滑动轴承的结构特点
机械设计第十二章滑动轴承

流体是连续的
一维雷诺方程
讨论 1)油膜压力沿 x 方向变化规律 由
• 对平行板 平行板间油膜压力沿 x 方向无 变化,等于入口处压力( )
( )成正比,因此限制 值也就是限制轴承的温升,
从而避免温度过高使润滑失效。对于连续运转轴承,通常
都应进行这项计算。
轴颈的转速,r/min
轴颈的圆周速度,m/s 轴承材料的 许用
3. 限制速度 :
值,见P280表12-2
当 过大,即使 和 值都在允许的范围内,轴
承也可能很快磨损,故还必须限制滑动速度。
。
油槽的 尺寸可 查相关 的手册
§12-5 滑动轴承润滑剂的选用
润滑目的:减小摩擦,降低磨损,冷却,防锈,防尘和吸振。 润滑剂分类:流体(液体为主),脂,固体。润滑油为常用。
一.润滑脂的选择
润滑脂是润滑油与金属皂的混合物,呈半固体形态
。其稠度大,不易流失,无冷却效果,物化稳定性差,
摩阻大,有缓冲、吸振作用、承载能力大,故只适合低
3)润滑油油性良好,与固 6)润滑油不可压缩。
体表面吸附牢固。 取截面x处的一个单元体分
移动板A 0
h
析,存在如下静力平衡条件:
静止板B y
化简后得: 考虑到假设 4)有: 于是: 积分得: 1.油层的速度分布
带入边界条件: 解得:
即:
移动板A 0
静止板B b y
h
2.润滑油的流量 假设:无侧漏,z方向尺寸无限大,则通过间隙高度为 的
层与层间靠内摩擦阻 力(粘性)带动前进 沿 方向按线性变化
油层间压力无变化,平行板间润滑油不产生压力
轴颈和轴瓦偏心时 两倾斜板的摩擦状况
滚动轴承和滑动轴承的特点和区别

滚动轴承和滑动轴承的特点和区别标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]滚动轴承和滑动轴承的特点和区别滑动轴承具有以下特点。
1、寿命长,适于高速。
2、能承受冲击和振动载荷。
3、运转精度高,工作平衡,无噪音。
4、结构简单,装拆方便。
5、承载能力大,可用于重载场合。
6、非液体摩擦滑动轴承,摩擦损失大;液体摩擦滑动轴承,摩擦损失与滚动轴承相差不多,但设计、制造润滑及维护要求较高。
滚动轴承的组成、类型及特点14.2.1 滚动轴承的组成滚动轴承一般由内圈、外圈、滚动体和保持架组成。
内圈装在轴颈上,外圈装在机座或零件的轴承孔内。
多数情况下,外圈不转动,内圈与轴一起转动。
(动画演示)当内外圈之间相对旋转时,滚动体沿着滚道滚动。
保持架使滚动体均匀分布在滚道上,并减少滚动体之间的碰撞和磨损。
运动动画拆装动画拆装拆装滚动轴承的基本结构常见的滚动体有6种形状,如图所示:滚动轴承的内外圈和滚动体应具有较高的硬度和接触疲劳强度、良好的耐磨性和冲击韧性。
一般用特殊轴承钢制造,常用材料有GCrl5、GCrl5SiMn、 GCr6、GCr9等,经热处理后硬度可达60-65HRC。
滚动轴承的工作表面必须经磨削抛光,以提高其接触疲劳强度。
保持架多用低碳钢板通过冲压成形方法制造,也可采用有色金属或塑料等材料。
为适应某些特殊要求,有些滚动轴承还要附加其他特殊元件或采用特殊结构,如轴承无内圈或外圈、带有防尘密封结构或在外圈上加止动环等。
滚动轴承具有摩擦阻力小、启动灵敏、效率高、旋转精度高、润滑简便和装拆方便等优点,被广泛应用于各种机器和机构中。
滚动轴承为标准零部件,由轴承厂批量生产,设计者可以根据需要直接选用。
14.2.2 滚动轴承的类型及特点根据滚动体的形状,滚动轴承分为球轴承与滚子轴承。
按照滚动轴承所能承受的主要负荷方向,又可分为向心轴承(主要承受径向载荷)、推力轴承(承受轴向载荷)、向心推力轴承(能同时承受径向载荷和轴向载荷)。
轴承9大类

轴承9大类轴承是机械设备中最重要的零部件之一,它用于转动部件和静止部件的连接,并且能够抵抗外力,防止轴承部件的磨损,减少摩擦,减少机械对环境的污染,因此在工业设备中广泛使用。
根据轴承的不同功能,可以分为九大类:1.结构轴承:用于连接机械结构中的轴心和轴套,它们的特点是极限载荷低,能够抗拉及弯曲载荷。
2.滚动轴承:它们的特点是承受大的极限载荷,轴或轴套仅需轻微的力量即可产生旋转,适用于频繁摆动及转动高速度的轴承。
3.滑动轴承:它们的特点是极限载荷高,润滑性能良好,适用于较大的轴向负荷,可以抗体积膨胀及剪力,噪音低。
4.磁性轴承:它们的特点是具有非常好的耐磨性,可以承受很大的摩擦力,可以用于解决高温环境下的轴承问题。
5.离心轴承:它们的特点是润滑性能良好,有良好的抗冲击性能,可以承受很大的负荷,且噪音低,适用于外挂机械组件。
6.角接触轴承:它们的特点是可以抵抗大的径向载荷,可以承受较大的轴向负荷,可以抗体积膨胀及剪力,抗拉及弯曲载荷,噪音低。
7.深沟球轴承:它们的特点是极限载荷高,润滑性能良好,可以承受很大的负荷,适用于外挂机械组件。
8.圆柱滚子轴承:它们的特点是可以抵抗大的径向载荷,抗体积膨胀及剪力,抗拉及弯曲载荷,噪音低。
9.同心轴承:它们的特点是极限载荷高,适用于较大的轴向负荷,可以承受很大的负荷,可以抗体积膨胀及剪力,噪音低。
从上述内容可以看出,不同类型的轴承有其特定的功能和特点,在工程设计时,要结合具体的条件来选择和应用适当的轴承,以确保设备在正常运行期间能够达到其最高性能,以满足要求。
因此,研究轴承的性能和知识,选择轴承时一定要根据应用环境、承载载荷大小等因素,合理选择合适的轴承,长期以来,不断进行改进和创新,使轴承得到不断提升,使之更加实用,以满足各种应用需求。
对轴承的熟练操作使得它能得到更好的应用,更有利于提升机电产品的性能和质量,以满足不断变化的市场需求。
第十七章滑动轴承

液体摩擦滑动轴承简介
二、动压轴承 ◆原理:依靠摩擦副的相对运动和油的粘性,将润滑油带入 轴承的楔形间隙中,自动形成承载油膜。 ◆形成动压油膜的条件:
1)摩擦副表面之间必须构成楔形间隙。 2)摩擦副表面之间必须有一定的相对运动速度,其方向应 带动油从大口进,小口出。 3)润滑油粘度要适当,供油量要充足。
◆ 特点:可在滑动表面形成固体膜。 ◆ 适用场合:有特殊要求的场合,如要求环境清洁处、真 空中或高温中。 ◆ 常用类型:二硫化钼,碳―石墨,聚四氟乙烯等。
◆ 使用方法:涂敷、粘结或烧结在轴瓦表面;制成复合材料, 依靠材料自身的润滑性能形成润滑膜。
滑动轴承的润滑
二、润滑方式与润滑装置 (一)油润滑 1.间歇式润滑
F p [ p] dB
[p]—材料的许用压强,MPa。 v—轴颈圆周速度,m/s; [pv]—材料的pv许用值, MPa· m/s
v [v ]
[p]、[v]、[ pv ]的选择
[v]—材料的许用滑动速度
非液体摩擦滑动轴承的计算
三、推力滑动轴承的校核计算 1.校核轴承压强
Fa p [ p] 2 2 kz (d 2 d1 ) 4
◆碳—石墨:由不同量和石墨构成的人造材料,石墨量越多 材料越软,摩擦因数越小。还可以在其中加入金属、聚四氟乙烯 和二硫化钼等。是电动机电刷的常用材料。
常用轴承材料的性能
第三节 非液体摩擦滑动轴承的计算
一、失效形式和设计准则
非液体摩擦:指轴承处于边界摩擦或混合摩擦状态。 ◆ 失效形式:边界油膜破裂,导致磨损和胶合。 ◆ 设计准则:保证边界膜不破裂。 因边界膜强度与压强、温度、轴承材料、轴颈和轴承表面粗 糙度、润滑油供给等有关,目前尚无精确的计算方法,但一般可 作条件性计算。 (1)限制轴承压强 p ≤[p], p 过 大,润滑油膜不易形成和保持。 (2)限制摩擦发热pv≤[pv],fpv是 摩擦力,限制pv即间接限制摩擦发热。 (3)限制滑动速度v≤[v] ,即使p、 pv合格,但v过大仍会使磨损过快。 非液体摩擦
第十二章滑动轴承

二、摩擦状态 1.干摩擦 固体表面直接接触,因而 →功耗↑ 磨损↑ 不许出现干摩擦! 2.边界摩擦 运动副表面有一层厚度<1 μ m 的薄油膜, 不足以将两金属表面分开,其表面微观高峰 部分仍将相互搓削。
vv
温度↑ →烧毁轴瓦
v
比干摩擦的磨损轻, f ≈ 0.1~0.3 3.液体摩擦 有一层压力油膜将两金属表面隔开,彼此不 直接接触。 摩擦和磨损极轻, f ≈ 0.001~0.01
v
在一般机器中,处于以上情况的混合状态。 边界摩擦
f
混合摩擦 液体摩擦
o
摩擦特性曲线
η n/p
称无量纲参数η n/p 为轴承特性数η -动力粘度, p-压强, n-每秒转数。
三、磨损 典型的磨损过程 1、磨合磨损过程 在一定载荷作用下形成一 个稳定的表面粗糙度,且在以 后过程中,此粗糙度不会继续 改变,所占时间比率较小。
二、轴瓦的结构
厚壁轴瓦 卷制轴套 薄壁轴瓦 轴瓦非承载区内表面开有进油口和油沟,以利于润滑油均匀分布 在整个轴径上。 进油孔 油沟 F
整体轴套
油沟形式
d
宽径比 B/d----轴瓦宽度与轴径直径之比, 是重要参数。 液体润滑摩擦的滑动轴承: 非液体润滑摩擦的滑动轴承: B/d=0.5~1 B/d=0.8~1.5
常采用自动调心式轴承,一般 B/d=0.5~1.5。
2、止推(推力)滑动轴承 作用:用来承受轴向载荷 结构特点:由轴承座和止推轴颈组成
a)实心式
b)空心式
c)单环式
d)多环式
§12-2
滑动轴承的失效形式、轴(轴承衬)瓦材料、结构 和轴承润滑
一、失效形式: 1、磨粒磨损 2、刮伤 3、胶合 4、疲劳剥落 5、腐蚀
轴承

2.轴承材料
轴承材料是指在轴承结构中直接参与摩擦部分的材料,如轴瓦和轴承 衬的材料。轴承材料性能应满足以下要求: 减摩性:材料副具有较低的摩擦系数。 耐磨性:材料的抗磨性能,通常以磨损率表示。 抗咬粘性:材料的耐热性与抗粘附性。 摩擦顺应性:材料通过表层弹塑性变形来补偿轴承滑动表面初始配合不 良的能力。 嵌入性:材料容纳硬质颗粒嵌入,从而减轻轴承滑动表面发生刮伤或磨 粒磨损的性能。 磨合性:轴瓦与轴颈表面经短期轻载运行后,形成相互吻合的表面形状 和粗糙度的能力(或性质)。 此外还应有足够的强度和抗腐蚀能力、良好的导热性、工艺性和经济性。
②曲路密封
径向 轴向
七、滚动轴承的选择
滚动轴承选用时可考虑以下方面因素: (1)载荷和转速; (2)调心和安装要求; (3)经济性。
滚动轴承绝大多数都已标准化,故得到广泛的应用。但是在以下场合, 则主要使用滑动轴承: 1.工作转速很高,如汽轮发电机。 2.要求对轴的支承位置特别精确,如精密磨床。 3.承受巨大的冲击与振动载荷,如轧钢机。 4.特重型的载荷,如水轮发电机。 5.根据装配要求必须制成剖分式的轴承,如曲轴轴承。
b) d= 20 ~ 480mm 时 代号04~96 d=代号×5(mm)
2、前置代号(略) 3、后置代号
C、AC、B——角接触球轴承的接触角α有
15°、25°、40°。
15
40
例:7208AC
表内径40mm,轻系列角接触球轴承, 接触角为25o,宽度正常。
实例:说明滚动轴承 62203 和 7312AC/P6 的含义 6 2 2 03
(三)滚动轴承的密封
1、目的:防止灰尘、水分、杂质等侵入轴 承并阻止润滑剂的流失。良好的密封可保 证机器正常工作,降低噪声并延长轴承的 使用寿命。 2、分类:接触式密封、非接触式密封。
动压滑动轴承
动压润滑的基本理论
二、流体动压润滑基本方程-雷诺方程
1、模型建立:相互倾斜AB板, B 静止、 A板速度为U 2、假设:(1)忽略油层的重力和惯性力影响;
(2)润滑油不可压缩;忽略粘压效应; (3)油压沿膜厚方向不变; (4)油为牛顿流体,处于层流状态。
大的情况下,两平行板之间的润滑油呈层流状态,各流层的速度沿板长度 方向始终呈三角形分布。由于各层流速恒定,因此作用在油层上的油压既 不会增大,也不会减小(恒为大气压)。因此,若忽略板A的质量,则板A 不会下沉,但若板A上承受载荷F时,由于在竖直方向无油压的合力与F平衡 ,于是板A将逐渐下沉,直到与板B接触。显然,这种情况下板A不能承受载 荷F。
为了把润滑油导入整个摩擦面,轴瓦或轴颈上需开设油沟或油槽。 轴向油沟的长度应稍短于轴瓦宽 液体润滑轴承,油沟不开在压力区内,否则破坏油膜的连续性及承载
能力。
图1-6 周向油槽对轴承 承载能力的影响
图1-7 常见油沟形 状
滑动轴承的简介
四 轴瓦及轴承衬材料
轴瓦和轴承衬材料统称为轴承材料。 1、对轴承材料的要求
动压油膜形成的必要条件 :a)楔形间隙 ;
b)相对滑动、速度方向大口进出;
c)供油充分、一定粘度。
动压润滑的基本理论
滑动轴承动压油膜的形成过程:
n=0
n>0
n=nw
1、n=0时,轴颈处于最低位置,轴与瓦间形成楔形间隙; 2、n>0时,轴径旋转将油带入间隙
当n很小时:带入油量少,轴颈沿孔壁向上爬行; 当n增大时:带油量增加,楔形油膜产生动压力把轴径托起 3、n=nw时:轴颈稳定在一个偏心位置上,油膜压力与外载荷平衡
油杯座孔
螺栓
螺母
套管 上轴瓦
机械设计(9.5.2)--滑动轴承的结构类型思考题
10-5 第十章 滑动轴承的结构类型
1、滑动轴承又哪些常见的结构形式?各有何特点?
整体式滑动轴承:结构简单,成本低廉,但是间隙不能调整。
对开式滑动轴承:结构复杂,但是间隙能调整。
2、滑动轴承中为什么要设置轴瓦?轴承合金能否制成轴瓦?为什么?
滑动轴承中要设置轴瓦的原因:要求轴瓦与轴配合时减摩性好、摩擦系数小,轴瓦材料硬度低于轴颈硬度,使磨损主要发生在轴瓦上。
因此磨损报废后,更换轴瓦比更换轴的成本低,而轴承座扔可继续使用。
轴承合金包括锡锑和铅锑轴承合金。
这类材料的机械强度低,不能直接制成轴瓦只能作为轴承衬使用。
3、轴瓦的材料有哪些?
轴瓦的材料有轴承合金、青铜、铸铁、粉末冶金和非金属材料。
4、滑动轴承轴瓦上浇铸轴承衬的目的是什么?
改善轴瓦的摩擦性
5、剖分式滑动轴承一般由哪些零件组成?其剖分面为什么通常设计成阶梯形?由轴承座、轴承盖、剖分轴瓦和联接螺栓组成。
为了安装时容易对中和防止横向错动,在轴承盖和轴承座的剖分面上做成阶梯形。
6、为了保证滑动轴承获得较高的承载能力,油沟应做在什么位置?
油沟应做在上轴瓦(上轴瓦不承受载荷,下轴瓦承受载荷,开油沟、油孔、油室会降低油膜的承载能力),油沟的轴向长度应比轴瓦宽度短,以免油从两端大量流失。
机械设计第十二章滑动轴承
摩擦:滚动摩擦滚动摩擦轴承滚动轴承滑动摩擦滑动摩擦轴承滑动轴承第十二章滑动轴承第一节概述1、滑动轴承应用场合:1)工作转速特高轴承,如汽轮发电机;2)要求对轴的支撑位置特别精确的轴承,如精密磨床;3)特重型的轴承,如水轮发电机;4)承受巨大的冲击和振动,如轧钢机;5)根据工作要求必须做成剖分式的轴承,如曲轴轴承;6)在特殊的工作条件下(如在水中或腐蚀性介质中)工作的轴承,如军舰推进器的轴承;7)在安装轴承处的径向空间尺寸受到限制时,也常采用滑动轴承,如多辊轧钢机。
2、分类①按载荷方向:径向(向心)轴承、止推轴承、向心止推②按接触表面之间润滑情况:液体滑动轴承、非液体滑动轴承液体滑动轴承:完全是液体非液体滑动轴承:不完全液体润滑轴承、无润滑轴承不完全液体润滑轴承(表面间处于边界润滑或混合润滑状态)无润滑轴承(工作前和工作时不加润滑剂)③液体润滑承载机理:液体动力润滑轴承(即动压轴承)液体静压润滑轴承(即液体静压轴承)3、如何设计滑动轴承(设计内容)1)轴承的型式和结构2)轴瓦的结构和材料选择3)轴承的结构参数4)润滑剂的选择和供应5)轴承的工作能力及热平衡计算4.特点:承载能力大,工作平稳可靠,噪声小,耐冲击,吸振,可剖分等特点。
第二节滑动轴承的典型结构一、整体式径向滑动轴承:特点:结构简单,易于制造,端部装入,装拆不便,轴承磨损后无法调整。
应用:低速、轻载或间歇性工作的机器中。
二、对开式径向滑动轴承:装拆方便,间隙可调,应用广泛。
特点:结构复杂、可以调整磨损而造成的间隙、安装方便。
应用场合:低速、轻载或间歇性工作的机器中。
三、止推式滑动轴承:多环式结构,可承受双向轴向载荷。
第三节滑动轴承的失效形式及常用材料一、失效形式1、磨粒磨损:硬颗粒对轴颈和轴承表面起研磨作用。
2、刮伤:硬颗粒划出伤痕。
3、胶合:轴承温度过高,载荷过大,油膜破裂或供油不足时,轴颈和轴承相对运动表面材料发生粘附和迁移,从而造成轴承损坏。
第十二章 滑动轴承
二、对开式结构
• 组成
• 特点:装拆方便;磨损后可用垫片调间隙,也可靠修刮轴瓦 • 应用:广泛 • 标准: JB/T2561——1991(双螺孔) JB/T2562——1991(四螺孔)
12.3 失效形式及常用材料
一、失效形式
1. 磨粒磨损:改变轴承形状,降低精度、性能及寿命; 2. 刮伤:划出线状伤痕; 3. 咬粘(胶合):高温重载油膜破裂产生,可使运动中止;
2. 轴瓦材料:铸铝青铜(表12-2)其中:[p]=15MPa, [pv]=12MPa*m/s ,[v]=4m/s 3. 润滑方式:脂润滑,2号钙基脂(表12-3)
4. 验算p :p=F/dB=2*105 / (200*300)=3.33MPa<[p]
5. 验算pv, v: v=πdn/(60*1000)=3.14m/s<[v] pv=3.33*3.14=10.47<[pv] 6. 选择配合:H7/d9 均合格
[pv]: 许用值,见表12-6
注意:若为多环则[p]及[pv] 值均比单环降低50%
例题:
设计一起重机卷筒上的滑动轴承,已知轴承上的径向 载荷F=2*105 N ,轴颈直径 d=200mm ,轴的转速 n=300r/min
解: 1. 确定轴承结构:因低速重载,则按非液体润滑轴承设 计,采用对开结构;轴承宽度取 B/D=1.5,则: B=1.5*200=300mm;
4. 疲劳剥落:变载产生疲劳裂纹,裂纹扩展导致剥落;
5. 腐蚀:润滑的氧化生成的物质,水分,氧,硫等; 6. 其它:气蚀,流体侵蚀,电侵蚀,微动磨损等
滑动轴承故障原因平均比例 故障原 因 比率/% 不干 润滑油 净 不足 38.3 11.1 安装误 差 15.9 对中不 良 8.1 超载 腐蚀 制造精 气 度低 蚀 6.0 5.6 5.5 2.8 其 它 6.7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滑动轴承的结构特点
滑动轴承是一种常见的机械元件,用于支撑和限制旋转或线性运动的轴。
它的结构特点主要体现在以下几个方面。
1. 基本结构:
滑动轴承主要由内圈、外圈、滚动元件和保持架等组成。
内圈与轴直接接触,外圈与外壳或座子直接接触,滚动元件则位于内圈和外圈之间,保持架用于固定滚动元件。
2. 滚动元件:
滑动轴承的滚动元件主要有滚子、针、球等多种形状。
滚动元件能够在内圈和外圈之间滚动,减少了接触面积,降低了摩擦和磨损,提高了轴承的使用寿命和工作效率。
3. 润滑方式:
滑动轴承的润滑方式分为干摩擦润滑和液体润滑两种。
干摩擦润滑主要依靠涂抹黏性润滑剂或使用自润滑材料,如聚四氟乙烯等;液体润滑则通过油脂、润滑油等流体介质来减小摩擦。
4. 承载能力:
滑动轴承的承载能力较大,能够承受较大的径向力和轴向力。
它们通过增加滚动元件的数量或改变滚动元件的形状来提高承载能力。
5. 高转速性能:
滑动轴承的高转速性能较差,主要是由于滚动元件与内外圈之间存在滑动摩擦,产生较大的摩擦热量,容易导致轴承过热。
6. 自调心能力:
滑动轴承具有一定的自适应能力,能够在一定范围内自行调整偏差。
当轴与座子之间存在一定的偏差时,滑动轴承能够通过滚动元件的滚动来自行调整,保证轴的正常运转。
7. 维护保养:
滑动轴承相对于滚动轴承而言,维护保养较为简单。
由于滑动轴承的结构相对简单,没有滚动元件,因此在使用过程中不需要经常检查润滑油的添加和更换。
总结起来,滑动轴承的结构特点主要包括基本结构、滚动元件、润滑方式、承载能力、高转速性能、自调心能力和维护保养等方面。
这些特点使得滑动轴承在许多机械设备中得到广泛应用。