数值分析报告
数值分析实验报告

数值分析实验报告【引言】数值分析是一门研究利用计算机和数学方法解决实际问题的学科,它在工程、科学和经济领域中有着广泛的应用。
在这个实验报告中,我将分享我在数值分析实验中的一些发现和结果。
【实验目的】本次实验的目的是通过数值方法对给定的问题进行求解,并分析数值方法的精确性和稳定性。
我们选择了经典的插值和数值积分问题来进行实验。
【实验过程】在插值问题中,我使用了拉格朗日插值和样条插值两种方法。
通过使用已知的数据点,这些方法能够通过构造多项式函数来逼近原始函数,从而能够在未知点上进行预测。
通过比较两种插值方法的结果,我发现拉格朗日插值在低维数据上表现更好,而样条插值在高维数据上更能保持插值曲线的平滑性。
在数值积分问题中,我使用了复合梯形公式和复合辛普森公式来进行数值积分。
这两种方法可以将复杂的区间上的积分问题转化为对若干个小区间进行数值积分的问题。
实验结果表明,复合辛普森公式在使用相同的步长时,其数值积分结果更为精确。
【实验结果】我以一个实际问题作为例子来展示实验结果。
问题是计算半径为1的圆的面积。
通过离散化的方法,我将圆划分为多个小的扇形区域,并使用数值积分方法计算每个扇形的面积。
最后将每个扇形的面积相加,即可得到圆的近似面积。
通过调整离散化的精度,我发现随着扇形数量的增加,计算得到的圆的面积越接近真实的圆的面积。
在插值问题中,我选择了一段经典的函数进行插值研究。
通过选择不同的插值节点和插值方法,我发现当插值节点越密集时,插值结果越接近原函数。
同时,样条插值方法在高阶导数连续的情况下能够更好地逼近原始函数。
【实验总结】通过这次实验,我对数值分析中的插值和数值积分方法有了更深入的理解。
我了解到不同的数值方法在不同的问题中有着不同的适用性和精确度。
在实际应用中,我们需要根据具体问题选择合适的数值方法,并进行必要的数值计算和分析,以获得准确可靠的结果。
总的来说,数值分析作为一种重要的工具和方法,在科学研究和工程实践中具有广泛的应用,并且不断发展和创新。
数值分析2024上机实验报告

数值分析2024上机实验报告数值分析是计算数学的一个重要分支,它研究如何用数值方法来解决数学问题。
在数值分析的学习过程中,学生需要通过上机实验来巩固理论知识,并学会使用相应的数值方法来解决实际问题。
本篇报告将详细介绍2024年度数值分析上机实验的内容和结果。
一、实验内容2024年度数值分析上机实验分为四个部分,分别是:方程求根、插值与拟合、数值积分和常微分方程的数值解。
1.方程求根这部分实验要求使用数值方法求解给定的非线性方程的根。
常见的数值方法有二分法、牛顿法、割线法等。
在实验过程中,我们需要熟悉这些数值方法的原理和实现步骤,并对不同方法的收敛性进行分析和比较。
2.插值与拟合这部分实验要求使用插值和拟合方法对给定的一组数据进行拟合。
插值方法包括拉格朗日插值、牛顿插值等;拟合方法包括最小二乘拟合、多项式拟合等。
在实验中,我们需要熟悉插值和拟合方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。
3.数值积分这部分实验要求使用数值方法计算给定函数的积分。
常见的数值积分方法有梯形法则、辛普森法则、龙贝格积分等。
在实验过程中,我们需要熟悉这些数值积分方法的原理和实现步骤,并对不同方法的精度和效率进行比较。
4.常微分方程的数值解这部分实验要求使用数值方法求解给定的常微分方程初值问题。
常见的数值方法有欧拉法、改进的欧拉法、四阶龙格-库塔法等。
在实验中,我们需要熟悉这些数值解方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。
二、实验结果在完成2024年度数值分析上机实验后,我们得到了以下实验结果:1.方程求根我们实现了二分法、牛顿法和割线法,并对比了它们的收敛速度和稳定性。
结果表明,割线法的收敛速度最快,但在一些情况下可能会出现振荡;二分法和牛顿法的收敛速度相对较慢,但稳定性较好。
2.插值与拟合我们实现了拉格朗日插值和最小二乘拟合,并对比了它们的拟合效果和精度。
结果表明,拉格朗日插值在小区间上拟合效果较好,但在大区间上可能出现振荡;最小二乘拟合在整体上拟合效果较好,但可能出现过拟合。
数值分析实验报告

数值分析实验报告
一、实验背景
本实验主要介绍了数值分析的各种方法。
在科学计算中,为了求解一
组常微分方程或一些极限问题,数值分析是一种有用的方法。
数值分析是
一种运用计算机技术对复杂模型的问题进行数学分析的重要手段,它利用
数学模型和计算机程序来解决复杂的数学和科学问题。
二、实验内容
本实验通过MATLAB软件,展示了以下几种数值分析方法:
(1)拉格朗日插值法:拉格朗日插值法是由法国数学家拉格朗日发
明的一种插值方法,它可以用来插值一组数据,我们使用拉格朗日插值法
对给定的点进行插值,得到相应的拉格朗日多项式,从而计算出任意一个
点的函数值。
(2)最小二乘法:最小二乘法是一种常用的数据拟合方法,它可以
用来拟合满足一定函数的点的数据,它的主要思想是使得数据点到拟合曲
线之间的距离的平方和最小。
(3)牛顿插值法:牛顿插值法是一种基于差商的插值方法,它可以
用来插值一组数据,可以求得一组数据的插值函数。
(4)三次样条插值:三次样条插值是一种基于三次样条的插值方法,它可以用来对一组数据进行插值,可以求得一组数据的插值函数。
三、实验步骤
1.首先启动MATLAB软件。
数值分析实验报告

数值分析实验报告篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告数值分析实验报告课题一:解线性方程组的直接方法1.实验目的:1、通过该课题的实验,体会模块化结构程序设计方法的优点;2、运用所学的计算方法,解决各类线性方程组的直接算法;3、提高分析和解决问题的能力,做到学以致用;4、通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。
2.实验过程:实验代码:#include "stdio.h"#include "math.h"#includeiostreamusing namespace std;//Gauss法void lzy(double **a,double *b,int n) {int i,j,k;double l,x[10],temp;for(k=0;kn-1;k++){for(j=k,i=k;jn;j++){if(j==k)temp=fabs(a[j][k]);else if(tempfabs(a[j][k])){temp=fabs(a[j][k]);i=j;}}if(temp==0){cout"无解\n; return;}else{for(j=k;jn;j++){temp=a[k][j];a[k][j]=a[i][j];a[i][j]=temp;}temp=b[k];b[k]=b[i];b[i]=temp;}for(i=k+1;in;i++) {l=a[i][k]/a[k][k];for(j=k;jn;j++)a[i][j]=a[i][j]-l*a[k][j]; b[i]=b[i]-l*b[k];}if(a[n-1][n-1]==0){cout"无解\n;return;}x[n-1]=b[n-1]/a[n-1][n-1];for(i=n-2;i=0;i--){temp=0;for(j=i+1;jn;j++)temp=temp+a[i][j]*x[j];x[i]=(b[i]-temp)/a[i][i];}for(i=0;in;i++){printf("x%d=%lf\t",i+1,x[i]); printf("\n");}}//平方根法void pfg(double **a,double *b,int n)int i,k,m;double x[8],y[8],temp;for(k=0;kn;k++){temp=0;for(m=0;mk;m++)temp=temp+pow(a[k][m],2);if(a[k][k]temp)return;a[k][k]=pow((a[k][k]-temp),1.0/2.0);for(i=k+1;in;i++){temp=0;for(m=0;mk;m++)temp=temp+a[i][m]*a[k][m]; a[i][k]=(a[i][k]-temp)/a[k][k]; }temp=0;for(m=0;mk;m++)temp=temp+a[k][m]*y[m];y[k]=(b[k]-temp)/a[k][k];}x[n-1]=y[n-1]/a[n-1][n-1];for(k=n-2;k=0;k--){temp=0;for(m=k+1;mn;m++)temp=temp+a[m][k]*x[m];x[k]=(y[k]-temp)/a[k][k];}for(i=0;in;i++){printf("x%d=%lf\t",i+1,x[i]);printf("\n");}}//追赶法void zgf(double **a,double *b,int n){int i;double a0[10],c[10],d[10],a1[10],b1[10],x[10],y[10]; for(i=0;in;i++){a0[i]=a[i][i];if(in-1)c[i]=a[i][i+1];if(i0)d[i-1]=a[i][i-1];}a1[0]=a0[0];for(i=0;in-1;i++){b1[i]=c[i]/a1[i];a1[i+1]=a0[i+1]-d[i+1]*b1[i];}y[0]=b[0]/a1[0];for(i=1;in;i++)y[i]=(b[i]-d[i]*y[i-1])/a1[i];x[n-1]=y[n-1];for(i=n-2;i=0;i--)x[i]=y[i]-b1[i]*x[i+1];for(i=0;in;i++){printf("x%d=%lf\t",i+1,x[i]); printf("\n");}}int main(){int n,i,j;double **A,**B,**C,*B1,*B2,*B3;A=(double **)malloc(n*sizeof(double)); B=(double **)malloc(n*sizeof(double));C=(double **)malloc(n*sizeof(double));B1=(double *)malloc(n*sizeof(double));B2=(double *)malloc(n*sizeof(double));B3=(double *)malloc(n*sizeof(double));for(i=0;in;i++){A[i]=(double *)malloc((n)*sizeof(double));B[i]=(double*)malloc((n)*sizeof(double));C[i]=(double*)malloc((n)*sizeof(double)); }cout"第一题(Gauss列主元消去法):"endlendl; cout"请输入阶数n:"endl;cinn;cout"\n请输入系数矩阵:\n\n";for(i=0;in;i++)for(j=0;jn;j++){篇三:数值分析实验报告(包含源程序) 课程实验报告课程实验报告。
数值分析matlab实验报告

数值分析matlab实验报告《数值分析MATLAB实验报告》摘要:本实验报告基于MATLAB软件进行了数值分析实验,通过对不同数学问题的数值计算和分析,验证了数值分析方法的有效性和准确性。
实验结果表明,MATLAB在数值分析领域具有较高的应用价值和实用性。
一、引言数值分析是一门研究利用计算机进行数值计算和分析的学科,其应用范围涵盖了数学、物理、工程等多个领域。
MATLAB是一种常用的数值计算软件,具有强大的数值分析功能,能够进行高效、准确的数值计算和分析,因此在科学研究和工程实践中得到了广泛的应用。
二、实验目的本实验旨在通过MATLAB软件对数值分析方法进行实验验证,探究其在不同数学问题上的应用效果和准确性,为数值分析方法的实际应用提供参考和指导。
三、实验内容1. 利用MATLAB进行方程求解实验在该实验中,利用MATLAB对给定的方程进行求解,比较数值解和解析解的差异,验证数值解的准确性和可靠性。
2. 利用MATLAB进行数值积分实验通过MATLAB对给定函数进行数值积分,比较数值积分结果和解析积分结果,验证数值积分的精度和稳定性。
3. 利用MATLAB进行常微分方程数值解实验通过MATLAB对给定的常微分方程进行数值解,比较数值解和解析解的差异,验证数值解的准确性和可靠性。
四、实验结果与分析通过对以上实验内容的实际操作和分析,得出以下结论:1. 在方程求解实验中,MATLAB给出的数值解与解析解基本吻合,验证了MATLAB在方程求解方面的高准确性和可靠性。
2. 在数值积分实验中,MATLAB给出的数值积分结果与解析积分结果基本吻合,验证了MATLAB在数值积分方面的高精度和稳定性。
3. 在常微分方程数值解实验中,MATLAB给出的数值解与解析解基本吻合,验证了MATLAB在常微分方程数值解方面的高准确性和可靠性。
五、结论与展望本实验通过MATLAB软件对数值分析方法进行了实验验证,得出了数值分析方法在不同数学问题上的高准确性和可靠性。
数值分析实验 实验报告

数值分析实验实验报告数值分析实验实验报告引言在现代科学与工程领域,数值分析是一项重要的技术手段。
通过数值方法,我们可以利用计算机模拟和解决各种实际问题,如物理、化学、生物、经济等领域中的方程求解、优化问题、数据拟合等。
本实验旨在通过实际案例,探讨数值分析的应用和效果。
实验一:方程求解首先,我们考虑一个简单的方程求解问题。
假设我们需要求解方程f(x) = 0的根,其中f(x)是一个在给定区间[a, b]上连续且单调的函数。
为了实现这个目标,我们可以采用二分法、牛顿法、弦截法等数值方法。
在本实验中,我们选择使用二分法来求解方程f(x) = 0。
这种方法的基本思想是通过不断缩小区间[a, b]的范围,直到找到一个近似的根。
我们首先选取一个中间点c,计算f(c)的值,然后根据f(c)与0的关系,将区间[a, b]分成两部分。
重复这个过程,直到找到满足精度要求的根。
实验二:数据拟合接下来,我们考虑一个数据拟合的问题。
假设我们有一组离散的数据点,我们希望找到一个函数,使得该函数与这些数据点的拟合误差最小。
为了实现这个目标,我们可以采用最小二乘法等数值方法。
在本实验中,我们选择使用最小二乘法来进行数据拟合。
这种方法的基本思想是通过最小化数据点与拟合函数之间的误差平方和,来确定拟合函数的参数。
我们首先选择一个拟合函数的形式,如线性函数、多项式函数等。
然后,通过最小化误差平方和的方法,计算出拟合函数的参数。
实验三:优化问题最后,我们考虑一个优化问题。
假设我们需要在给定的约束条件下,找到一个使得目标函数取得最大或最小值的变量。
为了实现这个目标,我们可以采用梯度下降法、遗传算法等数值方法。
在本实验中,我们选择使用梯度下降法来解决优化问题。
这种方法的基本思想是通过迭代的方式,不断调整变量的取值,直到找到一个满足约束条件的最优解。
我们首先计算目标函数关于变量的梯度,然后根据梯度的方向和大小,更新变量的取值。
通过不断迭代,我们可以逐步接近最优解。
数值分析matlab实验报告
数值分析matlab实验报告数值分析 Matlab 实验报告一、实验目的数值分析是研究各种数学问题数值解法的学科,Matlab 则是一款功能强大的科学计算软件。
本次实验旨在通过使用 Matlab 解决一系列数值分析问题,加深对数值分析方法的理解和应用能力,掌握数值计算中的误差分析、数值逼近、数值积分与数值微分等基本概念和方法,并培养运用计算机解决实际数学问题的能力。
二、实验内容(一)误差分析在数值计算中,误差是不可避免的。
通过对给定函数进行计算,分析截断误差和舍入误差的影响。
例如,计算函数$f(x) =\sin(x)$在$x = 05$ 附近的值,比较不同精度下的结果差异。
(二)数值逼近1、多项式插值使用拉格朗日插值法和牛顿插值法对给定的数据点进行插值,得到拟合多项式,并分析其误差。
2、曲线拟合采用最小二乘法对给定的数据进行线性和非线性曲线拟合,如多项式曲线拟合和指数曲线拟合。
(三)数值积分1、牛顿柯特斯公式实现梯形公式、辛普森公式和柯特斯公式,计算给定函数在特定区间上的积分值,并分析误差。
2、高斯求积公式使用高斯勒让德求积公式计算积分,比较其精度与牛顿柯特斯公式的差异。
(四)数值微分利用差商公式计算函数的数值导数,分析步长对结果的影响,探讨如何选择合适的步长以提高精度。
三、实验步骤(一)误差分析1、定义函数`compute_sin_error` 来计算不同精度下的正弦函数值和误差。
```matlabfunction value, error = compute_sin_error(x, precision)true_value = sin(x);computed_value = vpa(sin(x), precision);error = abs(true_value computed_value);end```2、在主程序中调用该函数,分别设置不同的精度进行计算和分析。
(二)数值逼近1、拉格朗日插值法```matlabfunction L = lagrange_interpolation(x, y, xi)n = length(x);L = 0;for i = 1:nli = 1;for j = 1:nif j ~= ili = li (xi x(j))/(x(i) x(j));endendL = L + y(i) li;endend```2、牛顿插值法```matlabfunction N = newton_interpolation(x, y, xi)n = length(x);%计算差商表D = zeros(n, n);D(:, 1) = y';for j = 2:nfor i = j:nD(i, j) =(D(i, j 1) D(i 1, j 1))/(x(i) x(i j + 1));endend%计算插值结果N = D(1, 1);term = 1;for i = 2:nterm = term (xi x(i 1));N = N + D(i, i) term;endend```3、曲线拟合```matlab%线性最小二乘拟合p = polyfit(x, y, 1);y_fit_linear = polyval(p, x);%多项式曲线拟合p = polyfit(x, y, n);% n 为多项式的次数y_fit_poly = polyval(p, x);%指数曲线拟合p = fit(x, y, 'exp1');y_fit_exp = p(x);```(三)数值积分1、梯形公式```matlabfunction T = trapezoidal_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);T = h ((y(1) + y(end))/ 2 + sum(y(2:end 1)));end```2、辛普森公式```matlabfunction S = simpson_rule(f, a, b, n)if mod(n, 2) ~= 0error('n 必须为偶数');endh =(b a) / n;x = a:h:b;y = f(x);S = h / 3 (y(1) + 4 sum(y(2:2:end 1))+ 2 sum(y(3:2:end 2))+ y(end));end```3、柯特斯公式```matlabfunction C = cotes_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);w = 7, 32, 12, 32, 7 / 90;C = h sum(w y);end```4、高斯勒让德求积公式```matlabfunction G = gauss_legendre_integration(f, a, b)x, w = gauss_legendre(5);%选择适当的节点数t =(b a) / 2 x +(a + b) / 2;G =(b a) / 2 sum(w f(t));end```(四)数值微分```matlabfunction dydx = numerical_derivative(f, x, h)dydx =(f(x + h) f(x h))/(2 h);end```四、实验结果与分析(一)误差分析通过不同精度的计算,发现随着精度的提高,误差逐渐减小,但计算时间也相应增加。
数值分析报告
数值分析报告介绍数值分析是一种通过使用数学方法和计算机算法来解决实际问题的方法。
它在各种领域中都有应用,例如物理学、金融、工程学等。
本报告将介绍数值分析的一些基本原理和常见算法,并讨论其在实际问题中的应用。
数值分析的基本原理数值分析的基本原理是利用数学方法和计算机算法来近似解决实际问题。
它通过将实际问题转化为数学模型,并使用数值算法来求解模型,从而得到问题的近似解。
其中,数值算法是指一系列数值计算的步骤,通过从初始估计开始,反复迭代求解,最终得到问题的近似解。
数值分析的基本原理包括以下几个方面:•数学模型的建立:通过将实际问题转化为数学模型,将问题的各个要素表示为数学公式或方程式。
•迭代求解方法:使用迭代方法来逐步求解数学模型,通过逐步逼近问题的近似解。
•误差控制和收敛性:通过控制迭代过程的误差,并验证结果是否收敛到问题的解。
•稳定性分析:分析算法的稳定性,即算法对输入数据的变化是否敏感。
常见的数值算法1. 牛顿迭代法牛顿迭代法是一种用于求解方程的方法,它通过迭代逼近方程的解。
具体步骤如下:1.选择一个初始估计值。
2.使用初始估计值计算函数的导数。
3.使用导数和函数值计算新的估计值。
4.使用新的估计值重复步骤2和3,直到达到指定的精度要求。
牛顿迭代法通常收敛速度很快,但需要选择一个合适的初始估计值。
2. 高斯消元法高斯消元法是一种用于求解线性方程组的方法,它通过将方程组转化为矩阵形式,并使用消元和回代的方式求解。
具体步骤如下:1.将线性方程组写成矩阵形式。
2.使用行变换将矩阵转化为上三角矩阵。
3.使用回代法求解上三角矩阵得到方程组的解。
高斯消元法可以求解任意大小的线性方程组,但计算复杂度较高。
3. 插值算法插值算法是一种用于构造函数的方法,它通过已知的数据点来估计未知数据点的值。
常用的插值算法有线性插值、拉格朗日插值和样条插值等。
其中,线性插值是一种简单的插值方法,它基于已知的两个数据点,通过线性函数来估计未知数据点的值。
数值分析上机实验报告
一、实验目的通过本次上机实验,掌握数值分析中常用的算法,如二分法、牛顿法、不动点迭代法、弦截法等,并能够运用这些算法解决实际问题。
同时,提高编程能力,加深对数值分析理论知识的理解。
二、实验环境1. 操作系统:Windows 102. 编程语言:MATLAB3. 实验工具:MATLAB数值分析工具箱三、实验内容1. 二分法求方程根二分法是一种常用的求方程根的方法,适用于连续函数。
其基本思想是:从区间[a, b]中选取中点c,判断f(c)的符号,若f(c)与f(a)同号,则新的区间为[a, c],否则为[c, b]。
重复此过程,直至满足精度要求。
2. 牛顿法求方程根牛顿法是一种迭代法,适用于可导函数。
其基本思想是:利用函数在某点的导数值,求出函数在该点的切线方程,切线与x轴的交点即为方程的近似根。
3. 不动点迭代法求方程根不动点迭代法是一种迭代法,适用于具有不动点的函数。
其基本思想是:从初始值x0开始,不断迭代函数g(x)的值,直至满足精度要求。
4. 弦截法求方程根弦截法是一种线性近似方法,适用于可导函数。
其基本思想是:利用两点间的直线近似代替曲线,求出直线与x轴的交点作为方程的近似根。
四、实验步骤1. 二分法求方程根(1)编写二分法函数:function [root, error] = bisection(a, b, tol)(2)输入初始区间[a, b]和精度要求tol(3)调用函数计算根:[root, error] = bisection(a, b, tol)2. 牛顿法求方程根(1)编写牛顿法函数:function [root, error] = newton(f, df, x0, tol)(2)输入函数f、导数df、初始值x0和精度要求tol(3)调用函数计算根:[root, error] = newton(f, df, x0, tol)3. 不动点迭代法求方程根(1)编写不动点迭代法函数:function [root, error] = fixed_point(g, x0, tol)(2)输入函数g、初始值x0和精度要求tol(3)调用函数计算根:[root, error] = fixed_point(g, x0, tol)4. 弦截法求方程根(1)编写弦截法函数:function [root, error] = secant(f, x0, x1, tol)(2)输入函数f、初始值x0和x1,以及精度要求tol(3)调用函数计算根:[root, error] = secant(f, x0, x1, tol)五、实验结果与分析1. 二分法求方程根以方程f(x) = x^2 - 2 = 0为例,输入初始区间[a, b]为[1, 3],精度要求tol 为1e-6。
matlab数值分析实验报告
matlab数值分析实验报告Matlab数值分析实验报告引言数值分析是一门研究利用计算机进行数值计算和模拟的学科,它在科学计算、工程技术和金融等领域有着广泛的应用。
本次实验报告将介绍在Matlab环境下进行的数值分析实验,包括数值微分、数值积分和线性方程组求解等内容。
一、数值微分数值微分是通过数值方法计算函数的导数,常用的数值微分方法有前向差分、后向差分和中心差分。
在Matlab中,可以使用diff函数来计算函数的导数。
例如,对于函数f(x)=x^2,在Matlab中可以使用如下代码进行数值微分的计算:```matlabsyms x;f = x^2;df = diff(f, x);```二、数值积分数值积分是通过数值方法计算函数的定积分,常用的数值积分方法有梯形法则、辛普森法则和龙贝格积分法。
在Matlab中,可以使用trapz、quad和integral等函数来进行数值积分的计算。
例如,对于函数f(x)=sin(x),可以使用如下代码进行数值积分的计算:```matlabx = linspace(0, pi, 100);y = sin(x);integral_value = trapz(x, y);```三、线性方程组求解线性方程组求解是数值分析中的重要问题,常用的求解方法有高斯消元法和LU 分解法。
在Matlab中,可以使用\操作符来求解线性方程组。
例如,对于线性方程组Ax=b,可以使用如下代码进行求解:```matlabA = [1, 2; 3, 4];b = [5; 6];x = A\b;```四、实验结果与分析在本次实验中,我们分别使用Matlab进行了数值微分、数值积分和线性方程组求解的计算。
通过实验结果可以发现,Matlab提供了丰富的数值计算函数和工具,能够方便地进行数值分析的计算和求解。
数值微分的计算结果与解析解相比较,可以发现数值微分的误差随着步长的减小而减小,但是当步长过小时,数值微分的误差会受到舍入误差的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数值分析》 课程名称 数值分析实验报告 专业班级 应用数学111班 姓名 陈伟 学号 8 教学教师 岳雪芝
实验二 函数逼近与曲线拟合 一、问题提出 从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。 在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量与时间t的拟合曲线。
t(分) 0 5 10 15 20 25 30 35 40 45 50 55 4(10)y 0 1.27 2.16 2.86 3.44 3.87 4.15 4.37 4.51 4.58 4.02
4.64
二、要求 1、用最小二乘法进行曲线拟合; 2、近似解析表达式为23123()tatatat; 3、打印出拟合函数()t,并打印出()jt与()jyt的误差,1,2,,12j; 4、另外选取一个近似表达式,尝试拟合效果的比较; 5、* 绘制出曲线拟合图。
三、目的和意义 1、掌握曲线拟合的最小二乘法; 2、最小二乘法亦可用于解超定线代数方程组; 3、探索拟合函数的选择与拟合精度间的关系。
四、实验步骤:
输入代码: t=[0 5 10 15 20 25 30 35 40 45 50 55]; y=[0 1.27 2.16 2.86 3.44 3.87 4.15 4.37 4.51 4.58 4.02 4.64]; for i=1:12 A(i,1)=t(i); A(i,2)=t(i).^2; A(i,3)=t(i).^3; end p_star=A\y'; y_star=p_star(1)*t+p_star(2)*t.^2+p_star(3)*t.^3; s_star=0; for i=1:12 s_star=s_star+(y_star(i)-y(i))^2; end plot(t,y,'*',t,y_star,'g'); 比较拟和结果,分别取二次,三次和四次多项式,再做最小二乘法,代码如下: t=[0 5 10 15 20 25 30 35 40 45 50 55]; y=[0 1.27 2.16 2.86 3.44 3.87 4.15 4.37 4.51 4.58 4.02 4.64]; %3次拟合 p3=polyfit(t,y,3) y_new=polyval(p3,t); s_3=0; for i=1:12 s_3=s_3+(y_new(i)-y(i))^2; end %2次拟合 p2=polyfit(t,y,2); y_new2=polyval(p2,t); s_2=0; for i=1:12 s_2=s_2+(y_new2(i)-y(i))^2; end %4次拟合 p4=polyfit(t,y,4); y_new4=polyval(p4,t); s_4=0; for i=1:12 s_4=s_4+(y_new4(i)-y(i))^2; end 比较4种拟合函数,结论:常数项为0的三次拟合函数在保证拟合精度的同时,保证0点的函数值仍为0,是四种拟合方法中最好的一种。 原图与曲线拟合图如下所示:
0102030405060-10123456x 10-4
分析: 从上面的拟合中也可以知道多项式拟合误差平方和随着拟合多项式次数的增加而逐渐减少,拟合曲线更靠近实际数据,拟合更准确。 实验三 数值积分与数值微分
一、基本题 选用复合梯形公式,复合Simpson公式,Romberg算法,计算
(1)10sinI=((0)1,0.9460831)xdxfIx 二、要求 1、 编制数值积分算法的程序; 2、 分别用两种算法计算同一个积分,并比较其结果; 3、 分别取不同步长()/hban,试比较计算结果(如n = 10, 20等);
4、 给定精度要求ε,试用变步长算法,确定最佳步长。
三、目的和意义 1、 深刻认识数值积分法的意义; 2、 明确数值积分精度与步长的关系; 3、 根据定积分的计算方法,结合专业考虑给出一个二重积分的计算问题。
四、实验步骤: 代码1,复合梯形公式 function result=trapezoid_integration(f,count_node,a,b) %composite trapezoid integration,f,函数表达式,count_node插入节点数量,a,开始点,b结束点 h=(b-a)/count_node;%h步长 np1=count_node+1;%包括端点,总共的点的数量 x=a:h:b;%x自变量 c=ones(np1,1); c(1,1)=0.5;c(np1,1)=0.5;%两个端点都取一半 syms symbol_x; fx=subs(f,symbol_x,x); result=vpa(h*fx*c,9);
代码2,复合simpson公式 function result=simpson_integration(f,count_node,a,b) %composite simpson integration,f,函数表达式,count_node插入节点数量,a,开始点,b结束点 h=(b-a)/count_node;%h步长 np1=2*count_node+1;%包括端点,总共的2n+1点 x=a:h/2:b;%x自变量 c=ones(np1,1); for i=1:np1 if(mod(i,2)==0)%偶数 c(i,1)=2/3; else%奇数 c(i,1)=1/3; end end c(1,1)=1/6;c(np1,1)=1/6;%两个端点都取1/6 syms symbol_x; fx=subs(f,symbol_x,x); result=vpa(h*fx*c,9);
代码3,检验复合梯形公式和复合simpson公式 function [result1]=test_integration() %测试复合梯形公式,复合simpson公式,用到trapezoid_integration,simpson_integration syms symbol_x; f1=sin(symbol_x)/symbol_x; syms A1;%用于输出f1积分结果 for i=1:9 A1(i,1)=trapezoid_integration(f1,i,1e-9,1); A1(i,2)=simpson_integration(f1,i,1e-9,1); end k=10; for i=10:10:100 A1(k,1)=trapezoid_integration(f1,i,1e-9,1); A1(k,2)=simpson_integration(f1,i,1e-9,1); k=k+1; end IS(2)=int(f1,symbol_x,0,1); vpa(IS(2)) result1=A1;
结果分析
从上面的计算结果可以看出复合梯形公式和复合simpson公式的稳定性,并且步长越小精度越高,当n趋于正无穷,即步长趋于0时,上述两公式的计算值都收敛到积分值。 从收敛的速度来看,复合simpson公式优于复合梯形公式。
实验四 线方程组的直接解法 一、问题提出: 1、 三对角形线性方程组
123456789104100000000141000000001410000000014100000000141000000001410000000014100000000141000000001410000000014xxxxxxxxxx7513261214455 *(2,1,3,0,1,2,3,0,1,1)Tx
二、要求 1、 对上述三个方程组分别利用Gauss顺序消去法与Gauss列主元消去法;平方根法与改进平方根法;追赶法求解(选择其一); 2、 应用结构程序设计编出通用程序; 3、 比较计算结果,分析数值解误差的原因; 4、 尽可能利用相应模块输出系数矩阵的三角分解式。
三、目的和意义 1、通过该课题的实验,体会模块化结构程序设计方法的优点; 2、运用所学的计算方法,解决各类线性方程组的直接算法; 3、提高分析和解决问题的能力,做到学以致用; 通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。 四、实验步骤: 高斯顺序消去法: function result=Gauss(A,d) %高斯顺序消元法 [n,m]=size(A) k=ones(1,n);%用于记录-A(j,i)/A(i,i) for i=1:n if(A(i,i)==0) '主元为0,不能使用高斯顺序消元法' return; end for j=i+1:n k(j)=-A(j,i)/A(i,i) A(j,:)=A(i,:).*k(j)+A(j,:);%加到第j行 d(j)=d(i).*k(j)+d(j); end end x=zeros(n,1) x(n)=d(n)/A(n,n); for i=n-1:-1:1 x(i)=(d(i)-A(i,:)*x)/A(i,i); end result=x
Gauss列主元消去法 function result=Gauss2(A,d) %高斯列主元消元法 [n,m]=size(A); [d_length,d_width]=size(d); if(d_length~=n || d_width~=1) '方程右端向量输入有误' return; end if(n~=m) '系数矩阵不是方阵' return; end AandD=[A d];%增广阵 k=ones(1,n);%用于记录-A(j,i)/A(i,i) record=1:n;%用于记录行的交换情况 for i=1:n %选取第i列的最大元进行换位 [l,index]=max(abs(AandD(i:n,i))); if(index~=i)
temp_record=record(index); record(index)=record(i+index-1); record(i+index-1)=temp_record; temp=AandD(i,:); AandD(i,:)=AandD(i+index-1,:);