平面向量的数量积PPT教学课件

合集下载

平面向量的数量积PPT课件

平面向量的数量积PPT课件

【答案】
5 4
(2)△ABC 中,∠BAC=120°,AB=2,AC=1,D 是 边 BC 上一点,DC=2BD,则A→D·B→C=________.
【思路分析】 考查平面向量的基本定理及向量数量 积运算.
【解析】 A→D=A→B+B→D=A→B+13B→C =A→B+13(A→C-A→B)=13A→C+23A→B, 又∵B→C=A→C-A→B,A→C2=1,A→B2=4, ∴A→B·A→C=2×1×cos120°=-1,
3.注意 ①两个向量的数量积是一个实数. ∴0·a=0(实数)而 0·a=0. ②数量积不满足给合律(a·b)·c≠a·(b·c). ③a·b 中的“·”不能省略.
1.关于平面向量 a,b,c,有下列三个命题: ①若 a·b=a·c,则 b=c. ②|a·b|=|a|·|b|⇔a∥b. ③a⊥b⇔|a+b|=|a-b|; ④|a|=|b|⇔|a·c|=|b·c|.
则 k=( )
A.-12
B.-6
C.6
D.12
答案 D
解析 ∵2a-b=(4,2)-(-1,k)=(5,2-k),由 a·(2a -b)=0,得(2,1)·(5,2-k)=0,∴10+2-k=0,解得 k= 12.
5.已知两个单位向量 e1,e2 的夹角为π3,若向量 b1 =e1-2e2,b2=3e1+4e2,则 b1·b2=________.
【思路分析】 根据非零向量数量积的定义直接求解即 可,只需确定其夹角 θ.
【解析】 ①当 a∥b 时,若 a 与 b 同向,则它们的 夹角为 0°,
∴a·b=|a||b|cos0°=2×5×1=10; 若 a 与 b 反向,则它们的夹角为 180°, ∴a·b=|a||b|cos180°=2×5×(-1)=-10. ②当 a⊥b 时,它们的夹角为 90°, ∴a·b=|a||b|cos90°=2×5×0=0. ③当 a 与 b 的夹角为 30°时, a·b=|a||b|cos30°=2×5× 23=5 3.

数学公开课平面向量数量积的各种求法ppt课件

数学公开课平面向量数量积的各种求法ppt课件

向量 $vec{a}$ 与单位向 量 $hat{u}$ 的数量积等 于 $vec{a}$ 在 $hat{u}$ 方向上的投影 ,即 $vec{a} cdot hat{u} = |vec{a}| cos theta$。
几何意义及应用
01 夹角计算
02 投影计算
03 判断垂直关系
04 判断共线关系
05 在力学中的应用
物理意义
在物理中,数量积可以表示两个力的合力在某一方向上的分量,或者表示一个 力在另一个力的方向上的投影。
运算律与性质
交换律
分配律
$vec{a} cdot vec{b} = vec{b} cdot vec{a}$
$(vec{a} + vec{b}) cdot vec{c} = vec{a} cdot vec{c} + vec{b} cdot vec{c}$
2. 已知向量$vec{a} = (1,2)$,向量$vec{b} = (2,-1)$,且$vec{a}$与$vec{b}$的夹角为锐 角,求$vec{a} cdot vec{b}$。
解:首先计算夹角$theta$的余弦值,由于$costheta > 0$且夹角为锐角,因此可以直接计 算$costheta = frac{vec{a} cdot vec{b}}{|vec{a}| cdot |vec{b}|} = frac{1 times 2 + 2 times (-1)}{sqrt{1^2 + 2^2} times sqrt{2^2 + (-1)^2}} = 0$。
$\vec{a} \cdot (\vec{a} + 2\vec{b}) = (1, 2) \cdot (5, 0) = 1 \times 5 + 2 \times 0 = 5$。 • 例题 2:已知 $|\vec{a}| = 3$,$|\vec{b}| = 4$,$\vec{a}$ 与 $\vec{b}$ 的夹角为 $60^\circ$,求

平面向量的数量积_教学PPT课件

平面向量的数量积_教学PPT课件

a

b
的夹角的余弦值为-
2 10 .
(2)设 a 与 c 的夹角为 θ,
则 cos θ=|aa|··c|c|=-25·-229=-75858,
所以 c 在 a 方向上的投影为|c|cos θ=-72 2.
(3)因为 c=λ1a+λ2b,所以5-=2= -λλ11+ +43λλ22, ,
解得 λ1=-273,λ2=37.
【解析】 (1)证明:由已知得,A→B=(1,1),A→D=(-3,3),A→B·A→D=-3 +3=0,所以A→B⊥A→D.
(2)设 C(x,y),则由A→D=B→C得,(-3,3)=(x-3,y-2), 所以xy--32==-3. 3, 解得xy= =05., 所以 C(0,5).
(3)易求得 OD 的方程为 4x+y=0.设 M(a,b),因为点 M 为直 线 OD 上的一个动点,所以 4a+b=0,即 b=-4a.于是M→A·M→B= (2-a,1-b)·(3-a,2-b)=(2-a)(3-a)+(1-b)(2-b)=6-5a+a2 +(1+4a)·(2+4a)=17a2+7a+8.
|a|= x21+y21
cos θ=
x1x2+y1y2 x21+y21· x22+y22
典例剖析
知识点 1 平面向量数量积的坐标运算 【例 1】 已知向量 a 与 b 同向,且 b=(1,2),a·b=10. (1)求向量 a 的坐标; (2)若 c=(2,-1),求(b·c)a. 思路点拨: (1)设出向量 a 的坐标,由已知列出方程,即可解得 a 的坐标. (2)用向量的坐标直接计算即可.
解:由向量的数量积的坐标表示可知,a·b=3k+0×5, 又 a·b=3 k2+25cos 135°, ∴3k=3 k2+25cos 135°,得 k=-5.

平面向量数量积的坐标表示(教学课件)高一数学(人教A版2019必修第二册)

平面向量数量积的坐标表示(教学课件)高一数学(人教A版2019必修第二册)

= 2 −
1
4
3
4
1
4
3
4
3
)(
2
+ 2 − = 1 − − = 0,
∴( + ) ⊥ ( − ).
3
)
2

3
)
2
3
).
2
课堂小结
设非零向量 = (1 , 1 ), = (2 , 2 ),与的夹角为θ,则有:
数量积

两点间
距离公式
垂直
夹角
坐标表示
∙ = 1 2 + 1 2
|| =
1 2 + 1 2 或|| = 1 2 + 1 2
设1 (1 , 1 ),2 (2 , 2 ),则|1 2 | =
(1 − 2 )2 +(1 2 )2 ⊥ ⇔ ∙ = 0 ⇔ 1 2 + 1 2 = 0
解决向量夹角问题的方法及注意事项
x1x2+y1y2
a·b
(1)求解方法:由 cos θ=

直接求出 cos θ.
|a||b|
2
2
2
2
x1+y1 x2+y2
(2)注意事项:利用三角函数值cos θ求θ的值时,应注意角θ的取值范围是
0°≤θ≤180°.利用cos θ=
a·b
判断θ的值时,要注意cos θ<0时,有两种情况:
可设(, 2),因为 ∙ = ( 2, 0) ∙ (, 2) = 2,所以 = 1,(1,2).
所以 ∙ = ( 2, 1) ∙ (1 − 2, 2) = 2.
B
6.(2)已知与同向, = (1,2), ∙ = 10.

平面向量的数量积PPT课件

平面向量的数量积PPT课件
|b|= (2n-3m )2= 4n2-12m ·n+9m 2= 7. 而a·b=(2m +n)·(2n-3m )=m ·n-6m 2+2n2=-72, 设a与b的夹角为θ,则cos θ=|aa|··|bb|=-772=-12. 又θ∈[0°,180°],故a与b的夹角为120°.
20
题型四 平面向量的垂直问题 例4 已知a=(cos α,sin α),b=(cos β,sin β)(0<α<β<π).
=2×((--44))+2+37×2 7=
13 = 65
65 5.
6
4.已知|a|=6,|b|=3,a·b=-12,则向量 a 在向量 b 方
向上的投影是
(A )
A.-4 B.4 C.-2 D.2
解析 a·b 为向量 b 的模与向量 a 在向量 b 方向上
的投影的乘积,而 cos〈a,b〉=|aa|··b|b|=-23, ∴|a|·cos〈a,b〉=6×-23=-4,故选 A.
23
变式训练4 已知平面内A、B、C三点在同一条直线上, OA
=(-2,m),O→B=(n,1), OC =(5,-1),且O→A⊥ O→B ,
求实数m,n的值.
解 由于A、B、C三点在同一条直线上, 则 AC ∥A→B, AC =OC OA =(7,-1-m), A→B=O→B-O→A=(n+2,1-m),
4
基础自测 1.已知向量 a 和向量 b 的夹角为 30°,|a|=2,
|b|= 3,则向量 a 和向量 b 的数量积 a·b =___3_____. 解析 a·b=|a||b|cos 30°=2× 3× 23=3.
5
3
2.在△ABC 中,AB=3,AC=2,BC= 10 ,则 AB·AC =___2 ___.

6.2.4向量的数量积 课件【共48张PPT】

6.2.4向量的数量积 课件【共48张PPT】
5×3×4×cos 120°-2×4 =25.
[例 3] 已知|a|=3,|b|=4,|c|=5,向量 a,b 的夹角是 120°,a,c 的夹角是
45°.求:
(3)a·(a-4b+ c).
2
2
解:(3)a·(a-4b+ c)=a -4a·b+ a·c=|a| -4|a||b|cos 120°+ |a|
向量运算的相互转化.
2
2
(3)一些常见的等式应熟记,如(a±b)2=a2±2a·b+b2,(a+b)·(a-b)=a2b2等.
即时训练 4-1:已知|a|=1,|b|=3,且|a-b|=2,求 |a+b|.
解:法一
2
2
2
2
因为|a-b| =(a-b) =a -2a·b+b =1+9-2a·b=4,


(2)如图(2),在平面内任取一点 O,作=a,=b,过点 M 作直线 ON 的垂线,

垂足为 M1,则 就是向量 a 在向量 b 上的 投影向量
.
(3)设与 b 方向相同的单位向量为 e,a 与 b 的夹角为θ,对任意的θ∈[0,π],

都有 = |a|cos θ e .
||
cos
||
θ=cos

答案:-2e -a


· a=- a.



方法总结
向量 a 在向量 b 上的投影向量的求法
将已知量代入 a 在 b 方向上的投影向量公式|a|cos θ e(e 是与 b 方向

)中计算即可.
||
相同的单位向量,且 e=
即时训练 2-1:已知|a|=4,|b|=6,a 与 b 的夹角为 60°,则向量 a 在向量 b

6-3-5 平面向量数量积的坐标表示(教学课件)-高中数学人教A版 (2019)必修第二册

解:如图,在平面直角坐标系中画出点,,,
我们发现是∆直角三角形.证明如下:
因为 = − , − = (, ),
= − − , − = (−, )
所以 ∙ = × − + × =
于是 ⊥
因此, ∆直角三角形
6.3.5 平面向量数量
积的坐标表示
引入



i i =

ij=
1

0


j j =

j i =
1
0
数量积坐标表示
因为a x1 i y1 j, b x2 i y2 j,
所以a b ( x1 i y1 j ) ( x2 i y2 j )
2
方法一:AM·AN=AD+ AB·AB+ AD
3
2

1 2 1 2
=0+ ×2 + ×3 +0=5.
2
3


方法二:以 A 为原点,AB,AD的方向分别为 x,y 轴的
正方向建立平面直角坐标系,则 A(0,0),M(1,2),N(3,1),


→ →
于是AM=(1,2),AN=(3,1),故AM·AN=5.
例1
(1)已知向量a=(-1,2),b=(3,2).
①求a·(a-b);
②求(a+b)·(2a-b);
③若c=(2,1),求(a·b)c.
①方法一:∵a=(-1,2),b=(3,2),∴a-b=(-4,0).
∴a·(a-b)=(-1,2)·(-4,0)=(-1)×(-4)+2×0=4.
方法二:a·(a-b)=a2-a·b=(-1)2+22-[(-1)×3+2×2]=4.

平面向量的数量积公开课ppt课件

积(或内积),记作a b ,即
a b a b cos .
规定:零向量与任一向量的数量积为 0 .
注:
(1) 两个向量的数量积是一个数量,这数
量的大小与两个向量的长度及其夹角有
关.
(2)前面所说的力所做的功,就是力
此 点
F 与其作用下物体产生的位移 s 的数 很

量积 F s .

(3)两个向量a 与 b 的数量积
D
求:(1)AD • BC
(2) AB • CD
60
A
C B
(3) AB • DA
4. 向量的投影的概念
(1) 定 义 : 如 图 , 设OA a , OB b , AOB ,
过 点 B 作 BB1 垂 直 于 直 线OA , 垂 足 为B1 , 则
OB1 b cos .
我 们 把 b cos 叫 做 向 量b 在 a 方 向 上 的 投 影.
2 则a • b ( ) 2、 | a | 12,| b | 9, a • b 54 2,
则向量a与向量b的夹角 ( )
例2 : 如图:边长为 2的正三角形ABC中,
设BC a,CA b
C
求a • b 的值。
A
B
练习:在平行四边形ABCD中,
已知|AB|=4,|AD|=3,DAB 60
特别地,a 2 a 2 , 也就是 a
2
a.
(4) cos a b . (5) a b a b .
ab
• 6. 进一步思考:
(1) 在实数中,如果 a b 0 , 且 a 0 , 那么, 一定有 b 0.这一结论对于向量,还 成立吗?
若 a b 0 , 且 a 0 , 是否一定有 b 0 .

数学:2.4.2《平面向量数量积的坐标表示、模、夹角》PPT课件(新人教A版必修4)


4、两向量夹角公式的坐标运算
设a与b 的夹角为(0 180 ),

则 cos
a b ab
设a x1 , y1 ), b ( x2 , y2 ), 且a与b夹角为, ( (0 180 )则 cos
2 1 2 1 2 2
x1 x2 y1 y2 x y x y
(1) a a a 或 a
2
a a;
(1)向量的模 设a ( x, y ), 则 a x y , 或 a
2 2 2 2 2
x y ;
(2)两点间的距离公式 则 AB (x1 x2 ) y1 y2 ) (
=(x1,y1), b =(x2,y2),则
故两个向量的数量积等于它们对应 坐标的乘积的和。即 y A(x ,y )
1 1
a b x1 x2 y1 y2 .
B(x2,y2)
b
j
a
i
o
x
根据平面向量数量积的坐标表示,向 量的数量积的运算可转化为向量的坐标运 算。
2、向量的模和两点间的距离公式
设两个非零向量
a
a x1 i y1 j b x2 i y2 j , a b ( x1 i y1 j ) ( x2 i y2 j ) 2 2 x1 x2 i x1 y2 i j x2 y1 i j y1 y2 j x1 x2 y1 y2
例3 (1)已知 a =(4,3),向量 b 是 垂直于 a 的单位向量,求 b .
(2)已知 a 10 , b (1,2),且a // b,求a的坐标.
3 (3)已知a (3,0), b (k ,5),且a与b的夹角为 , 4 求k的值.

平面向量的数量积教学课件


注意向量的夹角和方向
总结词
平面向量的数量积不仅与向量的模长有关,还与向量 的夹角和方向密切相关。
详细描述
平面向量的数量积是两个向量夹角的余弦值与向量模 长的乘积。因此,向量的夹角和方向对数量积的计算 至关重要。当两个向量的夹角为90度时,它们的数量 积为0;当两个向量的夹角为180度时,它们的数量积 为负;当两个向量的夹角为锐角时,它们的数量积为 正。此外,当两个向量的方向相同时,它们的数量积 为正;当两个向量的方向相反时,它们的数量积为负 。
平行四边形的面积
总结词
平行四边形的面积等于两向量坐标对应 乘积的和。
VS
详细描述
设平行四边形ABCD的两条边AB和AD分 别对应于向量a和向量b,则平行四边形 的面积可以表示为S=|a||b|cos(π−θ),其 中θ是向量a和向量b之间的角度。可以看 出,当向量a和向量b垂直时, cos(π−θ)=-1,此时面积最小,为0;当 向量a和向量b平行时,cos(π−θ)=1,此 时面积最大,为|a||b|。因此,平行四边 形的面积与两向量的长度和夹
交换律
01
02
03
交换律描述
两个向量的数量积不改变 ,即向量a和向量b的数量 积等于向量b和向量a的数 量积。
数学符号表示
若a = (x1, y1) ,b = (x2, y2),则a·b = b·a。
交换律的意义
在解决平面向量数量积问 题时,可以任意调换两个 向量的位置,而不会改变 问题的结果。
注意向量的模长和坐标表示
要点一
总结词
要点二
详细描述
平面向量的模长和坐标表示是数量积计算的两种常用方法 ,需注意它们之间的区别和联系。
平面向量的数量积可以通过两种方法进行计算:一种是直 接使用向量的模长和夹角进行计算,另一种是使用向量的 坐标表示进行计算。在使用模长和夹角进行计算时,需要 注意向量的单位长度为1的限制,同时还要考虑向量的方向 。在使用坐标表示进行计算时,需要注意向量的起点是否 重合,以及坐标轴的方向和单位。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档