PT100尺寸说明

PT100尺寸说明
PT100尺寸说明

RESPONSIBLE GROUP: Process Controls

CURRENT CONTACT: David C. Arner

Denotes Revision

Table of Contents

Section Title Page

1. Purpose 2

2. Scope 2

3. Related Documents 2

4. Definitions 3

5. Temperature Elements 4

Table 1 Relative Merits of RTDs and Thermocouples 5 Table 2 Thermocouple Types 6 Table 3 Thermocouple Accuracy 8 Table 4 Thermocouple Cables 9 Table 5 Recommended Default U Dimensions for Welded and Threaded

26

Applications Outside Cold Boxes

Figure 1 RTD Wiring Options 11 Figure 2Typical Terminal Arrangement 15 Figure 3Thermowell Styles (Threaded Well) 16 Figure 4Threaded Well and Threadolet 18 Figure 5Threaded Well and Threaded Elbowlet 18 Figure 6DN20 Socket Weld Installation 19 Figure 7DN20 Socket Weld Elbow Installation 20

Figure 8Flanged Thermowell Installation 21 Figure 9A Threadolet Installation Dimensions 23 Figure 9B Weldolet Installation Dimensions 23 Figure 10Elbow Installation Nominal Dimensions 24 Figure 11Flanged Thermowell Installation 25 Figure 12Thermowell Extensions 27 Appendix A Fast Response Thermocouples for Reciprocating O2 Compressors 31

Authorization for this document is on file in the GEO Standards Department.

3PS15001, Rev. 3, Page 2 of 32 1. PURPOSE

1.1 This global engineering guideline provides background information and recommendations for the

selection and specification of temperature elements.

1.2This guideline is intended to encourage consistent and uniform good practice while meeting

performance and reliability requirements.

2. SCOPE

2.1 This guideline applies to temperature elements for both Air Products-owned and -operated plants

and for plants supplied to third parties.

2.2This guideline considers both RTD and thermocouple types of temperature elements. Other

temperature measurement methods (e.g., thermisters, optical) are excluded.

2.2.1This guideline specifically does not include details of very low temperature applications (liquid

hydrogen and liquid helium applications) for which silicon diode type temperature elements have

typically been specified.

2.3This guideline has been prepared specifically considering the requirements of:

?Air Separation Plants

?HyCO Plants

?Chemicals

The general principles described within this guideline may be applied to other plant types with

caution. Additional considerations may apply to other types of plants (e.g., ultra high purity plants). 2.3.1 This guideline is not intended for laboratory scale or other special applications.

2.3.2 Interested parties are invited to make proposals to broaden the scope of this document to cover

other processes at a future issue.

2.4 This guideline makes reference to existing Tier 4 Specifications, and provides some supporting

background information for these specifications.

3. RELATED DOCUMENTS

3.1 Air Products Engineering Documents

3MA27036 Mechanical Requirements for Distillation by Temperature Control for Packed and

Trayed Columns.

3PS00007 Selection and Installation of Transmitters

3PS00016 Material Selection for Control Valves and Instrumentation in Oxygen Service

3PS15002 Use of Thermowells in Pressurized Systems

?3PS45004 Oxygen Compressor Temperature Protection System

4WPS-TEMP01 Temperature Sensors and Thermowells for Cold Box Service

⊕4WPS-TEMP02 Resistance Type Temperature Detectors (RTDs) for Cryogenic and General Service 4WPS-TEMP03 Temperature Sensors and Thermowells for Oxygen Compressors - Fast

Response Type

4WPS-TEMP04 Temperature Sensors for Tray-Type Columns

4WPS-TEMP05 Temperature Sensors for Surface Type Measurements

4WPS-TEMP06 Temperature Sensors and Thermowells for General Service

4ECE-M25 Cold Box/Can Temperature Element Installation

APG Air Products PED Committee Guidelines (Intranet)

⊕Provided for background information only (not referenced in the text)

?To be published at a date subsequent to this issue date

3PS15001, Rev. 3, Page 3 of 32

3.2 American Society for Testing and Materials (ASTM)

E 230 Standard Specification and Temperature-Electromotive Force (EMF) Tables for

Standardized Thermocouples

⊕ E 608/E 608M Standard Specification for Mineral-Insulated, Metal-Sheathed Base-Metal

Thermocouples

⊕ E 1137 Standard Specification for Industrial Platinum Resistance Thermometers

3.3 Instrumentation, Systems, and Automation Society (ISA)

MC96.1 Temperature Measurement Thermocouples

3.3 International Electrotechnical Commission (IEC)

⊕IEC 60584-1 Thermocouples. Part 1: Reference Tables

IEC 60584-2 Thermocouples. Part 2: Tolerances

IEC 60751 Industrial Platinum Resistance Thermometer Sensors

3.4 British Standards (BS)

BS EN 60584-1 Thermocouples. Part 1: Reference Tables

⊕BS EN 60584-2 Thermocouples. Part 2: Tolerances

BS EN 60751 Industrial Platinum Resistance Thermometer Sensors

3.5 German Standards (DIN)

⊕DIN EN 60584-1 Thermocouples. Part 1: Reference Tables

⊕DIN EN 60584-2 Thermocouples. Part 2: Tolerances

3.6 National Institute of Standards and Technology (NIST)

⊕ITS-90 International Temperature Scale of 1990

4. DEFINITIONS

4.1 RTD means Resistance Temperature Detector (i.e., the actual sensing element in a PRT).

Operation is based on the principle of Resistance Thermometry, i.e., when a metal’s ele ctrical

resistance increases with increasing temperature. Metals that have shown a relative linearity and rangability for use in temperature measurement are Platinum and Nickel.

4.2 PRT means Platinum Resistance Thermometer (the whole assembly), i.e., a PRT uses a RTD. 4.3 Thermocouple Operation is based on the Seebeck Effect whereby a voltage is created along a

metal wire in the presence of a temperature gradient. A thermocouple uses a pair of dissimilar

metal wires joined at two points such that a net EMF is generated when the junctions are at

different temperatures. Standard combinations of dissimilar metals suitable for a range of

applications are given thermocouple type designators. See Table 2 for thermocouple types

currently used by Air Products.

4.4 Electromotive Force (EMF)– The term EMF is used throughout this document to describe the

voltages that are generated due to temperature gradients in thermocouple installation.

4.5 Cold Junction Compensation– The net EMF generated by a thermocouple installation depends

on the temperatures both at the measuring thermocouple junction (hot junction), and at the

reference junction (cold junction) [i.e., the junction between the thermocouple cable (or

compensating cable) and the copper cables or terminals] of the associated transmitter/control

system. Cold junction compensation is the process of compensating for errors that would

otherwise be introduced by changes in temperature at the reference junction. Historically, these

errors were eliminated by immersing the reference junction in an isothermal environment (e.g.,

melting ice). In contemporary industrial systems, the thermocouple cable (or compensating cable)

3PS15001, Rev. 3, Page 4 of 32 is connected directly to the associated transmitter/control system. The transmitter/control system compensates electronically for the actual temperature at the reference junction (i.e., at the

transmitter/control system’s terminals).

4.6The following dimensional definitions are used in this document:

ID dimension is the pipe internal diameter (which depends on pipe nominal bore size and wall

thickness or schedule). For example, see Figure 9A.

L Lagging extension length. See Figure 12 and paragraph 5.6.21.1.

N Nipple Extension length. See Figure 12 and paragraph 5.6.21.1.

OD dimension is the pipe external diameter (which depends on pipe nominal bore size only). For example, see Figure 9A.

s dimension is the setback from the pipe wall OD to the bottom of the fitting engagement. See

Figure 14 for an example.

T Thermowell Extension length. See Figure 12 and paragraph 5.6.21.1.

th dimension is the pipe wall thickness.

U dimension is the insertion length of the thermowell well measured from the tip of the well to the: ?Bottom of the thread for threaded wells

?Bottom of the weld section for welded wells

?Bottom of the flange for flanged wells

CAUTION: There is some variability in the letter codes used for dimensions both in other

Air Products standards and in industry. Care should be taken to clarify terminology when referring to dimensions by "letter."

5. TEMPERATURE ELEMENTS

5.1 Standards for Temperature Elements

5.1.1Section 3, above, illustrates that there are many national and international standards for

temperature elements.

5.1.2Air Products’ view is not to fa vor one standard over another (e.g., ASTM over IEC).

Consequently, temperature elements may be specified in accordance with any internationally

recognized standard.

5.1.3The European and IEC standards are typically identical to one another. However, there are some

significant differences between IEC and American Standards (e.g., claimed accuracies and

thermocouple cable colors).

5.1.4Consequently, it is necessary to specify thermocouples and compensating cable to a particular

standard to achieve consistent color coding. Particular standards are likely to be preferred for

certain projects to suit:

?Local conventions

?Client requirements

5.2 Element Type

5.2.1Because of the many types of temperature elements available, there may be several potential

solutions for any particular application.

3PS15001, Rev. 3, Page 5 of 32 5.2.2For Air Products to achieve benefits from standardization, this guideline recommends standard

element types for most applications.

5.2.3These standard element types should be specified whenever it is practical to do so. However,

other technically acceptable alternatives may be specified when there is an overriding reason to do so, such as:

?Modifications to an existing plant when a different element type is used as standard.

?When an existing product-based plant design is being repeated without re-engineering.

5.2.4 When no suitable precedent exists from which to select an element type, then information in the

following sections should be considered when making a selection.

5.2.5 The following table describes some of the relative merits of RTDs and thermocouples:

Table 1

Relative Merits of RTDs and Thermocouples

5.3 Thermocouples

5.3.1The following table describes the different standard thermocouple types currently in use at

Air Products:

Table 2

Thermocouple Types

Notes:

1. The above Element Temperature Limits refer to the limits of use for the thermocouple type

without taking into account construction issues such as wire diameter, insulation, etc., or

factors such as the anticipated environment or service life.

2. The ASTM E 230 recommended temperature range is based on:

?# 18 AWG dual thermocouple

?Sheath 0.25 inch OD magnesium oxide insulated

?Enclosed in thermowell

?Standard tolerance grade

?Inconel sheath for temperatures >870°C (1600°F). 316 SS sheath for lower

temperatures.

3. Other temperature ranges are available from alternative designs in accordance with ASTM.

5.3.2 A brief description of each of these thermocouple types follows:

5.3.3 Type K

5.3.3.1Low cost, base metal thermocouple. The traditional first choice of thermocouple for moderate

temperatures.

5.3.3.2Subject to thermoelectric instability with time and temperature:

?Long-term drift with exposure to high temperatures due to compositional changes caused by oxidation.

?Drift and failure at high temperatures due to "green rot" phenomenon, due to preferential oxidation of the chromium content within sealed sheaths.

?Temperature cycling hysteresis errors caused by magnetic and structural inhomogeneities.

?Errors caused by composition changes resulting from migration of the high vapor pressure elements (manganese and aluminum) from the negative to the positive wire.

5.3.3.3 Oxidation-induced errors are most prevalent above 800°C (1472°F). Temperature cycling errors

are prevalent in the range 250° to 600°C (482° to 1112°F).

5.3.3.4 Despite these disadvantages, Type K is still the most commonly used thermocouple type

throughout industry.

5.3.4 Type N

5.3.4.1Low cost, base metal thermocouple. Similar in price to Type K. A relatively new thermocouple

type (first standardized in 1986 in BS EN 60584.1 Part 8, and subsequently publicized in

IEC 584).

5.3.4.2Has the following advantages over Type K:

?Better oxidation resistance since the high levels of chromium and silicon in the Nicrosil conductor and of silicon and magnesium in the Nisil conductor act as a diffusion barrier.

?Temperature cyclic effects are reduced due to the high levels of chromium in the Nicrosil conductor and of silicon in the Nisil conductor.

?Migration effects are virtually eliminated since the conductors contain only traces of manganese and aluminum.

5.3.4.3 In summary, Type N is a much more stable alternative to Type K. It can also handle higher

temperatures than Type K, enabling it to be used as a low cost alternative to platinum-based

thermocouples in many applications, including all HyCO reformer high temperature applications.

5.3.5 Type S

5.3.5.1 Platinum metal thermocouple. In common with other platinum thermocouples:

?Suitable for very high temperature applications.

?More stable than base metal thermocouples.

?More expensive than base metal thermocouples.

?Generates a lower EMF than base metal thermocouples.

5.3.6 Type R

5.3.

6.1 Similar to Type S except:

?Suitable for even higher maximum temperatures.

?Improved stability.

?Slightly higher output.

5.3.

6.2 If a platinum metal thermocouple is required for a specific application, then Type R is generally

technically preferred over Type S.

5.3.7 Type T

5.3.7.1 Base metal thermocouple particularly well suited to cryogenic to warm temperatures. It is

unsuitable for higher temperatures since the copper arm would rapidly oxidize.

5.3.8 Thermocouple Accuracy

5.3.8.1 Suitable accuracy tolerance criteria for thermocouples are given in ASTM E230 and IEC 60584-2.

5.3.8.2 For example, tolerance data from IEC 60584-2 is as follows:

Thermocouple Accuracy

5.3.8.3 All thermocouple accuracies reflect the tolerance in the "as new" condition. Depending on the

thermocouple type, the thermocouple design, and the service conditions, the actual installed

accuracy will degrade with time to a greater or lesser extent.

5.3.8.4The cost difference between the different tolerances is generally very small. Consequently it is

recommended practice to specify Premium (ASTM) or Class 1 (IEC) as standard.

5.3.8.5 Thermocouple outputs are non-linear with temperature. Linearization of the temperature signal is

carried out within the associated transmitter or control system by using one of more complex

polynomial expression in order to match the published reference tables (e.g., IEC 584.1).

5.3.9 Thermocouple Extension and Compensating Cables

5.3.9.1 To minimize errors caused by unwanted EMFs generated in the cabling, thermocouple extension

or thermocouple compensating cable must be used between the thermocouple and transmitter or

control system.

5.3.9.2 Thermocouple extension cable has the same nominal composition as the thermocouple itself,

whereas thermocouple compensating cable is manufactured from different material which has similar thermoelectric characteristics to the associated thermocouple over a limited temperature range.

Thermocouple Cables

Note:

For the cable types, described in the above table:

?Suffix "X" denotes extension cable.

?Suffix "CA", "CB", or "C" denotes compensating cable.

5.3.9.3The use of shielded compensating cable is always recommended due to the low EMFs generated

and measured. The shield should be suitably grounded.

5.3.9.4Compensating cable is available in Class 1 and Class 2 grades (in accordance with both IEC

584.3 and ISA MC 96.1). For best accuracy, Class 1 compensating or extension cable should be specified.

5.3.9.5Data on temperature limits and associated tolerances for each cable type is available in IEC

584.3 and ISA MC 96.1. There is some variation in the tolerance figures between these

standards.

5.3.9.6For intrinsically safe circuits, the IEC color coding recommends using a blue sheath in place of

the colors listed above.

5.3.9.7There are several other country-specific color codes. For example:

?British to BS 1843

?German to DIN 43714

?French to NFC 42324

?Japanese to JIS C 1610-1981

3PS15001, Rev. 3, Page 10 of 32 ?Special high temperature cables should be specified when ambient temperatures may exceed the rating of normal cable (typical PVC-insulated cables are typically rated ~70°C

(~160°F), with high temperature versions rated ~90°C+ (~190°F+). Short sections of PTFE-

insulated cables on mineral-insulated cables (MIC) may be considered for particular hot

spots (e.g., within the penthouse section of HyCO reformer plants). Failure to address this

issue can result in reduced plant reliability as the insulation of the heat stressed cable

insulation can become brittle and fail during operation.

5.3.9.8The use of plain copper cable instead of extension or compensating cables is not

recommended since it introduces unnecessary measurement errors. The normal current

practice of carrying out the cold junction compensation inside the control system or transmitter

is based on the premise that extension or compensating cables are used. Changing to copper

cables remote from the control system or transmitter effectively moves the cold junction to the

point at which the cable material changes. Any temperature difference between the control

system or transmitter and the cold junction will result in a corresponding temperature

measurement error.

5.3.9.9 The use of plain copper terminals inside junction boxes or marshalling panels instead of

terminals made from thermocouple material is recommended for normal industrial

applications, a lthough terminals made from compensating materials are available for base

metal thermocouples. Reasons:

?Such terminals are less readily available and are more expensive than copper terminals.

?The error associated with using copper terminals can normally be neglected. Each end of the copper terminal introduces a thermocouple junction into the circuit. Provided that any

temperature gradient across the terminal is insignificant, the EMF generated by the pair of

junctions will cancel out, leaving no net effect.

5.3.10 Grounded/Ungrounded Tips

5.3.10.1Thermocouples are globally available with either grounded on ungrounded tips.

5.3.10.2Most common practice in U.S. is to use grounded tips, whereas in Europe tips are nearly

always ungrounded.

5.3.10.3It is recommended that unless technical considerations dictate otherwise, local practice be

followed in selecting either grounded or ungrounded tips.

5.3.10.4For reference, here are some technical considerations:

?Grounded tips are in intimate thermal contact with the sheath offering a faster response for the bare element. However, this makes little difference in practice since speed of response

is normally dominated by the heat transfer lag through the thermowell.

?Grounded tips could result in earth loops, voltage pickup, etc., resulting in measurement errors. This would only occur in practice if the associated transmitter or control system input

card did not provide galvanic isolation.

?Grounded tips are not permitted for IS loops in Europe, where 500V isolation is required in the field.

?Grounded tip element wiring requires the shield wire to be connected to ground in the element head (and isolated elsewhere).

5.4 Resistance Temperature Detectors (RTDs)

5.4.1Although a variety of RTD basic types are available, Air Products (and many others) have

standardized on the 100Ω Platinum Resistance Thermometer (PT100) type of RTD.

5.4.2Platinum is selected due to its characteristics of:

?Wide unreactive temperature range.

?Relatively high resistivity (factor of 6 greater than copper).

?Simple resistance vs. temperature characteristic.

3PS15001, Rev. 3, Page 11 of 32

5.4.3 Although the cost of platinum is high, the quantities used are sufficiently small that the platinum cost is an insignificant part of the cost of the complete assembly.

5.4.4

Commercially available PT100 RTDs use platinum that is doped with another metal to protect against contamination, and have a R (resistance value) of 100Ω at 0°C (32°F) , and a fundamental interval (R100 – R0) of 38.5Ω.

5.4.5

Number of Wires

5.4.5.1 Measuring the temperature at a RTD is only possible by passing a current through the RTD, and measuring the voltage dropped across the device.

5.4.5.2 To accurately measure the resistance of the RTD, it is necessary to compensate for the

resistance of the cabling between the RTD and the measuring device, which could be quite a long way away.

5.4.5.3

This can be achieved by wiring as a 2, 3, or 4 wire system.

Figure 1

RTD Wiring Options

5.4.5.4

2 wire – This method makes no attempt to compensate for cable resistance. Consequently, this is only suitable for very short cable runs. Although the associated error would be very small for installations using head-mounted transmitters, this method is rarely, if ever, used for industrial installations.

5.4.5.5

3 wire – With this method, the current flows through two of the three wires. The third wire is used for volt drop compensation. The voltage difference between the 3 wires is measured, and the volt drop at the RTD is calculated assuming that the volt drop in the two current-carrying wires is identical. This assumption is a reasonable one for most installations. However, measurement errors will arise in the event of cable connections that have a significant resistance, e.g., due to poor installation or corrosion. This method is Air Products’ default choice for wiring RTDs and has given good service over many years in many different environments.

Note: 3 wire RTDs are color coded with 2 red wires and 1 white wire. The 2 red wires are connected to the same side of the RTD.

5.4.5.6

4 wire – By completely separating the current-carrying wires from the voltage measuring wires, this method compensates for any possible mismatch in the resistance of the cabling system. This method is potentially the most accurate and reliable method and is specified by some clients. Duplex 4 wire RTD systems are impractical because of:

I

I

I I

I

I 2 wire

3 wire

4 wire

3PS15001, Rev. 3, Page 12 of 32 ?Reliability/ruggedness problems compared with other types, due to manufacturing difficulties.

?Being able to terminate all the wires in the head.

Note: 4 wire RTDs are typically color coded with 2 red wires and 2 white wires. The 2 red

wires are connected to one side of the RTD. The 2 white wires are connected to the other side.

5.4.6 RTD Accuracy

5.4.

6.1Suitable accuracy tolerance criteria for RTDs are given in IEC 60751 (BS EN 60751). Two

tolerance classes are offered as follows:

?class A: ±(0.15 + 0.002 |t|)°C

?class B: ±(0.30 + 0.005 |t|)°C

Where t is the actual temperature, in °C, of the platinum elements

Notes:

Class A applies only up to 650°C (1200°F) and does not apply to 2 wire devices.

The cost difference between Class A and B is generally very small. Consequently, it is

recommended practice to specify Class A as standard.

5.4.

6.2 RTD outputs are slightly non-linear with temperature. Linearization of the temperature signal is

typically carried out within the associated transmitter or control system by using equations of

the form:

For t > 0°C R t = R0 (1 + At + Bt2)

For t < 0°C R t = R0 (1 + At + Bt2 + Ct3 (t-100))

where (according to IEC 751):

A = 3.90803 x 10-3

B = -5.775 x 10-7

C = -4.183 x 10-12

5.4.7 Construction Methods

5.4.7.1Industrial RTDs are available manufactured by wire wound and film deposition technique.

5.4.7.2Air Products has a technical preference for wire wound PRTs for most applications, although

film PRTs are suitable for certain applications (e.g., ambient air temperature measurement). 5.4.8 Wire wound PRTs

5.4.8.1Modern designs of industrial wire wound RTDs can achieve good vibration resistance and high

stability. This is achieved by features such as:

?Use of metal doped platinum wire for robustness and contamination resistance.

?Winding and support techniques to fully support the wires while allowing reasonable freedom to expand and contract.

?Ceramic material has similar expansion characteristics to the platinum wire.

5.4.9 Thick and Thin Film PRTs

5.4.9.1Film PRTs are manufactured by depositing the platinum material on a suitable substrate.

5.4.9.2Thin film devices use vacuum semiconductor techniques to deposit the platinum whereas thick

film devices use screen-printing techniques.

3PS15001, Rev. 3, Page 13 of 32 5.4.9.3Film PRTs have advantages over wire-wound PRTs in areas of:

?Cost

?Fast thermal response due to low mass

?Vibration resistance

5.4.9.4However they have the following disadvantages:

?Less stable due to smaller amounts of platinum used

?Greater variability in characteristics

5.4.10 Element Type Selection Guide for Specific Applications

5.4.10.1 Cryogenic Applications (e.g., ASU, HyCO Cold Boxes) – Historically, both Type T

thermocouples and RTDs have been used for cryogenic applications. Since 1996, Air Products

has standardized on the use of RTDs for this service, since their accuracy is better than

thermocouples. Having selected RTDs for the cryogenic parts of the plant, RTDs become the

temperature element of choice throughout the plant (except for those few applications where

temperatures are too hot for RTDs, such as the Flare on HyCO Cold Boxes). There is no

technical reason why Type T thermocouples could not be used for cryogenic temperatures on a

specific project (e.g., to meet a client’s specification), provided that the associated reduced

accuracy is technically acceptable.

5.4.10.2 High Temperature Applications (e.g., HyCO Steam Methane Reformers) – The high

temperature sections of these plants are too hot for RTDs. Rather than mixing RTDs and

thermocouples, thermocouples are typically used throughout the plant.

Note:An optional exception to this would be to use RTDs for paymeters in order to give best

possible accuracy.

5.4.10.3Historically, a variety of thermocouples have been selected. For example:

?Type K for moderate temperatures

?Type K for high temperatures (on small reformers)

?Types R and S for high temperatures (on large reformers in Europe)

?Platinell II for high temperatures (on large reformers in US)

Literature searches indicate that Type K is unsuitable for high temperature applications. Plant

operating experience also confirms a history of measurement errors and failures, sometimes

after only a few month's operation at high temperature. Types R and S are technically suitable

for high temperatures – significantly higher than the highest temperatures measured on HyCO

plants. Their disadvantage is the cost of the element and associated cabling.

5.4.10.4Platinell II offers similar performance to Types R and S with the following disadvantages:

?More expensive than Types R and S, plus the additional cost of exotic compensating cable.

?Unknown outside the U.S.

?Requires special transmitters, since its EMF curve is not well known.

Platinell II has the specific advantage of being suitable for bare thermocouple applications in H2 atmospheres. However, this technical advantage is not usually relevant, even on H2 plants,

since the thermocouple is protected from the process fluids by its thermowell and sheath.

5.4.10.5Consequently, after some testing at the Martinez HyCO plant in 2003, a global decision was

made to standardize on Type N thermocouples for high temperatures. Type N gives the

following advantages:

?Low cost compared with platinum metal thermocouples (comparable to Type K).

?Suitable for the maximum temperatures expected on HyCO reformers.

?Globally available.

3PS15001, Rev. 3, Page 14 of 32 The HyCO PST’s present policy for reformer plants is to specify Type N thermocouples for high

temperature service and to retain the use of Type K thermocouples for lower temperature

applications.

This policy is consistent with the convention adopted on the Westlake Project (2004) where

Type N thermocouples were successfully used for high temperature service, typically >800o C

(1470o F), and Type K thermocouples used for lower temperature applications.

5.5 Element Construction Considerations

5.5.1 Sheath

5.5.1.1The most popular element protection style is the mineral insulated, metal sheathed type. This

consists of a seamless metal sheath enclosing compacted mineral insulant powder which

supports and electrically insulates the temperature element and wiring.

5.5.1.2The default standard sheath material for temperature elements is 316 stainless steel. The

manufacturer’s default materials are normally acceptable. For temperatures in excess of 800°C

(1470°F), the use of an Inconel sheath is recommended.

Note:Stainless steel sheaths must not be used with Inconel (or other high temperature alloy)

wells. Differential expansion of stainless sheaths inside Inconel wells have resulted in elements

becoming stuck at high temperatures, making it impossible to replace a failed element without

shutting down the process.

5.5.1.3The most popular sheath size is 1/4" (0.25") OD.

5.5.1.4The sheath’s OD must be a snug fit to the thermowell’s ID to ensure good thermal co ntact and

to minimize risk of damage in vibrating service.

5.5.1.5For example, 4WPS-TEMP01 and 4WPS-TEMP06 define the sheath and bore diameters as

0.25 and 0.26 inches respectively. Consequently, purchasing in accordance with detailed

specifications such as 4WPS-TEMP01 helps to avoid ambiguity, and gives a better chance that

spares can used across a wider range.

Note: 6 mm OD sheaths are in common use in Europe. A nominal 1/4" sheathed element will

not fit inside a nominal 6 mm ID well. Similarly a nominal 6 mm sheathed element will be a

loose fit inside a well designed for a 1/4" element. Both 1/4" and 6 mm sheaths are available in

Europe, whereas 6 mm is not readily available in U.S. Consequently, 1/4" sheaths are generally preferred for reasons of standardization across Air Products, although 6 mm sheaths remain

acceptable in order to meet local requirements.

5.5.2 Mineral Insulation Material

5.5.2.1Magnesium oxide mineral insulation is used in >90% of all metal sheathed temperature

elements manufactured today. Most of the balance use aluminum oxide.

5.5.2.2As an insulant, magnesium oxide has the disadvantage of being hygroscopic. Consequently,

any contamination by moisture, whether by poor manufacturing techniques or by damage to the sheath or seal during operation, can result in reduced element life due to the consequential:

?Reduced insulation performance.

?Increased migration effects (affecting thermocouples).

?Increased corrosion of the element wires.

5.5.2.3Non-hygroscopic insulation materials, e.g., MI-dry TM have recently been developed which claim

to improve thermocouple stability. However, such materials are not currently in common use.

Current normal best practice at Air Products is to accept MgO insulation, aiming to achieve

acceptable element life by specifying:

?Reputable manufacturers with a good track record.

?An appropriate element type, sheath, and well material for the service conditions.

3PS15001, Rev. 3, Page 15 of 32 5.5.3 Wires

5.5.3.1These are the wires connecting the sensing element to the terminals in the head. Thicker

gauge wires tend to be more reliable than thin wires at very high temperatures.

5.5.3.2The lead wires coming out of the sheath at the head need to be sealed in a potting compound

to seal and protect the insulation material inside the sheath. The potting compound must be

suitable for the most extreme temperatures that the temperature element’s head and terminals

may be exposed to during operation.

5.5.4 Terminals

5.5.4.1The element is normally supplied complete with a spring-loaded terminal block. An installed

spring compression of 1/2" is typically recommended.

Figure 2

Typical Terminal Arrangement

5.5.4.2The terminal block is spring loaded in order that the tip makes firm contact with the bottom of

the well.

5.6 Thermowells for Temperature Elements

5.6.1Thermowells are required for all pressurized systems. Alternative practices such as using a

compression fitting to seal a temperature element that is inserted directly into a pressurized

system are not permitted without approval of the Technology Manager Measurement & Control

Hardware or his designee.

5.6.2Two examples where wells are not required:

?Surface-mounted applications where the element is not exposed to process pressure (see 4WPS-TEMP05).

?Very fast response applications in accordance with 4WPS-TEMP03 (where the design has already been considered and approved).

5.6.3It is recommended that the element and well be shipped assembled. This can be made part of

the specification or purchase order. By having them shipped assembled, any errors in

component lengths or diameters should be identified before shipment.

5.6.4 Wake Frequency Calculations

5.6.4.1Wake Frequency Calculations or "Murdoch Calculations" calculate the resonant frequency of

the thermowell and compare it with the wake frequency of the vortices created as the process

fluid flows past the thermowell. In order to pass the test, in the worst case conditions (at the

highest velocity), the wake frequency must not be more than typically 80% o f the well’s

resonant frequency.

3PS15001, Rev. 3, Page 16 of 32 5.6.4.2These calculations were developed in response to a number of vortex-induced vibration failures

in industry.

5.6.4.3These calculations can be performed by the well manufacturer on demand. Air Products’ policy

is to request calculations for novel applications, and for those applications where wake

frequency induced vibration may be an issue.

5.6.4.4Indications for wake frequency calculations include:

?Long wells with relatively small diameters – reducing the resonant frequency.

?High temperatures - reducing the well’s stiffness and hence the resonant frequency.

?High velocities – increasing the wake frequency.

5.6.4.5If a problem with wake frequency is identified, the thermowell design must be changed to

increase the resonant frequency, e.g.:

?Reduce length

?Increase diameter

?Use tapered rather than parallel design well

?Use velocity collars (for flanged wells)

5.6.4.6Historical practice at Air Products has shown that wells with U dimension less than or equal to

6" in ASU services do not generally need calculations. Instances where calculations have

indicated potential problems have included flanged wells, wells with insertion length >6", and

high temperature applications.

5.6.5 Thermowell Styles – Thermowells are generally either parallel, tapered, or stepped. See

Figure 3.

Figure 3

Thermowell Styles (Threaded Well)

Parallel Tapered Stepped

5.6.5.1 Parallel Wells – The simplest well design is a parallel well, where the thermowell wall thickness

in unchanged througho ut the well’s length.Parallel wells are most suitable for thermowells with

relatively small process connections (e.g., 3/4" NPT or DN 20), where a stepped or tapered well could result in insufficient wall thickness at the well tip.

3PS15001, Rev. 3, Page 17 of 32 5.6.5.2Tapered Wells –For tapered wells, the thermowell’s wall thickness is reduce d along the length

of the well. This design results in:

?Improved thermal response due to reduced wall thickness at the tip.

?Increased natural frequency of oscillation due to the combination of maximum wall thickness (stiffness) at the base of the well and reduced mass at the tip. See Murdock Calculations

(below).

Note: If the process connections are small, this design is less suitable than parallel wells for

high pressures and temperatures due to the reduced thickness at the tip.

5.6.5.3 Stepped Wells – Stepped wells are similar to parallel wells except that the tip area has a

reduced diameter for optimal thermal response. The reduced wall thickness at the tip area

results in reduced pressure temperature rating compared with an equivalent parallel well. The

length of the reduced section must be long enough to ensure that the active part of the sensing

element is fully within the reduced section. This is unlikely to be an issue for a thermocouple,

which is effectively a point sensor. However, RTDs are active over the entire length of the

resistance element.

5.6.6 Thermowell Process Connections may be threaded, welded, or flanged.

5.6.7 Threaded Wells –Air Products’ default size for thermowell threads is DN20 (NPS 3/4). This

results in a typical maximum well OD of 19 mm (nominal 3/4"), which, for a tapered well, would

typically taper to 13 mm (nominal 1/2"). Air Products piping specifications typically discourage

the use of threaded thermowells on flammable and toxic services due to the difficulty of

ensuring a leak-tight seal with large [DN15 (NPS 1/2)] threads.

5.6.7.1There have been rare occasions when threaded thermowell installations have failed, resulting in

the well being ejected from the pipework under pressure:

?Threadolet fittings (purchased by Piping) although specified correctly did not have the correct DN20 (NPS 3/4) thread.

?The threaded pipework connection corroded over time, and failed during a 340 bar g (~5000 psig) pressure test.

5.6.7.2For reasons such as the above, certain clients do not accept threaded thermowells. Air Products’

current policy allows threaded wells only for temperature elements such as T/C and RTDs that

can be removed from their wells via bayonette type assemblies. Anytime an element can only be

removed by unscrewing a compression-type fitting, such as dial thermometers and filled bulb-type systems, tack welding or seal welding of the thermowell to the piping connection is required. This

is done to prevent accidental loosening of the process connection while only trying to remove the

element. Refer to 3PS15002 for additional requirements and more background on this subject.

Figure 4

Threaded Well and Threadolet

5.6.7.3For DN50 (NPS 2) pipes, threaded wells may also be installed in an elbow. This can eliminate

having to swage up to a larger diameter pipe to install the thermowell.

Figure 5

Threaded Well and Threaded Elbowlet

5.6.7.4Larger diameter screwed wells may be technically required for specific applications. However,

these are rarely specified by Air Products. See section 5.6.11 for PED considerations for

thermowells for applications in Europe.

5.6.8 Welded Wells are Air Products’ well of choice for cryogenic, and for toxic and flammable

services.

5.6.8.1Air Products’ default connection sizes for welded wells are:

?DN15 (1/2") for inside cold boxes (air plants and hazardous plants).

?DN20 (3/4") for applications outside cold boxes (whether cryogenic, warm or hot).

5.6.8.2The smaller DN15 size is considered mechanically adequate for inside cold boxes because of

the mechanical protection afforded by the cold box structure and packing.

Note:The weld section diameters for DN 15 and DN20 are 21.3 mm and 26.7 mm

respectively (matching the nominal OD of 1/2" and 3/4" piping).

5.6.8.3DN20 size wells are normally installed using a sockolet fitting as follows:

Figure 6

DN20 Socket Weld Installation

Note:Figure 6 identifies a radius (typically ~1/16") at the base of the well’s weld section. The

radius avoids having a sharp transition at this point which could concentrate stresses in the

event of vibration, etc.

5.6.8.4Figure 6 shows a DN20 well installed in a sockolet fitting. Note: T he well’s diameter must be

constrained to fit within the sockolet’s ID. The sockolet’s ID nominally should match the

schedule of the pipework. However, sockolets are not specifically designed for thermowells and are not manufactured to close tolerances.

5.6.8.5 A typical maximum well OD of 19 mm (3/4 in) should fit a Class 3000 ("Std Wall Thickness"

Bonney Forge) sockolet [e.g., a typical tapered well may have a 19 mm (3/4 in) OD tapering to

13 mm (1/2 in) at the tip]. Engineers are advised to talk to the Piping group to ensure suitable

sockolet dimensions.

5.6.8.6When Class 6000 sockolets are called up on the pipe specification, a DN20 sockolet’s ID will be

too small for this thermowell design. This occurs on a relatively small number of high pressure

pipe specs (e.g., WCG100). A non-standard approach is required for these wells. Either:

?Specify a smaller well OD to suit the reduced bore of the sockolet.

?Agree with Piping to increase the sockolet size to accommodate a non-standard well design.

3PS15001, Rev. 3, Page 20 of 32 5.6.8.7For installation in an elbow, a socket welded elbowlet is always used as in Figure 7:

Figure 7

DN20 Socket Weld Elbow Installation

5.6.8.8 For many years, Air Products has installed thermowells inside cold boxes without the use of

sockolets; however, recent inspections at cold box contractor shops have shown an inconsistent ability to obtain the full penetration weld required by the piping code. The use of backing rings are required but are very difficult to install in small and medium bore pipe. Therefore, the use of

sockolets is required for all coldbox installations. Direct welding is no longer permitted.

5.6.8.9Larger diameter welded wells may be technically required for specific applications. However,

these are rarely specified by Air Products. See section 5.6.11 for PED considerations for

thermowells for applications in Europe.

5.6.9Flanged Wells

5.6.9.1Flanged thermowells should be considered for the following applications:

?Corrosive or erosive service when the thermowell may need to be removed for inspection and possible replacement during the life of the plant.

?Very high temperature applications, when the well’s life may be less than the plant’s expected life.

?Certain high temperature applications when the use of flanged wells may avoid the need for special weld procedures for unusual combinations of dissimilar metals.

5.6.9.2 Flanged wells invariably result in longer element lengths than screwed or welded wells, due to the

offset between the interface piping flange and the process line.

5.6.9.3 As a result, flanged wells are more prone to wake frequency vibration problems than screwed or

welded wells. Thermowells flanged at 25 mm (1 in) are particularly prone to wake frequency

problems since they tend to be relatively long and thin.

5.6.9.4 Consequently, tapered wells with a minimum flange size of 37 mm (1.5 in) are normally

recommended for flanged thermowells.

5.6.9.5 For projects in Europe, flanged wells with process connections larger than 25 mm (1 in) must

comply with PED requirements. See section 5.6.11 for details.

常用纸张尺寸大小

常用纸张尺寸大小 现在纸张的规格很多,基本的有四种:(全张尺寸) 1、787*1092MM 2、850*1164MM 3、889*1196MM 4、880*1230MM 还有很多不规则的全张尺寸。 所说的A*的尺寸是国际流行尺寸,即我们俗称的“大度尺寸”,最好用3,4两种裁切。A2的尺寸是420*594MM,用3,4两种尺寸的全张可以裁切出A2的四张。 纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸。过去是以多少"开"(例如8开或16开等)来表示纸张的大小,现在我采用国际标准,规定以A0、A1、A2、B1、B2......等标记来表示纸张的幅面规格。标准规定纸张的幅宽(以X表示)和长度(以Y表示)的比例关系为X:Y=1:n 。 按照纸张幅面的基本面积,把幅面规格分为A系列、B系列和C系列,幅面规格为A0的幅面尺寸为841mm×1189mm,幅面面积为1平方米;B0的幅面尺寸为1000mm×1414mm,幅面面积为2.5平方米;C0的幅面尺寸为917mm×1279mm,幅面面积为2.25平方米;复印纸的幅面规格只采用A系列和B系列。若将A0纸张沿长度方式对开成两等分,便成为A1规格,将A1纸张沿长度方向对开,便成为A2规格,如此对开至A8规格;B8纸张亦按此法对开至B8规格。A0~A8和B0~B8的幅面尺寸见下表所列。其中A3、A4、A5、A6和B4、B5、B6等7种幅面规格为复印纸常用的规格。 举例说明:“A4”纸,就是将A型基本尺寸的纸折叠4次,所以一张A4纸的面积就是基本纸面积的2的4次方分之一,即1/16。其余依此类推。 A类就是我们通常说的大度纸,整张纸的尺寸是889*1194mm,可裁切A1(大对开,570*840mm)、A2(大四开,420*570mm)、A3(大八开,285*420mm)、A4(大十六开,210*285mm)、A5(大三十二开,142.5*210mm)……; B类就是我们通常说的正度纸,整张纸的尺寸是787*1092mm,可裁切B1(正对开,520*740mm)、B2(正四开,370*520mm)、B3(正八开,260*370mm)、B4(正十六开,185*260mm)、B5(正三十二开,130*185mm)……。 纸张按种类可分为新闻纸、凸版印刷纸、胶版纸、有光铜版纸、哑粉纸、字典纸、地图纸、凹版印刷纸、周报纸、画报纸、白板纸、书面纸、特种纸等。 普通纸张按克重可分为60gsm、80gsm、100gsm、105gsm、120gsm、157gsm、200gsm、250gsm、300gsm、350gsm、400gsm。 有人说A4纸张的通常大小是210x297(mm) 国际标准A4尺寸为210x297,在设计时除非客户特别要求,尽量设计成大16K即210x285,因为大度纸16K最大为210x285,要开出210x297只能开12K,造成开纸浪费,增加成本。 一般打印纸就是采用复印纸,复印纸的分类是按大小分的,有几个标准:A型、B型、K 型,K型纸就是我们常说的开型纸,只有在国内才有用K型纸的。现在一般都用A型纸。不管A型B型,它的分类都是这样的,比如A5是A6的两倍,A4是A5的两倍,A3是A4的两倍,B4是B5的两倍B3是B4的两倍,而K型的分类是把一张大的1K的纸分为两张为2K,把2K

纸张的大小规格

【转】开本与纸张的规格A3、A4 16开、8开、32开、4开日常生活中常见的复印纸纸张规格 开本与纸张的规格 16开纸:184毫米X 260毫米(18.4厘米X 26厘米)(一张16开纸等于8开纸的二分之一) A4纸:210毫米X 297毫米(21厘米X 29.7厘米)(一张A4纸等于A3的纸二分之一) 8开纸:260毫米X 368毫米(26厘米X 36.8厘米)(一张8开纸是两张16 开纸的大小) A3纸:297毫米X 420毫米(29.7厘米X 42厘米)(一张A3纸是两张A4纸的大小) 4开纸:350毫米X 500毫米(35厘米X 50厘米) 以上是日常生活中常见到复印纸纸张规格大小。 以上的16开纸比A4纸小点所以8开纸比A3纸要小点,有的说16开纸是A4纸, 8开纸是A3纸不是不对的。 其它纸规格 B4纸:257毫米X 364毫米(25.7厘米X 36.4厘米) A5纸:148毫米X 210毫米(14.8厘米X 21厘米) 32开纸:130毫米X 184毫米(13厘米X 18.4厘米) 开32开纸:130毫米X 203毫米(13厘米X 20.3厘米) 一、开数与开本的概念通常把一张按国家标准分切好的平板原纸称为全开纸。在以不浪费纸张、便于印刷和装订生产作业为前提下,把全开纸裁切成面积相等的若干小张称之为多少开数;将它们装订成册,则称为多少开本。 对一本书的正文而言,开数与开本的涵义相同,但以其封面和插页用纸的开数来说,因其面积不同,则其涵义不同。通常将单页出版物的大小,称为开张,如报纸,挂图等分为全张、对开、四开和八开等。 由于国际国内的纸张幅面有几个不同系列,因此虽然它们都被分切成同一开数,但其规格的大小却不一样。尽管装订成书后,它们都统称为多少开本,但书的尺寸却不同。如目前16开本的尺寸有:188X265 ( mm、210X297 (mm等。在实际生产中通常将幅面为787X 1092 (mm或31 X 43英寸的全张纸称之为正度纸;将幅面为889X 1194 (mm或35X 47英寸的全张纸称之为大度纸。由于787X 1092 (mm纸张的开本是我国自行定义的,与国际标准不一致,因此是一种需要逐步淘汰的非标准开本。由于国内造纸设备、纸张及已有纸型等诸多原因,新旧标

产品尺寸说明

产品尺寸说明 一、关于稳压管1/2W和1W之间的尺寸区别 1/2W芯片和两脚总长为59.19MM(正负0.5MM),两边引脚长度为27.53MM,芯片直径为1.83MM,长度为3.61MM。 1W芯片和两脚总长为59.19MM(正负0.5MM),两边引脚长度为27.43MM,芯片 直径为2.53MM,长度为4.23MM。 贴片稳压管1206封装: 4148芯片长度为3.35MM(正负0.5MM),直径为:1.36MM 其它伏数长度为3.44MM(正负0.5MM),直径为:1.42MM 常用稳压管的型号对照表: IN4728 3.3v IN4729 3.6v IN4746 18v IN4748 22v IN4747 20v IN4749 24v IN4750 27v IN4751 30v IN4752 33v IN4753 34v IN4755 36v IN4756 47v IN4757 51v IN4754 35v IN4730 3v9 IN4731 4v3 IN4732 4v7 IN4733 5v1 IN4734 5v6 IN4735 6v2 IN4736 6v8 IN4737 7v5 IN4738 8v2 IN4739 9v1 IN4740 10v IN4741 11v IN4742 12v IN4743 13v IN4744 15v IN4745 16v 二、铝电解电容的脚距和脚的孔径 1、一般小体积的脚径是0.5(正负0.05),大体积的脚径是0.8(正负0.05) 引脚长度为20-25MM 2、通用型的脚距 4*7 脚距=1.5MM(正负0.3) 5*11 脚距=1.75 MM(正负0.2) 6.3*12 脚距=2.2MM(正负0.3) 8*12 脚距=3.3(正负0.3)

说明书

《机械制造技术基础》 课程设计说明书 设计题目:阀体机械制造工艺规程及钻孔夹具设计学生姓名:卢锦彬 学号:201236030431 系别:机电工程系 专业班级:12机械设计4班 指导教师:黎小巨 起止时间:2015年6月29日——2015年7月14日 东莞理工学院城市学院

目录序言 一、零件分析 二、工艺规程设计 三、夹具设计 四、总结 五、参考文献 六、附录

序言 大三第二学期我们进行了《机械制造技术基础》课程的学习,并且在大二第一学期也进行过金工实习。为了巩固所学知识,在我们进行毕业设计之前对所学各课程的进行一次深入的综合性的总复习,也是作为一次理论联系实际的训练,我们进行了本次课程设计。 通过这次课程设计,对自己未来将从事的工作进行了一次适应性训练,从中锻炼了自己分析问题、解决问题的能力,同时,在课程设计过程中,我们通过认真查阅资料,切实地锻炼了我们自我学习的能力。另外,在设计过程中,经过老师的悉心指导和同学们的热心帮助,我顺利完成了本次设计任务。 由于能力所限,设计尚有许多不足之处,恳请各位老师给予批评指正。一、零件分析

(一)零件的作用 题目所给定的零件是阀体(见下图)。阀体是整体装置的重要零件,它支撑中心部分,承受着部分静载荷,因为阀体与整个机体连接,并且中心部分与该零件是螺纹连接,因而该零件的螺纹承受着一定的载荷,以及一定的冲击力,所以该零件承受着静、动载荷。

(二)零件的工艺分析 通过对该零件的重新绘制,知原图样的视图正确、完整,尺寸、公差及技术要求齐全。对零件进行分析,该零件属于类回转体零件,主体部分以中心轴为回转中心。总的来说,这个零件的工艺性较好。 (三)确定生产类型 根据设计题目可知:Q=5000台/年;结合生产实际,备品率α和废品率β分别取为10%和1%。代入公式得该零件的生产纲领 N=5000×1×(1+10%)×(1+1%)=5555件/年 该阀体属于轻型零件,查表可知,生产类型为大批生产。 二、工艺规程设计 (一)毛坯的选择与设计 1.毛坯的种类 零件材料为HT200。考虑零件在工作中所受冲击不大,零件结构又不太复杂,生产类型为大批生产,尺寸不大,故选择金属型铸造铸件毛坯。 2.确定机械加工余量、毛坯尺寸和公差 步骤:求零件最大轮廓尺寸→查表5-5选择毛坯铸件的机械加工余量等级→查表5-4求出铸件机械加工余量RMA→查表5-1选取铸件公差等级CT→查表5-3求铸件尺寸公差→计算毛坯基本尺寸P118→制作毛坯尺寸公差与加工余量表P11 (1)求零件最大轮廓尺寸根据零件图计算轮廓尺寸,长155mm,宽110mm,高76mm,故最大轮廓尺寸为155mm。 (2)求机械加工余量等级由表5-5,铸造方法按金属型铸造,铸件材料按灰铸钢,得机械加工余量等级范围D~F,取为F级。 (3)求出铸件机械加工余量RMA 对所有加工表面取同一个值,由表5-4查最大轮廓尺寸为155mm、机械加工余量等级为F级,得RMA数值为1.5mm。

纸张幅面规格

纸张幅面规格: 纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸。过去是以多少"开"(例如8开或16开等)来表示纸张的大小,现在我采用国际标准,规定以A0、A1、A2、B1、B2......等标记来表示纸张的幅面规格。标准规定纸张的幅宽(以X表示)和长度(以Y表示)的比例关系为X:Y=1:。 按照纸张幅面的基本面积,把幅面规格分为A系列、B系列和C系列,幅面规格为A0的幅面尺寸为 841mm×1189mm,幅面面积为1平方米;B0的幅面尺寸为1000mm×1414mm,幅面面积为2.5平方米;C0的幅面尺寸为917mm×1279mm,幅面面积为2.25平方米;复印纸的幅面规格只采用A 系列和B系列。若将A0纸张沿长度方式对开成两等分,便成为A1规格,将A纸张沿长度方向对开,便成为A2规格,如此对开至A8规格;B8纸张亦按此法对开至B8规格。A0~A8和B0~B8的幅面尺寸见下表所列。其中A3、A4、A5、A6和B4、B5、B6 7种幅面规格为复印纸常用的规格。 纸张幅面规格尺寸ll 规格幅宽(mm) 长度(mm) 规格幅宽(mm) 长度(mm) A0 A1 A2 A3 A4 A5 A6 A7 A8 841 594 420 297 210 148 105 74 52 1189 841 594 420 297 210 148 105 74 B0 B1 B2 B3 B4 B5 B6 B7 B8 1000 707 500 353 250 176 125 88 62 1414 1000 707 500 353 250 176 125 88 若纸张规格标记字母的前面加一个字母R(或S)时,是表示纸张没有切毛边,经过切边修整后,将减少到标准尺寸,例如RA4(或SA4)表示不切边纸张的尺寸为240mm×330mm,经过切边修整后其尺寸为210mm×297mm。 若进行倍率放大或倍率缩小复印时,所使用、的复印纸的幅面规格有着相应的关系,例如,若将A3幅面的原稿倍率放大1:1.22时,复印纸应采用B3幅面规格;若倍率缩小1:0.8时,复印纸应采用B4规格,若倍率缩小1:0.7时,复印纸应采用A4规格。表中的A5、B5、B6三种画双框的规格表示极少使用。 ----------------------------------------------------------------------------------------------------- A组 A0 841×1189 mm A1 594×841 A2 420×594 A3 297×420 A4 210×297 A5 148×210 A6 105×148 A7 74×105 A8 52×74 A9 37×52 A10 26×37

最标准的各种纸张尺寸

最标准的各种纸张尺寸 各种纸型:A1尺寸、A2尺寸、A3尺寸、A4尺寸、A5尺寸、B1尺寸、B2尺寸、B3尺寸、B4尺寸、B5尺寸: A0=1189*841 A0(大1k)1189mm×841mm A1=841*594 A1(大2k)841mm×594mm A2=594*420 A2(大4k)420mm×594mm A3=420*297 A3(大8k)420mm×297mm A4=297*210 A4(大16k)297mm×210mm A5=210*148 A5(大32k)210mm×148mm A6=148*105 A6(大64k)144mm×105mm B1=1000*706 B2=706*500 B3=500*353 B3(8K) B4=353*250 B4(16K) B5=250*176 B5(32K) 国家规定的开本尺寸是采用的国际标准系列,现已定入国家行业标准GB/T 1999内在全国执行。书刊本册现行开本尺寸主要是A系列规格,有以下几种:(注意:其中A3(8k)尺寸尚未定入,但普遍用。) A3(8k)420mm×297mm; A4(16k)297mm×210mm; A5(32k)210mm× 148mm; A6(64k)144mm×105mm; 我们日常生活中说说的A4复印纸,8K纸就是指这些尺寸,即A4纸(16K纸)的尺寸为:297mm×210mm,32K笔记本(A5笔记本)规格为:21cm × 14.8cm。 纸张按种类可分为新闻纸、凸版印刷纸、胶版纸、有光铜版纸、哑粉纸、字典纸、地图纸、凹版印刷纸、周报纸、画报纸、白板纸、书面纸、特种纸等。 普通纸张按克重可分为60gsm、80gsm、100gsm、105gsm、120gsm、157gsm、200gsm、250gsm、300gsm、350gsm、400gsm。 8开就是8开的,尺寸是390X270mm,要是word里面没有,那就自行设定,全开,载成8张,你量一下. 纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸。过去是以多少"开"(例如8开或16开等)来表示纸张的大小,现在我采用国际标准,规定以A0、A1、A2、B1、B2......等标记来表示纸张的幅面规格。标准规定纸张的幅宽(以X表示)和长度(以Y 表示)的比例关系为X:Y=1:n 。 按照纸张幅面的基本面积,把幅面规格分为A系列、B系列和C系列,幅面规格为A0的幅面尺寸为841mm?189mm,幅面面积为1平方米;B0的幅面尺寸为1000mm*414mm,幅面面积为2.5平方米;C0的幅面尺寸为917mm*279mm,幅面面积为2.25平方米;复印纸的幅面规格只采用A系列和B系列。若将A0纸张沿长度方式对开成两等分,便成为A1规格,将A1纸张沿长度方向对开,便成为A2规格,如此对开至A8规格;B8纸张亦按此法对开至B8规格。A0~A8和B0~B8的幅面尺寸见下表所列。其中A3、A4、A5、A6和B4、B5、B6等7种幅面规格为复印纸常用的规格。 举例说明:“A4”纸,就是将A型基本尺寸的纸折叠4次,所以一张A4纸的面积就是基本纸面积的2的4次方分之一,即1/16。其余依此类推。 以前在做图片的时候从来没想过要做多大的尺寸,总觉得像素换算成我们常用的毫米、厘米等基本单位很难,而且还要考虑分辨率的大小,上次满怀信心地制作简历封面,图的效果很好,但用A4纸打印出来的模糊又难看,今天专门研究了这个问题,其实也并不难,分析如下: A4纸的尺寸是210mm*297mm,也就是21.0cm*29.7cm,而1英寸=2.54cm,当分辨率为72像素/英寸时,我们将其换算成像素/厘米就是28.3,现在,我们将其转换为制作图片时的像素就是(21*28.3)*(29.7*28.3),即:595*842(单位为像素); 同样的道理,我们可以得到: 当分辨率为300像素/英寸时,A4大小是2479*3508;(单位为像素) 当分辨率为120像素/英寸时,A4大小为1487*2105。(单位为像素) 所以如果你要将做的图片打印出来的话,最好先进行换算,不然很可能会降低图片质量的!一般情况下,如果是印刷品,最好用300像素/英寸,如果是打印机或者喷绘,可以选择72像素/英寸的分辨率。

各种办公用纸的具体尺寸

各种办公用纸的具体尺寸 各种办公用纸的具体尺寸是多少呀? 2011-3-25 15:26提问者: 周段诗|浏览次数:1130次 2011-3-25 15:29最佳答案国家规定的开本尺寸是采用的国际标准系列,现已定入国家行业标准GB/T 1999内在全国执行。书刊本册现行开本尺寸主要是A系列规格,有以下几种: A4(16k)297mm×210mm; A5(32k)210mm×148mm; A6(64k)144mm×105mm; A3(8k)420mm×297mm; 注意: 其中A3(8k)尺寸尚未定入,但普遍用。 我们日常生活中说说的A4复印纸,8K纸就是指这些尺寸,即A4纸(16K 纸)的尺寸为:297mm×210mm,32K笔记本(A5笔记本)规格为: 21cm×14.8cm。 纸张尺寸介绍: a2纸的尺寸(大4开)594mm×420mm a3纸尺寸(大8开)420mm×297mm a4纸尺寸(大16开)297mm×210mm b4纸尺寸(16开) b5纸的尺寸(32开)

8开纸尺寸 纸张按种类可分为新闻纸、凸版印刷纸、胶版纸、有光铜版纸、哑粉纸、字典纸、地图纸、凹版印刷纸、周报纸、画报纸、白板纸、书面纸、特种纸等。 普通纸张按克重可分为60gsm、80gsm、100gsm、105gsm、120gsm、 157gsm、200gsm、250gsm、300gsm、350gsm、400gsm。 8开就是8开的,尺寸是390X270mm,要是word里面没有,那就自行设定。 全开,载成8xx,你量一下. 纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸。过去是以多少开(例如8开或16开等)来表示纸张的大小,现在我采用国际标准,规定以 A0、A 1、A 2、B 1、B2......等标记来表示纸张的幅面规格。标准规定纸张的幅宽(以X表示)和长度(以Y表示)的比例关系为X: Y=1:n 。 按照纸张幅面的基本面积,把幅面规格分为A系列、B系列和C系列,幅面规格为A0的幅面尺寸为841mm?189mm,幅面面积为1平方米;B0的幅面尺寸为1000mm?414mm,幅面面积为2.5平方米;C0的幅面尺寸为 917mm?279mm,幅面面积为2.25平方米;复印纸的幅面规格只采用A系列和B系列。若将A0纸张沿长度方式对开成两等分,便成为A1规格,将A1纸张沿长度方向对开,便成为A2规格,如此对开至A8规格;B8纸张亦按此法对开至B8规格。A0~A8和B0~B8的幅面尺寸见下表所列。其中

A、B系列纸张大小

复印纸、热敏纸简介 关于打印复印纸的幅面规格 2009-03-04 13:32:35| 分类:知识集萃| 标签:|字号大中小订阅 一.纸张幅面规格 纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸。过去是以多少"开"(例如8开或16开等)来表示纸张的大小,通常8开=260×368mm ;16开=184×260mm ;32开=130×184mm ;信纸=8 1/2×11" ,现在采用国际标准,规定以A0、A1、A2、B1、B2......等标记来表示纸张的幅面规格。标准规定纸张的幅宽(以X表示)和长度(以Y表示)的比例关系为X:Y=1:。 按照纸张幅面的基本面积,把幅面规格分为A系列、B系列和C系列,幅面规格为A0的幅面尺寸为841mm×1189mm,幅面面积为1平方米;B0的幅面尺寸为1000mm×1414mm,幅面面积为2.5平方米;C0的幅面尺寸为917mm×1279mm,幅面面积为2.25平方米;复印纸的幅面规格只采用A系列和B 系列。若将A0纸张沿长度方式对开成两等分,便成为A1规格,将A纸张沿长度方向对开,便成为A2规格,如此对开至A8规格;B8纸张亦按此法对开至B8规格。A0~A8和B0~B8的幅面尺寸见下表所列。其中A3、A4、A5、A6和B4、B5、B6 7种幅面规格为复印纸常用的规格。 纸张幅面规格尺寸 规格幅宽(mm) 长度(mm) 规格幅宽(mm) 长度(mm) A0 A1 A2 A3 A4 A5 A6 A7 A8 841 594 420 297 210 148 105 74 52 1189 841 594 420 297 210 148 105 74 B0 B1 B2 B3 B4 B5 B6 B7 B8 1000 707 500 353 250 176 125 88 62 1414 1000 707 500 353 250 176 125 88 若纸张规格标记字母的前面加一个字母R(或S)时,是表示纸张没有切毛边,经过切边修整后,将减少到标准尺寸,例如RA4(或SA4)表示不切边纸张的尺寸为240mm×330mm,经过切边修整后其尺寸为210mm×297mm。 若进行倍率放大或倍率缩小复印时,所使用、的复印纸的幅面规格有着相应的关系,如下图所列,供作变倍复印时选用复印纸张幅面规格的参考;例如,若将A3幅面的原稿倍率放大1:1.22时,复印纸应采用B3幅面规格;若倍率缩小1:0.8时,复印纸应采用B4规格,若倍率缩小1:0.7时,复印纸应采用A4规格。表中的A5、B5、B6三种画双框的规格表示极少使用。 二.复印纸的选用 1.纸的厚度

办公室常用纸张规格大小尺寸

常用纸张规格尺寸 默认分类 2009-06-16 22:56:16 阅读1064 评论1字号:大中小 常用纸张规格尺寸 ,以下所有尺寸单位都以 mm 表示。 A系列A0 841×1189 A1 594×841 A2 420×594 A3 297×420 A4 210×297 A5 148×210 A6 105×148 A7 74×105 A8 52×74 B系列 B0 1000×1414 B1 707×1000 B2 500×707 B3 353×500 B4 250×353 B5 176×250 B6 125×176 B7 88×125 B8 62×88 letter信纸的纸张一般以开本来计算,常见信纸一般为正度16开 开本大度: 16开210×285 8开285×420 4开420×570 2开(对开)570×840 全开889×1194 开本正度: 16开185×260 8开260×370 4开370×540 2开(对开)540×740 全开787×1092 用国际标准,规定以A0、A1、A2、B1、B2......等标记来表示纸张的幅面规格。标准规定纸张的幅宽(以X表示)和长度(以Y表示)的比例关系为X:Y=1:n 。 按照纸张幅面的基本面积,把幅面规格分为A系列、B系列和C系列,幅面规格为A0的幅面尺寸为841mm×1189mm,幅面面积为1平方米;B0的幅面尺寸为1000mm×1414mm,幅面面积为2.5平方米;C0的幅面尺寸为917mm×1279mm,幅面面积为2.25平方米;复印纸的幅面规格只采用A系列和B系列。若将A0纸张

沿长度方式对开成两等分,便成为A1规格,将A纸张沿长度方向对开,便成为A2规格,如此对开至A8规格;B8纸张亦按此法对开至B8规格。A0~A8和B0~B8的幅面尺寸见下表所列。其中A3、A4、A5、A6和B4、B5、B6 7种幅面规格为复印纸常用的规格。 若纸张规格标记字母的前面加一个字母R(或S)时,是表示纸张没有切毛边,经过切边修整后,将减少到标准尺寸,例如RA4(或SA4)表示不切边纸张的尺寸为240mm×330mm,经过切边修整后其尺寸为210mm×297mm。 若进行倍率放大或倍率缩小复印时,所使用、的复印纸的幅面规格有着相应的关系,如下图所列,供作变倍复印时选用复印纸张幅面规格的参考;例如,若将A3幅面的原稿倍率放大1:1.22时,复印纸应采用B3幅面规格;若倍率缩小1:0.8时,复印纸应采用B4规格,若倍率缩小1:0.7时,复印纸应采用A4规格。表中的A5、B5、B6三种画双框的规格表示极少使用。 开度大度开切毛尺寸成品净尺寸正度毛尺寸成品净尺寸全开1194×889 1160×860 1092×787 1060×760 对开889×597 860×580 787×546 760×530 长对开1194×444.5 1160×430 1092×393.5 1060×375 三开889×398 860×350 787×364 760×345 丁字三开749.5×444.5 720×430 698.5×393.5 680×375 四开597×444.5 580×430 546×393.5 530×375 长四开298.5×88.9 285×860 787×273 760×260 五开380×480 355×460 330×450 305×430 六开398×44.5 370×430 364×393.5 345×375 八开444.5×298.5 430×285 393.5×273 375×260 九开296.3×398 280×390 262.3×364 240×350 十二开298.5×296.3 285×280 273×262.3 260×250 十六开298.5×222.25 285×210 273×262.3 260×185 十八开199×296.3 180×280 136.5×262.3 120×250 二十开222.5×238 270×160 273×157.4 260×40 二十四开222.5×199 210×185 196.75×182 185×170 二十八开298.5×127 280×110 273×112.4 1260×100 三十二开222.5×149.25 210×140 196.75×136.5 185×130 六十四开149.25×111.12 130×100 136.5×98.37 120×80 A4:210mm×297mm A5:148mm×210mm B5:182mm×257mm A3:297mm×420mm A2:420mm×594mm 大度是国际标准,整张纸尺寸1194*889mm,例如大度16开尺寸是210*285mm(接近我们常用A4纸大小) 正度是国内标准,整张纸尺寸1092*787mm,例如正度16开尺寸是185*260mm(接近我们常用B5纸大小) 正度787mm×1092mm,大度889mm×1194mm,直度787mm×1194mm 纸类版纸 凸版纸是采用凸版印刷书籍、杂志时的主要用纸。适用于重要著作、科技图书、学术刊物、大中 专教材等正文用纸。凸版纸按纸张用料成分配比的不同,可分为1号、2号、3号和4号四个级别。

各种标准纸张大小

各种标准纸张大小 最标准的各种纸张尺寸,比如A0\A1\A2\A3\A4的各种尺寸都有记录。 A0=1189*841 A1=841*594 A2=594*420 A3=420*297 A4=297*210 A5:148×210mm A6:105*148mm A7 74×105 A8 52×74 B1:706×1000mm B2:500×706mm B3:353×500mm B4:250×353mm B5:176×250mmB6 125×176 B7 88×125 B8 62×88单位是毫米

国家规定的开本尺寸是采用的国际标准系列,现已定入国家行业标准GB/T 1999内在全国执行。书刊本册现行开本尺寸主要是A系列规 格,有以下几种: A4(16k)297mm×210mm; A5(32k)210mm×148mm; A6(64k)144mm×105mm; A3(8k)420mm×297mm; 注意:其中A3(8k)尺寸尚未定入,但普遍用。 我们日常生活中说说的A4复印纸,8K纸就是指这些尺寸,即A4纸(16K纸)的尺寸为:297mm×210mm,32K笔记本(A5笔记本)规 格为:21cm ×14.8cm。 纸张尺寸介绍: a2纸的尺寸(大4开)594mm×420mm a3纸尺寸(大8开)420mm×297mm a4纸尺寸(大16开)297mm×210mm b4纸尺寸(16开) b5纸的尺寸(32开) 8开纸尺寸

纸张按种类可分为新闻纸、凸版印刷纸、胶版纸、有光铜版纸、哑粉纸、字典纸、地图纸、凹版印刷纸、周报纸、画报纸、白板纸、书面纸、特种纸等。普通纸张按克重可分为60gsm、80gsm、100gsm、105gsm、120gsm、157gsm、200gsm、250gsm、300gsm、350gsm、 400gsm。 8开就是8开的,尺寸是390X270mm,要是word里面没有,那就自 行设定。 全开,载成8张,你量一下. 纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸。过去是以多少"开"(例如8开或16开等)来表示纸张的大小,现在我采用国际标准,规定以A0、A1、A2、B1、B2......等标记来表示纸张的幅面规格。标准规定纸张的幅宽(以X表示)和长度(以Y表示)的比 例关系为X:Y=1:n 。 按照纸张幅面的基本面积,把幅面规格分为A系列、B系列和C系列,幅面规格为A0的幅面尺寸为841mm?189mm,幅面面积为1平方米;B0的幅面尺寸为1000mm?414mm,幅面面积为2.5平方米;C0的幅面尺寸为917mm?279mm,幅面面积为2.25平方米;复印纸的幅面规格只采用A系列和B系列。若将A0纸张沿长度方式对开成两等分,便成为A1规格,将A1纸张沿长度方向对开,便成为A2规格,如此对开至A8规格;B8纸张亦按此法对开至B8规格。A0~A8和B0~B8的幅面尺寸见下表所列。其中A3、A4、A5、A6和B4、B5、B6等

典型零件尺寸标注(附图详细说明

机械设计中尺寸标注类知识,毕业前一定读懂它 1.轴套类零件 这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。 在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。由此注出图中所示的Ф14 、Ф11(见A-A断面)等。这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。 如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。 2.盘盖类零件 这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如左视图、右视图或俯视图)把零件的外形和均布结构表达出来。如图中所示就增加了一个左视图,以表达带圆角的方形凸缘

和四个均布的通孔。 在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。 3.叉架类零件 这类零件一般有拨叉、连杆、支座等零件。由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,而对于T字形肋,采用剖面比较合适。

各种规格纸张型号和规格大小

各种规格纸张型号和规格大小 纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸。过去是以多少"开"(例如8开或16开等)来表示纸张的大小,现在我采用国际标准,规定以A0、A1、A2、B1、B2......等标记来表示纸张的幅面规格。标准规定纸张的幅宽(以X表示)和长度(以Y表示)的比例关系为X:Y=1:n 。 按照纸张幅面的基本面积,把幅面规格分为A系列、B系列和C系列,幅面规格为A0的幅面尺寸为841mm×1189mm,幅面面积为1平方米;B0的幅面尺寸为1000mm×1414mm,幅面面积为2.5平方米;C0的幅面尺寸为917mm×1279mm,幅面面积为2.25平方米;复印纸的幅面规格只采用A系列和B系列。若将A0纸张沿长度方式对开成两等分,便成为A1规格,将A1纸张沿长度方向对开,便成为A2规格,如此对开至A8规格;B8纸张亦按此法对开至B8规格。A0~A8和B0~B8的幅面尺寸见下表所列。其中A3、A4、A5、A6和B4、B5、B6等7种幅面规格为复印纸常用的规格。 举例说明:“A4”纸,就是将A型基本尺寸的纸折叠4次,所以一张A4纸的面积就是基本纸面积的2的4次方分之一,即1/16。其余依此类推。 一般打印纸就是采用复印纸,复印纸的分类是按大小分的,有几个标 准:1、A型;2、B型;3、K型,K型纸就是我们常说的开型纸,只有在国内才有用K型纸的。现在一般都用A型纸。不管A型B型,它的分类

都是这样的,比如A5是A6的两倍,A4是A5的两倍,A3是A4的两倍,B4是B5的两倍B3是B4的两倍,而K型的分类是把一张大的1K的纸分为两张为2K,把2K的纸分为一半为4K,把4K的分为一半为8K,把8K 分为一半为16K,把16K分为一半则为32K等。 还有办公用的专用打印纸,分类是按纸张的大小和层数分的,比如 241-1,241-2,它们分别表示1层和2层的窄行打印纸,当然还有3层4层的;常用的宽行打印纸还有381-1,381-2等。 还有按纸张的厚度来分的,比如60g、70g、75g、85g、120g等等,是指在单位面积纸的重量是多重,因为纸的密度基本上是一样的,在单位面积纸的重量越重,纸的厚度就越厚。比如一般速印机用的是40g左右的纸,而一体机用的是50-60g的纸,而复印机用的是70-85g的纸,打印机用的一般最低不要使用低于60g厚的纸,否则就容易卡纸。 我国原来的开本是由787×1092(mm)纸张来开的。由于787×1092(mm)纸张的开本是我国自行定义的,与国际标准不一致,因此是一种已经淘汰的非标准开本。 1K:787×1092 2K:546×787 4K:393×546 8K:273×393

效果图尺寸说明(1)

效果图尺寸说明 1、绿化带:宽七十厘米,长五十五米,中间有树; 2、钢架棚:宽八米,长四十四米,高六米,弧顶; 3、教学楼:长五十五米,宽八米,高三层,左为走廊式教室,右十二米为宿舍; 4、绿化带2:离教学楼一米五,宽一米二,进教学楼有六米口子,中间两米水泥道,左边 十米没有绿化带,图上有误,绿化带中左右各五棵树; 5、水泥道宽两米五 6、升旗台:长宽三米,有三根旗杆,正对教学楼楼梯和水泥道去教学楼连接水泥道; 7、左绿化带:五十米,一排樟树, 8、中间绿化带:横向长三十二米,宽一米五,有十棵树,竖向长二十米,宽一米,无树; 9、野炊烧烤区要有烧烤灶图形 10、陶艺馆:横向八米,宽六米,高四米,与绿化带相距三米; 11、军事训练区:地面为沙地,靠近绿化带有一吊桥,靠近吊桥有一索道,右边是高台,左 边是矮台,中间上端两根铁索相连; 12、文化墙,应从野炊绿化带开始,弧形,长四十五米,文化墙以下区域位置均低三米; 13、宿舍:高三层,长三十米,宽八米,二层与陶艺馆相平,外有走廊; 14、迷宫长宽20米; 15、拓展训练区加几个高台,野外训练区加射击,文化墙到最下端距离80米; 16、鱼塘横向宽三十米,长二十米,果园为果树,种养殖区为菜地; 17、猪圈、鸡圈、农耕展室,宽八米,长四十米,一层瓦房; 18、健身区横宽八米,长十二米,沙雕区横宽八米,长二十米; 19、简易棚:宽三米,长十米, 20、传达室:宽八米,长五米,一层,厕所宽八米,宽同传达室,厕所前教学楼右有一花坛, 距教学楼三米,与教学楼同宽,长三米; 21、水上项目为一池塘,中间一小岛,靠近农家食堂为池塘塘基,直线,长三十五米, 22、农家食堂长三十五米,宽十米,两层; 23、蔬菜基地为菜地,成人休闲区有石桌等,钓鱼基地有上下两个池塘,尺寸要求不严。大 门去农家食堂加一便道。

纸张的规格A3.A4.A5.A6纸的尺寸大小

国家规定的开本尺寸是采用的国际标准系列,现已定入国家行业标准GB/T 1999内在全国执行。书刊本册现行开本尺寸主要是A系列规格,有以下几种: A4(16k)297mm×210mm; A5(32k)210mm× 148mm; A6(64k)144mm×105mm; A3(8k)420mm×297mm; 注意:其中A3(8k)尺寸尚未定入,但普遍用。 我们日常生活中说说的A4复印纸,8K纸就是指这些尺寸,即A4纸(16K纸)的尺寸为:297mm×210mm,32K笔记本(A5笔记本)规格为:21cm × 14.8cm。 纸张尺寸介绍: a2纸的尺寸(大4开)594mm×420mm a3纸尺寸(大8开)420mm×297mm a4纸尺寸(大16开)297mm×210mm b4纸尺寸(16开) b5纸的尺寸(32开) 8开纸尺寸 纸张按种类可分为新闻纸、凸版印刷纸、胶版纸、有光铜版纸、哑粉纸、字典纸、地图纸、凹版印刷纸、周报纸、画报纸、白板纸、书面纸、特种纸等。 (1)拷贝纸:17g正度规格:用于增值税票,礼品内包装,一般是纯白色。 (2)打字纸:28g正度规格:用于联单.表格,有七种色分:白.红.黄.兰.绿.淡绿.紫色。 (3)有光纸:35-40g正度规格:一面有光,用于联单.表格.便笺,为低档印刷纸张。 (4)书写纸:50-100g大度.正度均有,用于低档印刷品,以国产纸最多。 (5)双胶纸:60-180g大度.正度均有,用于中档印刷品以国产.合资及进口常见。 (6)新闻纸:55-60g滚筒纸.正度纸.报纸选用。 (7)无碳纸:大度.正度均有,有直接复写功能,分上.中.下纸,上中下纸不能调换或翻用, 纸价不同,有六种颜色,常用于联单.表格。 (8)铜版纸: A.双铜80-400g正度.大度均有,用于高档印刷品。 B.单铜:用于纸盒.纸箱.手挽袋.药盒等中.高档印刷。 (9)亚粉纸:105-400g用于雅观.高档彩印。 (10)轻涂纸:52-80g正大度均有,介于胶版纸和铜版纸之间。常用于杂志、广告、插页。 (11)白版纸:200g以上,上白底灰(或白),用于包装类。 (12)白卡纸:200g,双面白,用于中档包装类。 (13)牛皮纸:60-200g,用于包装.纸箱.文件袋.档案袋.信封。 (14)特种纸:一般以进口纸常见,主要用于封面.装饰品.工艺品.精品等印刷。 普通纸张按克重可分为60gsm、80gsm、100gsm、105gsm、120gsm、157gsm、200gsm、250gsm、300gsm、350gsm、400gsm。 8开就是8开的,尺寸是390X270mm,要是word里面没有,那就自行设定。 全开,载成8张,你量一下. 纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸。过去是以多少"开"(例如8

芯片常用封装及尺寸说明

A、常用芯片封装介绍 来源:互联网作者: 关键字:芯片封装 1、BGA 封装(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配 LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚 LSI 用的一种封装。封装本体也可做得比 QFP(四侧引脚扁平封装)小。例如,引脚中心距为 1.5mm 的360 引脚 BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚 QFP 为 40mm 见方。而且 BGA 不用担心 QFP 那样的引脚变形问题。该封装是美国 Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为 1.5mm,引脚数为225。现在也有一些 LSI 厂家正在开发500 引脚的 BGA。 BGA 的问题是回流焊后的外观检查。 现在尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国 Motorola 公司把用模压树脂密封的封装称为 OMPAC,而把灌封方法密封的封装称为 GPAC(见 OMPAC 和 GPAC)。 2、BQFP 封装(quad flat package with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和 ASIC 等电路中采用此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见 QFP)。

图纸纸张的标准尺寸

图纸纸张的标准尺寸 纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸。过去是以多少"开"(例如8开或16开等)来表示纸张的大小,现在我国采用国际标准,规定以A0、A1、A2、B1、B2......等标记来表示纸张的幅面规格。标准规定纸张的幅宽(以X表示)和长度(以Y表示)的比例关系为X:Y=1: n 。 按照纸张幅面的基本面积,把幅面规格分为A系列、B 系列和C系列,幅面规格为A0的幅面尺寸为 841mm×1189mm,幅面面积为1平方米;B0的幅面尺寸为1000mm×1414mm,幅面面积为2.5平方米(含正反面);C0的幅面尺寸为917mm×1279mm,幅面面积为2.25平方米(含正反面);复印纸的幅面规格只采用A系列和B系列。若将A0纸张沿长度方式对开成两等分,便成为A1规格,将A1纸张沿长度方向对开,便成为A2规格,如此对开至A8规格;B8纸张亦按此法对开至B8规格。A0~A8和B0~B8的幅面尺寸见下表所列。其中A3、A4、A5、A6和B4、B5、B6等7种幅面规格为复印纸常用的规格。 举例说明:“A4”纸,就是将A型基本尺寸的纸折叠4次,所以一张A4纸的面积就是基本纸面积的2的4次方分之一,即1/16。其余依此类推。

A1,A2,A3,A4纸的尺寸;像素换算;ABC号纸尺寸 以前在做图片的时候从来没想过要做多大的尺寸,总觉得像素换算成我们常用的毫米、厘米等基本单位很难,而且还要考虑分辨率的大小,上次满怀信心地制作简历封面,图的效果很好,但用A4纸打印出来的模糊又难看,今天专门研究了这个问题,其实也并不难,分析如下: A4纸的尺寸是210mm*297mm,也就是21.0cm*29.7cm,而1英寸=2.54cm,当分辨率为72像素/英寸时,我们将其换算成像素/厘米就是28.3,现在,我们将其转换为制作图片时的像素就是(21*28.3)*(29.7*28.3),即:595*842(单位为像素); 同样的道理,我们可以得到: 当分辨率为300像素/英寸时,A4大小是2479*3508像素;当分辨率为120像素/英寸时,A4大小为1487*2105像素。所以如果你要将做的图片打印出来的话,最好先进行换算,不然很可能会降低图片质量的!一般情况下,如果是印刷品,最好用300像素/英寸,如果是打印机或者喷绘,可以选择 72像素/英寸的分辨率。 A0=1189*841mm A1=841*594mm A2=594*420mm A3=420*297mm

相关文档
最新文档