绿色荧光蛋白(GFP)教程文件

合集下载

gfp绿色荧光蛋白序列_概述及解释说明

gfp绿色荧光蛋白序列_概述及解释说明

gfp绿色荧光蛋白序列概述及解释说明1. 引言1.1 概述GFP(绿色荧光蛋白)是一种具有独特发光特性的蛋白质,被广泛应用于细胞和分子生物学领域。

其绿色荧光可以通过外源激活而观察到,使得科学家们能够可视化细胞内发生的过程,并实时跟踪靶标分子的定位与转移。

GFP的序列是理解其结构、功能以及应用关键的基础。

1.2 文章结构本文将从多个方面对GFP绿色荧光蛋白序列进行概述及解释说明。

首先,我们将介绍GFP的历史和发现过程,以及其在现代生物学中的重要性。

随后,我们将详细探讨GFP序列的组成和编码基因信息,并解析与功能相关性方面的研究进展。

最后,我们将阐述GFP序列在生物学研究中的广泛应用,并就目前存在的问题和未来发展进行思考。

1.3 目的本文旨在提供有关GFP绿色荧光蛋白序列的全面概述及解释说明,深入探讨其组成、结构、功能和应用,并对其未来发展进行展望。

通过本文的阐述,读者将能够更好地理解和应用GFP序列在生物学领域中的价值,为相关研究提供指导和启示。

同时,我们也希望通过此文促进对GFP技术的探索和创新,推动生物科学的不断发展。

2. GFP绿色荧光蛋白序列概述2.1 GFP简介GFP(Green Fluorescent Protein)绿色荧光蛋白是一种来自于海洋水母的蛋白质。

它的主要特点是能够发出绿色荧光,并且在非生物致死条件下仍然保持稳定。

由于这些特性,GFP成为了生物学领域中一种广泛使用的标记工具。

2.2 GFP的发现历程GFP最早是在1960年代末期由奥斯汀·盖因斯、罗德南·麦迪安和道格拉斯·普里肯特等科学家在研究水母Aequorea victoria时发现的。

他们观察到当GFP暴露在紫外线下时会发出绿色荧光,并且将其提取出来进行进一步研究。

随后,科学家们发现GFP能够自身形成一个染色体,而不需要其他辅助物质。

2.3 GFP的结构特征GFP的序列长约238个氨基酸残基,具有高度保守性。

绿色荧光蛋白

绿色荧光蛋白

绿⾊荧光蛋⽩绿⾊荧光蛋⽩(GFP)的转化表达及免疫印迹检测王媛0811142南开⼤学⽣命科学学院⽣物技术08级⼀、摘要:本实验利⽤酶切⽅法检测载体中所含GFP⽚段后,通过转化的⽅法把绿⾊荧光蛋⽩(GFP)外源基因转⼊⼤肠杆菌进⾏表达,通过免疫印记杂交⽅法(western blotting)分析GFP在⼤肠杆菌中的表达,在分离检测的全过程中(转化平板,细胞裂解,电泳,电转移),均可通过紫外灯清晰地检测到颜⾊亮丽的绿⾊荧光蛋⽩。

关键词:绿⾊荧光蛋⽩免疫印记杂交⼆、引⾔:绿⾊荧光蛋⽩是⼀种源于⽔母(Aequorea Victoria)等海洋⽆脊椎动物的蛋⽩,分⼦量为26.9KD。

GFP的开放阅读框架长度约为740bp,编码238个氨基酸残基。

GFP表达后折叠环化,在氧存在下,由65~67位的氨基酸残基环化,形成发⾊基团,⽆需添加任何酶和底物,在长紫外或蓝光激发下就能发荧光,荧光性质稳定,可保持10分钟。

GFP能在不同的细胞内稳定表达,⽆种属、组织和位置特异性,对细胞⽆毒性且检测⽅法简单,将其作为报告基因已⼴泛应⽤于细胞⽣物学和分⼦⽣物学领域。

免疫印记⼜称蛋⽩质印记,是在凝胶电泳技术和固相免疫测定技术基础上发展起来的⼀种免疫检测技术。

其原理是将膜与胶放在中间,上下加滤纸数层,做成“Sandwich”样的转移单位,并且保证带负电的蛋⽩质向阳极转移,即膜侧连接阳极或⾯向阳极,从⽽将电泳分离的蛋⽩从凝胶转移⾄固相载体上。

三、实验材料、仪器及⽅法:3.1 实验材料3.1.1 菌种E.coli DH5α(pETH)菌株 E.coli DH5α(pETH-GFP)菌株 E.coli BL21菌株 E.coli BL21(pETH)菌株E.coli BL21 (pETH-GFP))菌株3.1.2 试剂与材料LB培养基(⾃⼰配置灭菌)Amp(100mg/ml)IPTG(10mg/ml) CaCl2(1M) 50*TAE Acry/Bis 贮存液分离胶缓冲液浓缩胶缓冲液泳动缓冲液(5*)上扬缓冲液(5*)转移缓冲液PBS 1.5%A.P.S 质粒⼩量提取试剂盒Eco RI限制性内切酶DNA Maker Protein Maker pH试纸3.1.3 仪器紫外检测仪、超声波细胞粉碎机、垂直板式电泳系统、半⼲式蛋⽩质印迹电转移系统等。

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取之欧阳道创编

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取之欧阳道创编

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取南方医科大学2011预防医学(卫生检验检疫)摘要目的:研究绿色荧光蛋白(green fluorescent protein,GFP)基因在大肠杆菌中的基因克隆与重组表达,以及对其进行粗提取。

方法:从E.coli DH5ɑ中用碱提取质粒的方法提取质粒pEGFP-N3和质粒pET-28a。

然后用质粒DNA的琼脂糖凝胶电泳对已经提取的产物进行电泳,确定从大肠杆菌中成功提取了质粒。

再用限制性内切酶BamHI和NotI对成功提取的质粒进行酶切,并对酶切后的质粒进行琼脂糖凝胶电泳,用以确定已经提取了GFP基因。

将含有GFP基因的质粒转化到感受态细胞E.coli BL-21中,用LB培养基对转化后的E.coli进行扩大培养。

用IPTG诱导GFP基因表达可以看到浅绿色菌落。

最后对绿色荧光蛋白进行粗提取。

结论:本实验有助于学生掌握最基本的分子生物学实验技术,为进一步的实验奠定基础。

关键词:绿色荧光蛋白基因克隆重组表达转化粗提取目录1 前言32 实验目的43 实验设备44 材料及试剂55 实验操作步骤55.1操作流程55.2质粒DNA的分离与纯化65.2.1 质粒的培养65.2.2 质粒的DNA的碱提取法65.2.3 质粒DNA的鉴定与纯化75.3酶切及连接85.3.1 双酶切85.3.2 回收酶切产物(采用DNA回收试剂盒进行回收)85.3.3 连接95.4大肠杆菌感受态细胞的制备及转化95.4.1 LB(Luria-Bertain)液体和固体培养基的配制(参考附录)95.4.2.感受态细胞的制备 (CaCl2法)95.4.3 转化涂板105.5GFP蛋白的诱导表达105.6绿色荧光蛋白的粗提取11参考文献11附录121LB培养基的配制:122.溶液Ⅰ123.溶液Ⅱ124.溶液Ⅲ(100ML)125.DN ASE-FREE RN ASE A136.TE缓冲液(P H8.0)137.20×TBE138.G ENE F INDER-溴酚蓝上样缓冲液139.PEGFP-N3质粒全图谱1310.P ET-28A质粒全图谱141 前言绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取之欧阳史创编

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取之欧阳史创编

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取南方医科大学2011预防医学(卫生检验检疫)摘要目的:研究绿色荧光蛋白(green fluorescent protein,GFP)基因在大肠杆菌中的基因克隆与重组表达,以及对其进行粗提取。

方法:从E.coli DH5ɑ中用碱提取质粒的方法提取质粒pEGFP-N3和质粒pET-28a。

然后用质粒DNA的琼脂糖凝胶电泳对已经提取的产物进行电泳,确定从大肠杆菌中成功提取了质粒。

再用限制性内切酶BamHI和NotI 对成功提取的质粒进行酶切,并对酶切后的质粒进行琼脂糖凝胶电泳,用以确定已经提取了GFP基因。

将含有GFP 基因的质粒转化到感受态细胞E.coli BL-21中,用LB培养基对转化后的E.coli进行扩大培养。

用IPTG诱导GFP 基因表达可以看到浅绿色菌落。

最后对绿色荧光蛋白进行粗提取。

结论:本实验有助于学生掌握最基本的分子生物学实验技术,为进一步的实验奠定基础。

关键词:绿色荧光蛋白基因克隆重组表达转化粗提取目录1 前言32 实验目的43 实验设备44 材料及试剂55 实验操作步骤55.1操作流程55.2质粒DNA的分离与纯化65.2.1 质粒的培养65.2.2 质粒的DNA的碱提取法65.2.3 质粒DNA的鉴定与纯化75.3酶切及连接85.3.1 双酶切85.3.2 回收酶切产物(采用DNA回收试剂盒进行回收)85.3.3 连接95.4大肠杆菌感受态细胞的制备及转化95.4.1 LB(Luria-Bertain)液体和固体培养基的配制(参考附录)95.4.2.感受态细胞的制备 (CaCl2法)9 5.4.3 转化涂板105.5GFP蛋白的诱导表达105.6绿色荧光蛋白的粗提取11参考文献11附录121LB培养基的配制:122.溶液Ⅰ123.溶液Ⅱ124.溶液Ⅲ(100ML)125.DN ASE-FREE RN ASE A136.TE缓冲液(P H8.0)137.20×TBE138.G ENE F INDER-溴酚蓝上样缓冲液13 9.PEGFP-N3质粒全图谱1310.P ET-28A质粒全图谱141 前言绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。

绿色荧光蛋白GF基因的克隆表达和粗提取

绿色荧光蛋白GF基因的克隆表达和粗提取

绿色荧光蛋白G F基因的克隆表达和粗提取 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#绿色荧光蛋白(G F P)基因的克隆、表达和粗提取南方医科大学2011预防医学(卫生检验检疫)摘要目的:研究绿色荧光蛋白(green fluorescent protein,GFP)基因在大肠杆菌中的基因克隆与重组表达,以及对其进行粗提取。

方法:从 DH5ɑ中用碱提取质粒的方法提取质粒pEGFP-N3和质粒pET-28a。

然后用质粒DNA的琼脂糖凝胶电泳对已经提取的产物进行电泳,确定从大肠杆菌中成功提取了质粒。

再用限制性内切酶BamHI和NotI对成功提取的质粒进行酶切,并对酶切后的质粒进行琼脂糖凝胶电泳,用以确定已经提取了GFP基因。

将含有GFP基因的质粒转化到感受态细胞 BL-21中,用LB培养基对转化后的进行扩大培养。

用IPTG诱导GFP基因表达可以看到浅绿色菌落。

最后对绿色荧光蛋白进行粗提取。

结论:本实验有助于学生掌握最基本的分子生物学实验技术,为进一步的实验奠定基础。

关键词:绿色荧光蛋白基因克隆重组表达转化粗提取目录1 前言绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。

当受到紫外或蓝光激发时,GFP 发射绿色荧光。

它产生荧光无需底物或辅因子发色团是其蛋白质一级序列固有的。

1962 年,下村修等分离纯化了水母中发光蛋白水母素,并发现一种绿色的荧光蛋白。

1974 年,他们分离得到了这个蛋白,当时称绿色蛋白,以后称绿色荧光蛋白(GFP)[1]GFP 作为一种新的报告基因,其优点在于①荧光强度高,稳定性高;②GFP 分子量小,易于融合,适用于多种转化方式,对受体无毒害,安全可靠;③不需要反应底物与其他辅助因子,受蓝光激发产生绿色荧光,尤其适用于体内的即时检测;④GFP 不具有种属依赖性,在多种原核和真核生物细胞中都表达;⑤通过替换一些特殊氨基酸,可以使之产生不同颜色的光,从而适应不同的研究需要。

EGFP在大肠杆菌E.coli中的表达与检测.

EGFP在大肠杆菌E.coli中的表达与检测.

1051 TGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTG 1100
1101 GAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAA 1150
1151 GAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCA 1200
A 1351 CCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAA GCGGC 1400
1401 CGCGACTCTAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTT
1450
一 2 - 质粒
2.2 pET28a质粒
一 2 - 质粒
2.2.1 pET28a质粒描述
The pET-28a-c(+) vectors carry an N-terminal His•Tag®/ thrombin/ T7•Tag® configuration plus an optional C-terminal His•Tag sequence. Unique sites are shown on the circle map. Note that the sequence is numbered by the pBR322 convention, so the T7 expression region is reversed on the circular map. The cloning/expression region of the coding strand transcribed by T7 RNA polymeraseis shown below. The f1 origin is oriented so that infection with helper phage will produce virions containing single-stranded DNA that corresponds to the coding strand. Therefore, single stranded sequencing should be performed using the T7 terminator primer (Cat. No. 69337-3).

2021年绿色荧光蛋白(GFP)基因的克隆、表达和粗提取

2021年绿色荧光蛋白(GFP)基因的克隆、表达和粗提取

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取欧阳光明(2021.03.07)南方医科大学2011预防医学(卫生检验检疫)摘要目的:研究绿色荧光蛋白(green fluorescent protein,GFP)基因在大肠杆菌中的基因克隆与重组表达,以及对其进行粗提取。

方法:从E.coli DH5ɑ中用碱提取质粒的方法提取质粒pEGFP-N3和质粒pET-28a。

然后用质粒DNA的琼脂糖凝胶电泳对已经提取的产物进行电泳,确定从大肠杆菌中成功提取了质粒。

再用限制性内切酶BamHI和NotI对成功提取的质粒进行酶切,并对酶切后的质粒进行琼脂糖凝胶电泳,用以确定已经提取了GFP基因。

将含有GFP 基因的质粒转化到感受态细胞E.coli BL-21中,用LB培养基对转化后的E.coli进行扩大培养。

用IPTG诱导GFP基因表达可以看到浅绿色菌落。

最后对绿色荧光蛋白进行粗提取。

结论:本实验有助于学生掌握最基本的分子生物学实验技术,为进一步的实验奠定基础。

关键词:绿色荧光蛋白基因克隆重组表达转化粗提取目录1 前言32 实验目的43 实验设备44 材料及试剂55 实验操作步骤55.1操作流程55.2质粒DNA的分离与纯化65.2.1 质粒的培养65.2.2 质粒的DNA的碱提取法65.2.3 质粒DNA的鉴定与纯化75.3酶切及连接85.3.1 双酶切85.3.2 回收酶切产物(采用DNA回收试剂盒进行回收)85.3.3 连接95.4大肠杆菌感受态细胞的制备及转化95.4.1 LB(Luria-Bertain)液体和固体培养基的配制(参考附录)95.4.2.感受态细胞的制备 (CaCl2法)95.4.3 转化涂板105.5GFP蛋白的诱导表达105.6绿色荧光蛋白的粗提取11参考文献11附录121LB培养基的配制:122.溶液Ⅰ123.溶液Ⅱ124.溶液Ⅲ(100ML)125.DN ASE-FREE RN ASE A136.TE缓冲液(P H8.0)137.20×TBE138.G ENE F INDER-溴酚蓝上样缓冲液139.PEGFP-N3质粒全图谱1310.P ET-28A质粒全图谱141 前言绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取之欧阳歌谷创作

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取之欧阳歌谷创作

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取欧阳歌谷(2021.02.01)南方医科大学2011预防医学(卫生检验检疫)摘要目的:研究绿色荧光蛋白(green fluorescent protein,GFP)基因在大肠杆菌中的基因克隆与重组表达,以及对其进行粗提取。

方法:从 E.coli DH5ɑ中用碱提取质粒的方法提取质粒pEGFP-N3和质粒pET-28a。

然后用质粒DNA的琼脂糖凝胶电泳对已经提取的产物进行电泳,确定从大肠杆菌中成功提取了质粒。

再用限制性内切酶BamHI和NotI对成功提取的质粒进行酶切,并对酶切后的质粒进行琼脂糖凝胶电泳,用以确定已经提取了GFP基因。

将含有GFP基因的质粒转化到感受态细胞 E.coli BL-21中,用LB培养基对转化后的E.coli进行扩大培养。

用IPTG诱导GFP基因表达可以看到浅绿色菌落。

最后对绿色荧光蛋白进行粗提取。

结论:本实验有助于学生掌握最基本的分子生物学实验技术,为进一步的实验奠定基础。

关键词:绿色荧光蛋白基因克隆重组表达转化粗提取目录1 前言32 实验目的43 实验设备44 材料及试剂55 实验操作步骤55.1操作流程55.2质粒DNA的分离与纯化65.2.1 质粒的培养65.2.2 质粒的DNA的碱提取法65.2.3 质粒DNA的鉴定与纯化75.3酶切及连接85.3.1 双酶切85.3.2 回收酶切产物(采用DNA回收试剂盒进行回收)85.3.3 连接95.4大肠杆菌感受态细胞的制备及转化95.4.1 LB(Luria-Bertain)液体和固体培养基的配制(参考附录)95.4.2.感受态细胞的制备 (CaCl2法)9 5.4.3 转化涂板105.5GFP蛋白的诱导表达105.6绿色荧光蛋白的粗提取11参考文献11附录121LB培养基的配制:122.溶液Ⅰ123.溶液Ⅱ124.溶液Ⅲ(100ML)125.DN ASE-FREE RN ASE A136.TE缓冲液(P H8.0)137.20×TBE138.G ENE F INDER-溴酚蓝上样缓冲液13 9.PEGFP-N3质粒全图谱1310.P ET-28A质粒全图谱141 前言绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
他与Tulle Hazelrigg结了婚。 她后来加入了哥大。她允许他引用 她在"Green Fluorescent Protein as a Marker for Gene Expression"上的未发表研究,条件 是他在一个月的时间内煮咖啡、做 饭、每晚倒垃圾。
2008年诺贝尔化学奖获得者
钱永健
2008年诺贝尔化学奖获得者
下村修
*平田义正与海萤 *弗兰克·约翰逊的邀请 与星期五港 *80岁与20年博士后
美国星期五港
2008年诺贝尔化学奖获得者
马丁·查尔菲 (Martin Chalfie)
生于1947年,为美国哥伦比亚大 学生物学教授。
他获奖的主要贡献在于向人们展 示了绿色荧光蛋白作为发光的遗传标 签的作用,这一技术被广泛运用于生 理学和医学等领域。
下村修
1961年,下村修等人从大量的多管水 母属中分离了水母素及腔肠素。他们发现 生物发光是由钙离子引发的。这项研究开 展了对绿色荧光蛋白的研究。
1962年,他从一种水母中发现了荧光 蛋白,被誉为生物发光研究第一人。
维多利亚多管发光水母能够放出蓝色的荧光。这是 透过快速释放与水母素相互作用的钙离子(Ca2+)生 成的。所放出的蓝光会被绿色荧光蛋白转变为绿光。水 母素和绿色荧光蛋白都是生物学研究的重要工具。
利用GFP的这一特性已经加深了我们对细胞内一些 过程的了解,如细胞分裂、染色体复制和分裂,发 育和信号转导等。除用于特定蛋白的标记定位外, GFP亦大量用于各种细胞器的标记如细胞骨架、质 膜、细胞核等等。
GFP标记的微管
绿色荧光蛋白的应用前景
2.药物筛选
荧光探针的概念: 利用信号传导中信号分子的迁移功能,将一荧光蛋白与信号分子相偶联, 根据荧光蛋白的分布情况即可推断信号分子的迁移状况,并推断该分子在 迁移中的功能。由于GFP分子量小,在活细胞内可溶且对细胞毒性较小, 因而常用作荧光探针。
2008年度诺贝尔化学奖获得者之 一,我国著名的钱氏家族的一员,美 国生物化学家。
199色( 发明变种,多种不同颜色),发明更 多应用方法,阐明发光原理。世界上 应用的FP,多半是他发明的变种。他 的专利有很多人用,有公司销售。
2008年诺贝尔化学奖获得者
其蛋白性质极其稳定,易耐受 高温处理,甲醛固定和石蜡包埋不 影响其荧光性质,并且无光漂白现 象。如用酸、碱或盐酸胍处理,一 旦恢复中性环境.或去除变性剂, 荧光就可恢复并具有和原来一致的 发射光谱。
绿色荧光蛋白(GFP)
绿色荧光蛋白的优势 :
1.不需加任何底物.荧光性质稳定。
2.相对分子质量小,对细胞无毒性。
钱永健
经钱永健改造 后的各色荧光 蛋白。
“我总是被色彩所吸引,”钱永健说,正是色彩,让他的工作更有趣,“ 当工作进展得不顺利时,因为色彩,我可以把工作继续进行下去。如果我天生 是色盲,估计我不会取得今天的成就了。”
目录
绿色荧光蛋白简介 GFP应用前景 最新进展
绿色荧光蛋白(GFP)
GFP由238个氨基酸组成,分子量 为26.9 kDa,最初是从维多利亚多管发 光水母中分离出来的,在蓝光照射下会 发出绿色荧光。来源于水母的野生型 GFP在395 nm和475 nm分别有主要和 次要的激发峰,它的发射峰在509 nm ,处于可见光谱的绿色区域(图1)。 来源于海肾的GFP只在498 nm有单个 激发峰。
绿色荧光蛋白(GFP)
2008年诺贝尔化学奖获得者
下村修
1928年出生于日本京都市, 毕业于名古屋大学,是日本化 学家、海洋生物学。
1960年开始,在美国普林 斯顿大学学者约翰逊的邀请下 ,前往美国,先后在普林斯顿 大学、波士顿大学和麻省伍兹 霍尔海洋生物实验所工作。
2008年诺贝尔化学奖获得者
筛选原理: 受体常常被用作药物筛选的目标,若某一药物具有与信号分子类似的功能 ,那么该药物即具有潜在的医药价值。利用GFP荧光探针,将很容易从数 量众多的化合物中判断出哪些化合物具有与信号分子相似的能引起配体一 受体复合物迁移并介导生理反应的功能,且这一筛选过程简单方便,所需 成本也很低。由于GFP在细胞内的穿透性强及独特的发光机制,因而在药 物筛选中具有相当大的应用潜力。
绿色荧光蛋白的应用前景
3.对于肿瘤的机制阐明及治疗的应用
绿色荧光蛋白有助于人们肿瘤的深入了解: 以肿瘤细胞浸润性举例,浸润性指肿瘤细胞粘连、酶降解、移动和基质内 增殖等一系列表现,其根本原因在于肿瘤细胞内某些基因表达异常。利用 GFP 的示踪特性,将目的基因标记为绿色,即可定量分析目的基因的表达 水平,研究肿瘤细胞内某些基因异常表达与肿瘤细胞浸润的关系,即可揭 示肿瘤细胞浸润的某些机制。
3.作为荧光靶使用方便,可直接用于活体测定
绿色荧光蛋白的应用前景
骨架和细胞分 动力学裂和泡囊运输 发育生物学 生物技术中的应用研究 肿瘤发病机制的应用 在信号转导中的应用
光伏发电 神经生物学
绿色荧光蛋白的应用前景
将绿黄红荧光蛋白质植入鱼的DNA分子结构中
绿色荧光蛋白的应用前景
1.分子标记
将GFP作为蛋白质标签(protein tagging),利 用DNA重组技术,将目的基因与GFP基因构成融合 基因,转染合适的细胞进行表达,然后借助荧光显 微镜便可对标记的蛋白质进行细胞内活体观察。
2008年诺贝尔化学奖获得者
马丁·查尔菲 (Martin Chalfie)
查尔菲的实验室用秀丽隐杆线虫 来研究神经细胞的发育和功能。这类 线虫的发育、解剖、遗传和分子信息 都很丰富,为研究提供了强有力和多 元的支持。
绿色荧光蛋白基因在秀丽线虫的 表达。
2008年诺贝尔化学奖获得者
马丁·查尔菲 (Martin Chalfie)
绿色荧光蛋白(GFP)
GFP是典型的β桶形结构,包含β 折叠和α螺旋,将荧光基团包含在其 中(图2)。严密的桶形结构保护着 荧光基团,防止它被周围环境淬灭。 GFP表达后折叠环化,在氧存在下, 内部面向桶形的侧链诱导Ser65– Tyr66–Gly67三肽环化,导致荧光基 团形成。
绿色荧光蛋白(GFP)
相关文档
最新文档