故障元件相连的所有其他连接电源的断路器;2对瞬时动作的保护或保护的瞬时段,其整定值应保证在被保护元件外部故障时,可靠不动作,但单元或线路变压器组包括一条线路带两台终端变压器的情况除外;3上、下级继电保护的整定,一般应遵循逐级配合的原则,满足选择性的要求;即在下一级元件故障时,故障元件的继电保护必须在灵敏度和动作时间上均能同时与上一级元件的继电保护取得配合,以保证电网发生故障时有选择性地切除故障;4继电保护整定汁算应按正常运行方式为依据;所谓正常运行方式是指常见的运行方式和被保护设备相邻的一回线或一个元件检修的正常检修运行方式;对特殊运行方式,可以按专用的运行规程或者依据当时实际情况临时处理;5变压器中性点接地运行方式的安排,应尽量保持变电所零序阻抗基本不变;遇到因变压器检修等原因,使变电所的零序阻抗有较大变化的特殊运行方式时,根据当时实际情况临时处理;6故障类型的选择以单一设备的常见故障为依据,一般以简单故障讲行保护装置的整定计算;7灵敏度校正常运行方式下的不利故障类型进行校验,保护在对侧断路器跳闸前和跳闸后均能满足规定的灵敏度要求;对于纵联保护,在被保护线路末端发生金属性故障时,应有足够的灵敏度灵敏度应大于2;11.变压器中性点接地方式的安排一般如何考虑答:变压器中性点接地方式的安排应尽量保持变电所的零序阻抗基本不变;遇到因变压器检修等原因使变电所的零序阻抗有较大变化的特殊运行方式时,应根据规程规定或实际情况临时处理;1变电所只有一台变压器,则中性点应直接接地,计算正常保护定值时,可只考虑变压器中性点接地的正常运行方式;当变压器检修时,可作特殊运行方式处理,例如改定值或按规定停用、起用有关保护段;2变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,将另一台中性点不接地变压器改为直接接地;如果由于某些原因,变电所正常必须有两台变压器中性点直接接地运行,当其中一台中性点直接接地的变压器停运时,若有第三台变压器则将第三台变压器改为中性点直接接地运行;否则,按特殊运行方式处理;3双母线运行的变电所有三台及以上变压器时,应按两台变压器中性点直接接地方式运行,并把它们分别接于不同的母线上,当其中一台中性点直接接地变压器停运时、将另一台中性点不接地变压器直接接地;若不能保持不同母线上各有一个接地点时,作为特殊运行方式处理;4为了改善保护配合关系,当某一短线路检修停运时,可以用增加中性点接地变压器台数的办法来抵消线路停运对零序电流分配关系产生的影响;5自耦变压器和绝缘有要求的变压器中性点必须直接接地运行;12.简述220kV线路保护的配置原则;答:对220kV线路,根据稳定要求或后备保护整定配合有困难时,应装设两套全线速动保护;接地短路后备保护可装阶段式或反时限零序电流保护,亦可采用接地距离保护并辅之以阶段式或反时限零序电流保护;相间短路后备保护一般应装设阶段式距离保护;13.简述330—500kV线路保护的配置原则;答:对寸330-500kV线路,应装设两套完整、独立的全线速动它保护;接地短路后备保护可装设阶段式或反时限零序电流保护,亦可采用接地距离保护并辅之以阶段式或反时限零序电流保护;相间短路后备保护可装设阶段式距离保护;14.什么是“远后备”什么是“近后备”答:“远后备”是指当元件故障而其保护装置或开关拒绝动作时.由各电源侧的相邻元件保护装谈动作将故障切开;“近后备”则用双重化配置方式加强元件本身的保护,位之在区内故障时,保护无拒绝动作的可能,同时装设开关失灵保护,以便当开关拒绝跳闸时启动它来切开同一变电所母线的高压开关,或遥切对侧开关;15.线路纵联保护及特点是什么答:线路纵联保护是当线路发生故障时,使两侧开关同时快速跳闸的一种保护装置,是线路的主保护;它以线路两侧判别量的特定关系作为判据;即两侧均将判别量借助通道传送到对侧,然后,两侧分别按照对侧与本侧判别量之间的关系来判别区内故障或区外故障;因此,判别量和通道是纵联保护装置的主要组成部分;1方向高频保护是比较线路两端各自看到的故障方向,以判断是线路内部故障还是外部故障;如果以被保护线路内部故障时看到的故障方向为正方向,则当被保护线路外部故障时,总有一侧看到的是反方向;其特点是:1要求正向判别启动元件对于线路末端故障有足够的灵敏度;2必须采用双频制收发信机;2相差高频保护是比较被保护线路两侧工频电流相位的高频保护;当两侧故障电流相位相同时保护被闭锁,1能反应全相状态下的各种对称和不对称故障,装设比较简单;2不反应系统振荡;在非全相运行状态下和单相重合闸过程中保护能继续运行;3不受电压回路断线的影响,4对收发信机及通道要求较高,在运行中两侧保护需要联调;5当通道或收发信机停用时,整个保护要退出运行,因此需要配备单独的后备保护;3高频闭锁距离保护是以线路上装有方向性的距离保护装设作为基本保护,增加相应的发信与收信设备,通过通道构成纵联距离保护;其特点是:1能足够段敏和快速地反应各种对称与不对称故障;2仍保持后备保护的功能;3电压二次回路断线时保护将会误动,需采取断线闭锁措施,使保护退出运行;16.纵联保护的通道可分为几种类型答:可分为以下几种类型:1电力线载波纵联保护简称高频保护;2微波纵联保护简称微波保护;3光纤纵联保护简称光纤保护;4导引线纵联保护简称导引线保护;17.纵联保护的信号有哪几种答:纵联保护的信号有以下三种:1闭锁信号;它是阻止保护动作于跳闸的信号;换言之;无闭锁信号是保护作用于跳闸的必要条件;只有同时满足本端保护元件动作和无闭锁信号两个条件时,保护才作用于跳闸;2允许信号;它是允许保护动作于跳闸的信号;换言之,有允许信号是保护动作于跳闸的必要条件;只有同时满足本端保护元件动作和有允许信号两个条件时,保护才动作于跳闸;3跳闸信号;它是直接引起跳闸的信号;此时与保护元件是否动作无关,只要收到跳闸信号,保护就作用于跳闸,远方跳闸式保护就是利用跳闸信号;18.相差高频保护为什么设置定值不同的两个启动元件答:启动元件是在电力系统发生故障时启动发信机而实现比相的;为了防止外部故障时由于两侧保护装置的启动元件可能不同时动作,先启动一侧的比相元件,然后动作一侧的发信机还未发信就开放比相将造成保护误动作,因而必须设置定值不同的两个启动元件;高定值启动元件启动比相元件,低定值的启动发信机;由于低定值启动元件先于高定值启动元件动作,这样就可以保证在外部短路时,高定值启动元件启动比相元件时,保护一定能收到闭锁信号,不会发生误动作;19.相差高频保护有何优缺点答:相差高频保护有如下优点:1能反应全相状态下的各种对称和不对称故障,装置比较简单;2不反应系统振荡;在非全相运行状态下和单相重合闸过程中,保护能继续运行;3保护的工作情况与是否有串补电容及其保护间隙是否不对称击穿基本无关;4不受电压二次回路断线的影响;缺点如下:1重负荷线路,负荷电流改变了线路两端电流的相位,对内部故障保护动作不利;2当一相断线接地或非全相运行过程中发生区内故障时,灵敏度变坏,甚至可能拒动;3对通道要求较高,占用频带较宽;在运行中,线路两端保护需联调;4线路分布电容严重影响线路两端电流的相位,限制了其使用线路长度;20.简述方向比较式高频保护的基本工作原理;答:方向比较式高频保护的基本工作原理是比较线路两侧各自看到的故障方向,以综合判断其为被保护线路内部还是外部故障;如果以被保护线路内部故障时看到的故障方向为正方向,则当被保护线路外部故障时,总有一侧看到的是反方向;因此,方向比较式高频保护中判别元件,是本身具有方向性的元件或是动作值能区别正、反方向故障的电流元件;所谓比较线路的故障方向,就是比较两侧特定判别元件的动作行为;20.纵联保护在电网中的重要作用是什么答:由个纵联保护在电网中可实现全线速动,出此它可保证电力系统并列运行的稳定性和提高输送功率、缩小故障造成的损坏程度、改善后备保护之间的配合性能;21.何谓闭锁式方向高频保护答:在方向比较式的高额保护中,收到的信号作闭锁保护用,叫闭锁式方向高频保护;它们的正方向判别元件不动作,不停信,非故障线路两端的收信机收到闭锁信号,相应保护被闭锁;22,何谓高频闭锁距离保护,其构成原理如何答:控制收发信机发出高频闭锁信号,闭锁两侧距离保护的原理构成的高频保护为高频闭锁距离保护,它能使保护无延时地切除被保护线路任一点的故障;23.高频闭锁距离保护有何优缺点答:该保护有如下优点:1能足够灵敏和快速地反应各种对称和不对称故障;2仍能保持远后备保护的作用当有灵敏度时;3不受线路分布电容的影响;缺点如下:1串补电容可使高频闭锁距离保护误动或拒动;2电压二次回路断线时将误动;应采取断线闭锁措施,使保护退出运行;24.高频闭锁负序方向保护有何优缺点答:该保护具有下列优点:1原理比较简单;在全相运行条件下能正确反应各种不对称短路;在三相短路时,只要不对称时间大于5—7ms,保护可以动作;2不反应系统振荡,仍也不反应稳定的三相短路;3当负序电压和电流为启动值的三倍时,保护动作时间为10—15ms;4负序方向元件一般有较满意的灵敏度;5对高频收发信机要求较低;缺点如下:1在两相运行条件下包括单相重合闸过程中发生故障,保护可能拒动;2线路分布电容的存在.使线路在空载合闸时,由于三相不同时合闸,保护可能误动;当分布电容足够大时,外部短路时该保护也将误动,应采取补偿措施;3在串补线路上,只要串补电容无不对称击穿,则全相运行条件下的短路保护能正确动作;当串补电容友保护区内时,发生系统振荡或外部二相短路、且电容器保护间隙不对称击穿,保护将误动;当串补电容位于保护区外,区内短路且有电容器的不对称击穿,也可能发生保护拒动;4电压二次回路断线时,保护应退出运行;25.非全相运行对高频闭锁负序功率方向保护有什么影响答:当被保护线路上出现非全相运行,将在断相处产生一个纵向的负序电压,并由此产生负序电流,在输电线路的A、B两端,负序功率的方向同时为负,这和内部故障时的情况完全一样;因此,在一侧断开的非全相运行状态下,高频闭锁负序功率方向保护将误动作;为了克服上述缺点,如果将保护安装地点移到断相点的里侧,则两端负序功率的方向为一正一负,和外部故障时的情况一样,这时保护将处于启动状态,但由于受到高频信号的闭锁而不会误动作;针对上述两种情况可知,当电压互感器接于线路侧时,保护装置不会误动作,而当电压互感器接于变电所母线侧时,则保护装置将误动作;此时需采取措施将保护闭锁;26.线路高频保护停用对重合闸的使用有什么影响答:当线路高额保护停用时,可能因以下两点原因影响线路重合闸的使用:1线路无高频保护运行,需由后备保护延时段切除线路故障,即不能快速切除故障,造成系统稳定极限下降,如果使用重合闸重合于永久性故障,对系统稳定运行则更为不利;2线路重合闸重合时间的整定是与线路高频保护配合的,如果线路高频保护停用,则造成线路后备延时段保护与重合闸重合时间不配,对瞬时故障亦可能重合不成功,对系统增加一次冲击;27.高频保护运行时,为什么运行人员每天要交换信号以检查高频通道答:我国常采用电力系统正常时高频通道无高频电流的工作方式;由于高频通道涉及两个厂站的设备,其中输电线路跨越几千米至几百千米的地区,经受着自然界气候的变化和风、霜、雨、雪、雷电的考验;高频通道上各加工设备和收发信机元件的老化和故障都会引起衰耗;高频通道上任何一个环节出问题,都会影响高额保护的正常运行;系统正常运行时,高频通道无高频电流,高频通道上的设备有问题也不易发现,因此每日由运行人员用启动按钮启动高频发信机向对侧发送高频信号,通过检测相应的电流、电压和收发信机上相应的指示灯来检查高频通道,以确保故障时保护装置的高频部分能可靠工作;28.什么是零序保护大电流接地系统中为什么要单独装设零序保护答:在大短路电流接地系统中发生接地故障后,就有零序电流、零序电压和零序功率出现,利用这些电气量构成保护接地短路的继电保护装置统称为零序保护;三相星形接线的过电流保护虽然也能保护接地短路,但其灵敏度较低,保护时限较长;采用零序保护就可克服此不足,这是因为:①系统正常运行和发生相间短路时,不会出现零序电流和零序电压.因此零序保护的动作电流可以整定得较小,这有利于提高其灵敏度;②Y/△接线降压变压器,△侧以行的故障不会在Y侧反映出零序电流,所以零序保护的动作时限可以不必与该种变压器以后的线路保护相配合而取较短的动作时限;29,简述零序电流方向保护在接地保护中的作用;答:零序电流方向保护是反应线路发生接地故障时零序电流分量大小和方向的多段式电流方向保护装置,在我国大短路电流接地系统不同电压等级电力网的线路上,根据部颁规程规定,都装设了这种接地保护装置作为基本保护;电力系统事故统计材料表明,大电流接地系统电力网中线路接地故障占线路全部故障的80%一90%,零序电流方向接地保护的正确动作率约97%,是高压线路保护中正确动作率最高的一种;零序电流方向保护具有原理简单、动作可靠、设备投资小、运行维护方便、正确动作率高等一系列优点;30.零序电流保护有什么优点答:带方向性和不带方向性的零序电流保护是简单而有效的接地保护方式,其优点是:1结构与工作原理简单,正确动作率高于其他复杂保护;2整套保护中间环节少,特别是对于近处故障,可以实现快速动作,有利于减少发展性故障;3在电网零序网络基本保持稳定的条件下,保护范围比较稳定;4保护反应于零序电流的绝对值,受故障过渡电阻的影响较小;5保护定值不受负荷电流的影响,也基本不受其他中性点不接地电网短路故障的影响,所以保护延时段灵敏度允许整定较高;31.零序电流保护在运行中需注意哪些问题答:零序电流保护在运行中需注意以下问题:1当电流回路断线时,可能造成保护误动作;这是一般较灵敏的保护的共同弱点,需要在运行中注意防止;就断线机率而言,它比距离保护电压回路断线的机率要小得多;如果确有必要,还可以利用相邻电流互感器零序电流闭锁的方法防止这种误动作;2当电力系统出现个对称运行时,也会出现零序电流,例如变压器三相参数个同所引起的不对称运行,单相重合闸过程中的两相运行,三相重合闸和手动合闸时的三相断路器不同期,母线倒闸操作时断路器与隔离开关并联过程或断路器正常环并运行情况下,由于隔离开关或断路器接触电阻三相不一致而出现零序环流,以及空投变压器时产生的不平衡励磁涌流,特别是在空投变压器所在母线有中性点接地变压器在运行中的情况下,可能出现较长时间的不平衡励磁涌流和直流分量等等,都可能使零序电流保护启动;3地理位置靠近的平行线路,当其中一条线路故障时,可能引起另一条线路出现感应零序电流,造成反分向侧零序方向继电器误动作;如确有此可能时,可以改用负序方向继电器,来防止上述方向继电器误判断;4由于零序方向继电器交流回路平时没有零序电流和零序电压,回路断线不易被发现;当继电器零序电压取自电压互感器开口三角侧时,也不易用较直观的模拟方法检查其方向的正确性,因此较容易因交流回路有问题而使得在电网故障时造成保护拒绝动作和误动作;32.零序电流保护为什么设置灵敏段和不灵敏段。
继电保护基础知识
一.什么是电力系统有两种说法:1.由生产和输送电能的设备所组成的系统叫电力系统,例如发电机、变压器、母线、输电线路、配电线路等,或者简单说由发、变、输、配、用所组成的系统叫电力系统。
2.有的情况下把一次设备和二次设备统一叫做电力系统。
一次设备:直接生产电能和输送电能的设备,例如发电机、变压器、母线、输电线路、断路器、电抗器、电流互感器、电压互感器等。
二次设备:对一次设备的运行进行监视、测量、控制、信息处理及保护的设备,例如仪表、继电器、自动装置、控制设备、通信及控制电缆等。
二.电力系统最关注的问题由于电力系统故障的后果是十分严重的,它可能直接造成设备损坏,人身伤亡和破坏电力系统安全稳定运行,从而直接或间接地给国民经济带来难以估计的巨大损失,因此电力系统最为关注的是:安全可靠、稳定运行。
三.电力系统的三种工况正常运行状态;故障状态;不正常运行状态。
而继电保护主要是在故障状态和不正常运行状态起作用。
四.继电保护装置基本任务就是指能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。
它的基本任务简单说是:故障时跳闸,不正常运行时发信号。
故障后,能自动迅速,有选择地切除故障源,使故障设备免于遭到破坏,保证其它无故障设备能正常运行。
反应电气设备的不正常运行状态,动作与发出信号,减负荷或跳闸,对于不正常运行状态,一般不要求迅速动作,延时可避免由于干扰而引起的情况,防止误动作。
五.继电保护的基本原理和保护装置的组成继电保护装置必须具有正确区分被保护元件是处于正常运行状态还是发生了故障,是保护区内故障还是区外故障的功能。
保护装置要实现这一功能,需要根据电力系统发生故障前后电气物理量变化的特征为基础来构成。
图1-1 单侧电源网络接线如图1-1(a)、(b)所示的单侧电源网络接线图,(这是一种最简单的系统),图1-1(a)为正常运行情况,每条线路上都流过由它供电的负荷电流İf(一般比较小),各变电所母线上的电压,一般都在额定电压(二次线电压100V)附近变化,由电压和电流之比所代表的“测量阻抗”Z f称之为负荷阻抗,其值一般很大。
继电保护基础知识
正常运行时近似空载,二次电压基本上等于二次感应电 动势
二次绕组不允许短路,两侧需装有熔断器
使继电器触点闭合的力矩:电 磁吸引力作用到舌片上的电磁 转矩 2
M e K1 2 K 2
2
IJ
使继电器触点闭合的阻力矩: 来自弹簧: M s M th1 K 3 (1 2 ) 可动舌片转动过程中,还必须 克服摩擦力矩Mf
Ms M f
•继电器的基本特性 继电器动作的条件:
电磁型继电器 •电磁型电压继电器 过电压继电器:反应电压升高而动作的继电器。 低电压继电器:反应电压降低而动作的继电器。 参数: 动作电压 返回电压 返回系数
好好体会一下
动作电压:能使低电压继电器动作,即使其常闭触点闭 合的最大电压。 返回电压:能使低电压继电器返回,即使其常闭触点打 开的最小电压。
电流互感器 •极性和参考方向
电流互感器 •Leabharlann 线方式电流互感器 •电流互感器的误差
I1' I 2 I 100 % 10 % ' I1
arg( 2 ) 7
I1'
I
误差 电流互感器稳态运行时的电流误差实际是二次负 载阻抗ZL与短路电流倍数m10的函数关系为
一次大电流变换为二次小电流(额定值为5A或1A);隔 离作用
电流互感器 •工作特点和要求 二次侧接的是仪表和继电器的电流线圈,阻抗很小,接 近于短路工作状态 已知二次侧电流和变比,可得到一次侧电流 一次绕组和高压回路串联 应特别注意防止二次绕组开路 TA二次回路必须有一点直接接地,但仅一点接地。
继电保护基础知识
阻抗保护的动作特性
阻抗保护的动作特性由阻抗复平面图上的阻抗动 作区来表示。
阻抗动作区:是阻抗复平面图 上的一个区域,当测量阻抗落 在区域内,则阻抗保护认为是 内部故障,保护动作。 测量阻抗为Zm1时,在阻抗动 作区内,阻抗保护动作;
测量阻抗为Zm2时,在阻抗动作区 外部,阻抗保护不动作。
阻抗动作区可以是任意形状。
3.1 中性点直接接地电网的接地保护
一、阶段式零序电流保护的构成原理
在我国电力系统中:
① 110kV及以上电网-中性点直接接地 ② 66kV及以下电网 -中性点不接地或不直接接地
~
在中性点直接接地电
网中,单相接地故障
电流大,接地故障占
故障总数的80%以上。
中性点直接接地电网 发生接地故障时,将 出现很大的零序电流。
距离保护(阻抗保护):利用短路时电压、电流同时变化的
特征,测量电压与电流的比值,反应故障点到保护安装处的
距离(阻抗)而工作的保护。是反应测量阻抗降低而动作的
保护。
测量阻抗为:Zm
Zm UmIm
Um Im
正常运行时:测量电压U m 高,测量电流 I m 小,测量阻抗大;
内部短路时:测量电压U m 小,测量电流 I m 大,测量阻抗小。
二、阶段式电流保护装置
(1)瞬时电流速断保护(电流Ⅰ段保护); (2)限时电流速断保护(电流Ⅱ段保护); (3)定时限过电流保护(电流Ⅲ段保护)。
1. 瞬时电流速断保护(电流Ⅰ段)
定义:是仅反映电流增大而瞬时动作的保护。
是反映直接测量的线电流增大而瞬时动作的保护。 为提高系统运行的稳定性,保证向重要用户的可靠供电, 防止短路电流损坏故障设备,要求各种电气设备必须配 备瞬时电流速断保护(电流Ⅰ段),以快速切除故障。