贾俊平统计学思考题答案
统计学第五版课后答案(贾俊平)

第四章统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics10Missing 0Mean 9.60Median 10.00Mode 10Std. Deviation 4.169Percentiles 25 6.2550 10.0075单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
1、确定组数:()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图:客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。
贾俊平《统计学》配套题库 【课后习题】详解 第9章~第10章【圣才出品】

第9章分类数据分析一、思考题1.简述列联表的构造与列联表的分布。
答:列联表是由两个以上的变量进行交叉分类的频数分布表。
列联表的分布可以从两个方面看,一个是观察值的分布,又称为条件分布,每个具体的观察值就是条件频数;一个是期望值的分布。
2.用一张报纸、一份杂志或你周围的例子构造一个列联表,说明这个调查中两个分类变量的关系,并提出进行检验的问题。
答:对三个生产厂甲、乙、丙提供的学习机的A、B、C 三种性能进行质量检验,欲了解生产厂家同学习机性能的质量差异是否有关系。
抽查了450部学习机次品,整理成为如表9-2所示的3×3列联表。
表9-2A B C 总计甲乙丙204015459065357070100200150总计75200175450根据抽查检验的数据表明:次品类型与厂家(即哪一个厂)生产是无关的(即是相互独立的)。
建立假设:H 0:次品类型与厂家生产是独立的,H 1:次品类型与厂家生产不是独立的。
次品类型生产厂可以计算各组的期望值,如表9-3所示(表中括号内的数值为期望值)。
表9-3各组的期望值计算表A B C 总计甲乙丙20(17)40(33)15(25)45(44)90(89)65(67)35(39)70(78)70(58)100200150总计75200175450所以2222(2017)(4033)(7058)9.821173358χ---=+++=…。
而自由度等于(R -1)(C -1)=(3-1)×(3-1)=4,若以0.01的显著性水平进行检验,查χ2分布表得20.01(4)13.277χ=。
由于220.019.821(4)13.277χχ=<=,故接受原假设H 0,即次品类型与厂家生产是独立的。
3.说明计算2χ统计量的步骤。
答:计算2χ统计量的步骤:(1)用观察值o f 减去期望值e f ;(2)将(o f -e f )之差平方;(3)将平方结果2)(e o f f -除以e f ;(4)将步骤(3)的结果加总,即得:22()o e ef f f χ-=∑。
(NEW)贾俊平《统计学》(第5版)笔记和课后习题(含考研真题)详解

目 录第1章 导 论1.1 复习笔记1.2 课后习题详解1.3 典型习题详解第2章 数据的搜集2.1 复习笔记2.2 课后习题详解2.3 典型习题详解第3章 数据的图表展示3.1 复习笔记3.2 课后习题详解3.3 典型习题详解第4章 数据的概括性度量4.1 复习笔记4.2 课后习题详解4.3 典型习题详解第5章 概率与概率分布5.1 复习笔记5.2 课后习题详解5.3 典型习题详解第6章 统计量及其抽样分布6.1 复习笔记6.2 课后习题详解6.3 典型习题详解第7章 参数估计7.1 复习笔记7.2 课后习题详解7.3 典型习题详解第8章 假设检验8.1 复习笔记8.2 课后习题详解8.3 典型习题详解第9章 分类数据分析9.1 复习笔记9.2 课后习题详解9.3 典型习题详解第10章 方差分析10.1 复习笔记10.2 课后习题详解10.3 典型习题详解第11章 一元线性回归11.1 复习笔记11.2 课后习题详解11.3 典型习题详解第12章 多元线性回归12.1 复习笔记12.2 课后习题详解12.3 典型习题详解第13章 时间序列分析和预测13.1 复习笔记13.2 课后习题详解13.3 典型习题详解第14章 指 数14.1 复习笔记14.2 课后习题详解14.3 典型习题详解第1章 导 论1.1 复习笔记一、统计学1统计学统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。
数据收集也就是取得统计数据;数据处理是将数据用图表等形式展示出来;数据分析则是选择适当的统计方法研究数据,并从数据中提取有用信息进而得出结论。
2.数据分析所用的方法(1)描述统计:研究的是数据收集、处理、汇总、图表描述、概括与分析等统计方法;(2)推断统计:研究如何利用样本数据来推断总体特征的统计方法。
二、统计数据的类型1分类数据、顺序数据、数值型数据(按计量尺度不同分类)(1)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表述的;(2)顺序数据:只能归于某一有序类别的非数字型数据。
贾俊平《统计学》课后习题及详解(统计量及其抽样分布)【圣才出品】

第6章 统计量及其抽样分布一、思考题1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数? 答:(1)设是从总体中抽取的容量为的一个样本,如果由此样本构造一个函数,不依赖于任何未知参数,则称函数是一个统计量。
(2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。
为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。
(3)统计量是样本的一个函数。
由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。
2.判断下列样本函数哪些是统计量?哪些不是统计量?12n X X X ,,…,X n 12()n T X X X ,,…,12()n T X X X ,,…,1121021210310410()/10min()T X X X T X X X T X T X μμσ=+++==-=-…,,…,()/答:统计量中不能含有未知参数,故、是统计量,、不是统计量。
3.什么是次序统计量?答:设是从总体中抽取的一个样本,称为第个次序统计量,它是样本满足如下条件的函数:每当样本得到一组观测值…,时,其由小到大的排序中,第个值就作为次序统计量的观测值,而称为次序统计量,其中和分别为最小和最大次序统计量。
4.什么是充分统计量?答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。
统计量加工过程中一点信息都不损失的统计量通常称为充分统计量。
5.什么是自由度?答:统计学上的自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的变量的个数。
统计学 贾俊平第四版第四章课后答案(目前最全)

第四章统计数据的概括性描述4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:(1)(2)(3)(4)说明汽车销售分部的特征答:10名销售人员的在5月份销售的汽车数量较为集中。
4.2 随机抽取25个网络用户,得到他们的年龄数据如下:单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:1、排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄从频数看出,众数Mo有两个:19、23;从累计频数看,中位数Me=23。
(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
为分组情况下的直方图:为分组情况下的概率密度曲线:分组:1、确定组数:()l g 25l g ()1.3981115.64l g (2)l g 20.30103n K =+=+=+=,取k=62、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图:4.3 某银行为缩短顾客到银行办理业务等待的时间。
统计学(第四版) 贾俊平 课后习题答案

第 2 章 统计数据的描述——练习题
●1. 为评价家电行业售后服务的质量,随机抽取了由 100 家庭构成的一个样本。服务质量的 等级分别表示为:A. 好;B.较好;C. 一般;D. 差;E. 较差。调查结果如下: B E C C A D C B A E D A C B C D E C E E A D B C C A E D C B B A C D E A B D D C C B C E D B C C B C D A C B C D E C E B B E C C A D C B A E B A C D E A B D D C A D B C C A E D C B C B C E D B C C B C (1) 指出上面的数据属于什么类型; (2) 用 Excel 制作一张频数分布表;
(3)条形图的制作:将上表 (包含总标题,去掉合计栏)复制到 Excel 表中,点击:图 表向导→条形图→选择子图表类型→完成(见 Excel 练习题 2.1)。即得到如下的条形图:
E D C B A 0 20 40
服务质量等 级评价的频 数分布 频 率% 服务质量等 级评价的频 数分布 家庭 数(频数)
25
30
35
40
●4. 为了确定灯泡的使用寿命(小时) ,在一批灯泡中随机抽取 100 只进行测试,所得结果 如下: 700 716 728 719 685 709 691 684 705 718 706 715 712 722 691 708 690 692 707 701 708 668 706 694 688 701 693 729 710 692 690 689 671 697 694 693 691 736 683 718 664 681 697 747 689 685 707 681 695 674 699 696 702 683 721 685 658 682 651 741 717 720 706 698 698 673 698 733 677 661 666 700 749 713 712 679 735 696 710 708 676 683 695 665 698 722 727 702 692 691
(完整word版)统计学贾俊平课后答案目前最全
8.2 一种元件,要求其使用寿命不得低于700小时。
现从一批这种元件中随机抽取36件,测得其平均寿命为680小时。
已知该元件寿命服从正态分布,σ=60小时,试在显著性水平0.05下确定这批元件是否合格。
解:H 0:μ≥700;H 1:μ<700 已知:x =680 σ=60由于n=36>30,大样本,因此检验统计量:x z ==-2 当α=0.05,查表得z α=1.645。
因为z <-z α,故拒绝原假设,接受备择假设,说明这批产品不合格。
8.38.4 糖厂用自动打包机打包,每包标准重量是100千克。
每天开工后需要检验一次打包机工作是否正常。
某日开工后测得9包重量(单位:千克)如下:99.3 98.7 100.5 101.2 98.3 99.7 99.5 102.1 100.5已知包重服从正态分布,试检验该日打包机工作是否正常(a =0.05)?解:H 0:μ=100;H 1:μ≠100 经计算得:x =99.9778 S =1.21221检验统计量:x t =-0.055 当α=0.05,自由度n -1=9时,查表得()29t α=2.262。
因为t <t α,样本统计量落在接受区域,故接受原假设,拒绝备择假设,说明打包机工作正常。
8.5 某种大量生产的袋装食品,按规定不得少于250克。
今从一批该食品中任意抽取50袋,发现有6袋低于250克。
若规定不符合标准的比例超过5%就不得出厂,问该批食品能否出厂(a =0.05)?解:解:H 0:π≤0.05;H 1:π>0.05已知: p =6/50=0.12检验统计量:Z ==2.271当α=0.05,查表得z α=1.645。
因为z >z α,样本统计量落在拒绝区域,故拒绝原假设,接受备择假设,说明该批食品不能出厂。
8.68.7 某种电子元件的寿命x(单位:小时)服从正态分布。
现测得16只元件的寿命如下: 159 280 101 212 224 379 179 264222 362 168 250 149 260 485 170问是否有理由认为元件的平均寿命显著地大于225小时(a =0.05)?解:H 0:μ≤225;H 1:μ>225 经计算知:x =241.5 s =98.726检验统计量:x t =0.669 当α=0.05,自由度n -1=15时,查表得()15t α=1.753。
统计学第四章习题答案解析贾俊平
第四章统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics10Missing 0Mean 9.60Median 10.00Mode 10Std. Deviation 4.169Percentiles 25 6.2550 10.0075 12.50单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
1、确定组数: ()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图:种是所有颐客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。
统计学贾俊平第三章课后答案
一、思考题3.1数据的预处理包括数据审核,数据筛选,数据排序,数据透视表。
3.2分类数据整理:频数分布表(频数,比例,百分比,比率)图示方法:条形图,对比条形图,帕累托图,饼图。
顺序数据的整理:频数分布表(累计频数,累计频率)图示方法:环形图。
3.3数值型数据的分组方法是组距分组,步骤:1.确定组数:组数的确定应以能够显示数据的分布特征和规律为目的。
在实际分组时,组数一般为5≤K ≤152.确定组距:组距(Class Width)是一个组的上限与下限之差,可根据全部数据的最大值和最小值及所分的组数来确定,即组距=( 最大值 - 最小值)÷ 组数3.统计出各组的频数并整理成频数分布表3.4直方图和条形图区别:1.条形图是用条形的长度(横置时)表示各类别频数的多少,其宽度(表示类别)则是固定的2.直方图是用面积表示各组频数的多少,矩形的高度表示每一组的频数或百分比,宽度则表示各组的组距,其高度与宽度均有意义3.直方图的各矩形通常是连续排列,条形图则是分开排列4.条形图主要用于展示分类数据,直方图则主要用于展示数值型数据3.5绘制线图应该注意的问题:一般情况下,纵轴数据下端应从“0”开始,以便于比较。
数据与“0”之间的间距过大时,可以采取折断的符号将纵轴折断3.6饼图和环形图的不同:饼图只能显示一个总体各部分所占的比例,环形图则可以同时绘制多个样本或总体的数据系列,每一个样本或总体的数据系列为一个环。
3.7茎叶图与直方图相比的优点与各自的应用场合:直方图可观察一组数据的分布状况,但没有给出具体的数值;茎叶图既能给出数据的分布状况,又能给出每一个原始数值,保留了原始数据的信息。
直方图适用于大批量数据,茎叶图适用于小批量数据3.8鉴别图表优劣的准则有:3.9制作统计表时应注意的问题:二、练习题3.1为评价家电行业售后服务的质量,随机抽取了由100个家庭构成的一个样本。
服务质量的等级分别为:A.好;B.较好;C.一般;D.较差;E.差。
《统计学》课后答案(第二版_贾俊平版)
第1章统计与统计数据一、学习指导统计学是处理和分析数据的方法和技术,它几乎被应用到所有的学科检验领域。
本章首先介绍统计学的含义和应用领域,然后介绍统计数据的类型及其来源,最后介绍统计中常用的一些基本概念。
本章各节的主要容和学习要点如下表所示。
二、主要术语1. 统计学:收集、处理、分析、解释数据并从数据中得出结论的科学。
2. 描述统计:研究数据收集、处理和描述的统计学分支。
3. 推断统计:研究如何利用样本数据来推断总体特征的统计学分支。
4. 分类数据:只能归于某一类别的非数字型数据。
5. 顺序数据:只能归于某一有序类别的非数字型数据。
6. 数值型数据:按数字尺度测量的观察值。
7. 观测数据:通过调查或观测而收集到的数据。
8. 实验数据:在实验中控制实验对象而收集到的数据。
9. 截面数据:在相同或近似相同的时间点上收集的数据。
10. 时间序列数据:在不同时间上收集到的数据。
11. 抽样调查:从总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推断总体特征的数据收集方法。
12. 普查:为特定目的而专门组织的全面调查。
13. 总体:包含所研究的全部个体(数据)的集合。
14. 样本:从总体中抽取的一部分元素的集合。
15. 样本容量:也称样本量,是构成样本的元素数目。
16. 参数:用来描述总体特征的概括性数字度量。
17. 统计量:用来描述样本特征的概括性数字度量。
18. 变量:说明现象某种特征的概念。
19. 分类变量:说明事物类别的一个名称。
20. 顺序变量:说明事物有序类别的一个名称。
21. 数值型变量:说明事物数字特征的一个名称。
22. 离散型变量:只能取可数值的变量。
23. 连续型变量:可以在一个或多个区间中取任何值的变量。
第2章数据的图表展示一、学习指导数据的图表展示是应用统计的基本技能。
本章首先介绍数据的预处理方法,然后介绍不同类型数据的整理与图示方法,最后介绍图表的合理使用问题。
本章各节的主要容和学习要二、主要术语24. 频数:落在某一特定类别(或组)中的数据个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贾俊平统计学思考题答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章:1、什么是统计学统计学是一门收集、分析、表述、解释数据的科学和艺术。
2、描述统计:研究的是数据收集、汇总、处理、图表描述、概括与分析等统计方法。
推断统计:研究的是如何利用样本数据来推断总体特征。
3、统计学据可以分成哪几种类型,个有什么特点按照计量尺度不同,分为:分类数据、顺序数据、数值型数据。
分类数据:只能归于某一类别的,非数字型数据。
顺序数据:只能归于某一有序类别的,非数字型数据。
数值型数据:按数字尺度测量的观察值,结果表现为数值。
按收集方法不同。
分为:观测数据、和实验数据观测数据:通过调查或观测而收集到的数据;不控制条件;社会经济领域实验数据:在试验中收集到的数据;控制条件;自然科学领域。
按时间不同,分为:截面数据、时间序列数据截面数据:在相同或近似相同的时间点上收集的数据。
时间序列数据:在不同时间收集的数据。
4、举例说明总体、样本、参数、统计量、变量这几个概念。
总体:是包含全部研究个体的集合,包括有限总体和无限总体(范围、数目判定)样本:从总体中抽取的一部分元素的集合。
参数:用来描述总体特征的概括性数字度量。
(平均数、标准差、比例等)统计量:用来描述样本特征的概括性数字度量。
(平均数、标准差、比例等)变量:是说明样本某种特征的概念,其特点:从一次观察到下一次观察结果会呈现出差别或变化。
(商品销售额、受教育程度、产品质量等级等)(对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
)5、变量可以分为哪几类分类变量:说明事物类别;取值是分类数据。
顺序变量:说明事物有序类别;取值是顺序数据数值型变量:说明事物数字特征;取值是数值型数据。
变量也可以分为:随机变量和非随机变量;经验变量和理论变量6、举例说明离散型变量和连续型变量。
离散型变量:只能取有限个、可数值的变量。
(企业个数、产品数量)连续型变量:可以在一个或多个区间中取任何值的变量。
(年龄、温度、零件尺寸误差)7、请举出统计应用的几个例子。
市场调查、人口普查等。
8、请举出应用统计学的几个领域。
社会科学中的经济分析、政府政策制定等;自然科学中的物理、生物领域等。
第二章:1、什么是二手资料使用二手资料需要注意些什么什么是二手资料:已经存在的;跟研究内容有关的;别人所做的调查或研究;会被我们利用的,资料。
注意:需要进行评估:考虑原始数据收集人、收集目的、收集途径、收集时间及数据来源。
2、比较概率抽样和非概率抽样的特点。
举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
概率抽样:以一定的入样概率,按照一定的随机性原则选取样本(即样本被选中的概率已知或可计算);技术含量高、成本高。
用于描述性、解释性、推断性研究;研究目的在于掌握对象总体的数字特征,得到总体参数的置信区间。
非概率抽样:不按照入样概率和随机性原则,而按照方便、滚雪球或配额等抽样形式选取样本;技术含量低、成本低、时效快、操作简便。
用于探索性研究;研究目的在于发现问题,为更深入的数量分析提供准备。
下面题目(略)除了自填式,面访式和电话式还有什么搜集数据的办法试验式和观察式等自填式,面访式和电话式各自的长处和弱点自填式;优点:1调查组织者管理容易2成本低,可进行大规模调查3对被调查者,可选择方便时间答卷,减少回答敏感问题压力。
缺点:1返回率低2不适合结构复杂的问卷,调查内容有限3调查周期长4在数据搜集过程中遇见问题不能及时调整。
面访式;优点:1回答率高2数据质量高3在调查过程中遇见问题可以及时调整。
缺点:1成本比较高2搜集数据的方式对调查过程的质量控制有一定难度3对于敏感问题,被访者会有压力。
电话式;优点:1速度快2对调查员比较安全3对访问过程的控制比较容易。
缺点:1实施地区有限2调查时间不能过长3使用的问卷要简单4被访者不愿回答时,不易劝服。
如何控制调查中的回答误差对于理解误差,学习一定的心理学知识,记忆误差,缩短所涉及的时间范围,有意识误差,做好被调查者的心理工作,要遵守职业道德,为被调查者保密,尽量在问卷中不涉及敏感问题。
怎么减少无回答对于随机误差,要提高样本容量,对于系统误差,只有做好准备工作并做好补救措施。
比如说要一百份的问卷回复,就要做好一百二十到一百三十的问卷准备,进行面访式的时候要尽量的劝服不愿意回答的被访者,以小物品的馈赠提高回复率。
第三章:1、数据的预处理包括哪些内容数据审核:从完整性和准确性方面调查原始数据(完整性:单位、个体是否遗漏;准确性:检查错误、异常值)数据筛选:根据需要找出符合特定条件的某类数据。
数据排序:按一定顺序将数据排列,体现数据特征或趋势。
2、分类数据和顺序数据的整理和图示方法各有哪些分类数据:整理:制作频数分布表,用比例、百分比、比率进行描述性分析。
图示:条形图、帕累托图、饼图。
顺序数据::整理:制作频数分布表,用比例、百分比、比率进行描述性分析。
图示:累积频数、累计频率分布图、环形图、条形图、帕累托图、饼图。
3、数值型数据的分组方法有哪些简述组距分组的步骤。
分组方法:单变量分组:把每一个变量值做为一组(只适合离散型变量,变量值较少)组距分组:将全部变量值依次划分为若干区间,一个区间变量值做为一组。
(组距分组又分为:等距分组、异距分组)分组步骤:确定组数(5,15);确定各组组距(5倍数;组距>最大变量值-最小变量值);根据分组整理成频数分布表。
4、直方图与条形图有何区别1、条形图用于展示分类数据;直方图用于展示数值型数据。
2、条形图用长度表示个类别频数,宽度固定(无意义);直方图用面积表示各组频数,长度表每组频数(或频率),宽度为组距(有意义)。
3、条形图各矩形分开排列,直方图各矩形连续排列。
(分组数据具有连续性)5、绘制线图应注意哪些问题时间在横轴,观测值在纵轴;横轴纵轴长度比例大概为10:7;纵轴下端一般从0开始,数据与0距离过大的话用折断符。
6、饼图与环形图有什么不同饼图:只能绘制一个样本或总体各部分的比例。
条形图:可以同时绘制多个样本或总体各部分的比例。
中间有一空洞,每个样本或总体数据表现为一个环。
7、茎叶图与直方图相比有什么优点他们的应用场合是什么茎叶图在给出数据分布情况的同时,又能给出每一个原始数据(保留了原始数据的信息);直方图用于大批量数据,茎叶图用于小批量数据。
8、鉴别图标优劣的准则有哪些显示数据、强调数据间的比较、有对图形的统计描述和文字描述、避免歪曲、把读者注意力集中于数据内容上、服务于一个明确的目的。
8、制作统计表应注意哪几个问题合理安排统计表结构;表头一般包括表号,总标题和表中数据的单位等内容;表中的上下两条横线一般用粗线,中间的其他用细线;在使用统计表时,必要时可在下方加注释,注明数据来源。
公式:组中值=(上限+下限)/2第四章:1、一组数据的分布特征可以从哪进几个方面进行测度可以从以下三方面进行测度:集中趋势:反映个数据向其中心值的靠拢或集中程度;离散程度:反映各数据远离其中心值的趋势;分布形状:数据分布的峰态和偏态;2、怎样理解平均数在统计学中的地位平均数在统计学中具有重要地位:是集中趋势的最主要测度,是一组数据的重心所在;是数据误差相互抵消的结果,利用了全部数据信息,具有无偏性;只适用于数值型数据,不适用于分类或顺序数据。
3、简述四分位数的计算方法:四分位数是一组数据排序后处于25%和75%位置上的值。
具体计算方法是:n/4;3n/4 4、对于比例数据的平均为什么采用几何平均对于比例数据采用几何平均比采用算数平均更合理。
5、简述众数、中位数和平均数的特点和应用场合。
众数:主要用于分类数据集中趋势的度量;是一组数据的峰值;优点:不受极值的影响。
缺点:具有不唯一性;只有数据量较大时才有效果中位数:主要用于顺序数据集中趋势的度量;是一组数据中间位置的代表制;优点:不受极值的影响;数据分布偏斜程度较大时是一个不错的选择。
平均数:主要用于数值型数据集中趋势的度量;是一组数据的重心所在。
优点:利用了所有数据信息;数据误差相互抵消,具有无偏性;缺点:易受极值影响;当数据分布偏斜程度较大时代表性差。
6、简述异众比率、四分位差、方差或标准差的应用场合。
异众比率:分类数据的离散程度测度;四分位差:顺序数据的离散程度测度;方差:数值型数据的离散程度测度7、标准分数有哪些用途标准分数:Xi-/s 即:(变量值减去其平均数)/标准差标准分数给出了一组数据中各数据的相对位置(其离平均数的距离用标准差衡量)用途:在对多个具有不同量纲的变量进行处理时,需要对变量进行标准化处理;检查一组数据中是否有离群值。
8、为什么要计算离散系数离散系数=标准差/平均数原因:方差和标准差反映的是数据离散程度的绝对值:一方面,受原变量值自身水平高低的影响(与变量平均数大小有关);另一方面,与原变量值得计量单位有关,计量单位不同,离散程度也不同。
因此,为消除变量值水平高低和变量值单位对离散程度的影响,要计算离散系数。
9、测度数据分布形状的统计量有哪些峰态系数、偏态系数。
第六章:1、什么是统计量为什么要引进统计量统计量为什么不含任何未知参数定义:设(X1,X2……Xn)是从总体X中抽取的容量为n的样本,如果由此构造一个函数T(X1,X2……Xn),不依赖于任何未知参数,则称函数T(X1,X2……Xn)是一个统计量。
为什么:为了使统计推断成为可能。
2、什么是次序统计量设(X1,X2……Xn)是从总体X中抽取的容量为n的样本,,若样本(X1,X2……Xn)是满足如下条件的函数:每当样本得到一个观测值x1,x1……xn时,其由小到大的排序中,第i个值x(i)就作为次序统计量Xi的观测值,而X(1),X(2)……X(n)就称为次序统计量。
3、什么是充分统计量统计加工过程中一点信息都不损失的统计量称为充分统计量。
4、什么是自由度独立变量的个数。
5、简述三个重要分布及正态分布间的关系。
卡方分布:设X1,X2,……Xn是n个相互独立的随机变量,且Xi~N(0,1),则X=X1^2+……+Xn^2为服从以n为自由度的卡方分布。
F分布:设X~X^2(m),Y^2~X^2(n),且X,Y相互独立,记Z=X/m/Y/n,则Z~F(m,n)Z分布:设X~N(0,1),Y~X^2(n),且X,Y相互独立,记T=X/(Y/n)^(1/2),有T~t(n) 6、什么是抽样分布样本统计量(随机变量)的概率分布是一种理论概率分布。