国外典型的军用航空发动机技术发展计划

国外典型的军用航空发动机技术发展计划
国外典型的军用航空发动机技术发展计划

国外典型的军用航空发动机技术发展计划

航空发动机的发展技术难度大、周期长、费用高、风险大,市场竞争非常激烈,目前国外能独立研制先进军用航空发动机的国家只有美国、英国、法国和俄罗斯等少数几个国家。这些国家长期以来始终高度重视航空发动机技术的研究和发展,投入大量资金,通过连续不断地实施先进航空发动机技术的研究与验证计划,为其占据当今世界航空发动机领域的领先地位奠定了坚实的基础。美国综合高性能涡轮发动机技术(IHPTET)计划、欧洲先进核心军用发动机(ACME)计划和美国多用途、经济可承受的先进涡轮发动机(VAATE)计划是国外军用航空发动机技术计划的典型代表。

1 综合高性能涡轮发动机技术(IHPTET)计划

IHPTET计划是美国从1987年开始实施的一项范围广泛的国家级航空发动机技术发展与验证计划,目标是到2005年使航空推进系统能力翻一番,即发动机的推重比(功重比)增加100%~120%,耗油率下降30%~40%,生产和维护成本降低35%~60%。参与该计划的包括美国国防预研局(DARPA)、陆军、海军、空军、NASA和七家航空发动机公司。

IHPTET计划发展的技术包括涡喷/涡扇发动机、涡桨/涡轴发动机和短寿命的发动机,该计划分个三阶段(见表1)进行,总经费投入为50亿美元,每年平均3亿多美元。

IHPTET计划第一阶段验证的技术包括小展弦比后掠风扇、阻燃钛合金压气机材料、双合金压气机盘、刷式密封、陶瓷复合材料的燃烧室火焰筒浮壁、"超冷"涡轮叶片和球形收敛调节片尾喷管(SCFN)。第二阶段验证的技术包括压气机整体叶环结构、"铸冷"涡轮叶片、涡轮整体叶盘、耐700℃~800℃的γ钛铝合金、周向分级燃烧室、陶瓷轴承。第三阶段验证的技术包括分隔式叶片风扇、高压比压气机(4级达到F100发动机10级的压比)、驻涡火焰稳定燃烧室、燃烧室主动温度控制、陶瓷基复合材料火焰筒、碳-碳复合材料涡轮、陶瓷材料涡轮、磁浮轴承、气膜轴承、骨架式结构、内装式整体起动发电机、模型基分布式控制系统、非稳态计算流体力学(CFD)仿真技术和射流控制矢量喷管等。

目前,该计划已经顺利结束并获得了很大成功(见表2),该计划所发展的技术很多已经用于现有军民用发动机的改进改型和新型号发展中,使现有航空推进系统的性能达到了更高水平。军用发动机F119、F135、F136、F404、F414、F100和F110应用了该计划验证的

宽弦风扇整体叶盘、多斜孔冷却燃烧室、刷式密封、高功量"超冷"高温涡轮、整体旋流加力燃烧室、二元和轴对称推力矢量喷管以及带光纤部件的先进的全权限数字式发动机控制系统(FADEC)技术。民用发动机GE90、PW4084、CFM56-7、AE3007和FJ44采用了该计划

验证的双头部燃烧室、浮壁燃烧室、气膜冷却火焰筒、"铸冷"单晶涡轮叶片、复合材料风扇叶片、隔热涂层、先进的FADEC、空心弯掠风扇叶片、可磨蚀涡轮叶尖和无螺栓固定等技术。

2 多用途、经济可承受的先进涡轮发动机(VAATE)计划

为保持在21世纪的领先优势,美国从1999年开始实施IHPTET的后继计划--多用途、经济可承受的先进涡轮发动机(VAATE)计划,目标是为未来轰炸机、无人作战飞机、先

进隐身作战飞机、先进运输机、低成本空间飞行器和垂直/短距起降(V/STOL)飞机提供多种收益,包括增加航程,减小保障规模,提高战备完好率,降低噪声、排放和可探测性(隐身),以及提供高速续航力。技术目标是到2017年验证使发动机的能力/成本比是F119的

十倍的技术。

VAATE计划的参研单位包括美国陆军、空军、海军、DARPA、NASA和六家飞机发动机公司(通用电气、霍尼韦尔、普惠、罗罗、威廉斯和特里达因大陆发动机公司),三家飞机机体制造商(波音公司、洛克希德·马丁公司和诺斯罗普·格鲁门公司)也参与了该计划,另外该计划还新增了国防部办公室(OSD)和能源部(DOE)。

与IHPTET计划一样,VAATE计划的目的是集中政府和工业部门在涡轮发动机技术领域的研究和发展资源来达到一个共同的目标。VAATE计划同样有相对稳定的投资,并规定了新技术发展和验证的时间进度。但是,IHPTET计划的重点在于发动机本身的能力,而V AATE计划的重点在于整个飞行器推进系统的性能,包括进气道、排气系统、第二动力系统和燃油系统,以及它们与飞机机体的一体化,并且将经济可承受性作为一个重要指标。与I HPTET计划一样,VAATE计划也是一项分三阶段实施的国家级涡轮发动机技术发展计划。

VAATE计划将发展从小型一次性使用的涡喷发动机、直升机用涡轴发动机到大型涡扇发动机等一系列的验证机。预计,VAATE计划所需经费与IHPTET计划相当,年均大约3亿美元。

VAATE计划发展的技术包括综合的热管理系统、流量可控的先进进气道、多用途大流量压气机、紧凑高效的低污染燃烧室、综合的健康管理系统、模型基非线性适应性控制系统、轻重量抗畸变风扇、长效全寿命涡轮、先进的燃油添加剂/热稳定高热沉燃料、一体化的涡轮后框架和加力燃烧室、耐久的推力矢量排气系统等。目前,VAATE计划正在下述六种"改变游戏规则"的发动机验证平台上验证这些技术:

(1)高效小尺寸推进(ESSP):可使未来长航时无人机和巡航导弹的燃油效率提高3 5%~40%,同时减少生产成本。

(2)小型重油发动机(SHFE):使未来无人飞机和有人飞机的航程、载荷和耐久性更好,该计划是由美国陆军领导的,在用于直升机和无人机的520kW涡轴发动机上验证燃油消耗和成本减少的技术。

(3)高速涡轮发动机验证机(HiSTED):将为多种武器发射平台提供范围宽广的、低成本的、速度M4以上的推进能力。使到达目标的时间减少80%,可灵活地执行超声速巡航/亚声速待机任务。

(4)结构紧凑的高效直接升力发动机(CEEDLE):可满足未来大型运输机对远程、高亚声速巡航和短距起飞(垂直)降落能力的要求。该发动机可省去目前升力风扇发动机的轴和离合器等部件,使任务半径增加2~4倍。

(5)高效嵌入式涡轮发动机(HEETE):将发展一种推力为8900~15575daN的在飞机上嵌入安装的发动机,可满足中高空情报、监视和侦察平台的需求,使燃油效率提高25%、发动机推重比提高60%、待机时间增加2倍,功率提取达到400kW。将研究空气密封技术、主动间隙控制技术、对冷却空气进行冷却的结构紧凑的轻重量热交换器等。

(6)自适应循环发动机(ACE):可根据多种飞行条件选择自己的特性,在高速和低速飞行都具有最佳的性能,将满足远程轰炸机的动力需求,这种飞机可不加力以M2.4的速度飞越很长距离,迅速到达目标,然后转变为节省燃油的待机模式工作,持续飞行数小时。

3 先进核心军用发动机(ACME)/军用发动机技术(AMET)计划

先进核心军用发动机(ACME)计划始于20世纪70年代,是英国一个长期的军用航空发动机技术综合验证计划,计划发起方为英国国防部、皇家飞机设计院和国家燃气涡轮研究院,主要资助方为英国国防部和罗罗公司,其次还有德国的MTU公司和意大利的FIAT公

司。迄今为止,ACME计划是英国和欧洲投资最多、规模最大的一个军用发动机技术发展计划。

ACME计划的总目标是提供未来先进战斗机发动机所需技术,尽管该计划的目标并不是研制一种发动机,但有如下技术目标:推力达到8896~11120daN,推重比达到10和12,总压气机级数减少到6~7级,总增压比达到24左右。ACME计划主要发展推力矢量系统、双转子和三转子加力涡扇发动机技术。该计划发展的内容包括新的陶瓷材料、合金材料和冷却技术的研究,以及三维流分析和建模。

该计划共分两个阶段,1982年~1993年为第一阶段,在此期间,ACME计划的大部分工作已经完成,所发展的技术已实际应用于RB199、"鹞"Ⅱ及AV-8B垂直/短距起降飞机用"飞马"发动机和欧洲战斗机"台风"用EJ200发动机的发展。最近,罗罗公司又将ACME技术转移到其先进的民用核心机验证机计划中,并且这些技术也有可能用于罗·罗公司目前正在进行的RB411发动机的设计。今后,ACME技术还可能用于F110、RB419、罗罗公司的大涵道比风扇发动机、罗罗公司的前后串列风扇项目、远距加力升力系统、远距非加力升力系统以及先进军用发动机技术(AMET)计划。

ACME计划第二阶段正在进行中,目标是发动机的重量降低50%,推重比达到20,耗油率降低30%,制造成本降低30%,寿命期成本降低25%。这一阶段的验证机将于2011年前首次试车。

AMET计划是一项英法双边合作计划,该计划全面吸收了ACME计划所取得的成果。该计划从1995年开始实施,目标是研制一种推重比15的发动机,最后达到推重比18的目标。目前,两公司正在研究将金属基复合材料用于高推重比发动机的高压压气机上,另外,也在研究改进的镍基单晶材料、发展更先进的叶片涂层和改进冷却使高压涡轮进口温度可达到1827℃(2100K)。

航空发动机发展史

航空发动机发展史 摘要:航空发动机的历史大致可分为两个时期。第一个时期从首次动力开始到第二次世界大战结束。在这个时期,活塞式发动机统治了40年左右。第二个时期从第二次世界大战至今。60多年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代。 关键词:活塞式喷气式 航空发动机诞生一百多年来,主要经过了两个阶段。 前40年(1903~1945),为活塞式发动机的统治时期。 后60年(1939~至今),为喷气式发动机时代。在此期间,航空上广泛应用的是燃气涡轮发动机,先后发展了直接产生推力的涡轮喷气发动机和涡轮风扇发动机。亦派生发展了输出轴功率的涡轮螺旋桨发动机和涡轮轴发动机。 一、活塞式发动机统治时期 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出8.95 kW的功率,重量却有81 kg,功重比为0.11kW/daN。发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为36.6m。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 在两次世界大战的推动下,活塞式发动机不断改进完善,得到迅速发展,第二次世界大战结束前后达到其技术的顶峰。发动机功率从近10kW提高到2500kW 左右,功率重量比(发动机功率与发动机质量的重力之比,简称功重比,计量单位是kW/daN)从0.11kW/daN提高到1.5kW/daN,飞行高度达15000m,飞行速度从16km/h提高到近800km/h,接近了螺旋桨飞机的速度极限。 20世纪30~40年代是活塞式发动机的全盛时期。活塞式发动机加上螺旋桨,

世界航空发动机发展史

世界航空发动机发展史 摘要:航空发动机的历史大致可分为两个时期。第一个时期从首次动力开始到第二次世界大战结束。在这个时期,活塞式发动机统治了40年左右。第二个时期从第二次世界大战至今。60多年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代。 关键词:活塞式喷气式 航空发动机诞生一百多年来,主要经过了两个阶段。 前40年(1903~1945),为活塞式发动机的统治时期。 后60年(1939~至今),为喷气式发动机时代。在此期间,航空上广泛应用的是燃气涡轮发动机,先后发展了直接产生推力的涡轮喷气发动机和涡轮风扇发动机。亦派生发展了输出轴功率的涡轮螺旋桨发动机和涡轮轴发动机。 一、活塞式发动机统治时期 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出8.95 kW的功率,重量却有81 kg,功重比为0.11kW/daN。发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为36.6m。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 在两次世界大战的推动下,活塞式发动机不断改进完善,得到迅速发展,第二次世界大战结束前后达到其技术的顶峰。发动机功率从近10kW提高到2500kW 左右,功率重量比(发动机功率与发动机质量的重力之比,简称功重比,计量单位是kW/daN)从0.11kW/daN提高到1.5kW/daN,飞行高度达15000m,飞行速

先进航空发动机关键制造技术发展现状与趋势

先进航空发动机关键制造技术发展现状与趋势 一、轻量化、整体化新型冷却结构件制造技术1 整体叶盘制造技术整体叶盘是新一代航空发动机实现结构创新与 技术跨越的关键部件,通过将传统结构的叶片和轮盘设计成整体结构,省去传统连接方式采用的榫头、榫槽和锁紧装置,结构重量减轻、零件数减少,避免了榫头的气流损失,使发动机整体结构大为简化,推重比和可靠性明显提高。在第四代战斗机的动力装置推重比10 发动机F119 和EJ200上,风扇、压气机和涡轮采用整体叶盘结构,使发动机重量减轻20%~30%,效率提高5%~10%,零件数量减少50% 以上。目前,整体叶盘的制造方法主要有:电子束焊接法;扩散连接法;线性摩擦焊接法;五坐标数控铣削加工或电解加工法;锻接法;热等静压法等。在未来推重比15~20 的高性能发动机上,如欧洲未来推重比15~20 的发动机和美国的IHPTET 计划中的推重比20的发动机,将采用效果更好的SiC 陶瓷基复合材料或抗氧化的C/C 复合材料制造整体涡轮叶盘。2 整体叶环(无盘转子)制造技术如果将整体叶盘中的轮盘部分去掉,就成为整体叶环,零件的重量将进一步降低。在推重比15~20 高性能发动机上的压气机拟采用整体叶环,由于采用密度较小的复合材料制造,叶片减轻,可以直接固定在承力环上,从而取消了轮盘,使结构质量减轻70%。目前正

在研制的整体叶环是用连续单根碳化硅长纤维增强的钛基复合材料制造的。推重比15~20 高性能发动机,如美国XTX16/1A 变循环发动机的核心机第3、4 级压气机为整体叶环转子结构。该整体叶环转子及其间的隔环采用TiMC 金属基复合材料制造。英、法、德研制了TiMMC 叶环,用于改进EJ200的3级风扇、高压压气机和涡轮。3 大小叶片转子制造技术大小叶片转子技术是整体叶盘的特例,即在整体叶盘全弦长叶片通道后部中间增加一组分流小叶片,此分流小叶片具有大大提高轴流压气机叶片级增压比和减少气流引起的振动等特点,是使轴流压气机级增压比达到3 或3 以上的有发展潜力的技术。4 发动机机匣制造技术在新一代航空发动机上有很多机匣,如进气道机匣、外涵机匣、风扇机匣、压气机机匣、燃烧室机匣、涡轮机匣等,由于各机匣在发动机上的部位不同,其工作温度差别很大,各机匣的选材也不同,分别为树脂基复合材料、铁合金、高温合金。树脂基复合材料已广泛用于高性能发动机的低温部件,如F119 发动机的进气道机匣、外涵道筒体、中介机匣。至今成功应用的树脂基复合材料有PMR-15(热固性聚酰亚胺)及其发展型、Avimid(热固性聚酰亚胺)AFR700 等,最高耐热温度为290℃~371℃,2020 年前的目标是研制出在425℃温度下仍具有热稳定性的新型树脂基复合材料。树脂基复合材料构件的制造技术是集自动铺带技术(ATL)、自动纤维铺放

大型飞机发动机的发展现状和关键技术分析

第23卷第6期2008年6月 航空动力学报 Journal of Aerospace Pow er Vol.23No.6 J une 2008 文章编号:100028055(2008)0620976205 大型飞机发动机的发展现状和关键技术分析 刘大响1,金 捷2,彭友梅1,胡晓煜3 (1.中国航空工业第一集团公司科技委,北京100012; 2.北京航空航天大学航空发动机数值仿真研究中心,北京100083; 3.中国航空工业第一集团公司发展研究中心,北京100012) 摘 要:对军民用大涵道比涡扇发动机的现状和发展趋势等进行了阐述,从国家大型飞机工程的战略目标、大型飞机发动机的重要性和市场前景等方面,对我国大涵道比涡扇发动机的需求、现状和差距进行了初步分析,简要介绍了我国大涵道比涡扇发动机的总体方案,提出了发展我国大涵道比涡扇发动机的主要关键技术,并分别从大涵道比涡扇发动机、国际合作、材料工艺试验条件建设等方面,简要论述了关键技术解决途径与措施建议. 关 键 词:大涵道比涡扇发动机;综述;需求分析;关键技术;措施途径中图分类号:V231 文献标识码:A 收稿日期:2007208209;修订日期:2008204208 作者简介:刘大响(1937-),男,湖南祁东人,教授、博导、工程院院士,主要研究方向:发动机发展战略、发动机总体、稳定性分析 和评定、发动机数值仿真技术等. Summarization of development status and key technologies for large airplane engines L IU Da 2xiang 1,J IN Jie 2,PEN G Y ou 2mei 1,HU Xiao 2yu 3 (https://www.360docs.net/doc/e211491099.html,mittee of Science and Technology of China Aviation Indust ry Corporation I , Beijing 100012,China ; 2.Aeroengine Numerical Simulation Research Center , Beijing University of Aeronautics and Ast ronautics ,Beijing 100083,China ;3.Develop ment and Research Center of China Aviation Indust ry Corporation I , Beijing 100012,China )Abstract :The develop ment stat us and trends of military and civil high bypass pressure ratio (BPR )t urbofan engines for large airplanes has been summarized in t he paper.In t he as 2pect s of st rategical goals ,importance and marketing foreground of t he high BPR t urbofan engines for national large airplanes engineering in China ,t he requirement s ,stat us and gap s of high BPR t urbofan engines in China have been analysis briefly as well as t he int roduction of t he overall engine scheme for t he high BPR t urbofan engines wit h t he main key technolo 2gies for t he engines.In terms of military and civil high BPR t urbofan engines technologies ,international cooperation ,materials and techniques and test facilities ,some suggestion and app roach have been discussed for t he technical challenges wit h t he develop ment of high BPR t urbofan engines in China. K ey w ords :highbypass pressure ratio (BPR )t urbofan engine ;summarization ; requirement s ;key technologies ;app roach

航空发动机发展史

航空发动机发展史 航空发动机诞生一百多年来,主要经过了两个阶段:前40年(1903~1945),为活塞式发动机的统治时期;后60年(1939~至今),为喷气式发动机时代。在此期间,航空上广泛应用的是燃气涡轮发动机,先后发展了直接产生推力的涡轮喷气发动机和涡轮风扇发动机。亦派生发展了输出轴功率的涡轮螺旋桨发动机和涡轮轴发动机。 一、活塞式发动机统治时期 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出8.95 kW的功率,重量却有81 kg,功重比为0.11kW/daN。发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为36.6m。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 在两次世界大战的推动下,活塞式发动机不断改进完善,得到迅速发展,第二次世界大战结束前后达到其技术的顶峰。发动机功率从近10kW提高到2500kW 左右,功率重量比(发动机功率与发动机质量的重力之比,简称功重比,计量单位是kW/daN)从0.11kW/daN提高到1.5kW/daN,飞行高度达15000m,飞行速度从16km/h提高到近800km/h,接近了螺旋桨飞机的速度极限。 20世纪30~40年代是活塞式发动机的全盛时期。活塞式发动机加上螺旋桨,构成了所有战斗机、轰炸机、运输机和侦察机的动力装置;活塞式发动机加上旋翼,构成所有直升机的动力装置。著名的活塞式发动机有:美国普拉特·惠特尼公司(简称普·惠公司)的“黄蜂”系列星形气冷发动机,气缸7~28个,功率970~2500kW,广泛用于各种战斗机、轰炸机和运输机。 带螺旋桨的活塞式发动机的最大缺点是飞行速度受到限制(800km/h以下)。

我国航空发动机行业现状及发展趋势预测分析

2016年我国航空发动机行业现状及2017市场发展趋势预测分析 中商情报网讯:近年来,我国已经形成较完整的航空发动机产业链和相应的 生产布局。2011年我国整个航空发动机市场规模约为200亿元人民币,其中军 用约占70%;民用约占30%,预计到2020年,我国航空发动机产业市场规模将 突破千亿元大关。 中国航空发动机市场规模及预测,2011年-2020年如下图所示: 一、航空发动机整体情况 航空发动机作为飞机动力源,是决定飞机性能的重要因素。航空发动机集中 了机械制造行业几乎所有的高精尖技术,因此航空发动机技术水平的高低是一个 国家工业实力的重要标志。目前世界上能制造飞机的国家很多,但是能独立研制 航空发动机的只有美国、俄罗斯、英国、法国、中国等少数几个国家,而全球民 用航空发动机市场基本被欧美企业垄断。 航空发动机产业空间广阔,未来20年全球民用航空发动机市场规模将达到 14,360亿美元,军用航空发动机市场规模将达到4,300亿美元。 二、航空发动机电子技术 随着发动机测试技术和控制技术的快速发展,发动机系统已从传统的机械系 统向机电系统发展,而且发动机电子技术所占比例不断提高。在航空发动机领域, 以发动机参数采集器和发动机电子控制系统为代表的发动机电子系统的采用极 大推动了发动机电子技术的发展。 (一)发动机参数采集器基本情况 发动机参数采集器属于发动机状态监视装置。这类设备主要进行发动机重要 参数的采集、处理和存储,发动机气路参数趋势分析,发动使用寿命监视,发动 机振动监视,发动机健康管理等。发动机参数采集器可以跟踪采集航空发动机运 行中的工作状态和故障信息,并进行处理,分析出航空发动机部件的性能退化情 况或者根据处理后的数据对故障进行诊断、分析故障原因、性质、部位及发展趋 势,根据具体情况采取必要的维护措施。这类电子状态监视与故障诊断系统对航 空发动机早期故障诊断征兆的及时发现与及时处理具有重要作用,可以避免相关 事故的发生,保障飞行安全,同时还可以“视情维修”,大大节省维修成本与维修 时间,对使用方和维修商都会带来明显的经济效益。 目前国内外飞机都逐渐采用发动机参数采集器取代传统的发动机仪表,新飞 机制造和老飞机改造产生了较大容量的市场。晨曦航空是国内率先研制发动机参 数采集器的企业之一,是国内直升机发动机参数采集器最大供应商。 (二)航空发动机电子控制领域基本情况

发动机发展史

发动机发展史 【摘要】:发动机(Engine),又称为引擎,是一种能够把一种形式的能转化为另一种更有用的能的机器,通常是把化学能转化为机械能。(把电能转化为机器能的称谓电动机)有时它既适用于动力发生装置,也可指包括动力装置的整个机器,比如汽油发动机,航空发动机。发动机最早诞生在英国,所以,发动机的概念也源于英语,它的本义是指那种“产生动力的机械装置”。汽车自诞生以来,作为最核心的“心脏”--发动机也在不断的进步,下面就带大家来回顾一下发动机的历史,“知史明鉴”,或许更能理解这一百多年来汽车技术所发生的巨大变革。 Engine, also known as the engine, is a kind of to tell a forms of energy into another more useful to machine, usually the chemical energy into mechanical energy. (the energy into machine can appellations motor) sometimes it applies both to power generator, can also refer to include power device of the whole machine, such as gasoline engine,aeroengine. Engine earliest was born in the United Kingdom, therefore, engine concept also come from English, it's original meaning is that "the mechanical device" producing power. Car since its birth, as the core of "heart" - the engine is also in constant progress. Here is to take you to review the history, "knowing engine Mingjian" history and maybe more can understand this hundred years automotive technical what happened huge transformation. 【关键字】:蒸汽机,冲程发动机,转子发动机,化油器,电喷发动机Steam engine,Stroke engines,The rotor engine,The carburetor,Efi engine 发动机是汽车的心脏,为汽车的行走提供动力,汽车的动力性、经济性、环保性。简单讲发动机就是一个能量转换机构,即将燃油的热能,通过在密封汽缸内燃烧气体膨胀时,推动活塞作功,转变为机械能,这是发动机最基本原理。发动机所有结构都是为能量转换服务的,虽然发动机伴随着汽车走过了100多年的历史,无论是在设计上、制造上、工艺上还是在性能上、控制上都有很大的提高,其基本原理仍然未变,这是一个富于创造的时代,那些发动机设计者们,不断地将最新科技与发动机融为一体,把发动机变成一个复杂的机电一体化产品,使发动机性能达到近乎完善的程度,各世界著名汽车厂商也将发动机的性能作为竞争亮点,发动机的发展经历了以下几个阶段: 一、汽油机之前的摸索阶段 18世纪中叶,瓦特发明了蒸气机,此后人们开始设想把蒸汽机装到车子上载人。法国的居纽是第一个将蒸汽机装到车子上的人。1770年,居纽制作了一辆三轮蒸汽机车。这辆车全长7.23米,时速为3.5公里,是世界上第一辆蒸汽机车。1771年古诺改进了蒸汽汽车,时速可达9.5千米,牵引4-5吨的货物。 1858年,定居在法国巴黎的里诺发明了煤气发动机,并于1860年申请了专利。发动机用煤气和空气的混合气体取代往复式蒸汽机的蒸汽,使用电池和感应线圈产生电火花,用电火花将混合气点燃爆发。这种发动机有气缸、活塞、连杆、飞轮等。煤气机是内燃机的初级产品,因为煤气发动机的压缩比为零。 1867年,德国人奥托受里诺研制煤气发动机的启发,对煤气发动机进行了大量的研究,制作了一台卧式气压煤气发动机,后经过改进,于1878年在法国举办的国际展览会上展出了他制作的样品。由于该发动机工作效率高,引起了参

航空发动机发展史

摘要:航空发动机的历史大致可分为两个时期。第一个时期从首次动力开始到第二次世界大战结束。在这个时期,活塞式发动机统治了40年左右。第二个时期从第二次世界大战至今。60多年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代。 关键词:活塞式喷气式 航空发动机诞生一百多年来,主要经过了两个阶段。 前40年(1903~1945),为活塞式发动机的统治时期。 后60年(1939~至今),为喷气式发动机时代。在此期间,航空上广泛应用的是燃气涡轮发动机,先后发展了直接产生推力的涡轮喷气发动机和涡轮风扇发动机。亦派生发展了输出轴功率的涡轮螺旋桨发动机和涡轮轴发动机。 一、活塞式发动机统治时期 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出 kW的功率,重量却有81 kg,功重比为daN。发动机通过两根自行车上那样的链条,带动两个直径为的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 在两次世界大战的推动下,活塞式发动机不断改进完善,得到迅速发展,第二次世界大战结束前后达到其技术的顶峰。发动机功率从近10kW提高到2500kW 左右,功率重量比(发动机功率与发动机质量的重力之比,简称功重比,计量单位是kW/daN)从daN提高到daN,飞行高度达15000m,飞行速度从16km/h提高到近800km/h,接近了螺旋桨飞机的速度极限。 20世纪30~40年代是活塞式发动机的全盛时期。活塞式发动机加上螺旋桨,构成了所有战斗机、轰炸机、运输机和侦察机的动力装置;活塞式发动机加上旋

航空发动机行业现状及发展趋势预测分析

航空发动机行业现状及发 展趋势预测分析 Prepared on 24 November 2020

2016年我国航空发动机行业现状及2017市场发展趋势预测分析 中商情报网讯:近年来,我国已经形成较完整的航空发动机产业链和相应 的生产布局。2011年我国整个航空发动机市场规模约为200亿元人民币,其中 军用约占70%;民用约占30%,预计到2020年,我国航空发动机产业市场规 模将突破千亿元大关。 中国航空发动机市场规模及预测,2011年-2020年如下图所示: 一、航空发动机整体情况 航空发动机作为飞机动力源,是决定飞机性能的重要因素。航空发动机集 中了机械制造行业几乎所有的高精尖技术,因此航空发动机技术水平的高低是 一个国家工业实力的重要标志。目前世界上能制造飞机的国家很多,但是能独 立研制航空发动机的只有美国、俄罗斯、英国、法国、中国等少数几个国家, 而全球民用航空发动机市场基本被欧美企业垄断。 航空发动机产业空间广阔,未来20年全球民用航空发动机市场规模将达到 14,360亿美元,军用航空发动机市场规模将达到4,300亿美元。 二、航空发动机电子技术 随着发动机测试技术和控制技术的快速发展,发动机系统已从传统的机械 系统向机电系统发展,而且发动机电子技术所占比例不断提高。在航空发动机 领域,以发动机参数采集器和发动机电子控制系统为代表的发动机电子系统的 采用极大推动了发动机电子技术的发展。 (一)发动机参数采集器基本情况 发动机参数采集器属于发动机状态监视装置。这类设备主要进行发动机重 要参数的采集、处理和存储,发动机气路参数趋势分析,发动使用寿命监视, 发动机振动监视,发动机健康管理等。发动机参数采集器可以跟踪采集航空发 动机运行中的工作状态和故障信息,并进行处理,分析出航空发动机部件的性 能退化情况或者根据处理后的数据对故障进行诊断、分析故障原因、性质、部 位及发展趋势,根据具体情况采取必要的维护措施。这类电子状态监视与故障 诊断系统对航空发动机早期故障诊断征兆的及时发现与及时处理具有重要作 用,可以避免相关事故的发生,保障飞行安全,同时还可以“视情维修”,大大 节省维修成本与维修时间,对使用方和维修商都会带来明显的经济效益。 目前国内外飞机都逐渐采用发动机参数采集器取代传统的发动机仪表,新 飞机制造和老飞机改造产生了较大容量的市场。晨曦航空是国内率先研制发动 机参数采集器的企业之一,是国内直升机发动机参数采集器最大供应商。 (二)航空发动机电子控制领域基本情况

航空发动机燃烧室的现状和发展

航空发动机燃烧室的现状和发展 田明 (航空工程系飞动1601 学号:1240801160145) 摘要:燃烧室(又称主燃烧室)是用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度。燃烧室是航空发动机三大核心部件之一,其性能直接影响整个发动机性能。本文将介绍航空发动机燃烧室发展的现状和未来,涵盖对燃烧室的设计要求、一些先进的创新燃烧室、燃烧室的一些技术特点和先进的低污染燃烧技术以及对与未来航空发动机燃烧室方面的展望。 关键词:航空发动机;燃烧室;主动燃烧控制;氢燃烧;低污染燃烧技术 0 引言 现代航空发动机燃烧室建立在高性能、高可靠性、宽稳定工作范围的设计基础上。由于发动机的发展要求不断提高推重比,因此,它必须在更高压比和燃烧室进、出口温度下工作,同时期望高功率下热力循环更有效,这将使未来的发动机工作循环不可避免的产生较高的NOx 和烟排放,因此,低污染设计就成为燃烧室性能的关键指标之一。[1]本文主要论述现代军用发动机燃烧室和新型燃烧室,并简明论述传统燃烧室的重要改进和设计思想、方法的变化,提出研发的主要框架。 1 现代燃烧室的技术特点 燃烧室是由进气装置(阔压器)、壳体、火焰筒、喷嘴和点火器等基本构件组成,根据主要构件结构形式的不同,燃烧室有分管(单管)环管和环形三种基本类型。 燃烧室的工作条件十分恶劣,而燃烧室的零组件主要是薄壁件,工作时常出现翘曲、变形、裂纹、积碳、过热、烧穿等故障。[2]为此,燃烧室的设计应满足以下要求: (1)在地面和空气的各种气象条件和飞行条件下,启动点过迅速可靠。 (2)在飞行包线内,在发动机一切正常工作状态下,燃烧室应保证混合气稳定的燃烧,具有高的完全燃烧系数和低的压力损失系数。 (3)保证混合气在尽可能短的范围内完全地燃烧,燃气的火舌要短,特别是不能有余焰流出燃烧室,还应减少排气污染物的产生。 (4)出口的燃气温度场沿圆周要均匀,沿叶片应保证按涡轮要求的规律分布。 (5)燃烧室的零组件及其连接处应具有足够的强度和刚性,以及良好的冷却和可靠的热补偿,减小热应力。 (6)燃烧室的外轮廓尺寸要小,轴向尺寸要短,重量要轻,具有高的容热强度。燃烧室的结构要简单,有良好的使用性能,维护检查方便,使用期限长。 2 燃烧室设计和研究方法的进展 2.1 燃烧室设计的重要改变 (1)火焰筒是燃烧室的主要构件,是组织燃烧的场所。由于燃烧室进、出口温度的提高使火焰筒主燃区温度很高,火焰筒壁面温度相应升高,因此,需要更多的冷却空气用于火焰筒壁面冷却,这相应减少了火焰筒头部的进气量。 (2)火焰筒按其制造方法,可以分为机械加工和钣金焊接两种类型;按其冷却散热方式,又可分为散热片式和气膜式。火焰筒进气规律的创新设计与传统设计不同。传统设计是指主燃孔、掺混孔和气膜孔的进气规律;创新设计是指采用火焰筒头部和喷嘴的进气占总进气量的80%~85%,其余为气膜冷却进气的进气规律,基本上无主燃孔和掺混孔,以此实现足够的温升和保证发动机循环工作中的燃烧效率。这更减少了火焰筒的冷却空气,与长寿命设计有很大矛盾。

航空发动机发展历程报

航空发动机发展历程报告 一、序言 1903年12月17日,美国的莱特兄弟实现了人类历史上首次有动力、载人、持续、稳定和可操作的重于空气的飞行器的飞行,首次飞行留空时间仅持续12秒,飞行距离为36.6 米,当天持续最久的一次飞行是由哥哥威尔伯?莱特驾驶的第四次飞行,持续时间59秒, 飞行距离260米。这次飞行开创了人类历史的新纪元,对后来百年里人类社会、政治、经济、 文化和军事等方面产生不可估量的影响,并将持续至不可知的未来。而航空发动机作为飞行 器的核心部件,在很大程度上决定了航空器的发展水平。 航空发动机的发展历程大概可分为两个时期,第一个时期是从莱特兄弟的首次飞行开始 到第二次世界大战结束为止,在这个时期内,活塞式发动机统治了40年左右;第二个时期 是从第二次世界大战结束至今,60余年的时间,航空燃气涡轮发动机逐渐取代了活塞式发 动机,开创了喷气时代,成为航空发动机的主流。 如今,航空发动机的第一个百年已经远去,新的航空百年正在赶来,各种新概念、非传 统的航空发动机开始崭露头角,如脉冲爆震发动机、多核心机发动机、组合发动机、模拟昆 虫扑翼飞行的电致伸肌动力发动机和利用螺旋桨推进的太阳能、燃料电池、微波电动发动机 等。可以想象,未来的航空发动机必定更加稳定与高效,航空发动机的种类也会得到极大的 扩展与充实。 、活塞式发动机 莱特兄弟首飞所驾驶的“飞行者” 一号所用的发动机并非出自著名的企业或发明家,而 是一位普通的修理技工查尔斯?泰勒之手。这是一台设有自动进气阀的液(水)冷、四缸、四冲程直排卧式活塞式汽油发动机 (图1), 图1 “飞行者”一号发动 机结构示意图 汽缸内径101.5毫米,冲程104.8毫米,排量 3.398升,压缩比 4.4,长期工作功率9千瓦(约12 马力),短期可达12千瓦(16马力),净重量64千 克(无燃料),工作重量81千克(带燃料、水和附 件),功重比约为0.148~0.20马力/千克。这些指标 不但令当时技术成熟的蒸汽机望尘莫及,在当时同类 的活塞式发动机中也是佼佼者,完全可以满足飞行的 要求。 活塞式发动机按汽缸头的冷却方式可分为液 (水)冷式和气(空气)冷式,两种发动机在不同的历史时期扮演者不同的角色,但基本上是各有千秋,互有短长。 1、液冷式活塞发动机 早期飞机的飞行速度很低,多采用液冷式发动机。液冷式发动机的冷却方法是在汽缸外

航空发动机发展史

航空发动机发展历程及趋势 1、活塞式发动机时期 早期液冷发动机居主导地位 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出8.95 kW的功率,重量却有81 kg,功重比为0.11kW/daN。发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为36.6m。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。 以后,在飞机用于战争目的的推动下,航空特别是在欧洲开始蓬勃发展,法国在当时处于领先地位。美国虽然发明了动力飞机并且制造了第一架军用飞机,但在参战时连一架可用的新式飞机都没有。在前线的美国航空中队的6287架飞机中有4791架时法国飞机,如装备伊斯潘诺-西扎V型液冷发动机的"斯佩德"战斗机。这种发动机的功率已达130~220kW, 功重比为0.7kW/daN左右。飞机速度超过200km/h,升限6650m。 当时,飞机的飞行速度还比较小,气冷发动机冷却困难。为了冷却,发动机裸露在外,阻力又较大。因此,大多数飞机特别是战斗机采用的是液冷式发动机。期间,1908年由法国塞甘兄弟发明旋转汽缸气冷星型发动机曾风行一时。这种曲轴固定而汽缸旋转的发动机终因功率的增大受到限制,在固定汽缸的气冷星型发动机的冷却问题解决之后退出了历史舞台。 两次世界大战之间的重要技术发明 在两次世界大战之间,在活塞式发动机领域出现几项重要的发明:发动机整流罩既减小了飞机阻力,又解决了气冷发动机的冷却困难问题,甚至可以的设计两排或四排汽缸的发动机,为增加功率创造了条件;废气涡轮增压器提高了高空条件下的进气压力,改善了发动机的高空性能;变距螺旋桨可增加螺旋桨的效率和发动机的功率输出;内充金属钠的冷却排气门解决了排气门的过热问题;向汽缸内喷水和甲醇的混合液可在短时内增加功率三分之一;高辛烷值燃料提高了燃油的抗爆性,使汽缸内燃烧前压力由2~3逐步增加到5~6,甚至8~9,既提高了升功率,又降低了耗油率。 从20世纪20年代中期开始,气冷发动机发展迅速,但液冷发动机仍有一席之地在此期间,在整流罩解决了阻力和冷却问题后,气冷星型发动机由于有刚性大,重量轻,可靠性、维修性和生存性好,功率增长潜力大等优点而得到迅速发展,并开始在大型轰炸机、运输机和对地攻击机上取代液冷发动机。在20世纪20年代中期,美国莱特公司和普·惠公司先后发展出单排的"旋风"和"飓风"以及"黄蜂"和"大黄蜂"发动机,最大功率超过400kW,功重比超过1kW/daN。到第二次世界大战爆发时,由于双排气冷星型发动机的研制成功,发动机功率已提高到

航空发动机叶片材料及制造技术现状

航空发动机叶片材料及制造技术现状 在航空发动机中,涡轮叶片由于处于温度最高、应力最复杂、环境最恶劣的部位而被列为第一关键件,并被誉为“王冠上的明珠”。涡轮叶片的性能水平,特别是承温能力,成为一种型号发动机先进程度的重要标志,在一定意义上,也是一个国家航空工业水平的显著标志【007】。 航空发动机不断追求高推重比,使得变形高温合金和铸造高温合金难以满足其越来越高的温度及性能要求,因而国外自7O年代以来纷纷开始研制新型高温合金,先后研制了定向凝固高温合金、单晶高温合金等具有优异高温性能的新材料;单晶高温合金已经发展到了第3代。8O年代,又开始研制了陶瓷叶片材料,在叶片上开始采用防腐、隔热涂层等技术。 1 航空发动机原理简介 航空发动机主要分民用和军用两种。图1是普惠公司民用涡轮发动机主要构件;图2是军用发动机的工作原理示意图;图3是飞机涡轮发动机内的温度、气流速度和压力分布;图4是罗尔斯-罗伊斯喷气发动机内温度和材料分布;图5为航空发动机用不同材料用量的发展变化情况。 图1 普惠公司民用涡轮发动机主要构件 图2 EJ200军用飞机涡轮发动机的工作原理

图3 商用涡轮发动机内的温度、气流速度和压力分布 图4 罗尔斯-罗伊斯喷气发动机内温度和材料分布 图5 航空发动机用不同材料用量的变化情况

1变形高温合金叶片 1.1 叶片材料 变形高温合金发展有50多年的历史,国内飞机发动机叶片常用变形高温合金如表1所示。高温合金中随着铝、钛和钨、钼含量增加,材料性能持续提高,但热加工性能下降;加入昂贵的合金元素钴之后,可以改善材料的综合性能和提高高温组织的稳定性。 1.2 制造技术 生产工艺。变形高温合金叶片的生产是将热轧棒经过模锻或辊压成形的。模锻叶片主要工艺如下: (1)镦锻榫头部位; (2)换模具,模锻叶身。通常分粗锻、精锻两道工序;模锻时,一般要在模腔内壁喷涂硫化钼,减少模具与材料接触面之阻力,以利于金属变 形流动; (3)精锻件,机加工成成品; (4)成品零件消应力退火处理; (5)表面抛光处理。分电解抛光、机械抛光两种。 常见问题。模锻叶片生产中常见问题如下: (1)钢锭头部切头余量不足,中心亮条缺陷贯穿整个叶片; (2) GH4049合金模锻易出现锻造裂纹; (3)叶片电解抛光中,发生电解损伤,形成晶界腐蚀; (4) GH4220合金生产的叶片,在试车中容易发生“掉晶”现象;这是在热应力反复作用下,导致晶粒松动,直至剥落。 发展趋势。叶片是航空发动机关键零件.它的制造量占整机制造量的三分之一左右。航空发动机叶片属于薄壁易变形零件。如何控制其变形并高效、高质量地加工是目前叶片制造行业研究的重要课题之一。

解析 国内外微小型航空发动机发展现状及趋势

解析国外微小型航空发动机发展现状及趋势 导读微小型航空发动机是航空发动机的一个分支,它与用于大型飞机的“航空发动机”有明显区别。微小型航空发动机(Micro Aero-Engine)是一种比较复杂和精密的热力机械,主要为无人机、巡航导弹等提供飞行所需动力,也可以为地面装置提供电力。微小型航空发动机的技术难度没有民用飞机航空发动机那么高,很多国家都可以自行设计并制造微小型航空发动机,实力比较突出的国家有法国、德国、美国、英国、捷克等。微小型航空发动机主要包括小型涡喷发动机、涡扇发动机、活塞发动机、转子发动机等,其涡轮发动机的推力在500公斤以下级别,活塞发动机功率在100KW以下。太阳谷出版的《国外微小型航空发动机发展状况及市场需求调研报告》针对国外微小型航空发动机的发展现状、趋势,国外微小型航空发动机市场发展现状、竞争格局,市场规模、未来发展趋势等作了深入研究,对于微小型航空发动机研制单位具有重要参考价值。 国外微小型航空发动机发展现状分析国外微小型航空发动 机的主要研制单位包括:赛峰集团Microturbo公司、荷兰AMT Netherlands B.V.公司、捷克PBS VelkáBíte?公司、奥地利ROTAX公司、德国Jet Cat公司、塞尔维亚EDePro公司、美国Williams International公司等。相关企业在该领域的研

发历史较长,产品较多,技术实力雄厚,特别是Microturbo 公司、ROTAX公司、AMT Netherlands B.V.公司、Williams International公司等拥有许多明星级的产品,在该领域享有国际声誉,产品竞争力非常强。 美国在微小型航空发动机领域拥有很强的技术实力,普·惠公司、Williams International公司、洛克菲勒·马丁公司、诺斯罗普·格鲁门公司等在该领域都拥有很强的研发实力。 俄罗斯在微小型航空发动机领域也取得了许多成果,俄罗斯的TBД-10涡轮螺桨发动机,是20世纪70年代的产品,俄罗斯把它作为基准发动机,通过改进改型,发展了6种不同功率、不同用途的发动机,这些系列产品是TB,L1-10E,TB Д-20. PZL-IOW,BCY-10和用于运输机上的燃气涡轮发动机、以及用于轻型飞机的涡轮喷气发动机。俄罗斯在巡航导弹领域拥有非常强的研发实力和技术开发能力,所研制的巡航导弹在世界具有极强的影响力,其动力装置的研发实力也在国际上数一数二。 法国的赛峰集团Microturbo公司是微小型航空发动机领域的领军企业之一,Microturbo公司是世界上规模最大的微小型航空发动机企业之一,其拥有众多型号的微小型航空发动机可供各种单位选择。2014年,中法两国航空制造业巨头宣布将成立一个全新的合资企业,以打造成面向全球市场的民用涡桨发动机部件世界级供应商。

航空发动机的世界发展史及在我国未来的发展

摘要: 航空,作为三大交通方式之一,虽然研究应用的起步最晚,但其迅猛的发展,已使其在现如今交通运输领域占有举足轻重的地位。而发动机作为精密机械,是航空器最核心的部件之一,对其发展历史的回顾和未来前景的预测,无疑对整个航空乃至航天领域,都有不可言喻的重要意义! 关键词:精密机械航空发动机发展史 1.引言 航空发动机的历史大致可分为两个时期。第一个时期从首次动力开始到第二次世界大战结束。在这个时期,活塞式发动机统治了40年左右。第二个时期从第二次世界大战至今。70多年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代。 本文将分“活塞式发动机”、“燃气涡轮发动机”、“世界及我国航空发动机现状及对未来发展的展望”三个方面展开论述。 2.活塞式发动机统治时期 传统的活塞式发动机可以分为“液冷发动机”、“气冷发动机”、“旋转活塞机”等三种类型。 提到液冷发动机,有两个不能不想起的人,那就是莱特兄弟。1903年,莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出8.95 kW的功率,重量却有81 kg,功重比为0.11kW/daN。发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为36.6m。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。[1] 活塞式发动机的发展史同内燃原理的发明密切有关。尚在1673年,荷兰的一位物理学家格尤庚斯的著作中就提出了内燃原理,作者制造了一台利用大气压力的火药式机器的试验装置,首次使用了活塞气缸以转化能量。格尤庚斯的学生巴冰后来承继了他的工作, 同时“发现在气缸内利用火药不可能获得真空”,就想用别的工具——蒸汽,于是他也放弃了内燃原理的研究,后来的热力发动机的发明家和设计者也都走了这条路,而且几乎在二百年期间制造的都是蒸汽发动机。不过蒸汽机的年代对我们非常有意义,因为在此期间,使用了而且在制造上形成

美国军用航空发动机发展历程

高性能军用发动机――美利坚大国地位的动力基石 C-5“银河”运输机、“阿利?伯克”级驱逐舰、UH-1“休伊”直升机和M1“艾布拉姆斯”主战坦克和之间到底有什么关系?如果一定要找,那么请记住,它们之间最为重要的关系便是,都有一颗“飞翔的心”。“阿利?伯克”使用的通用电气LM2500船用燃气轮机,先祖便是“银河”的TF39高涵道比涡扇发动机;而驱动“艾布拉姆斯”的霍尼韦尔AGT1500燃气轮机,其原型则是“休伊”的涡轴发动机T-53。这样的例子在航空强国不胜枚举。如果调查一下美国军用航空喷气技术在民航、车辆以及船舶制造等诸多领域的扩散效应,不难得出这样的结论――先进喷气发动机技术是构成美国航空技术优势乃至其大国地位的一块重要的基石。这块基石是怎样修筑起来的?美国的航空喷气推进技术是怎样走到的今天?期间又有哪些值得总结和注意的经验?希望本文能够找到一些线索。 美利坚的喷气曙光 喷气推进技术第一缕曙光初露的时候,美国并没有给予太多的重视,但也并非没有任何行动,通用电气、普惠、洛克希德和诺斯罗普公司等公司都进行过相关研究,但面对二战的紧张军需生产现状,美国政府甚至强制要求各军工企业放缓喷气推进研究,全力生产现有军备。即便如此,美国军方仍然有人在密切关注航空喷气发动机,这就是美国陆军航空队司令亨利?阿诺德上将。1941年初,阿诺德和部分通用电气公司负责人获悉英国正在从事喷气推进研究,而且已经开发出了惠特尔发动机,于是通过美国政府斡旋,最终从英国获得了惠特尔的技术成果,并交由通用电气涡轮增压器分部制造,以协助美国尽快开发喷气式战斗机。与此同时,贝尔飞机公司接到政府订单,要求与通用电气制造的惠特尔发动机(GE 1-A)相匹配的喷气式飞机,即后来的XP-59。在喷气发动机研发中,包括通用电气、普惠、威斯汀豪斯、洛克希德、诺斯罗普等许多美国公司都获得过政府的经费支持。但后来的事实证明,被寄予厚望的XP-59在测试中和英国“流星”一样,性能平平,其中的原因并不复杂――当时的惠特尔发动机离心压气机存在不少问

相关文档
最新文档