2013上八年级数学竞赛题(正题)

合集下载

2013年全国初中数学联合竞赛试题及详解

2013年全国初中数学联合竞赛试题及详解

2013年全国初中数学联合竞赛试题及详解第一试一、选择题(本题满分42分,每小题7分)1.计算=()(A 1(B )1 (C (D )2 2.满足等式()2221m m m ---=的所有实数m 的和为() (A )3 (B )4 (C )5 (D )63.已知AB 是圆O 的直径,C 为圆O 上一点,15CAB ∠=,ABC ∠的平分线交圆O 于点D ,若CD ,则AB =(A )2(B(C )(D )3 4.不定方程23725170x xy x y +---=的全部正整数解(,)x y 的组数为()(A )1 (B )2 (C )3 (D )45.矩形ABCD 的边长3,2AD AB ==,E 为AB 的中点,F 在线段BC 上,12BF FC =∶∶,AF 分别与DE ,DB 交于点,M N ,则MN =(A (B (C (D 6.设n 为正整数,若不超过n 的正整数中质数的个数等于合数的个数,则称n 为“好数”那么,所有“好数”之和为()(A )33 (B )34 (C )2013 (D )2014二、填空题(本题满分28分,每小题7分)1.已知实数,,x y z 满足4,129,x y z xy y +=+=+-则23x y z ++=_________.2.将一个正方体的表面都染成红色,再切割成3(2)n n >个相同的小正方体,若只有一面是红色的小正方体数目与任何面都不是红色的小正方体的数目相同,则n =___________..3.在ABC ∆中,60,75,10A C AB ∠=∠==,,,D E F 分别在,,AB BC CA 上,则DEF ∆的周长最小值为___________.4.若实数,,x y z 满足()2228x y z xy yz zx ++-++=,用A 表示,,x y y z --z x -的最大值,则A 的最大值为.第二试(A )一、(本题满分20分)已知实数,,,a b c d 满足()2222223236,a c b d ad bc +=+=-= 求()()2222a b c d ++的值.二、(本题满分25分)已知点C 在以AB 为直径的圆O 上,过点,B C 作圆O 的切线,交于点P ,连接AC ,若92OP AC =,求PB AC的值.三、(本题满分25分)已知t 是一元二次方程210x x +-=的一个根,若正整数,,a b m 使得等式()()31at m bt m m ++=成立,求ab 的值.第二试(B )一、(本题满分20分)已知1t =,若正整数,,a b m ,使()()17at m bt m m ++=成立,求ab 的值.二、(本题满分25分)在ABC ∆中,AB AC >,O I 、分别是ABC ∆的外心和内心,且满足2AB AC OI -=,求证:(1)OI ∥BC ;(2)2AOC AOB AOI S S S ∆∆∆-=.三、(本题满分25分)若正数,,a b c 满足2222222222223222b c a c a b a b c bc ca ab ⎛⎫⎛⎫⎛⎫+-+-+-++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 求代数式222222222222b c a c a b a b c bc ca ab+-+-+-++的值.。

【VIP专享】初二数学竞赛(2013.12)答案详解

【VIP专享】初二数学竞赛(2013.12)答案详解

解析:设第三边长为 x,则 2<x<8,三角形的周长设为 p,则 10<p<16,连结三边中点所得三
角形的周长范围应在 5 到 8 之间,只有 A 符合。
3. 下列图形:其中所有轴对称图形的对称轴条数之和为( )
A.13 B.11 C.10 D.8 考点:轴对称图形. 分析:根据轴对称及对称轴的定义,分别找到各轴对称图形的对称轴个数,然后可得出答案. 解答:解:第一个图形是轴对称图形,有 1 条对称轴; 第二个图形是轴对称图形,有 2 条对称轴; 第三个图形是轴对称图形,有 2 条对称轴; 第四个图形是轴对称图形,有 6 条对称轴; 则所有轴对称图形的对称轴条数之和为 11. 故选 B. 点评:本题考查了轴对称及对称轴的定义,属于基础题,如果一个图形沿一条直线折叠,直线两
处,每小题 3 分,共 54 分)

5
1.要使分式 有意义,则 x 的取值范围是( )
x 1
A. x 1
答案:A
B. x 1
解析:由分式的意义,得:x-1≠0,即 x≠1,选 A。
C. x 1
2. 如果三角形的两边分别为 3 和 5,那么连结这个三角形三边中点所得的三角形的周长可能是
答案:A
A. 5. 5 B、5 C.4.5 D.4
解得:n=6. 则原多边形的边数为 5 或 6 或 7. 故选 D.
5. 下列各式计算正确的是( )
A (a7)2=a9

B.a7•a2=a14
考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.
专题:计算题.
分析:A、利用幂的乘方运算法则计算得到结果,即可做出判断; B、利用同底数幂的乘法法则计算得到结果,即可做出判断; C、原式不能合并,错误; D、利用积的乘方运算法则计算得到结果,即可做出判断.

2013年全国初中数学联合竞赛试题及解析

2013年全国初中数学联合竞赛试题及解析

2013年全国初中数学联合竞赛试题第一试一、选择题(本题满分 42分,每小题7分) 1•计算 4,3 2,2.41 24.2() (A ) .2 1 ( B )1 ( C )、.2( D )2m 2 m 22•满足等式2 m 1的所有实数m 的和为()(A )3( B )4 ( C )5 ( D )6D ,若 CD 3, 则 AB=( )(A )2 (B ) J6( C )2.2(D )324•不定方程3x 7xy 2x 5y 17 0的全部正整数角(A )1 (B )2 (C )3 (D )4n 的正整数中质数的个数等于合个数,则称 )(C ) 2013 ( D ) 2014二、填空题(本题满分 28分,每小题7分)1•已知实数 x, y,z 满足 x y 4, z 1 xy 2y 9,则 x 2y 3z __________________32•将一个正方体的表面都染成红色,再切割成n (n 2)个相同的小正方体,若只有一面是红色的小正方体数目与任何面都不是红色的小正方体的数目相同,则n= ________3•在 VABC 中,A 60°, C 75°, AB 10 ,D, E, F 分别在 AB , BC , CA 上,则 VDEF 的周长最小值为 ______3•已知AB 是圆O 的直径,C 为圆O 上一点,CAB 15°, ABC 的平分线交圆 O 于点x,y )的组数为(5矩形ABCD 的边长 AD=3,AB=2, E 为AB 的中点,F 在线段 BC 上,且 BF : FC=1 : 2,AF 分别与DE ,DB 交于点 M ,N ,贝U MN=( (A )出(B )出714(C )出28(D)1K5 286•设n 为正整数,若不超过 所有“好数”之和为( (A ) 33( B ) 34n 为“好数”,那么,2 2 24•如果实数x, y, z 满足xy z xy yz zx 8,用A 表示|x y ,y z ,z x 的最大值,则A 的最大值为 __________第二试(A )一、(本题满分20分)已知实数a,b,c,d 满足2a 2 3c 2 2b 2 3d 2 ad be 2 6,求 a 2 b 2 c 2 d 2 的值。

2013年全国初中数学联赛试题及详解

2013年全国初中数学联赛试题及详解

2013年全国初中数学联赛试题及详解2013年全国初中数学联合竞赛试题及详解第一试、选择题(本题满分 42分,每小题7分) 1?计算 4,3 2 :2 41 24 2( )(A ) .2 1( B )1( C )2( D )2【答案】(B )【解析】原式=42+1)2 3 ,(4 2 3)2 4(、.2 1)(4.2 3) 1,故选(B )一 - m 2 m 22?满足等式 2 m 1的所有实数m 的和为()(A ) 3( B )4( C )5( D )6【答案】(A )【解析】分三种情况进行讨论:(1) 若 2m 1,即m1时,满足已知等式;21,即m 3时, m 2 m 2(2) 若 m2 m( 1)41满足已知等式;2 m 0一口 1(3) 若 2m1,即m1且m 3时,由已知,得2解得,mm m 2m 2 m 2故j 足等2 m 1的所'实数m 的和1 3(1)=3,故选(A ).24?不定方程 3x 7xy 2x 5y 17CAB 15o , ABC 的平分线交圆O 于点D ,若CD3,则 AB =() (A ) 2 (B ) 6 (C ) 2.2 (D ) 3 【答案】(A )【解析】连接 OC ,过点0作ON CD 于点N ,贝V 3?已知AB 是圆O 的直径, C 为圆O 上一点, CN DN OA ,从而 OCA CAB 15o ,由AB 是圆O 的直径,ACB 90°,因 CD 平分 ACB ,故 ACD45°, OCN ACD OCA 30°,在 Rt ONC 中, cosOCNCN OC2OC 2,故选(A )0的全部正整数解(x, y)的组数为((A) 1(B) 2(C) 3 (D) 4(A) 33 【答案】(B ) 34 (B )因1既不是质数, (C ) 2013( D ) 2014设不超过n 的正整数中, n13 57911U 152 34 49G 6 b.(1 __Ii w2468【答案】(B )3x 2x 17【解析】由3x 2 7xy 2x 5y 170,得y —— -------- ,因x, y 为正整数,7x 5故 x 1,y 1,从而 7x 5 0,于是 3x 2 2x 17 7x 5 , 3x 2 5x 22 0 ,即卩(x 2)(3x 11) 0,由 x 1,知 3x 11 0,故x 2 0, x 2,故 x 1 或 x 2 当x 1时,y 8 ;当x 2时,y 1.故原不定方程的全部正整数解 (x, y)有两组:(1,8),(2,1),故选(B ).5.矩形ABCD 的边长AD 3, AB 2 , E 为AB 的中点,F 在线段BC 1:2 , AF 分别与DE , DB 交于点M , N ,则MN =(―、3、、5 5 .59、、511,5(A ) (B )(C )( D )—714 28 28【答案】(C )BF 1【解析】因,故FC 2BF BF 11FN BF 1,BF - AD 1,因 BF // AD ,故 BNF s DNA ,故,故DA BC 33AN DA 31 FN -AN 1 3AF -AF . 延长DE,CB 交于点G ,则由E 为AB 的中点,知3 34 4ADE 也 BGE ,故 BG AD 3 , FG BF BG1 3 4 ,因 FG // AD , 故AM AD 3 亠 33AMD s FMG ,故,故 AM FM AF ,于是FM FG 4 47上,BF : FC )考虑n 为奇数的情况):质数的个数为 a n ,合数的个数为b n ,当n 15时,列表如下(只也不是合数,故“好数”一定是奇MN AF AM FN AF 3AF 1AF —AF 9.AB2 BF29.57 4 28 28 28 故选(C).6?设n为正整数,若不超过那么,所有“好数”之和为( n的正整数中质数的个数等于合数的个数,则称 )n为“好数”由上表可知,1,9,11,13都是“好数”因05印5 2,当n 16时,在n 15的基础上,每增加2个数,其中必有一个为偶数,当然也是合数,即增加的合数的个数不会少于增加的质数的个数,故一定有b n a n 2,故当n 16时,n 不可能是“好数”.因此,所有的“好数”之和为 1 9 11 13 34,故选(B ).二、填空题(本题满分 28分,每小题7分)1.已知实数x,y,z 满足x y 4, z 1 xy 2y 9,则x 2y 3z _________________ .【答案】 4【解析】由x y 4,得x 4 y ,代入z 1 xy 2y 9,得 z 12(4 y)y 2y 9 y 6y 92 2(y 3)0,故(y 3)20,又(y 3)20,故(y 3)20,故 y 3,z 1,x 1,于是 x 2y 3z 42?将一个正方体的表面都染成红色,再切割成n 3(n 2)个相同的小正方体,若只有一面是红色的小正方体数目与任何面都不是红色的小正方体的数目相同,则n= _____ .【答案】8、 2【解析】只有一个面染成红色的小正方体的总数为6(n 2)个,任何面都不是红色的小正方体的总数为(n 2)3个,依题意有6(n2)23.在 ABC 中, A 60o , C 75o , AB 10, D,E,F 分别在 AB, BC,CA 上,则DEF 的周长最小值为 _______ .【答案】5.6【解析】分别作点 E 关于AB, AC 的对称的P,Q . 则 DE PD,EF FQ .连接 AE, AP, AQ, DP,FQ,PQ , 则PAQ 120°,且 AP AE AQ ,从而 APQ 30°,AH AB sinB 10 sin 45° 5、、2,于是 DEF 的周长为l DE DF EF PD DF FQ PQ 、、3AP 、3AE 3AH 5、6(n 2)3,解得 n 8( n 2舍去).APcos30°, PQ-3AP ,过点A 作AH BC 于点H ,则当且仅当点 E 与点H 重合,且P,D,F,Q 四点共线时取得等号,即DEF 的周长1 min5 62 2 2 ,__,4?若实数 x, y,z 满足 x y z xy yz zx 8,用 A 表示 x y,y z,z x 的最大值,贝U A 的最大值为 ______ .4苗【答案】——3【解析】由已知,得(x y)2 (y z)2 (z x)2 16 ,不妨设A |x y ,贝UA 2 x y 2 (y x)2 (y z) (z x) 22 (y z)2 (z x)2 2 16 (x y)22(16 A 2)解得A 还.当且仅当x y也,y z z x时取等号.333故A 的最大值力.3第二试(A )、(本题满分20分)已知实数a,b,c,d 满足2a 2 3c 2 2b 2 3d 2 求a 2 b 2 c 2 d 2的值.又因为6.即 a 2 b 2 c 2 d 2由①,②可得mnmn a 2 b 2b 2c 2ac 2bd ad 2bc故 mn ad2bcac bd 0(1)2a 2 2b 2 3c 23d 2(2) ab a由(1)得一令—2a 2 3c 2 2b 23d 26(3)d cd(ad bc)2 6(4)注:符合条件的实数 a, b, c, d 存在且不唯一,应满足2ad bc 6,解:设m a 2 b 2, n2 2c d ,贝U 2m 3n(2a 22 23c ) (2 b3d 2)12.因 2m 3n 22m 23n 24mn 24mn ,即12224mn ,故 mn因为OA OC ,所以 OCA OAC ,因为 COB所以 2 POB 2 OAC ,所以 POB OAC ,所以 OP // AC连接BC ,因AB 为圆O 的直径,PB 为圆O 的切线,故 ACB OBP 90°_22解:因为t 是一元二次方程X x 1 0的一个根,显然t 是无理数,且t a dt,b Ct ,代入(2)得t .6于是 a —d,b 2 討a 于d ,bC ,代入(3)或(4),得 c 2 d 22 , 故符合条件的实数 a, b, c, d 存在且不唯一,如 a 1,c 迈,d3 又如a f,b T ,c 1,d 1也是一组,当然还有很多组二、(本题满分25分)已知点C 在以AB 为直径的圆O 上,过点B,C 9PB作圆O 的切线,交于点 P ,连接AC ,若OP 9AC ,求——的值.2 AC解:连接OC ,因为PC,PB 为圆O 的切线,所以 POC POB二就是3 组.OCA OAC ,又 POBOAC ,所以 BAC s POB ,所以AC OBAB OP9又OP AC , AB 2r ,OB r ( r 为圆O 的半径),代入,得OP23r, AC在Rt POB 中,由勾股定理,得PB 、.OP 2 OB 22為,所以空碧3门.AC 2r3、(本题满分25分)已知t 是一兀二次方程x 2 X 10的一个根,若正整数a,b, m使得等式 at m bt m31m 成立,求ab 的值.1 t .由 at m bt m31m ,得 abt 2m a b t2 2m 31m0,将 t1 t 代入,得ab 1 t ma b t m 31m 0,即卩 ma b因为a,b,m 是正整数,t 是无理数,所以m a bab 0a b 31 mab m 2于是可得31m m 231m 0ab因此a, b 是关于x 的一元二次方程 x 2m 31 x 31m m ab tab m 31m 0.20的两个正整数根,该方程第二试(B)立,求ab的值.解:因为t 、 2 1,所以t2 3 2.2.由at m bt m 17m,得abt2m a b t m217m 20 ,将t 3 2 2代入,得ab 3 2.2m a b ,2 1 m217m 0 ,整理得m a b 2ab 2 3ab m a b m217m 0a 于是可得ab b 2 17 m17m m2因为a,b,m是正整数,.2是无理数, 所以m(a3abb)m(a2abb)m217m 0因此a,b是关于x的一元二次方程x22(m 17)x 17m m20的两个正整数根,该方程的判别式24 m 17 4 17m4 17 m 17 2m 0.又因为a, b,m是正整数,所以a b 2 17 又因为判别式是一个完全平方数,验证可知,17m 0,从而可得0 m -2m 8符合要求.只有把m 8代入,得ab 17m m272.二、(本题满分25分)在ABC的外心和内心,且满足(1)OI // BC;ABC 中,AB ACAB2OIAC,,求证:0、I分别是(2) S AOC S AOB2S AOI证明:(1)过点O作OM BC于M ,过点I作IN的判别式 2 2m 31 4 31m m 31 m 31 5m 0.又因为a,b是正整数,所以a b31 m 0,从而可得又因为判别式是一个完全平方数, 验证可知,只有m c 310 m -5 6符合要求.把m 6代入,得ab31m m2150.、(本题满分20分)已知t ,2 1,若正整数a,b,m,使at m bt m 17m 成则OM //IN,设BC a,AC b, AB c,由0、I分别是ABC的外心和内心,得1 1 1 CM -a,CN -(a b c ),所以 MN CM CN - (c b ) 01 ,又MN 恰好是两条平行线 0M ,IN 之间的垂线段,所以01也是两条平行线 OM ,IN 之间的垂线段,所以01 // MN ,所以01 // BC . 半径),则 S A0C SAOB S AOI S COI S AIC 2S A0I S BOI S COI S AIC S AIB 2S AOI 2S A0I r OI +(b c) 2S AOI r ^(c 22 (2)由(1 )知0MNI 是矩形,连接BI ,CI ,设0M b 2 2 三、(本题满分25分)若正数a,b,c 满足一- S AIB S A OI S BOI 1 OI r 1 OI r 1 AC r 1 -AB r 2 2 22 b) 1 (b c) 2S AOI -2 2 2 2 . 2 22 .2 2 2 a c a b a b c3 2ca 2ab 3 IN r (即为 ABC 的内切圆的值.求代数式 b 2 c 2a 2 c 2 a 2b 2 a 2 2bc 2cab 2c 22ab解:由于a,b,c 具有轮换对称性,不妨设0 a b c.(1) b ,则c 0, c bb 2c 2 2bc 2bc 1,$2ca c a $ b 22ca1,2 . 2 2 a b c 2ab b $ c 2 这与已知条件矛盾 (2)若 c b c 2 2bc 2 2b c 2ab.2 2故3-2bc2ab1,故b 2c 22bcc 2 a 2 b 2 2caa 2b 2c 2 2ab3,b,0从而,得2bc 1,02a 2cab 2 b 2 2ca1,b $c 2 2ab1,02 2 2a b c 2ab2ab1,2 2c a 2cab 222 . 2 2a b c2ab这与已知条件矛盾.综合(1)( 2)可知,一定有cab. .2 2 2.2 2 2 于是可得bc ab —(a b) abc2b(a b)2 2 2 2 2 2 同理可得E —a ―L 1, ―b —L 2ca 1 2ab,2 2 2 2 2,2 2,2 2.,b c a cababc*故1.2bc2ca2ab2b 2 2b 2 ab i, 2ab。

2013年数学应用与创新能力大赛八年级决赛试题及答案

2013年数学应用与创新能力大赛八年级决赛试题及答案

2013年数学应用与创新能力大赛八年级决赛试题一、选择题(本题有10小题,每小题5分,共50分)(请将惟一正确的选项代号填在下面的答题卡内)1.已知式子1||)1)(8(-+-x x x 的值为零,则x 的值为( )A 、8或-1B 、8C 、-1D 、1 2.若01<<-a ,那么)1)(1(a a a +-的值一定是( )A 、正数B 、非负数C 、负数D 、正负数不能确定 3.定义:),(),(a b b a f =,),(),(n m n m g --=,例如)2,3()3,2(=f ,)4,1(--g)4,1(=,则))6,5((-f g 等于( )A 、)5,6(-B 、)6,5(--C 、)5,6(-D 、)6,5(-4.已知5=-b a ,且10=-b c ,则ac bc ab c b a ---++222等于( )A 、105B 、100C 、75D 、505.有面额为壹元、贰元、伍元的人民币共10张,欲用来购买一盏价值为18元的护眼灯,要求三种面额都用上,则不同的付款方式有( ) A 、8种 B 、7种 C 、4种 D 、3种6.已知一个直角三角形的两直角边上的中线长分别为5和102,那么这个三角形的斜边长为( )A 、10B 、104C 、13D 、1327.如图,在△ABC 中,AC =BC ,∠ACB =90°,AD 平分∠BAC ,BE ⊥AD 交AC 的延长线于点F ,垂足为E ,则下面结论:①AD BF =; ②BF =AF ; ③AC CD AB +=; ④BE CF =; ⑤AD =2BE . 其中正确的个数是( )A 、4B 、3C 、2D 、18.如果一直线l 经过不同三点A ),(b a ,B ),(a b ,C ),(a b b a --,那么直线l 经过A 、第二、四象限B 、第一、三象限C 、第二、三、四象限D 、第一、三、四象限9.能使54+m ,12-m ,m -20这三个数作为三角形三边长的整数m 共有( )A 、18个B 、12个C 、6个D 、2个 10.如图,在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD =4,CE =6,那么△ABC 的 面积等于( )A 、12B 、14C 、16D 、18二、填空题(本大题共8小题,每小题5分,共40分)11.已知02)4(|2|2=-++++-c b a b a ,则bac )(的平方根是 . 12.若a 、b 、c 满足173=++c b a 和2001104=++c b a ,则分式ba cb a 3+++的值为 .13.方程5|2||1|=-++x x 的解为 .14.甲,乙,丙三管齐开,12分钟可注满全池;乙,丙、丁三管齐开,15分钟可注满全池;甲、丁两管齐开,20分钟注满全池.如果四管齐开,需要 分钟可以注满全池.15.甲、乙两人在5次体育测试中的成绩(成绩为整数,满分为100分)如下表:其中乙的第5次成绩的个位数字被污损,则乙的平均成绩高于甲的平均成绩的概率是 .19、今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A种板材48000 m2和B种板材24000 m2的任务.⑴如果该厂安排210人生产这两种板材,每人每天能生产A种板材60m2或B种板材40 m2,请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务?⑵某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:问这400间板房最多能安置多少灾民?20、小明家今年种植的樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系如图2所示.⑴观察图象,直接写出日销售量的最大值;⑵求小明家樱桃的日销售量y与上市时间x的函数解析式;⑶试比较第10天与第12天的销售金额哪天多?21、如图,已知平行四边形ABCD,过A点作AM⊥BC于M,交BD于E,过C点作CN⊥AD于N,交BD于F,连接AF、CE.⑴求证:四边形AECF为平行四边形;⑵当AECF为菱形,M点为BC的中点时,求AB:AE的值.22、如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2.点E、F同时从点P出发,分别沿P A、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立即以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止.在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC 在线段AB的同侧,设E、F运动的时间为t秒(t>0),正方形EFGH与△ABC 重叠部分面积为S.⑴当t=1时,正方形EFGH的边长是;当t=3时,正方形EFGH的边长是;⑵当0<t≤2时,求S与t的函数关系式;⑶在整个运动过程中.......,当t为何值时S最大?最大面积是多少?八年级决赛试题参考答案及评分标准一、选择题(本大题共10小题,每小题5分,共50分)11.41±; 12.39992000-; 13.3=x 或2-=x ; 14.10 ;15.103. 16. 36 ; 17. 13 ; 18.5.三、解答题(本大题共4小题,每小题15分,共60分)19、解:⑴ 设有x 人 生产A 种板材,则有 (210-x )人生产B 板材,根据题意列方程:48000240006040(210)x x =-……………………………………………………………………………3分6x =8(210-x) x =120. ………………………………………………………………………4分 经检验x=120是原方程的解. 10-x =210-120=90. ………………………………………6分 ⑵ 设生产甲型板房m 间,则生产乙型板房为(400-m )间.根据题意得:108156(400)480006151(400)24000m m m m +-≤⎧⎨+-≤⎩…………………………………………………………………9分解得:3m ≤≤. …………………………………………………………………………11分设400间板房能居住的人数为W .则W =12m +10(400-m) W =2m +4000. ………………13分 ∵k =2>0, ∴ 当m =360时,=236W ⨯最大值(人). …………………………………15分20、解:⑴ 120千克; …………………………………………………………………………2分 ⑵ 当0≤x ≤12时,函数图象过原点和(12,120)两点,设日销售量y 与上市时间x 的y x120=12 k ,∴k =10,即日销售量y 与上市时间x 的函数解析式为y =10x ; ……………………5分当12≤x ≤20时,函数图象过(20,0)和(12,120)两点,设日销售量y 与上市时间x 的函数解析式为y = k x +b,由待定系数法得,⎩⎨⎧=+=+02012012k b k b ,解得⎩⎨⎧==30015-b k ,即日销售量y 与上市时间x 的函数解析式为y =-15x +300; ……………………………………8分⑶ 由函数图象2可得,第10天和第12天在第5天和第15天之间,当5<x ≤15时,直线过(5,32),(15,12)两点,设樱桃价格z 与上市时间x 的函数解析式为z=k x +b,由待定系数法得,⎩⎨⎧=+=+1215325k b k b ,解得⎩⎨⎧==42-2b k ,即樱桃价格z 与上市时间x 的函数解析式为z =-2x +42, …………………… 12分∴当x =10时,日销售量y =100千克,樱桃价格z =22元,销售金额为22×100=2200元;当x =12时,日销售量y =120千克,樱桃价格z =18元,销售金额为18×120=2160元; ∵2200>2160,∴第10天的销售金额多. ………………………………………………………15分 21、解答:⑴ 证明:∵AE ⊥BC ,∴∠AMB=90°, ∵CN ⊥AD ,∴∠CNA=90°, 又∵BC ∥AD ,∴∠BCN=90°,∴AE ∥CF , ………………………………………………3分 又由平行得∠ADE=∠CBD, AD=BC . 所以△ADE ≌△BCF ,∴AE=CF . ……………………………………………………5分 ∵AE ∥CF ,AE=CF ,∴四边形AECF 为平行四边形. ……………………………………7分⑵ 当平行四边形AECF 为菱形时,连结AC 交BF 于点O ,则AC 与EF 互相垂直平分, 又OB=OD,∴AC 与BD 互相垂直平分, …………………………………………………8分 ∴四边形ABCD 为菱形,∴AB=BC . …………………………………………………9分∵M 是BC 的中点,AM ⊥BC ,∴△ABM ≌△CAM ,∴AB=AC . …10分∴△ABC 为等边三角形, ……………………………………………11分 ∴∠ABC=60°,∠CBD=30°. 在RT △BCF 中,易求得CF:BC=33, ………………………………13分又AE=CF, AB=BC, 所以AB :AE=3. ………………………………15分 22、解:⑴ 2;6; …………………………………………………2分 ⑵ 当0<t ≤611时(如图),S 与t 的函数关系式是: S=EFGH S 矩形=(2t )2=4t 2; …………3分 当611<t ≤65时(如图),S 与t 的函数关系式是: S=EFGH S 矩形-S △HMN=4t 2-12×43×[2t -34(2-t )] 2 =2524-t 2+112t -32; ……………5分当65<t ≤2时(如图),S 与t 的函数关系式是: S= S △ARF -S △AQE =12×34(2+t ) 2 -12×34(2-t ) 2=3t . ……………7分⑶ 由⑵知:若0<t ≤611,则当t=611时S 最大,其最大值S=144121;……8分 若611<t ≤65,则当t=65时S 最大,其最大值S=185; ……9分 若65<t ≤2,则当t=2时S 最大,其最大值S=6. …………10分 当2<t 时则相当于一个边长为4的正方形沿AB 以1个单位每秒的速度向B 运动 若2<t ≤310时,t s 3=,则当t =310时,其最大值S=10. ……11分 若310<t ≤5时,625211832-+-=t t s ,则当t =5时,其最大值S=24335. ……12分 若5<t ≤322时,612567324252-+-=t t s ,则当t =25143时,其最大值S=751102.……13分 若322<t ≤8时,32320322-+-=t t s ,则当t =322时,其最大值S=271012. ……综上所述,当t=25143时S 最大,最大面积是751102. …………………………………15分。

2013-2014学年第一学期八年级数学奥赛试卷(附答案)

2013-2014学年第一学期八年级数学奥赛试卷(附答案)

2013-2014(上)八年级数学奥赛试卷满分:150分 考试时间:120分钟一、选择题(共5小题,每小题6分,共30分)1、已知a 2=3,b 2=6,c 2=12,则下列关系正确的是( )A .c b a +=2B .c a b +=2C .b a c +=2 D. b a c +=22、若a+b=-2,且a ≥2b,则( )A. a b 有最小值21B. a b 有最大值1C. b a 有最大值2D. b a 有最小值98- 3、设13x ≤≤,则13x x ---的最大值与最小值的和 ( )A 0B 1C 2D 34、如图,点,D E 分别在△ABC 的边AB ,AC 上,BE ,CD 相交于点F ,设1EADF S S 四边形=,BDF 2S S ∆=,BCF 3S S ∆=,CEF 4S S ∆=,则13S S 与24S S 的大小关系为( )A .13S S <24S SB .13S S =24S SC .13S S >24S SD .不能确定 5、某商店出售某种商品每件可获利m 元,利润率为20%。

若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m 元,则提价后的利润率为( )A25% B20% C16% D12.5%二、填空题(共5小题,每小题6分,共30分)6、两条直角边长分别是整数,a b (其中2011b <),斜边长是1b +的直角三角形的个数为_____。

7、在1到100这1000个自然数中,有________个自然数能同时被2和3整除。

AB CE D F8若[x]=5,[y]=-3,[z]=-1,则[x 一y 一z]= ;9、在公路上,汽车A 、B 、C 分别以每小时80千米、70千米、50千米的速度匀速行驶,A 从甲站开往乙站,同时,B 、C 从乙站开往甲站。

A 在与B 相遇两小时后与C 相遇,则甲、乙两站相距 千米。

10、已知17x x +=(01x <<),则1x x -=________三、解答题(共6题,每题15分,共90分)11、已知│x+2│+│2-x │=10-│y-5│-│1+y │,求x+y 的最大值与最小值.12、周长为30,各边长互不相等且都是整数的三角形共有多少个?13、已知的值。

全国数学竞赛2013年初中数学联赛广东分赛区初赛试卷

全国数学竞赛2013年初中数学联赛广东分赛区初赛试卷2013年全国初中数学联赛初赛试卷(广州市)时间:2013年3月7日一、选择题(7×4=28分) 1、下列计算准确的是 A 、23622aa a= B 、3629(3)a a= C 、623aa a÷= D 、362()a a--=2、曾两度获得若贝尔(物理、化学)的居里夫人发现了镭这种放射性元素。

已知1kg 镭完全衰变后,放出的热量相当于375000kg 煤燃烧放出的热量。

估计地壳内含有100亿kg 镭,这些镭完全衰变后放出的热量相当于 kg 煤燃烧所放出的热量。

A 、133.7510B 、143.7510C 、153.7510D 、163.75103、直线y=2x -5与2(4)3y x m m =++-(m 为任意实数)的交点不可能在 A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 4、实数b 满足b<3 ,并且有实数a 使a <b 恒成立,则a 的取值范围是A 、小于或等于3的实数B 、小于3的实数C 、小于或等于-3的实数D 、小于-3的实数5、一块手表每小时比准确时间慢3分钟,若在清晨4::30时与准确时间对准,则当天上午该手表时间是10:50时,准确时间应该是A 、 11:10B 、11:09C 、 11:08D 、 11:076、若直角三角形的斜边长为c ,内切圆半径r ,则内切圆的面积与三角形的面积之比是A 、2rc rπ+ B 、rc rπ+ C 、2rc rπ+ D 、22rcrπ+7、我们将1×2×3×…n 记作n !(读作n 的阶乘),如:2!=1×2, 3!=1×2×3, 4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+……+2013×2013!,则S 除以2014的余数是A 、0 B 、1 C 、1007 D 、2013 二、填空题(7×4=28分)8、函数2y x =+ 的自变量x 的取值范围是9、设12,x x 是方程20x k x ++= 的两个实数根,若恰好2211222k x x x x ++= 成立,则k 的值等于10、已知二函数2y bx c x =++ 的图象上有三个点(-1,1y ),(1,2y )(3,3y )。

八年级初二数学竞赛试习题及参考答案

欢迎阅读八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,ca b a b c k k +=-==++=,且那么的值为( ). A .2A .0x <C .3-<35++A .1015- C .10154E 、F 分别在A .100C .1105.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分) 7.方程组2008200200720062008x y x y -=⎧⎨-=⎩的解8:79n 13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且.⑴ 求证:1x y +=. ⑵ 求55x y +的值. 五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .1314、⑴ ⑵ ∴554343322322x y x x y y x x x x y y y y +=+++=+++++++ 15、证明:作∠OBF=∠OAE 交AD 于F∵∠BAD=∠ABE ∴OA=OB又∠AOE=∠BOF∴△AOE ≌△BOF (ASA ) ∴AE=BF ∵AE=BD∴BF=BD ∴∠BDF=∠BFD1、。

2013年全国初中数学联合竞赛试题(含答案解析)

10.如果实数 , , 满足 ,用 表示 , , 的最大值,则 的最大值为___________.
三、解答题
11.已知实数 , , , 满足 ,求 的值.
12.已知点 在以 为直径的圆 上,过点 、 作圆 的切线,交于点 ,连 ,若 ,求 的值.
13.已知 是一元二次方程 的一个根,若正整Leabharlann , , 使得等式 成立,求 的值.
10.
【详解】
由已知等式得 ,
不妨设 ,则

解得 .
所以 的最大值为 ,当 , 时取得
11.
【详解】
解:设 , ,则 .
因为 ,即 ,所以 …………①
又因为
………………②
由①,②可得 .即 .
注:符合条件的实数 , , , 存在且不唯一,
, , , 就是一组.
12.
【详解】
解:连 ,因为 , 为圆 的切线,所以 .
于是可得 , , ,
所以
因此, , 是关于 的一元二次方程 的两个整数根,
该方程的判别式 .
又因为 , 是正整数,所以 ,从而可得 .
又因为判别式 是一个完全平方数,验证可知,只有 符合要求.
把 代入可得 .
14.
【详解】
解:因为 ,所以 .
等式 即 ,
即 ,
整理得 ,
于是可得 .
因此, , 是关于 的一元二次方程 ……①的两个整数根,
7.4
【详解】
由 得 ,代入 得 ,所以 , , ,从而
8.8
【详解】
只有一个面染红色的小正方体的总数为 个,任何面均不是红色的小正方体的总数为 个,由题意知 ,解得
9.
【详解】
作点 关于 , 的对称点 , ,连接 , , , , , ,则 ,且 ,作 于点 .

2013年全国初中数学竞赛试题

百度文库 - 让每个人平等地提升自我!
1 三、解答题(共4题,每题20分,共80分)
11.如图,抛物线32-+=bx ax y ,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB=OC=3OA,直线13
1+-=x y 与y 轴交于点D ,求∠DBC -∠CBE.
12.设△ABC 的外心,垂心分别为O ,H ,若B ,C ,H ,O 共圆,对于所有的△ABC ,求∠BAC 所有可能的度数.
13.设a ,b ,c 是素数,记a c b x -+=,b a c y -+=,c b a z -+=,当y z =2,2=-y x 时,a ,b ,c 能否构成在角形的三边长?证明你的结论.
14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数的最小值,使得存在互不相同的正整数1a ,2a ,…,n a 中都至少一个为m 的魔术数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、方程132xx的解的个数是( ) (第四届祖冲之杯数学邀请赛试题)
A、0 B、1 C、2 D、3 E、多于3个
2、三角形的三边长a、b、c均为整数,且a、b、c的最小公倍数为60,a、b的最大 公
约数是4,b、c的最大公约数是3,则a+b+c的最小值是( )
A、30 B、31 C、32 D、33

12、有理数cba,,在数轴上的位置如图所示,化简
._____|1||||1|||ccabba
16、X是有理数,求22195221100xx的最小值。
3、一个两位数,用它的个位,十位上的两个数之和的3倍减去-2,仍得原数,这个两
位数是( )
A、26 B、28 C、36 D、38
7、某人上山、下山的路程都是S,上山速度为v,下山速度为u,则此人上、下山的平均

速度是

7、设a、b、c是非零实数,则abcabccacabcbcababccbbaa
17、某宾馆有大小两种客房,大房间每间能住7人,小房间每间能住4人,现有41人
住店,问需大小房间各多少间,刚好使床位数不多也不少?
某班参加一次智力竞赛,共a、b、c 三题,每题或者得满分或者得0分。其中题a满
分20分,题b、题c满分分别为25分。竞赛结果,每个学生至少答对了一题,三题全答对
的有一人,答对其中两道题的有15人。答对题a的人数与答对题b的人数之和为29;答对
题a的人数与答对题c的人数之和为25;答对题b的人数与答对题c的人数之和为20。问
这个班平均成绩是多少分? (1999年全国初中数学联合竞赛二试试题)
1、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( )
(2000年全国初中数学竞赛试题)
A、甲比乙大5岁 B、甲比乙大10岁
C、乙比甲大10岁 D、乙比甲大5岁

一队旅客乘坐汽车,要求每辆汽车的旅客人数相等.起初每辆汽车乘了22人,结果剩下1
人未上车;如果有一辆汽车空着开走,那么所有旅客正好能平均分乘到其他各车上.已知每
辆汽车最多只能容纳32人,求起初有多少辆汽车?有多少名旅客?

5.(2007年·济南市)世界上著名的莱布尼茨三角形如图所示:
1
1
12 1
2
13 16 1
3
14 112 112 1
4
15 120 130 120 1
5
16 130 160 160 130 1
6
17 142 1105 1140 1105 142 1
7
……

则排在第10行从左边数第3个位置上的数是( ).
A.1132 B.1360 C.1495 D.1660
9.(2007年·自贡市)一个叫巴尔末的中学教师成功地从光谱数据59,1216,2125,

32
36
,…中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这种规律,写出第n

(n≥1)个数据是___________.

1979年,诺贝尔奖获得者李政道教授到中国科技大学讲学,他给少年班的同学出了这样一
道算术题:有5只猴子在海边发现一堆桃子,决定第二天来平分.第二天清晨,第一只猴子最早
来到,它左分右分分不开,就朝海里扔了一只,恰好可以分成5份,它拿上自己的一份走了.第
2,3,4,5只猴子也遇到同样的问题,采用了同样的方法,都是扔掉一只后,恰好可以分成5份.问
这堆桃子至少有多少只.据说没有一个同学能当场做出答案.怎么解?

如图,在ABC中,ABAC,12,P为AD上任意一点。
求证:ABACPBPC。
12、如图,AOCD是放置在平面直角坐标系内的梯形,其中O是坐标原点。点A、C、D的
坐标分别为(0,8),(5,0),(3,8),若点P在梯形内,且
SΔPAD =SΔPOC,SΔPAO=SΔPCD ,

求P点的坐标

A

C
O
P
D

X

y

13、如图,已知点A(-2,0),B(2,-2),线段AB交y轴于点C。
(1)求C点的坐标。
(2)若D(6,0), 动点P从D点开始在x轴上以每秒3个单位向左运动,同时,动点Q从C

点开始在y 轴上以每秒1个单位长度向下运动。问经过多少秒,
SΔAPC =SΔPOQ?

C
B

O
x

y
A
如图,在3 X 3 的网格中标出了,∠1和∠2,则∠1+∠2 =
1
2

相关文档
最新文档