应用一元一次方程——打折销售导学案 5.7

合集下载

[精品教案]打折销售导教案

[精品教案]打折销售导教案

打折销售导教案以下是为您推荐的打折销售导教案,希望本篇文章对您学习有所帮助。

打折销售导学案导学目标1.使学生经历探索打折销售中的已知量和末知量之间的相等关系,列出一元一次方程解简单的应用题;2.使学生进一步了解列出一元一次方程解应用题这种代数方法及其步骤;培养学生的分析问题和解决问题的能力。

导学重点:用列方程的方法解决打折销售问题;导学难点:是准确理解打折销售问题中的利润(利润率)、成本、销售价之间的关系。

温故一件衣服标价是200元,现打7折销售。

问:买这件衣服需要多少钱?若已知这件衣服的成本(进价)是115元,那么商家卖出这件衣赚了多少钱?链接:1、把下面的折扣数化成百分数六折七五折八八折2、你是怎样理解某种商品打六折出售的??公式:利润=卖出价-成本价(或者:利润=销售价-成本价)利润率 = 利润成本 100%(3).算一算:1。

原价100元的商品打8折后价格为元;2。

原价100元的商品提价40%后的价格为元;3。

进价100元的商品以150元卖出,利润是元,利润率是 ;4.原价X元的商品打8折后价格为元;5。

原价X元的商品提价40%后的价格为元;6。

原价100元的商品提价P %后的价格为元;7。

进价A元的商品以B元卖出,利润是元,利润率是。

新知例.一家商店将服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?想一想:15元利润是怎样产生的?拓展: 一件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这种夹克每件的成本价是多少元?某服装商店以 135元的价格售出两件衣服,按成本计算,第一件盈利25 %,第二件亏损25 %,则该商店卖这两件衣服总体上是赚了,还是亏了?这二件衣服的成本价会一样吗?算一算?新知:例1:某文艺团体为希望工程募捐组织了一次义演,售出1000张票,筹得票款6950元。

学生票5元/张,成人票8元/张。

义乌市第七中学七年级数学上册第五章一元一次方程4应用一元一次方程__打折销售教案新版北师大版8

义乌市第七中学七年级数学上册第五章一元一次方程4应用一元一次方程__打折销售教案新版北师大版8

4 应用一元一次方程——打折销售1.理解成本、售价、利润、利润率之间的关系.2.会列一元一次方程解决有关商品打折销售的问题.重点理解售价、成本、利润、利润率之间的关系.难点列一元一次方程解决有关商品打折销售的问题.一、复习导入教师:列方程解决实际问题的关键是什么呢?学生回答,教师点评.教师:今天,我们学习一元一次方程的一个应用——打折销售.二、探究新知课件出示问题:商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%;另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?教师提示:如果进价大于售价就亏损,反之就盈利.要求学生列出方程,写出解题过程.教师点评,并讲解:本题中,设盈利25%的那件衣服的进价是x元,它的利润就是0.25x元,根据进价+利润=售价,列出方程x+0.25x=60.由此得x=48.类似地,可以设另一件衣服的进价为y元,它的利润是-0.25y元,列出方程y-0.25y=60.由此得y=80.两件衣服的进价是x+y=128元,而两件衣服的售价是60+60=120元,进价大于售价,由此可知卖这两件衣服总共亏损8元.课件出示练习:在商品市场经常可以听到小贩的叫卖声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利2元卖了,他还能获利20%,求一个玩具赛车的进价是多少元?要求学生独立思考后列出方程汇报答案,教师点评.教师:在打折销售问题中的利润、利润率、成本、售价之间有怎样的关系?引导学生得出等量关系:①利润=售价-成本;②利润率=利润成本×100%.教师:通过上面的讲解和练习,你能总结出列一元一次方程解决实际问题的步骤吗?引导学生总结:①分析问题,找出等量关系式;②列出方程,求出方程的解;③验证方程的解是否合理.三、举例分析例(课件出示教材第146页例题)要求学生独立完成后汇报答案,教师点评.四、练习巩固1.教材第146页“随堂练习”.2.某服装店以135元的价格卖出两件衣服,按成本计算,第一件盈利25%,第二件亏损25%,则该商店卖这两件衣服总体上是赚了,还是亏了?这两件衣服的成本价会一样吗?算一算.五、小结1.通过本节课的学习,你有什么收获?2.成本、售价、利润、利润率之间有怎样的关系?3.列一元一次方程解实际问题的步骤有哪些?六、课外作业教材第146页习题5.7第1~4题.本节课是对前面所学的一元一次方程的一个应用——打折销售.对于打折问题,学生在小学阶段已有所接触和认识,本节课是进一步地延伸此知识.在教学过程中,通过由具体实例的分析、思考与合作学习的过程培养学生理论联系实际的辩证唯物主义思想以及善于分析问题、利用知识解决实际问题的良好学习习惯.根据具体问题中的数量关系,形成方程的模型,初步培养学生利用方程的观点认识现实世界的意识和能力.通过分组合作学习的活动,让学生学会在活动中与他人合作,并能与他人交流思维的过程与结果.调动学生学习的积极性和主动性,充分体现“自主、合作、交流、探究”的新课程理念.第七章一、选择题(每小题3分,共30分)1.能确定某学生在教室中的具体位置的是( D )A.第3排B.第2排以后C.第2列D.第3排第2列2.如图,小颖从家到达学校要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校( D )A.(0,4)→(0,0)→(4,0)B.(0,4)→(4,4)→(4,0)C.(0,4)→(1,4)→(1,1)→(4,1)→(4,0)D.(0,4)→(3,4)→(4,2)→(4,0)3.已知点P(3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是( A )4.小明住在学校正东200米处,从小明家出发向北走150米就到了李华家,若选取李华家为原点,分别以正东、正北方向为x轴,y轴正方向建立平面直角坐标系,则学校的坐标为( B )A.(-150,-200) B.(-200,-150)C.(0,-50) D.(150,200)5.已知直角坐标系中,点P(x,y)满足|x-2|+(y+3)2=0,则点P的坐标为( C ) A.(2,3) B.(-2,3)C.(2,-3) D.(2,-3)或(-2,-3)6.若|a-b|·|a+b|=0,则点P(a,b)在( C )A.第一、三象限内B.第一、三象限角平分线上C.第一、三象限角平分线或第二、四象限角平分线上D.第二、四象限角平分线上7.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是 1 km(小圆半径是 1 km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A、B的位置,正确的是( C )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)8.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( A )A.O1B.O2C.O3D.O49.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是( C )A.2 B.1C.4 D.310.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(-a,b),如f(1,3)=(-1,3);②g(a,b)=(b,a),如g(1,3)=(3,1);③h(a,b)=(-a,-b),如h(1,3)=(-1,-3).按照以上变换有f(g(h(2,-3)))=f(g(-2,3))=f(3,-2)=(-3,-2),那么f(g(h(-3,5)))等于( B )A.(-5,-3) B.(5,3)C.(5,-3) D.(-5,3)二、填空题(每小题3分,共18分)11.如果把电视屏幕看作一个长方形平面,建立一个直角坐标系,若左下角的坐标是(0,0),右下角的坐标是(32,0),左上角的坐标是(0,28),则右上角的坐标是__(32,28)__.12.有一个英文单词的字母顺序对应如图中的有序数对分别为(5,2),(1,3),(1,4),(5,1),则这个英文单词为LOVE .13.如图,已知∠AOC=30°,∠BOC=150°,OD为∠BOA的平分线,则∠DOC=90°.若点A可表示为(30°,1),点B可表示为(150°,4),则点D可表示为__(90°,5)__.14.如图,半径为1的圆,在x轴上从原点O开始向右滚动一周后,落定点M的坐标为__(2π,0)__.15.在平面直角坐标系内,将点P(m+2,n-4)先向左平移1个单位长度,再向上平移3个单位长度得到点P′(2018,-2019),则m=__2017__,n=__-2018__.16.如图,平面直角坐标系中,一个点从原点O出发,按向右→向上→向右→向下的顺序依次不断移动,每次移动1个单位,其移动路线如图所示;第1次移到点A1,第二次移到点A2,第三次移到点A3,…,第n次移到点A n,则点A2019的坐标是__(1010,1)__.三、解答题(共72分)17.(8分)如图,长方形ABCD在坐标平面内,点A的坐标是(2,1),且边AB、CD与x轴平行,边AD、BC与y轴平行,AB=4,AD=2.(1)求B、C、D三点的坐标;(2)怎样平移,才能使点A与原点O重合?解:(1)因为A(2,1),AB=4,AD=2,所以BC到y轴的距离为4+2,CD到x轴的距离2+1=3,所以点B的坐标为(4+2,1),点C的坐标为(4+2,3),点D的坐标为(2,3).(2)由图可知,先向下平移1个单位长度,再向左平移2个单位长度(或先向左平移2个单位长度,再向下平移1个单位长度),能使点A 与原点O 重合.18.(8分)一长方形住宅小区长400 m ,宽300 m ,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x 轴,和较短边平行的直线为y 轴,并取50 m 为1个单位.住宅小区内和附近有5处违章建筑,它们分别是A (3,3.5)、B (-2,2)、C (0,3.5)、D (-3,2)、E (-4,4).在平面直角坐标系中标出这些违章建筑的位置,并说明哪些在小区内,哪些不在小区内.解:如题图:在小区内的违章建筑有B 、D ,不在小区内的违章建筑有A 、E 、C .19.(8分)如图是小明家和学校所在地的简单地图,已知OA =2 km ,OB =3.5 km ,OP =4 km ,C 为OP 的中点.解答下列问题:(1)图中哪些地方距小明家的距离相同?(2)请用方向与距离描述学校、商场、停车场相对于小明家的位置.解:(1)因为C 为OP 的中点,所以OC =12OP =12×4=2(km).因为OA =2 km ,所以图中学校和公园距小明家的距离相同.(2)学校在小明家北偏东45°的方向上,且到小明家的距离为2 km ;商场在小明家北偏西30°的方向上,且到小明家的距离为3.5 km ;停车场在小明家南偏东60°的方向上,且到小明家的距离为4 km.20.(8分)如图,△DEF 是△ABC 经过某种变换得到的图形,点A 与点D 、点B 与点E 、点C 与点F 分别是对应点.观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A 与点D 、点B 与点E 、点C 与点F 的坐标,并说出△DEF 是由△ABC 经过怎样的变换得到的;(2)若点Q (a +3,4-b )是点P (2a,2b -3)通过上述变换得到的,求a -b 的值.解:(1)A (2,4)、D (-1,1)、B (1,2)、E (-2,-1)、C (4,1)、F (1,-2).△DEF 是由△ABC 先向左平移3个单位,再向下平移3个单位得到的(或先向下平移3个单位,再向左平移3个单位得到的).(2)由题意,得2a -3=a +3,2b -3-3=4-b ,解得a =6,b =103,所以a -b =83. 21.(9分)已知点P (a -2,2a +8),分别根据下列条件求出点P 的坐标.(1)点P 在x 轴上;(2)点P 在y 轴上;(3)点Q 的坐标为(1,5),直线PQ ∥y 轴;(4)点P 到x 轴、y 轴的距离相等.解:(1)因为点P (a -2,2a +8)在x 轴上,所以2a +8=0,解得a =-4,故a -2=-4-2=-6,则P (-6,0).(2)因为点P (a -2,2a +8)在y 轴上,所以a -2=0,解得a =2,故2a +8=2×2+8=12,则P (0,12).(3)因为点Q 的坐标为(1,5),直线PQ ∥y 轴,所以a -2=1,解得a =3,故2a +8=14,则P (1,14).(4)因为点P 到x 轴、y 轴的距离相等,所以a -2=2a +8或a -2+2a +8=0,解得a =-10或a =-2.当a =-10时,a -2=-12,2a +8=-12,则P (-12,-12);当a =-2时,a -2=-4,2a +8=4,则P (-4,4).综上所述,点P 的坐标为(-12,-12)或(-4,4).22.(9分)在如图所示的平面直角坐标系中描出下面各点:A (0,3)、B (1,-3)、C (3,-5)、D (-3,-5)、E (3,5)、F (5,7)、G (5,0).(1)将点C 向x 轴的负方向平移6个单位,它与点____重合;(2)连接接CE ,则直线CE 与y 轴是什么关系?(3)顺次连接接D 、E 、G 、C 、D 得到四边形DEGC ,求四边形DEGC 的面积.解:描点如题图.(1)D(2)如题图,连接CE .因为C 、E 两点的横坐标相同,故直线CE 平行于y 轴.(3)设CE 与x 轴相交于点H ,则DC =6,EC =10,GH =2,所以S 四边形DEGC =S △EDC +S △GEC =12DC ×EC +12EC ×GH =12×6×10+12×10×2=40.23.(10分)在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.整点P 从原点O 出发,速度为1 cm/s ,且整点P 向上或向右运动,运动时间(s)与整点(个)的关系如下表:整点P 从原点O 出发的时间(s)可以得到整点P 的坐标 可以得到点P 的个数 1(0,1),(1,0) 2 2(0,2),(1,1),(2,0) 3 3(0,3),(1,2),(2,1),(3,0) 4 ………… ……根据上表中的规律,解答下列问题:(1)当整点P 从点O 出发4 s 时,求可以得到的整点P 的个数;(2)当整点P 从点O 出发8 s 时,在直角坐标系中描出可以得到的所有整点;(3)当整点P 从点O 出发多少秒时,可以达到整点(16,4)的位置?解:(1)根据表中所示的规律,点的个数比时间数多1,可计算出整点P 从点O 出发4 s 时,可以得到整点P 的个数为5.(2)由表中所示规律,可知横、纵坐标的和等于时间,则所有整点为(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0).如题图.(3)由表中规律,可知整点的横、纵坐标的和等于到达该点的时间,则当点P 从点O 出发16+4=20(s)时,可以达到整点(16,4)的位置.24.(12分)如图,在平面直角坐标系中,AB ∥CD ∥x 轴,BC ∥DE ∥y 轴,且AB =CD =4 cm ,OA =5 cm ,DE =2 cm ,动点P 从点A 出发,沿A →B →C 路线运动到点C 停止;动点Q 从点O 出发,沿O →E →D 路线运动到点D 停止.若P 、Q 两点同时出发,且点P 的运动速度为1 cm/s ,点Q 的运动速度为2 cm/s.(1)直接写出B 、C 、D 三个点的坐标;(2)当P 、Q 两点出发112s 时,试求△PQC 的面积; (3)设两点运动的时间为t s ,用含t 的式子表示运动过程中△OPQ 的面积S .(单位:cm 2) 解:(1)B (4,5)、C (4,2)、D (8,2).(2)当t =112时,点P 运动的路程为112cm ,点Q 运动到点D 处停止.由已知条件可得BC =OA -DE =5-2=3(cm).因为AB +BC =7 cm >112 cm ,AB =4 cm <112 cm ,所以当t =112时,点P 运动到BC 上,且CP =AB +BC -112=4+3-112=32(cm),所以S △CPQ =12CP ·CD =12×32×4=3(cm 2).(3)当0≤t <4时,点P 在AB 上,点Q 在OE 上,如图1所示.因为OA =5 cm ,OQ =2tcm ,所以S △OPQ =12OQ ·OA =12·2t ·5=5t (cm 2);当4≤t ≤5时,点P 在BC 上,点Q 在ED 上,如图2所示.过点P 作PM ∥x 轴交ED 延长线于点M ,则OE =8 cm ,EM =(9-t )cm ,PM =4 cm ,EQ =(2t -8)cm ,MQ =(17-3t )cm ,所以S △OPQ =S 梯形OPME -S △PMQ -S △OEQ =12×(4+8)·(9-t )-12×4·(17-3t )-12×8·(2t -8)=(52-8t )(cm 2);当5<t ≤7时,点P 在BC 上,点Q 停在点D ,如图3所示,过点P 作PM ∥x 轴交ED 的延长线于点M ,则MD =CP =(7-t )cm ,ME =(9-t )cm ,所以S △OPQ =S 梯形OPME -S △PDM -S △DOE =12×(4+8)·(9-t )-12×4·(7-t )-12×8×2=(32-4t )(cm 2).综上所述,S =⎩⎪⎨⎪⎧ 5t (0≤t <4),52-8t (4≤t ≤5),32-4t (5<t ≤7).图1 图2 图310.1.3 画轴对称图形1.使学生能够按要求作出简单平面图形经过一次对称后的图形.2.通过画轴对称图形,增强学生学习几何的趣味感,培养审美情操.重点让学生识别轴对称图形与画轴对称图形的对称轴.难点画轴对称图形.一、创设情境,问题引入1.如图,作出它们的对称轴.2.如图,给出一个图形和一条直线,那么如何画出这个图形关于这条直线的对称图形呢?二、探索问题,引入新知如图,实线所构成的图形为已知图形,虚线为对称轴,请画出已知图形的轴对称图形.思考下面两个问题:(1)你可以通过什么方法来验证你画的是否正确.(2)和其他同学比较一下,你的方法是最简单吗?在格点图中,很容易画出已知图形的轴对称图形,如果没有格点图,我们还能比较准确地画出已知图形的轴对称图形吗?你能画出点A关于直线L的对称点吗?画法:(1)过点A向直线L画垂线段AO,垂足点O;(2)延长AO至OA1,使OA1=OA.则点A1就是点A关于直线L的对称点.做一做:你能画出线段AB关于直线L的对称线段吗?画法:(1)画点A,点B关于直线L的对称点A1,B1;(2)连结A1,B1.则线段A1 B1就是线段AB关于直线L的对称线段.做一做:你能画出三角形ABC关于直线L的对称图形吗?画法:(1)画出点A,点B和点C关于直线L的对称点A1,B1和C1;(2)连结A1 B1,B1 C1,A1 C1,则△A1 B1 C1就是△ABC关于直线L的对称三角形.从上面的例子可以知道,如果图形是由直线、线段或射线组成时,那么只要画出图形中的特殊点的对称点,然后连结对称点,就可以画出关于这条直线的对称图形.结论:先画点的对称点,再画线段的对称图形,最后画三角形的对称图形.由易到难,这样学生就很容易的知道了知识的形成过程.【例1】如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.画出△ABC 关于直线BM对称的△A1B1C1.分析:画出图形中的特殊点的对称点,然后连结对称点,就可以画出关于这条直线的对称图形.解:如图所示,△A1B1C1即为所求【例2】如图,请把△ABC和△A′B′C′图形补充完整,使得它们关于直线l对称.(保留作图痕迹)分析:过点C,点B′作关于直线l的对称点,连结AB,BC,B′C及A′C′即可.解:如图所示:三、巩固练习1.下面是四位同学作△ABC关于直线MN的轴对称图形,其中正确的是( )2.下列各图都是一个汉字的一半,你能想像出它的另一半并能确定它是什么字吗?(有几个字的笔划在对称轴上).3.如图,先画△ABC关于直线l1的对称△A1B1C1,(直线l1过点C),再画出△A1B1C1,关于直线l2的对称△A2B2C2.4.如图,在网格中有两个大小、形状一样的图形(阴影部分),用这两个图形拼成轴对称图形,试分别在图中画出两种不同的拼法.四、小结与作业小结先小组内交流收获和感想,然后以小组为单位派代表进行总结.教师加以补充.作业1.教材第110页“习题10.1”中第6 题.2.完成练习册中本课时练习.学生是学习的主体,要让学生成为真正的主人,就必须在数学活动中学习数学,也就是在创造中学习数学.本课从最基本的图形中,让学生自己动手画,体验探索成功的快乐;通过动手操作,小组讨论来解决自己提出的问题;通过有层次的练习,提高学生解决问题的能力,巩固所学知识.。

七年级数学上册第五章一元一次方程4应用一元一次方程__打折销售教案新版北师大版

七年级数学上册第五章一元一次方程4应用一元一次方程__打折销售教案新版北师大版

4 应用一元一次方程——打折销售1.理解成本、售价、利润、利润率之间的关系.2.会列一元一次方程解决有关商品打折销售的问题.重点理解售价、成本、利润、利润率之间的关系.难点列一元一次方程解决有关商品打折销售的问题.一、复习导入教师:列方程解决实际问题的关键是什么呢?学生回答,教师点评.教师:今天,我们学习一元一次方程的一个应用——打折销售.二、探究新知课件出示问题:商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%;另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?教师提示:如果进价大于售价就亏损,反之就盈利.要求学生列出方程,写出解题过程.教师点评,并讲解:本题中,设盈利25%的那件衣服的进价是x元,它的利润就是0.25x元,根据进价+利润=售价,列出方程x+0.25x=60.由此得x=48.类似地,可以设另一件衣服的进价为y元,它的利润是-0.25y元,列出方程y-0.25y =60.由此得y=80.两件衣服的进价是x+y=128元,而两件衣服的售价是60+60=120元,进价大于售价,由此可知卖这两件衣服总共亏损8元.课件出示练习:在商品市场经常可以听到小贩的叫卖声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利2元卖了,他还能获利20%,求一个玩具赛车的进价是多少元?要求学生独立思考后列出方程汇报答案,教师点评.教师:在打折销售问题中的利润、利润率、成本、售价之间有怎样的关系?引导学生得出等量关系:①利润=售价-成本;②利润率=利润成本×100%.教师:通过上面的讲解和练习,你能总结出列一元一次方程解决实际问题的步骤吗?引导学生总结:①分析问题,找出等量关系式;②列出方程,求出方程的解;③验证方程的解是否合理.三、举例分析例(课件出示教材第146页例题)要求学生独立完成后汇报答案,教师点评.四、练习巩固1.教材第146页“随堂练习”.2.某服装店以135元的价格卖出两件衣服,按成本计算,第一件盈利25%,第二件亏损25%,则该商店卖这两件衣服总体上是赚了,还是亏了?这两件衣服的成本价会一样吗?算一算.五、小结1.通过本节课的学习,你有什么收获?2.成本、售价、利润、利润率之间有怎样的关系?3.列一元一次方程解实际问题的步骤有哪些?六、课外作业教材第146页习题5.7第1~4题.本节课是对前面所学的一元一次方程的一个应用——打折销售.对于打折问题,学生在小学阶段已有所接触和认识,本节课是进一步地延伸此知识.在教学过程中,通过由具体实例的分析、思考与合作学习的过程培养学生理论联系实际的辩证唯物主义思想以及善于分析问题、利用知识解决实际问题的良好学习习惯.根据具体问题中的数量关系,形成方程的模型,初步培养学生利用方程的观点认识现实世界的意识和能力.通过分组合作学习的活动,让学生学会在活动中与他人合作,并能与他人交流思维的过程与结果.调动学生学习的积极性和主动性,充分体现“自主、合作、交流、探究”的新课程理念.。

《应用一元一次方程—打折销售》一元一次方程PPT课件

《应用一元一次方程—打折销售》一元一次方程PPT课件
知识要点基础练
综合能力提升练
拓展探究突破练
-3-
3.小明和小丽需购买同一本经典名著书,小明到书店买打九折,小丽在网店买打八折,但需要
另外花10元的快递费,结果小丽比小明少花了2元钱,求这本经典名著的定价是多少?若设这
本经典名著的定价为x元,则可列方程为 0.9x-2=0.8x+10 .
第五章
5.4 应用一元一次方程——打折销售
答:小红购买跳绳11根.
第五章
5.4 应用一元一次方程——打折销售
知识要点基础练
综合能力提升练
拓展探究突破练
-13-
14.今年某网上购物商城在“双11购物节”期间搞促销活动,活动规则如下:
①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500
元的,其中500元部分打9折,超过500元部分打8折.
知识要点基础练
综合能力提升练
拓展探究突破练
解:( 1 )200×0.9=180( 元 ).
( 2 )因为500×0.9=450( 元 ),490>450,所以第2次购物超过500元.
设第2次购物商品的总价是x元.依题意,得
500×0.9+0.8( x-500 )=490,
解得x=550,则550-490=60.
第五章 一元一次方程
应用一元一次方程——打折销售
第五章
5.4 应用一元一次方程——打折销售
知识要点基础练
综合能力提升练
拓展探究突破练
-2-
知识点1 销售中的盈亏问题
1.某商店出售一批服装,每件售价为150元,可获利20%,求这种服装的成本价.设这种服装的
成本价为x元,则可得方程为( C )

5.4一元一次方程的应用——打折销售 优秀学案

5.4一元一次方程的应用——打折销售 优秀学案

5.4应用一元一次方程——打折销售导学案
一、复习练习:1、计算:–22÷
23×(1–23)2; 2、计算:[]42)3(1823÷⨯--+-
3、解方程:
3752423--=-y y
二、【学习目标】
1、理解商品的进价、标价、售价、利润和利润率之间的关系,理解商品打折销售
2、会用方程解决关于商品销售的有关问题.
四、导入:比一比,看看谁是理财好手!
前两天我在网上给我家宝宝买了一架遥控飞机,其中店家A :原价200元,不过打六折。

店家B: 原价250元,店庆全场五折。

你猜猜我是从哪家店买的?
(答案要简明扼要,字迹清晰工整)
三、探究新知
例1 按遥控飞机成本价提高40%后标价,又以8折优惠卖出,结果我还获利15元,你知道这架遥控飞机到底是花多少钱买的吗?
例2 某商场将某种商品按原价的8折出售,此时商品的利润率是10%,此商品的进价为1800元,那么商品的原价是多少?
① 问题中的等量关系是什么?你能独立完成这道题吗?
② 看看你和身边同学列的方程一样吗?答案呢?
③ 为什么会列出不同的方程,交流下彼此的想法吧!。

5.4 应用一元一次方程——打折销售 导学案

5.4  应用一元一次方程——打折销售 导学案

5.4 应用一元一次方程——打折销售 导学案班级: 课时: 时间:学、讲、练 导学 案随 笔学习目标1.能够通过具体实例解释日常生活中的打折、利润、利润率、售价、标价、成本等意义.2.会用公式:(1)利润=销售价-成本价,100%=⨯利润利润率成本;(2)打折后的售价=标价×折扣等来解决简单打折销售问题.学习重点 利用一元次方程解决简单打折销售问题.学 习 流 程一、课前预习1. 某商品的进价是15000元,售价是18000元,则商品的利润为________,利润率是_________.2. 一件商品的进价为100元,要想获利20元,售价应为________元.3. 一件商品的进价为100元,要想获利20%,售价应为_________元.4. 一件商品若以240元出售,可获利20%,则进价为_________元.5. 一件商品的标价为100元,若打九折出售,则售价为_________元.6.一家商店以125元 / 件的进价购进某种服装,计划按成本价提高40%后标价,再以8折(即按标价的80%)优惠卖出.(1).求这种服装的标价是多少元. (2).求这种服装的售价是多少元.(3).求这种服装收购出后,每件可获利多少元. 二、反馈交流1.课前预习题.2.187页引例(指导学生化解方程). 三、达标训练1. 某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为( )A.26元B.27元C.28元D.29元2.某商店销售一批服装,每件标价150元,打8折出售后,仍可获利20元,求这种服装的成本价为每件多少.四、总结提升“议一议”188页当 堂 检 测1.某商品进价是400元,标价是550元,按标价的8折出售时,该商品的利润率是__________.2.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”.你认为售货员应标在标签上的价格为___________元. 3.小华的妈妈为爸爸买了一件衣服和一条裤子,共用了306元,其中衣服按标价打七折,裤子按标价打八折,衣服的标价为300元,求裤子的标价为 多少元.4(选做).已知某种商品的售价为204元,即使促销降价20%仍有20%的利润,则该商品的成本价是( )A .133B .134C .135D .136 作 业 必做题 习题5.8“问题解决”1、2;“随堂练习”1 选做题 反 思收获 困惑 改进主编:韩建立 参编:郭建梅 刘婷。

北师版七年级上册数学教案 应用一元一次方程——打折销售

5.4 应用一元一次方程——打折销售【教学目标】1.使学生经历探索打折销售中的已知量和末知量之间的相等关系,列出一元一次方程解简单的应用题;体验数学知识在现实生活中的应用. 2.使学生进一步了解列出一元一次方程解应用题这种代数方法及其步骤;培养学生的分析问题和解决问题的能力.【重难点预见】重点:用列方程的方法解决打折销售问题。

难点:用列方程的方法解决打折销售问题。

【教学流程】一、知识链接。

1.引例一件衣服标价是200元,现打7折销售。

问:买这件衣服需要多少钱?若已知这件衣服的成本(进价)是115元,那么商家卖出这件衣赚了多少钱?2.议一议:(1)、把下面的“折扣数”化成百分数“六折”“七五折”“八八折”(2)、你是怎样理解某种商品打“六折”出售的?想一想:假如你是商店老板你追求的是什么?公式:利润=卖出价-成本价(或者:利润=销售价-成本价)利润率 = 利润成本×100% 3.算一算:(1)、原价100元的商品打8折后价格为 元;(2)、原价100元的商品提价40%后的价格为 元;(3)、进价100元的商品以150元卖出,利润是 元,利润率是 ;(4)、原价X 元的商品打8折后价格为 元;二、自主教学。

看课本p141—142内容,解决提出的问题。

例1 一家商店将服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?想一想:15元利润是怎样产生的?解:设每件服装的成本价为X 元,(用含X 的代数式表示)那么 每件服装的标价为: ;每件服装的实际售价为: ;每件服装的利润为: ; 由此,列出方程: ; 解方程,得:X= .因此,每件服装的成本价是 元.例 2 某商场将某种商品按原价的8折出售,此时商品的利润率是10%,已知这种商品的进价为1800元,那么这种商品的原价是多少元?解:设商品原价为X元,根据题意,得方程:;解方程,得:X= .因此,这种商品的原价是元.总结:用一元一次方程解决实际问题的一般步骤是什么:(2).设未知数X,并用X表示其它相关的量,根据等量关系列出方程.(3).解方程并验证结果的合理性。

七年级数学上册教学课件《应用一元一次方程——打折销售》


分析: 设商品原价为x元
售价 成本 利润 80%x 1800 1800×10%
等量关系: 售价-成本=利润
80%x-1800=1800×10%.
探究新知
5.4 应用一元一次方程——打折销售
某商场将某种商品按原价的八折出售,此时商品的
利润率是10%.已知这种商品的进价为1800元,那么这种
商品的原价是多少?
解:设商品的原价是x元,根据题意,得
80%1x8−001800×100%=10% 解这个方程,得x=2475.
等量关系:
(售价-成本) ×100%=利润率 成本
答:这种商品的原价为2475元.
探究新知
5.4 应用一元一次方程——打折销售
归纳总结
1. 用一元一次方程解决实际问题的关键: (1) 仔细审题. (2) 找等量关系. (3) 解方程并验证结果.
则由题意得: x (1+25%)=135.
解这个方程, 得: x=108.
则第一件衣服盈利: 135-108=27(元).
设第二件衣服的成本价是y元,
由题意得: y(1-25%)=135.
解这个方程, 得: y=180.
则第二件衣服亏损: 180-135=45(元),
总体上约亏损了: 45-27=18 (元).
利润=售价-成本价 利润率:利润占成本的百分比. 利润率=利润÷成本×100% =(售价-成本) ÷成本×100%
探究新知
5.4 应用一元一次方程——打折销售
交流思考
①一个篮球成本是80元,售价是100元,则这个篮球的利润
是_2_0__元,利润率是_2_5_%__.
售价是120元呢?
利润=售价-成本价
连接中考

《5.4 应用一元一次方程-打折销售》教学设计(配套名师课件)

北师大版数学七年级应用一元一次方程——打折销售教学设计讲授新课2、出示课件教师引导学生探索打折销售问题:如图:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠销售,结果仍获利15元,这种服装每件的成本价是多少元教师可出示表格,让学生尝试用填写表格的形式理清数量之间的关系.解:如果设每件服装的成本价是x元,成本价标价售价售价-成本价利润xx(1+40%) (1+40%)x·80%(1+40%)x·80%-x15列出方程(1+40%)x·80%-x=15.解方程得x=125.答:这种服装每件的成本价是125元.师生共同归纳:做一做:例1.某商场将某种商品按原价的八折出售,此时商品的利润率是10%.已知这种商品的进价为让学生自己通过观察,分析、交流、辩证、归纳,然后老师讲解,师生交流,总结应用一元一次方程——打折销售.鼓励学生积极思考,自主解决问题,小组1.通过学生的观察、对比、分析和讨论,师生共同探究应用一元一次方程——打折销售,既可以培养学生观察、思考、分析、总结、归纳能力,又培养了学生的语言表达能力,体会有关销售的数量量关系,量之间的等量关系抽象成数学问题,利用前几节学的解方程方法解决实际问题.引导学生通过填表,找到等量关系,正确列出方程.同时还可以锻炼学生思维的主动性.1、在解决实际问题的过程中,让学生体会应用一。

5.4 应用一元一次方程—打折销售教案

4 应用一元一次方程——打折销售【知识与技能】1.理解商品销售中所涉及的进价、标价、售价、利润及利润率的含义.2.能根据商品销售问题中的数量关系找出等量关系,列出方程.【过程与方法】学生探索打折销售中的已知量和未知量之间的相等关系,列出一元一次方程解简单的应用题,体验数学知识在现实生活中的应用,培养学生的分析问题和解决问题的能力.【情感态度】结合本课教学特点,教育学生热爱生活、热爱学习,感受数学知识在生活中的应用,激发学生学习的兴趣.【教学重点】理解商品销售中的进价、标价、售价、利润、利润率等的含义,弄清它们之间存在的等量关系,会根据等量关系列出方程.【教学难点】理解销售问题中打折的意义.一、情境导入,初步认识某经销商将进价为50元的商品标价165元,却打着“5折亏本大甩卖”的广告,小明妈妈看见广告觉得很划算,但小明觉得经销商在欺骗顾客.你同意小明的观点吗?你遇到过这样的事情吗?【教学说明】学生很容易从生活中找到打折销售的例子,通过计算可以得出经销商并没有亏本.二、思考探究,获取新知1.运用一元一次方程解决打折销售问题问题1 教材第145页“想一想”上面的内容.【教学说明】学生通过思考、分析,与同伴进行交流,解决下面的问题.初步 体会打折销售问题.问:设每件服装的成本价为x 元,你能用含x 的代表式表示其他的量吗?问题中有怎样的等量关系?每件服装的标价为:______________________;每件服装的实际售价为:__________________;每件服装的利润为:______________________;由此,列出方程:________________________;解方程,得x=___________________________;因此,每件服装的成本价是_______元.【归纳结论】进价是进货时的价格,标价是出售时所标明的价格,售价是出售时的实际价格.售价=标价×10打折数,利润=售价-进价. 2.运用一元一次方程解决利润率问题问题2 某商场将某种商品按原价的8折出售,此时商品的利润率是10% .已知这种商品的进价为1800元,那么这种商品的原价是多少?【教学说明】 学生通过思考、分析,与同伴进行交流,掌握原价、售价、进价、利润、利润率这几个量之间的关系,能够根据这几个量之间的关系解决下面的问题.利用这几个量之间的关系解决下面的问题.设商品原价是x 元.则该商品的实际售价是________;该商品的利润是________;该商品的利润率是________;由此,列出方程________;解方程,得x=________;因此,这种商品的原价为________.【归纳结论】也可变形为:进价×利润率=售价-进价.三、运用新知,深化理解1.大润发超市元旦实行货物六折优惠销售,定价为8元的物品,售价为_______元.售价为30元的物品,定价为_______元.2.一件商品进价为50元,售价为90元,其利润是_______元,利润率是_______.3.某商品标价为132元,若以9折出售,仍可获得10%,则该商品进价是().A.105元B.106元C.108元D.118元4.某服装商贩同时卖出两套服装,每套均卖168元,按成本计算,其中一套盈利20%,另一套亏本20%,则该商贩在这次经营中().A.亏本14元B.盈利14元C.不亏不盈D.盈利20元5.一件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这批夹克每件的成本价是多少元?6.某商品的进价是500元,标价为750元,商店要求以利润为5%的售价打折出售,则应打几折?【教学说明】学生自立完成,检测对运用一元一次方程解决打折销售和利润率问题等知识的掌握情况,加深对新学知识的理解,对学生的疑惑,教师应及时加以指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.4.8 502.40 80%3.C4.A5.设这批夹克每件的成本价是x元,由题意得x(1+50%)×80%=60解得x=50所以这批夹克每件的成本价是50元.6.设打x折销售,由题意得:750×0.1x-500=500×5%解得x=7所以应打7折销售.四、师生互动,课堂小结1.师生共同回顾进价、标价、售价、利润、利润率这几个量之间的关系.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.1.布置作业:从教材“习题5.7”中选取.2.完成练习册中本课时的相应作业.本节课从学生感受生活中的销售问题,到运用一元一次方程解决打折销售和利润率等问题,培养学生动手、动脑习惯,加深对所学知识的认识,并运用所学知识解决实际问题,体验应用知识的成就感,激发学生学习的兴趣,对学有疑惑的学生还需加以指导.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师版七年级数学(上)
应用一元一次方程——打折销售导学案 5.7
编写人:康丽娟
班级:_____________姓名:_____________ 家长签字:_____________

一、学习目标
1、能通过具体实例解释日常生活中的打折、利润、利润率、售价、标价、成本等意
义。
2、会用公式:⑴利润=销售价—成本价,利润率=利润/成本×100%
⑵打折后的售价=标价×折扣等来解决简单的实际问题。

二、温故知新
1. 一件衣服标价是200元,现打7折销售。问:买这件衣服需要多少钱?若已知
这件衣服的成本(进价)是115元,那么商家卖出这件衣赚了多少钱?

2.把下面的折扣数化成百分数:六折_______ 七五折_______ 八八折__________;
3.商品经济中的盈利与亏损.
(1) 利润=________ - _________;
(2) 当_______>________时,盈利,当________<________时,亏本;
(3) 商品利润率=__________/__________×100%;
4.算一算:
(1)、原价100元的商品打8折后价格为 元;
(2)、原价100元的商品提价40%后的价格为 元;
(3)、进价100元的商品以150元卖出,利润是 元,利润率是 ;
(4)、原价X元的商品打8折后价格为 元;
(5)、原价X元的商品提价40%后的价格为 元;
(6)、原价100元的商品提价P %后的价格为 元;
(7)、进价a元的商品以b元卖出,利润是 元,利润率是 。

三、
自主探究:阅读课本145-146,完成下列问题
探究活动(一):阅读课本P145,完成填空
1、问题中有怎样的等量关系? 等量关系: _____________________________
解:设每件服装的成本价为x元,那么

每件服装的标价为: ;
每件服装的实际售价为: ;
每件服装的利润为: ;
由此,列出方程: ;
解方程,得:x= 。
因此,每件服装的成本价是 元。

活动探究(二):
阅读课本P146例题,完成下列问题
分析:这10%的利润率是怎么来的?
即等量关系式是: .
解:设这种商品的原价是x元.根据题意,得
方程为:

答: .
解题感悟:1、通过解决这两道题你有何收获和体验?你认为列方程解应用题的关
键是什么?
2、销售问题中常用的等量关系是: .

3、列方程解应用题的基本步骤是?
四:随堂练习 1、某商品的每件销售利润是72元,进价120元,则售价是 元。 2、一件商品的标价为100元,现以八折销售,售价为_____元,如果进价为70元,则它的利润 为______元,利润率是________. 3 某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为( ) A.26元 B.27元 C.28元 D.29 4、 商店对某种商品打折出售,打折后商店的利润率为10%,商店的进价为1800元,原标价为3000 元, 若设此商店按x折出售, 可得方程 , 5、一件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这批夹克每件的成本价是多少元? 五、小结: 你还有哪些收获: 哪些疑问: 六:当堂检测:
1 某商品的标价为220元,九折卖出后盈利10%,则该商品的进价为______元.

2. 一种商品进价为50元,为赚取20%的利润,该商品的标价为________元.
3、一商店把货品按九折出售,仍可获利10%,若该货品的进价为7740元,则
标价是 元?

4、两件商品都卖84元,其中一件亏本20%。另一件盈利40%,则两件商品
卖后( )。
A.盈利16.8元 B.亏本3元 C .盈利3元 D.不亏不盈

5.某种商品的零售价为每件900元,为了适应市场竟争,商店按零售价的九折降价
并让利40元销售,仍可获利10%。则进价为每件多少元?

课后作业:P146数学理解1,问题解决2,3,4.

相关文档
最新文档