2022年辽宁省沈阳市中考数学试卷解析
2022年辽宁省营口市中考数学试卷(解析版)

2022年辽宁省营口市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.(3分)在,0,﹣1,2这四个实数中,最大的数是()A.0B.﹣1C.2D.2.(3分)如图是由五个相同的正方体搭成的几何体,这个几何体的左视图是()A.B.C.D.3.(3分)下列计算正确的是()A.a6÷a2=a3B.(a2)4=a8C.3a3﹣a3=3D.a2+4a2=5a4 4.(3分)如图,直线DE∥FG,Rt△ABC的顶点B,C分别在DE,FG上,若∠BCF=25°,则∠ABE的大小为()A.55°B.25°C.65°D.75°5.(3分)关于x的一元二次方程x2+4x﹣m=0有两个实数根,则实数m的取值范围为()A.m<4B.m>﹣4C.m≤4D.m≥﹣46.(3分)分式方程=的解是()A.x=2B.x=﹣6C.x=6D.x=﹣27.(3分)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是()A.240x+150x=150×12B.240x﹣150x=240×12C.240x+150x=240×12D.240x﹣150x=150×128.(3分)如图,点A,B,C,D在⊙O上,AC⊥BC,AC=4,∠ADC=30°,则BC的长为()A.4B.8C.4D.49.(3分)如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC 交于点D,则以下推断错误的是()A.BD=BC B.AD=BD C.∠ADB=108°D.CD=AD 10.(3分)如图,在矩形ABCD中,点M在AB边上,把△BCM沿直线CM折叠,使点B 落在AD边上的点E处,连接EC,过点B作BF⊥EC,垂足为F,若CD=1,CF=2,则线段AE的长为()A.﹣2B.﹣1C.D.二、填空题(每小题3分,共18分)11.(3分)﹣2的相反数是.12.(3分)不等式组的解集为.13.(3分)甲、乙两名学生参加学校举办的“防疫知识大赛”.两人5次成绩的平均数都是95分,方差分别是S甲2=2.5,S乙2=3,则两人成绩比较稳定的是.(填“甲”或“乙”)14.(3分)如图,将△ABC沿着BC方向平移得到△DEF,只需添加一个条件即可证明四边形ABED是菱形,这个条件可以是.(写出一个即可)15.(3分)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.16.(3分)如图1,在四边形ABCD中,BC∥AD,∠D=90°,∠A=45°,动点P,Q同时从点A出发,点P以cm/s的速度沿AB向点B运动(运动到B点即停止),点Q以2cm/s的速度沿折线AD→DC向终点C运动,设点Q的运动时间为x(s),△APQ的面积为y(cm2),若y与x之间的函数关系的图象如图2所示,当x=(s)时,则y=cm2.三、解答题(17小题10分,18小题10分,共20分)17.(10分)先化简,再求值:(a+1﹣)÷,其中a=+|﹣2|﹣()﹣1.18.(10分)为传承中华民族优秀传统文化,提高学生文化素养,学校举办“经典诵读”比赛,比赛题目分为“诗词之风”“散文之韵”“小说之趣”“戏剧之雅”四组(依次记为A,B,C,D).小雨和莉莉两名同学参加比赛,其中一名同学从四组题目中随机抽取一组,然后放回,另一名同学再随机抽取一组.(1)小雨抽到A组题目的概率是;(2)请用列表法或画树状图的方法,求小雨和莉莉两名同学抽到相同题目的概率.四、解答题(19小题10分,20小题10分,共20分)19.(10分)某校为了了解疫情期间学生居家锻炼时长的情况,随机抽取了部分学生,就居家一周的锻炼时长进行了统计调查,根据调查结果,将居家锻炼时长分为A,B,C,D 四个组别.学生居家锻炼时长分组表组别A B C Dt(小时)0≤t<22≤t<44≤t<6t≥6下面两幅图为不完整的统计图.请根据图表中的信息解答下列问题:(1)此次共抽取名学生;(2)补全条形统计图,并求扇形统计图中A组所在扇形的圆心角的度数;(3)若全校有1000名学生,请根据抽样调查结果,估计D组(居家锻炼时长不少于6小时)的人数.20.(10分)如图,在平面直角坐标系中,△OAC的边OC在y轴上,反比例函数y=(x >0)的图象经过点A和点B(2,6),且点B为AC的中点.(1)求k的值和点C的坐标;(2)求△OAC的周长.五、解答题(21小题10分,22小题12分,共22分)21.(10分)在一次数学课外实践活动中,某小组要测量一幢大楼MN的高度,如图,在山坡的坡脚A处测得大楼顶部M的仰角是58°,沿着山坡向上走75米到达B处,在B处测得大楼顶部M的仰角是22°,已知斜坡AB的坡度i=3:4(坡度是指坡面的铅直高度与水平宽度的比),求大楼MN的高度.(图中的点A,B,M,N,C均在同一平面内,N,A,C在同一水平线上,参考数据:tan22°≈0.4,tan58°≈1.6)22.(12分)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.六、解答题(本题满分12分)23.(12分)某文具店最近有A,B两款纪念册比较畅销.该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:售价(元/本)……22232425……每天销售量(本)……80787674……(1)求A,B两款纪念册每本的进价分别为多少元;(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元;①直接写出B款纪念册每天的销售量(用含m的代数式表示);②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?七、解答题(本题满分14分)24.(14分)如图1,在正方形ABCD中,点M为CD边上一点,过点M作MN⊥CD且DM =MN,连接DN,BM,CN,点P,Q分别为BM,CN的中点,连接PQ.(1)证明:CM=2PQ;(2)将图1中的△DMN绕正方形ABCD的顶点D顺时针旋转α(0°<α<360°).①(1)中的结论是否成立?若成立,请结合图2写出证明过程;若不成立,请说明理由;②若AB=10,DM=2,在△DMN绕点D旋转的过程中,当B,M,N三点共线时,请直接写出线段PQ的长.八、解答题(本题满分14分)25.(14分)在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(,)和点B(4,0),与y轴交于点C,点P为为物线上一动点.(1)求抛物线和直线AB的解析式;(2)如图,点P为第一象限内抛物线上的点,过点P作PD⊥AB,垂足为D,作PE⊥x轴,垂足为E,交AB于点F,设△PDF的面积为S1,△BEF的面积为S2,当=时,求点P坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N坐标,若不存在,请说明理由.2022年辽宁省营口市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.(3分)在,0,﹣1,2这四个实数中,最大的数是()A.0B.﹣1C.2D.【分析】根据实数的大小比较法则即可得出答案.【解答】解:∵﹣1<0<<2,∴最大的数是2;故选:C.【点评】此题考查了实数的大小比较,熟练掌握正数大于0,负数小于0,正数大于一切负数.2.(3分)如图是由五个相同的正方体搭成的几何体,这个几何体的左视图是()A.B.C.D.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:B.【点评】本题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.3.(3分)下列计算正确的是()A.a6÷a2=a3B.(a2)4=a8C.3a3﹣a3=3D.a2+4a2=5a4【分析】选项A根据同底数幂的除法法则判断即可,同底数幂的除法法则:底数不变,指数相减;选项B根据幂的乘方运算法则判断即可,幂的乘方法则:底数不变,指数相乘;选项C、D根据合并同类项法则判断即可,合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【解答】解:A.a6÷a2=a4,故本选项不合题意;B.(a2)4=a8,故本选项符合题意;C.3a3﹣a3=2a3,故本选项不合题意;D.a2+4a2=5a2,故本选项不合题意;故选:B.【点评】本题考查了合并同类项,同底数幂的除法以及幂的乘方,掌握相关运算法则是解答本题的关键.4.(3分)如图,直线DE∥FG,Rt△ABC的顶点B,C分别在DE,FG上,若∠BCF=25°,则∠ABE的大小为()A.55°B.25°C.65°D.75°【分析】由平行线的性质可得∠CBE=∠BCF=25°,再由直角三角形得∠ABC=90°,从而可求∠ABE的度数.【解答】解:∵DE∥FG,∠BCF=25°,∴∠CBE=∠BCF=25°,∵∠ABC=90°,∴∠ABE=∠ABC﹣∠CBE=65°.故选:C.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.5.(3分)关于x的一元二次方程x2+4x﹣m=0有两个实数根,则实数m的取值范围为()A.m<4B.m>﹣4C.m≤4D.m≥﹣4【分析】根据根的判别式和已知条件得出Δ=42﹣4×1×(﹣m)≥0,再求出m的范围即可.【解答】解:∵关于x的一元二次方程x2+4x﹣m=0有两个实数根,∴Δ=42﹣4×1×(﹣m)=16+4m≥0,解得:m≥﹣4,故选:D.【点评】本题考查了根的判别式,能熟记根的判别式内容是解此题的关键,注意:已知一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2﹣4ac>0时,方程有两个不相等的实数解;当b'2﹣4ac=0时,方程有两个相等的实数解;当b2﹣4ac<0时,方程没有实数解.6.(3分)分式方程=的解是()A.x=2B.x=﹣6C.x=6D.x=﹣2【分析】方程两边都乘x(x﹣2)得出3(x﹣2)=2x,求出方程的解,再进行检验即可.【解答】解:=,方程两边都乘x(x﹣2),得3(x﹣2)=2x,解得:x=6,检验:当x=6时,x(x﹣2)≠0,所以x=6是原方程的解,即原方程的解是x=6,故选:C.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.7.(3分)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是()A.240x+150x=150×12B.240x﹣150x=240×12C.240x+150x=240×12D.240x﹣150x=150×12【分析】利用路程=速度×时间,结合x天快马比慢马多走的路程为慢马12天走的路程,即可得出关于x的一元一次方程,此题得解.【解答】解:依题意得:240x﹣150x=150×12.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.8.(3分)如图,点A,B,C,D在⊙O上,AC⊥BC,AC=4,∠ADC=30°,则BC的长为()A.4B.8C.4D.4【分析】连接AB,可得△ABC是直角三角形,利用圆周角定理可得∠ABC=∠ADC=30°,在Rt△ABC中,AC=4,利用三角函数可求出BC的长.【解答】解:连接AB,如图所示,∵AC⊥BC,∴∠ACB=90°.∵∠ADC=30°,∴∠ABC=∠ADC=30°.∴在Rt△ABC中,tan∠ABC=,∴BC=.∵AC=4,∴BC==4.故选:A.【点评】本题考查了圆周角定理,掌握“同弧所对的圆周角相等”是解题的关键.9.(3分)如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC 交于点D,则以下推断错误的是()A.BD=BC B.AD=BD C.∠ADB=108°D.CD=AD【分析】根据已知条件AB=AC,∠A=36°,可得△ABC是底角为72°的等腰三角形,再根据尺规作图可得BD平分∠ABC,再根据等腰三角形的性质对各选项进行判断即可.【解答】解:在△ABC中,∵AB=AC,∴∠ABC=∠ACB.∵∠A=36°,∴∠ABC=∠C=(180°﹣36°)=72°.∵BD平分∠ABC,∴∠ABD=∠CBD=36°.∴∠ABD=∠A.∴AD=BD.故选项B正确;∵∠BDC=∠A+∠ABD=72°.∴∠C=∠BDC.∴BD=BC.故选项A正确;∵∠BDC=72°,∴∠ADB=108°.故选项C正确;在△BCD与△ACB中,∵∠CBD=∠A=36°,∠C为公共角.∴△BCD∽△ACB.∴.∴BC2=AC•CD.∵BC=BD=AD,AC=AD+CD.∴AD2=(AD+CD)•CD.整理得,CD2﹣AD•CD﹣AD2=0.解得,CD=AD.∴CD≠AD.故选项D错误.故选:D.【点评】本题考查了顶角为36°的等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.10.(3分)如图,在矩形ABCD中,点M在AB边上,把△BCM沿直线CM折叠,使点B 落在AD边上的点E处,连接EC,过点B作BF⊥EC,垂足为F,若CD=1,CF=2,则线段AE的长为()A.﹣2B.﹣1C.D.【分析】设AE=x,BM=a,在Rt△AME中,可得(1﹣a)2+x2=a2①,由sin∠AME=sin∠DEC,有=,即得EC==BC,而∠BCF=∠DEC=∠AME,知cos∠BCF =cos∠AME,可得=,即a=1﹣2x②,把②代入①可解得AE=﹣2.【解答】解:设AE=x,BM=a,∵CD=1=AB,∴AM=1﹣a,∵△BCM沿直线CM折叠,使点B落在AD边上的点E处,∴ME=BM=a,∠MEC=∠MBC=90°,BC=EC,在Rt△AME中,AM2+AE2=ME2,∴(1﹣a)2+x2=a2①,∵∠AME=90°﹣∠AEM=∠DEC,∴sin∠AME=sin∠DEC,∴=,即=,∴EC=,∴BC=,∵∠BCF=∠DEC=∠AME,∴cos∠BCF=cos∠AME,∴=,即=,化简变形得:a=1﹣2x②,把②代入①得:(1﹣1+2x)2+x2=(1﹣2x)2,解得x=﹣2或x=﹣﹣2(舍去),∴AE=﹣2,故选:A.方法二:∵BC=CE,∠EDC=∠CFB=90°,∠DEC=∠BCF,∴△EDC≌△CFB(AAS),∴DE=CF=2,∴CE====BC=AD,∴AE=AD﹣DE=﹣2,故选:A.【点评】本题考查矩形中的翻折问题,涉及锐角三角函数,勾股定理等知识,解题的关键是掌握翻折的性质,能熟练应用勾股定理及三角函数列方程解决问题.二、填空题(每小题3分,共18分)11.(3分)﹣2的相反数是2.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故答案为:2.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号,一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.12.(3分)不等式组的解集为1<x<8.【分析】分别解两个不等式得到x>1和x<8,然后大小小大中间找确定不等式组的解集.【解答】解:,解①得x>1,解②得x<8,所以不等式组的解集为1<x<8.故答案为:1<x<8.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.13.(3分)甲、乙两名学生参加学校举办的“防疫知识大赛”.两人5次成绩的平均数都是95分,方差分别是S甲2=2.5,S乙2=3,则两人成绩比较稳定的是甲.(填“甲”或“乙”)【分析】根据方差的定义,方差越小数据越稳定.【解答】解:∵两人5次成绩的平均数都是95分,方差分别是S甲2=2.5,S乙2=3,∴,∴成绩比较稳定的是甲;故答案为:甲.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.(3分)如图,将△ABC沿着BC方向平移得到△DEF,只需添加一个条件即可证明四边形ABED是菱形,这个条件可以是AB=AD(答案不唯一).(写出一个即可)【分析】由平移的性质得AB∥DE,AB=DE,则四边形ABED是平行四边形,再由菱形的判定即可得出结论.【解答】解:这个条件可以是AB=AD,理由如下:由平移的性质得:AB∥DE,AB=DE,∴四边形ABED是平行四边形,又∵AB=AD,∴平行四边形ABED是菱形,故答案为:AB=AD(答案不唯一).【点评】本题考查了菱形的判定、平行四边形的判定与性质以及平移的性质等知识,熟练掌握菱形的判定和平移的性质是解题的关键.15.(3分)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=30度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.【点评】本题考查了正多边形与圆,根据tan∠ACF===得出∠ACF=30°是解题的关键.16.(3分)如图1,在四边形ABCD中,BC∥AD,∠D=90°,∠A=45°,动点P,Q同时从点A出发,点P以cm/s的速度沿AB向点B运动(运动到B点即停止),点Q以2cm/s的速度沿折线AD→DC向终点C运动,设点Q的运动时间为x(s),△APQ的面积为y(cm2),若y与x之间的函数关系的图象如图2所示,当x=(s)时,则y=cm2.【分析】根据题意以及函数图像可得出△AED∽△APQ,则点Q在AD上运动时,△APQ 为等腰直角三角形,然后根据三角形面积公式得出当面积最大为9时,此时x=3,则AD =2x=6cm,当3<x≤4时,过点P作PF⊥AD于点F,结合面积公式,分别表示出相关线段可得y与x之间的函数解析式,最后代入求解即可.【解答】解:过点D作DE⊥AB,垂足为E,在Rt△ADE中,∵∠AED=90°,∠EAD=45°,∴,∵点P的速度为cm/s,点Q的速度为2cm/s,∴AP=x,AQ=2x,∴,在△APQ和△AED中,=,∠A=45°,∴△AED∽△APQ,∴点Q在AD上运动时,△APQ为等腰直角三角形,∴AP=PQ=x,∴当点Q在AD上运动时,y=AP•AQ=×x×x=x2,由图像可知,当y=9此时面积最大,x=3或﹣3(负值舍去),∴AD=2x=6cm,当3<x≤4时,过点P作PF⊥AD于点F,如图:此时S△APQ=S△APF+S四边形PQDF﹣S△ADQ,在Rt△APF中,AP=x,∠P AF=45°,∴AF=PF=x,FD=6﹣x,QD=2x﹣6,∴S△APQ=x2+(x+2x﹣6)•(6﹣x)﹣×6×(2x﹣6),即y=﹣x2+6x,当x=时,y=﹣()2+6×=,故答案为:.【点评】本题考查了动点问题的函数图像,注意分类讨论,求出各段函数的函数关系式是解答本题的关键.三、解答题(17小题10分,18小题10分,共20分)17.(10分)先化简,再求值:(a+1﹣)÷,其中a=+|﹣2|﹣()﹣1.【分析】先把括号内通分,再把除法运算化为乘法运算,接着把分子分母因式分解,则约分得到原式=,然后根据算术平方根的定义、绝对值和负整数指数幂的意义计算出a的值,最后把a的值代入计算即可.【解答】解:原式=•=•=•=•=,∵a=+|﹣2|﹣()﹣1=3+2﹣2=3,∴原式==.【点评】本题考查分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了实数的运算.18.(10分)为传承中华民族优秀传统文化,提高学生文化素养,学校举办“经典诵读”比赛,比赛题目分为“诗词之风”“散文之韵”“小说之趣”“戏剧之雅”四组(依次记为A,B,C,D).小雨和莉莉两名同学参加比赛,其中一名同学从四组题目中随机抽取一组,然后放回,另一名同学再随机抽取一组.(1)小雨抽到A组题目的概率是;(2)请用列表法或画树状图的方法,求小雨和莉莉两名同学抽到相同题目的概率.【分析】(1)直接由概率公式求解即可;(2)画树状图,共有16种等可能的结果,其中小雨和莉莉两名同学抽到相同题目的结果有4种,再由概率公式求解即可.【解答】解:(1)小雨抽到A组题目的概率是,故答案为:;(2)画树状图如下:共有16种等可能的结果,其中小雨和莉莉两名同学抽到相同题目的结果有4种,∴小雨和莉莉两名同学抽到相同题目的概率为=.【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(19小题10分,20小题10分,共20分)19.(10分)某校为了了解疫情期间学生居家锻炼时长的情况,随机抽取了部分学生,就居家一周的锻炼时长进行了统计调查,根据调查结果,将居家锻炼时长分为A,B,C,D 四个组别.学生居家锻炼时长分组表组别A B C Dt(小时)0≤t<22≤t<44≤t<6t≥6下面两幅图为不完整的统计图.请根据图表中的信息解答下列问题:(1)此次共抽取50名学生;(2)补全条形统计图,并求扇形统计图中A组所在扇形的圆心角的度数;(3)若全校有1000名学生,请根据抽样调查结果,估计D组(居家锻炼时长不少于6小时)的人数.【分析】(1)由C组有20人,占40%,可求得接受问卷调查的人数;(2)由(1)可求得B组的人数,继而补全条形统计图;用360°乘A组所占比例可得扇形统计图中A组所在扇形的圆心角的度数;(3)利用样本估计总体的方法,即可求得答案.【解答】解:(1)20÷40%=50(人),即此次共抽取50名学生;故答案为:50;(2)B组的人数为:50﹣5﹣20﹣10=15(人),补全条形统计图如下:扇形统计图中A组所在扇形的圆心角的度数为:360°×=36°;(3)1000×=200(人),答:估计全校D组(居家锻炼时长不少于6小时)的人数为200人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.(10分)如图,在平面直角坐标系中,△OAC的边OC在y轴上,反比例函数y=(x >0)的图象经过点A和点B(2,6),且点B为AC的中点.(1)求k的值和点C的坐标;(2)求△OAC的周长.【分析】(1)把点B(2,6)代入反比例函数的关系式可求出k的值,利用相似三角形的性质可求出A的坐标,进而得出点C坐标;(2)利用勾股定理求出OA、AC的长即可.【解答】解:把点B(2,6)代入反比例函数y=得,k=2×6=12;如图,过点A、B分别作y轴的垂线,垂足为D、E,则OE=6,BE=2,∵BE⊥CD,AD⊥CD,∴AD∥BE,又∵B为AC的中点.∴AD=2BE=4,CE=DE,把x=4代入反比例函数y=得,y=12÷4=3,∴点A(4,3),即OD=3,∴DE=OE﹣OD=6﹣3=3=CE,∴OC=9,即点C(0,9),答:k=12,C(0,9);(2)在Rt△AOD中,OA===5,在Rt△ADC中,AC===2,∴△AOC的周长为:2+5+9=2+14.【点评】本题考查反比例函数图象上点的坐标特征,直角三角形的边角关系以及相似三角形的性质,掌握勾股定理,反比例函数图象上点的坐标特征以及相似三角形的性质是正确解答的前提.五、解答题(21小题10分,22小题12分,共22分)21.(10分)在一次数学课外实践活动中,某小组要测量一幢大楼MN的高度,如图,在山坡的坡脚A处测得大楼顶部M的仰角是58°,沿着山坡向上走75米到达B处,在B处测得大楼顶部M的仰角是22°,已知斜坡AB的坡度i=3:4(坡度是指坡面的铅直高度与水平宽度的比),求大楼MN的高度.(图中的点A,B,M,N,C均在同一平面内,N,A,C在同一水平线上,参考数据:tan22°≈0.4,tan58°≈1.6)【分析】过点B作BE⊥AC,垂足为E,过点B作BD⊥MN,垂足为D,则BE=DN,DB=NE,根据已知可设BE=3a米,则AE=4a米,从而在Rt△ABE中,利用勾股定理可求出AE,BE的长,然后设NA=x米,在Rt△ANM中,利用锐角三角函数的定义求出MN的长,从而求出MD,DB的长,最后在Rt△MDB中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.【解答】解:过点B作BE⊥AC,垂足为E,过点B作BD⊥MN,垂足为D,则BE=DN,DB=NE,∵斜坡AB的坡度i=3:4,∴=,∴设BE=3a米,则AE=4a米,在Rt△ABE中,AB===5a(米),∵AB=75米,∴5a=75,∴a=15,∴DN=BE=45米,AE=60米,设NA=x米,∴BD=NE=AN+AE=(x+60)米,在Rt△ANM中,∠NAM=58°,∴MN=AN•tan58°≈1.6x(米),∴DM=MN﹣DN=(1.6x﹣45)米,在Rt△MDB中,∠MBD=22°,∴tan22°==≈0.4,解得:x=57.5,经检验:x=57.5是原方程的根,∴MN=1.6x=92(米),∴大楼MN的高度约为92米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,坡度坡角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22.(12分)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【分析】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.【解答】(1)证明:∵AD与⊙O相切于点A,∴∠DAO=90°,∴∠D+∠ABD=90°,∵AB是⊙O的直径,∴∠AEB=90°,∴∠BEC=180°﹣∠AEB=90°,∴∠ACB+∠EBC=90°,∵AB=AC,∴∠ACB=∠ABC,∴∠D=∠EBC;(2)解:∵CD=2BC,∴BD=3BC,∵∠DAB=∠CEB=90°,∠D=∠EBC,∴△DAB∽△BEC,∴==3,∴AB=3EC,∵AB=AC,AE=3,∴AE+EC=AB,∴3+EC=3EC,∴EC=1.5,∴AB=3EC=4.5,∴⊙O的半径为2.25.【点评】本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.六、解答题(本题满分12分)23.(12分)某文具店最近有A,B两款纪念册比较畅销.该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:售价(元/本)……22232425……每天销售量(本)……80787674……(1)求A,B两款纪念册每本的进价分别为多少元;(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元;①直接写出B款纪念册每天的销售量(用含m的代数式表示);②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?【分析】(1)设A款纪念册每本的进价为a元,B款纪念册每本的进价为b元,根据购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元得,可解得A款纪念册每本的进价为20元,B款纪念册每本的进价为14元;(2)①根据两款纪念册每天销售总数不变,可得B款纪念册每天的销售量为(80﹣2m)本;②设B款纪念册每天的销售量与售价之间满足的一次函数关系是y=kx+b',待定系数法可得y=﹣2x+124,即可得B款纪念册每天的销售量为(80﹣2m)本时,每本售价是(22+m)元,设该店每天所获利润是w元,则w=(32﹣m﹣20)(40+2m)+(22+m﹣14)(80﹣2m)=﹣4m2+48m+1120=﹣4(m﹣6)2+1264,根据二次函数性质可得答案.【解答】解:(1)设A款纪念册每本的进价为a元,B款纪念册每本的进价为b元,根据题意得:,解得,答:A款纪念册每本的进价为20元,B款纪念册每本的进价为14元;(2)①根据题意,A款纪念册每本降价m元,可多售出2m本A款纪念册,∵两款纪念册每天销售总数不变,∴B款纪念册每天的销售量为(80﹣2m)本;②设B款纪念册每天的销售量与售价之间满足的一次函数关系是y=kx+b',根据表格可得:,解得,∴y=﹣2x+124,当y=80﹣2m时,x=22+m,即B款纪念册每天的销售量为(80﹣2m)本时,每本售价是(22+m)元,设该店每天所获利润是w元,由已知可得w=(32﹣m﹣20)(40+2m)+(22+m﹣14)(80﹣2m)=﹣4m2+48m+1120=﹣4(m﹣6)2+1264,∵﹣4<0,∴m=6时,w取最大值,最大值为1264元,此时A款纪念册售价为32﹣m=32﹣6=26(元),答:当A款纪念册售价为26元时,该店每天所获利润最大,最大利润是1264元.【点评】本题考查二元一次方程组和二次函数的应用,解题的关键是理解题意,列出方程组和函数关系式.七、解答题(本题满分14分)24.(14分)如图1,在正方形ABCD中,点M为CD边上一点,过点M作MN⊥CD且DM =MN,连接DN,BM,CN,点P,Q分别为BM,CN的中点,连接PQ.(1)证明:CM=2PQ;(2)将图1中的△DMN绕正方形ABCD的顶点D顺时针旋转α(0°<α<360°).①(1)中的结论是否成立?若成立,请结合图2写出证明过程;若不成立,请说明理由;②若AB=10,DM=2,在△DMN绕点D旋转的过程中,当B,M,N三点共线时,请直接写出线段PQ的长.【分析】(1)如图1中,连接NP,延长NP交CB于点J.证明△PMN≌PBJ(ASA),推出MN=NJ,再证明CM=CJ,利用三角形中位线定理证明即可;(2)①成立.如图2中,延长NM交BC的延长线于点R,交CD于点K,连接NP,延长NP到T,使得PT=PN,连接CT,BT.证明△PMN≌△PBT(SAS),推出MN=BT,∠PMN=∠PBT,再证明△CDM≌△CBT(SAS),推出CM=CT,可得结论.②分两种情形:如图3﹣1中,当点N在BM的延长线上时,连接BD,取BD的中点O,连接OM,OC,过点B作BR⊥CM于点R.如图3﹣2中,证明D,M,C,B四点共圆,。
2022年辽宁省盘锦市中考数学真题(解析版)

A. 2 3
B. 4
C. 6
D. 3 2
【答案】A 【解析】
【分析】根据作图知 CE 垂直平分 AC,即可得 AC OC ,AE OE 1,根据圆的半径得 AC 2 ,AB 4 ,
根据圆周角的推论得 ACB 90 ,根据勾股定理即可得 BC AB2 AC2 2 3 .
【详解】解:根据作图知 CE 垂直平分 AC,
是____________. 【答案】a<2 【解析】 【分析】根据一次函数的性质,建立不等式计算即可.
【详解】∵当 x1 x2 时, y1 y2 ,
∴a-2<0, ∴a<2, 故答案为:a<2. 【点睛】本题考查了一次函数的性质,熟练掌握性质是解题的关键.
14. 若关于 x 的方程 x2 3x m 0有两个不相等的实数根,且 m 3 ,则从满足条件的所有整数 m 中随
盘锦市 2022 年中考数学试卷
(本试卷共 26 道题 满分 150 分 考试时间 120 分钟) 注意:所有试题必须在答题卡上作答,在本试卷上作答无效。
第一部分 选择题(共 30 分) 一、选择题(本题包括 10 小题,每小题 3 分,共 30 分。在每小题给出的四个选项中,只有一 项符合题目要求)
【答案】C 【解析】 【分析】由平行线公理、立方根的定义、菱形的判定定理、多边形的外角和,分别进行判断,即可得到答 案. 【详解】解:A、经过直线外一点,有且只有一条直线与这条直线平行;故 A 正确; B、负数的立方根是负数;故 B 正确; C、对角线互相垂直的平行四边形是菱形,故 C 错误;
D、五边形的外角和是 360 ,故 D 正确;
∴直线 OF∥BC,
∴点 P 到直线 BC 的距离为 1,BQ=t,
∴S= 1 t ; 2
2022年辽宁省锦州市中考数学真题(解析版)

(1)本次随机调查的学生有___________名,在扇形统计图中“C”部分圆心角的度数为___________;
(2)通过计算补全条形统计图;
(3)若该校共有1500名学生,请根据以上调查结果,估计参加“B”活动小组的人数.
【答案】(1)50、108°
(2)见解析(3)估计参加“B”活动小组的人数约有150名.
6.如图,直线 ,将含 角的直角三角板 按图中位置摆放,若 ,则 的度数为()
A. B. C. D.
【答案】C
【解析】
【分析】如图,根据平行线的性质可得∠3=∠1=110°,则有∠4=70°,然后根据三角形外角的性质可求解.
【详解】解:如图,
∵ , ,
∴∠3=∠1=110°,
∴ ,
∵
∴ ;
故选C.
【点睛】本题主要考查平行线的性质及三角形外角的性质,熟练掌握平行线的性质及三角形外角的性质是解题的关键.
7.如图,在矩形 中, ,分别以点A和C为圆心,以大于 的长为半径作弧,两弧相交于点M和N,作直线 分别交 于点E,F,则 的长为()
A B. C. D.
【答案】D
【解析】
【分析】根据矩形 可知 为直角三角形,根据勾股定理可得 的长度,在 中得到 ,又由题知 为 的垂直平分线,于是 ,于是在 中,利用锐角三角函数即可求出 的长.
11.若关于x的一元二次方程x2+3x+k=0有两个不相等的实数根,则k的取值范围是_____.
【答案】k<
【解析】
【详解】解:由题意得:△=9﹣4k>0,
解得:k< ,
故答案为:k< .
12.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC的度数为___________.
2022-2023学年辽宁省沈阳四十三中九年级(上)期末数学试题及答案解析

2022-2023学年辽宁省沈阳四十三中九年级(上)期末数学试卷一、选择题(本大题共10小题,共20.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下面图中所示几何体的左视图是( )A. B. C. D.2. 用配方法解一元二次方程y2−y−12=0时,下列变形正确的是( )A. (y+12)2=1 B. (y−12)2=34C. (y+12)2=34D. (y−12)2=13. 已知P是线段AB的黄金分割点,且AP>BP,那么下列比例式能成立的是( )A. ABAP =APBPB. ABAP=BPABC. BPAP=ABBPD. ABAP=√5−124. 在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinA的值为( )A. 35B. 34C. 45D. 545. 如图,AB和DE是直立在地面上的两根立柱,AB=7米,某一时刻AB在阳光下的投影BC= 4米,DE在阳光下的投影长为6米,则DE的长为米.( )A. 212B. 247C. 143D. 146. 下列说法中,不正确的是( )A. 两组对边分别平行的四边形是平行四边形B. 一组对边平行另外一组对边相等的四边形是平行四边形C. 对角线互相平分且垂直的四边形是菱形D. 有一组邻边相等的矩形是正方形7. 线段a,b,c,d是成比例线段,已知a=2,b=√5,c=2√3,则d=( )A. √153B. 4√155C. 2√5D. √158. 如图,A是反比例函数y=kx图象上一点,过点A作AB⊥x轴于点B,点P在y轴上,△ABP 的面积为1,则k的值为( )A. 1B. 2C. −1D. −29. 关于x的一元二次方程kx2+4x−2=0有实数根,则k的取值范围是( )A. k≥−2B. k>−2且k≠0C. k≥−2且k≠0D. k≤−210. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=1,有下列4个结论:①abc>0;②a+c>b;③4a+2b+c>0;④a+b≥am2+bm(m是任意实数).其中正确结论的个数是( )A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 如图,直线l1//l2//l3且与直线a、b相交于点A、B、C、D、E、F,若AB=1,BC=2,DE=1.5,则DF=______.12. 在一个不透明的袋子中有50个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为36%,估计袋中白球有______个.13. 在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x人,则根据题意可列方程为______.14. 在△ABO中,已知点A(−6,3),B(−6,−4),以原点O为位似中心,相似比为1,把△ABO3缩小,则点A在第四象限的对应点A′的坐标是______.15. 如图,在平行四边形ABCD中,AB⊥AC,AB=3,AC=4,分别以A,C为圆心,大于1AC的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于2点F,连接AE,CF,则四边形AECF的周长为______.16. 如图,边长为5的正方形ABCD中,点E、G分别在射线AB、BC上,F在边AD上,ED与FG 交于点M,AF=1,FG=DE,BG>AF,则MC的最小值为______.三、计算题(本大题共1小题,共6.0分)17. 解方程:3x(x−2)=4(2−x)四、解答题(本大题共8小题,共76.0分。
2022年辽宁省锦州市中考数学试卷 (有解析)

2022年辽宁省锦州市中考数学试卷题号一二三总分得分一、选择题(本大题共8小题,共16分。
在每小题列出的选项中,选出符合题目的一项)1.−2022的绝对值是( )A. −2022B. −12022C. 12022D. 20222.党的十八大以来,以习近平同志为核心的党中央重视技能人才的培育与发展.据报道,截至2021年底,我国高技能人才超过60000000人,请将数据60000000用科学记数法表示为( )A. 0.6×108B. 6×107C. 6×106D. 60×1063.如图所示的几何体是由4个完全相同的小正方体搭成的,它的主视图是( )A.B.C.D.4.某校教师志愿者团队经常做公益活动,下表是对10名成员本学期参加公益活动情况进行的统计:次数10874人数3421那么关于活动次数的统计数据描述正确的是( )A. 中位数是8,平均数是8B. 中位数是8,众数是3C. 中位数是3,平均数是8D. 中位数是3,众数是85.下列运算正确的是( )A. (−4ab2)2=8a2b4B. −a6÷a3=−a3C. 2a3⋅a2=2a6D. a3+a3=2a66.如图,直线a//b,将含30°角的直角三角板ABC(∠ABC=30°)按图中位置摆放,若∠1=110°,则∠2的度数为( )A. 30°B. 36°C. 40°D. 50°7.如图,在矩形ABCD中,AB=6,BC=8,分别以AC的长为半径作弧,两弧点A和C为圆心,以大于12相交于点M和N,作直线MN分别交AD,BC于点E,F,则AE的长为( )A. 74B. 94C. 154D. 2548.如图,在Rt△ABC中,∠ABC=90°,AB=2BC=4,动点P从点A出发,以每秒1个单位长度的速度沿线段AB匀速运动,当点P运动到点B时,停止运动,过点P作PQ⊥AB交AC于点Q,将△APQ沿直线PQ折叠得到△A′PQ,设动点P的运动时间为t秒,△A′PQ与△ABC重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是( )A. B.C. D.二、填空题(本大题共8小题,共24分)9.甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差为S甲2=0.6,乙10次立定跳远成绩的方差为S乙2=0.35,则甲、乙两名学生10次立定跳远成绩比较稳定的是______.(填“甲”或“乙”)10.在一个不透明的口袋中装有红球和白球共8个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有75次摸到红球,则口袋中红球的个数约为______.11.关于x的一元二次方程x2+3x+k=0有两个不相等的实数根,则k的取值范围是______.12.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC的度数为______.13.如图,在正方形ABCD中,E为AD的中点,连接BE交AC于点F.若AB=6,则△AEF的面积为______.14.如图,在平面直角坐标系中,△AOB的边OB在y轴上,边AB与x轴交于点D,且BD=AD,反比例函数y=k(x>0)的图象经过点A,若S△OAB=1,则k的值为x______.15.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(−1,0)和点(2,0),以下结论:①abc<0;②4a−2b+c<0;③a+b=0;④当x<1时,y随x的增大而减小.其2中正确的结论有______.(填写代表正确结论的序号)16.如图,A1为射线ON上一点,B1为射线OM上一点,∠B1A1O=60°,OA1=3,B1A1=1.以B1A1为边在其右侧作菱形A1B1C1D1,且∠B1A1D1=60°,C1D1与射线OM交于点B2,得△C1B1B2;延长B2D1交射线ON于点A2,以B2A2为边在其右侧作菱形A2B2C2D2,且∠B2A2D2=60°,C2D2与射线OM交于点B3,得△C2B2B3;延长B3D2交射线ON于点A3,以B3A3为边在其右侧作菱形A3B3C3D3,且∠B3A3D3=60°,C3D3与射线OM 交于点B4,得△C3B3B4;…,按此规律进行下去,则△C2022B2022B2023的面积为______.三、解答题(本大题共9小题,共80分。
2023年辽宁省沈阳市私立联合体中考数学一模试卷及答案解析

2023年辽宁省沈阳市私立联合体中考数学一模试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的,每题2分,共20分)1.(2分)﹣2023的倒数是()A.﹣2023B.2023C.D.2.(2分)北京时间2022年12月4日11时01分,神舟十四号载人飞船与空间站组合体成功分离.航天员陈冬、刘洋、蔡旭哲在空间站出差了183天返回家园,数据183用科学记数法表示为()A.0.183×103B.1.83×103C.18.3×102D.1.83×102 3.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(2分)下列运算中,正确的是()A.a5+a5=a10B.(a﹣b)2=a2﹣b2C.(a2)3=a5D.(﹣a)2•(﹣a)=﹣a35.(2分)下列说法正确的是()A.检查神舟十五号载人飞船零件的质量采用抽样调查B.调查“浑河水库”水质问题采用抽样调查C.打开电视机正在播放世界杯决赛是必然事件D.掷一枚质地均匀的硬币落地时正面朝上是必然事件6.(2分)已知两点P1(x1,y1)、P2(x2,y2)在反比例函数y=的图象上,当x1>x2>0时,下列结论正确的是()A.y2<y1<0B.y1<y2<0C.0<y2<y1D.0<y1<y2 7.(2分)如图,在▱ABCD中,过点C作CE⊥AB,交BA的延长线于点E,若∠EAD=48°,则∠BCE的度数为()A.48°B.45°C.42°D.132°8.(2分)国务院联防联控机制公布进一步优化疫情防控的二十条措施后,国民增强了自我防控意识,一段时间N95口罩需求量增大,某工厂6个生产车间日生产量(万只)如图所示.因任务需要,现决定再组建一个生产车间,若新车间的日生产量为4500万只,则下列关于现在7个生产车间的日生产量的平均数和方差的说法中,正确的是()A.平均数不变,方差变大B.平均数不变,方差变小C.平均数不变,方差不变D.平均数变小,方差不变9.(2分)直线l1和l2在直角坐标系中的位置如图所示,则直线l1和l2与x轴围成的图形的面积为()A.4B.3C.2D.110.(2分)如图,在△ABC中,分别以AC,BC为边向外作等边三角形ACD和等边三角形BCE.连接AE,BD交于点O,则图中的角等于60°的个数为()A.6B.8C.9D.10二、填空题(每题3分,共18分)11.(3分)分解因式:2m3﹣8m=.12.(3分)如图,CA⊥BE于点A,AD⊥BF于点D,则图中与α互补的角是.13.(3分)小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是.14.(3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为.15.(3分)在平面直角坐标系中,已知点A(﹣6,0),B(2,0),若点C在一次函数的图象上,且△ABC为直角三角形,则满足条件的C点的个数有个.16.(3分)如图,四边形OABC是矩形,OC在x轴上,OA在y轴上,函数y=x的图象与AB交于点D(3,3),点E是射线BC上一点,沿DE折叠点B恰好落在函数y=x的图象上,且BE=2CE,则点B的坐标为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:.18.(8分)沈阳市教育局为了丰富九年级学生线上教学内容,开展了沈阳“名师在线”公益活动,深受广大学生和家长的赞誉.首先开展的是语文、数学和物理三个学科,学生可以自愿参加.(1)李亮随机选择一个学科,则他选择的是数学学科的概率是;(2)张军和李亮各随机从三个学科中选择一个学科,用画树状图或列表的方法,求两个人选择的是不同学科的概率.19.(8分)如图,等腰三角形ABC中,AB=BC,将△ABC沿着BA的方向平移,使点A,B,C对应点分别为点E,A,D,连接DC.(1)求证:四边形ABCD是菱形;(2)若DE=8,,求四边形EBCD的面积.四、(每小题8分,共16分)20.(8分)国务院联防联控机制综合组2022年11月11日公布《关于进一步优化新冠肺炎疫情防控措施科学精准做好防控工作的通知》,即防控工作的二十条.又于2022年12月7日公布的新十条措施,明确要求,各地各部门要不折不扣把各项优化措施落实到位.为了使学生在新形势下提高防控意识,某校将“1,正确佩戴N95口罩:2.勤洗手,勤漱口;3.不去人多的公共场所聚集;4.熟知几种中药对预防新冠的用途.”几个问题,对学生进行防疫知识教育.并随机抽取部分学生的防范意识进行测试,测试结果分为A:非常优秀,B:优秀,C:良好,D:一般四个等级,并依据测试成绩绘制了如两幅尚不完整的统计图.(1)这次抽样调查的学生人数是人,并补全条形统计图;(2)D等级学生人数占被调查人数的百分比为,在扇形统计图中C等级所对应的圆心角为°;(3)该校学生有1800人,请你估计其中A等级的学生人数.21.(8分)为营造绿色、优美、生态、宜居的城市环境,2022年沈阳市政府有关部门继续积极推进“口袋公园”规划建设工作,“口袋公园”如玉珠般散落在沈阳市的大街小巷,成为一张靓丽的城市名片.在中央广电总局“中国美好生活大调查”中,沈阳市名列第2名,公园城市建设取得了里程碑式的成绩.某区的一个“口袋公园”工程中,甲队单独施工50天可以完成该项工程,若甲队施工23天之后乙队加入,两队还需同时施工12天,才能完成该项工程.(1)若乙队单独施工,则需要多少天才能完成该项工程;(2)由于甲队有其他任务,所以参与该项工程施工的时间不超过15天,则乙队至少施工多少天才能完成该项工程.五、(本题10分)22.(10分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,D是⊙O上一点,过D作DE⊥CB交CB的延长线于点E,连接DB,且∠DBE=∠DBA.(1)求证:DE是⊙O的切线;(2)若DE=3,,求图中阴影部分的面积.六、(本题10分)23.(10分)如图,直线y=kx+b(k≠0)经过点A(﹣2,3)与x轴交于点B(4,0),C是线段AB的中点,连接OC.(1)求直线y=kx+b(k≠0)的函数表达式;(2)将线段OC绕着点C顺时针旋转,点O的对应点D落在y轴的正半轴上,点Q在射线BO上,连接AD、CQ,若以B、C、Q为顶点的三角形与△ADC相似,则点Q的坐标为,并求出它们的相似比;(3)在(2)的条件下,若点P在直线OC上,连接AP、DP,当AP+DP的值最小时,则点P的坐标为.七、(本题12分)24.(12分)如图,正方形ABCD的边长为3,现将正方形ABCD绕点C顺时针旋转α得正方形CB′A′D′.A,B,C,D的对应点分别为A′,B′,C′,D′.(1)如图,当正方形CB′A′D′的对角线CA'落在CD的延长线时,B′A′与AD相交于点E,连接AB′,则旋转角α=;△AB′E的周长=;(2)当旋转角α=60°,B′A′与AD相交于点E,B′A′,D′A′的延长线分别与CD的延长线相交于点F,H.求的值;转角α的正切值;(4)当旋转角α=90°,点P在直线DD′上,点Q在射线CD上,点K在与直线CD的距离为2的直线上时,若以点D,P,Q,K四点为顶点的四边形是菱形,直接写出菱形的周长.八、(本题12分)25.(12分)如图,△ABC的三个顶点坐标分别为A(﹣1,0),,C(3,0),抛物线y=ax2+bx+c(a≠0)经过△ABC的三个顶点.(1)求抛物线y=ax2+bx+c(a≠0)的函数表达式;(2)点M是抛物线在第一象限上一点.①连接AM与BC相交于点E,即将△ABC分为两个三角形,若这两个三角形的面积之比为1:2时,则点M的坐标为,直线AM的函数表达式为;②将△ABO沿着x轴正方向平移,当点B与点M重合时停止,点A的对应点为A',点O的对应点为点O'.求出△A'MO'与△BOC重合部分的图形的周长;(3)在抛物线y=ax2+bx+c(a≠0)的对称轴上取一点K,连接CK,使∠ACK+∠BAO =90°,延长CK交抛物线于点P,连接AK.动点Q从C点出发,沿射线CA以每秒1个单位长度的速度运动,是否存在某一时刻,使∠AQP=∠AKP?若存在,请直接写出此时t的值;若不存在,请说明理由.2023年辽宁省沈阳市私立联合体中考数学一模试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的,每题2分,共20分)1.【分析】根据相乘等于1的两个数互为倒数,即可求解.【解答】解:﹣2023的倒数是.故选:C.【点评】本题考查了倒数,掌握倒数的定义是解题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:183=1.83×102.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A.原图既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.原图既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C.原图既是轴对称图形又是中心对称图形,故此选项符合题意;D.原图是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.4.【分析】根据整式的乘法,幂的乘方运算、完全平方公式以及合并同类项法则即可求出答案.【解答】解:A、原式=2a5,故A不符合题意.B、原式=a2﹣2ab+b2,故B不符合题意.C、原式=a6,故C不符合题意.D、原式=﹣a3,故D符合题意.故选:D.【点评】本题考查整式的乘法,幂的乘方运算、完全平方公式以及合并同类项法则,本题属于基础题型.5.【分析】根据“全面调查与抽样调查的特点,事情发生可能性大小”逐一判断即可解答.【解答】解:A、检测“神舟十五号”载人飞船零件的质量,适宜采用全面调查的方式,故本选项不符合题意;B、调查“浑河水库”水质问题采用抽样调查,故本选项符合题意;C、打开电视机正在播放世界杯决赛是随机事件,故本选项不符合题意;D、掷一枚质地均匀的硬币落地时正面朝上是随机事件,故本选项不符合题意;故选:B.【点评】本题主要考查了全面调查和抽样调查,必然事件,确定事件,熟练掌握它们的定义和特点是解答本题的关键.6.【分析】根据反比例函数的性质判断即可.【解答】解:∵k=3>0,∴当x1>x2>0时,y随x的增大而减小,∴0<y1<y2,故选:D.【点评】本题考查的是反比例函数图象上点的坐标特征,掌握反比例函数的性质、反比例函数的增减性只指在同一象限内是解题的关键.7.【分析】由四边形ABCD是平行四边形,可得AD∥BC,继而求得∠B=∠EAD=48°,然后由CE⊥AB,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B=∠EAD=48°,∵CE⊥AB,∴∠E=90°,∴∠BCE=90°﹣∠B=42°.故选:C.【点评】此题考查了平行四边形的性质以及平行线的性质.此题难度不大,注意掌握数形结合思想的应用.8.【分析】根据平均数和方差的定义分别计算出原数据和新数据的平均数与方差,从而得出答案.【解答】解:原数据的平均数为×(4000×2+4500×2+5000×2)=4500,方差为×[2×(4000﹣4500)2+2×(4500﹣4500)2+2×(5000﹣4500)2]=,新数据的平均数为=4500,新数据的方差为×[2×(4000﹣4500)2+3×(4500﹣4500)2+2×(5000﹣4500)2]=,所以新数据的平均数不变,方差变小,故选:B.【点评】本题主要考查方差和平均数,解题的关键是掌握平均数和方差的定义.9.【分析】利用待定系数法求得两直线的解析式,进一步求得两直线的交点,然后利用三角形面积公式即可求解.【解答】解:设直线l1的解析式为y=k1x+b,∵直线l1经过点(2,0)和(0,2),∴,解得,∴直线l1的解析式为y=﹣x+2;设直线l2的解析式为y=k2x,∵直线l2经过点(﹣2,1),∴1=﹣2k2,解得k2=﹣,∴直线l2的解析式为y=﹣x,解得,∴两直线的交点为(4,﹣2),∴直线l1和l2与x轴围成的图形的面积为:=4,故选:A.【点评】本题是两条直线的相交或平行问题,考查了待定系数法求函数的解析式,一次函数图象上点的坐标特征,三角形的面积,求得交点坐标是解题的关键.10.【分析】由“SAS”可证△DCB≌△ACE,再利用三角形内角和定理可求∠AOH=∠DCH =60°,即可解决问题.【解答】解:如图:AC与BD交于点H.∵△ACD,△BCE都是等边三角形,∴CD=CA,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS),∴∠CAE=∠CDB,∵∠DCH+∠CHD+∠BDC=180°,∠AOH+∠AHO+∠CAE=180°,∠DHC=∠OHA,∴∠AOH=∠DCH=60°,∴∠AOH=∠BOE=60°,∵两个等边三角形有6个60°角,∴一共有8个60°角.故选:B.【点评】本题考查全等三角形的判定和性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形,学会利用三角形内角和定理证明角相等,属于中考常考题型.二、填空题(每题3分,共18分)11.【分析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.【分析】根据垂直定义可得∠CAB=∠ADC=∠ADB=90°,从而可得∠B+∠ACD=90°,α+∠B=90°,根据同角的余角相等可得α=∠ACD,再根据平角定义可得结论.【解答】解:∵CA⊥BE,AD⊥BF,∴∠CAB=∠ADB=90°,∴α+∠B=90°,∠B+∠ACD=90°,∴α=∠ACD,∵α+∠EAD=180°,∴α与∠EAD互补,∵∠ACD+∠ACF=180°,∠ACD=α,∴α与∠ACF互补,∴图中与α互补的角是∠EAD和∠ACF.故答案为:∠EAD和∠ACF.【点评】本题考查了垂线,余角和补角,根据题目的已知条件并结合图形分析是解题的关键.13.【分析】先求出瓷砖的总数,再求出白色瓷砖的个数,利用概率公式即可得出结论.【解答】解:∵由图可知,共有5块瓷砖,白色的有3块,∴它停在白色地砖上的概率=.故答案为:.【点评】本题考查的是几何概率,熟记概率公式是解答此题的关键.14.【分析】根据二次函数的对称性求出抛物线y=ax2+bx+c与x轴的另一交点为(﹣1,0),由此求出a﹣b+c的值.【解答】解:∵抛物线y=ax2+bx+c经过点A(3,0),对称轴是直线x=1,∴y=ax2+bx+c与x轴的另一交点为(﹣1,0),∴a﹣b+c=0.故答案为:0.【点评】本题考查了二次函数的性质,根据二次函数的对称性求出抛物线y=ax2+bx+c 与x轴的另一交点为(﹣1,0)是解题的关键.15.【分析】根据已知可求得直线与两轴的交点,①分别过点A、点B作垂线,可得出符合题意的点C,②利用圆周角定理,可得出符合条件的两个点C.【解答】解:由题意知,直线y=﹣x+1与x轴的交点为(2,0),与y轴的交点为(0,1),∴直线y=﹣x+1过点B,如图,过点A作垂线与直线的交点C(﹣6,4),过AB中点E(﹣2,0),作垂线与直线的交点为F(﹣2,2),则EF=2<4,所以以4为半径,以点E为圆心的圆与直线必有1个交点∴共有2个点能与点A,点B组成直角三角形.故答案为:2.【点评】本题考查了一次函数图象上点的坐标特征,圆周角定理,利用了直角三角形的性质和直线与圆的位置求解.16.【分析】设沿DE折叠点B落在函数y=x的图象上的点为B′,连接B′E,作B′M⊥AB于M,EN⊥B′M于N,如图,则EN=BM,BE=MN,设B′(m,m),BM=DM =3﹣m,NE=B′N=2﹣(3﹣m)=m﹣1或NE=B′N=6﹣(3﹣m)=m+3,由勾股定理得BN2+NE2=B′E2,即可得到2(m﹣1)2=22或2(m+3)2=62,解得m的值,即可求得OC的长,从而求得点B的坐标.【解答】解:设沿DE折叠点B落在函数y=x的图象上的点为B′,连接B′E,作B′M⊥AB于M,EN⊥B′M于N,如图,则EN=BM,BE=MN,∵点D(3,3),∴BC=3,∵BE=2CE,∴BE=2或6,∴B′E=2或6,设B′(m,m),∴BM=DM=3﹣m,NE=B′N=2﹣(3﹣m)=m﹣1或NE=B′N=6﹣(3﹣m)=m+3,∵BN2+NE2=B′E2,′∴2(m﹣1)2=22或2(m+3)2=62,解得m=1+或m=3﹣3,∴NE=或3,∴OC=1+2或6﹣3,∴B(1+2,3)或(6﹣3,3).故答案为:(1+2,3)或(6﹣3,3).【点评】本题考查了一次函数图象上点的坐标特征,矩形的性质,折叠的性质,勾股定理的应用,表示出线段的长度是解题的关键.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.【分析】先计算零次幂、负整数指数幂和特殊角的三角函数值,再计算乘法,最后计算加减.【解答】解:=5﹣3+×+1=5﹣3++1=3+.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.18.【分析】(1)直接利用概率公式计算即可.(2)画树状图得出所有等可能的结果数和两个人选择的是不同学科的结果数,再利用概率公式可得出答案.【解答】解:(1)∵有语文、数学和物理三个学科,∴他选择的是数学学科的概率是.故答案为:.(2)画树状图如下:共有9种等可能的结果,其中两个人选择的是不同学科的结果有:(语文,数学),(语文,物理),(数学,语文),(数学,物理),(物理,语文),(物理,数学),共6种,∴两个人选择的是不同学科的概率为=.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.19.【分析】(1)根据平移的性质得到AD=BC,AD∥BC,根据菱形的判定定理即可得到结论;(2)过A作AH⊥DE于H,设AH=3x,EH=4x,根据平移的性质得到AE=AB,AD=BC,根据菱形的性质得到S△ABC=S△ACD,于是得到结论.【解答】(1)证明:∵将△ABC沿着BA的方向平移,使点A,B,C对应点分别为点E,A,D,∴AD=BC,AD∥BC,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形;(2)解:过A作AH⊥DE于H,∵,∴设AH=3x,EH=4x,∵将△ABC沿着BA的方向平移,使点A,B,C对应点分别为点E,A,D,∴AE=AB,AD=BC,∵AB=BC,∴AE=AD,∴DH=EH=DE==4,∴x=1,∵四边形ABCD是菱形,=S△ACD,∴S△ABC=3×=36.∴四边形EBCD的面积=3S△ADE【点评】本题考查了菱形的判定和性质,平行的性质,三角函数的定义,正确地作出辅助线是解题的关键.四、(每小题8分,共16分)20.【分析】(1)用A等级学生人数和已知百分比求出总人数,计算B等级的频数即可补全条形统计图;(2)用D等级学生人数除以样本容量可得D等级学生人数占被调查人数的百分比;用360°乘以C等级所占的比例可得在扇形统计图中C等级所对应的圆心角度数;(3)利用样本估计总体的思想解决问题即可.【解答】解:(1)这次抽样调查的学生人数是:26÷32.5=80(人),B等级人数为:80﹣26﹣4﹣20=30;补全条形统计图如下:故答案为:80;(2)D等级学生人数占被调查人数的百分比为=5%;在扇形统计图中C等级所对应的圆心角为360°×=90°.故答案为:5%;90;(3)1800×=585(人),答:估计其中A等级的学生人数大约为585人.【点评】本题考查条形统计图,样本估计总体,扇形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【分析】(1)设乙队单独施工x天可以完成该项工程,利用甲队完成的工程量+乙队完成的工程量=总工程量,可得出关于x的分式方程,解之经检验后,即可得出结论;(2)设乙队需施工y天才能完成该项工程,利用甲队完成的工程量+乙队完成的工程量=总工程量,结合甲队参与该项工程施工的时间不超过15天,可得出关于y的一元一次不等式,解之取其中的最小值,即可得出结论.【解答】解:(1)设乙队单独施工x天可以完成该项工程,根据题意得:+=1,解得:x=40,经检验,x=40是所列方程的解,且符合题意.答:乙队单独施工40天可以完成该项工程;(2)设乙队需施工y天才能完成该项工程,根据题意得:+≥1,解得:y≥28,∴y的最小值为28.答:乙队至少施工28天才能完成该项工程.【点评】本题考查了一元一次不等式的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.五、(本题10分)22.【分析】(1)连接OD,根据等腰三角形的性质结合题意推出∠DBE=∠ODB,根据直角三角形的性质推出∠EDB+∠DBE=90°,则∠EDB+∠ODB=90°,根据切线的判定定理求解即可;(2)连接OC,解直角三角形求出BD=2,∠EDB=30°,∠DBE=∠DBA=60°,进而推出△OBD是等边三角形,根据含30°角的直角三角形的性质求出BC=AB=2,再图中阴影部分的面积=S扇形OBC﹣S△OBC求解即可.【解答】(1)证明:如图,连接OD,∵OB=OD,∴∠DBA=∠ODB,∵∠DBE=∠DBA,∴∠DBE=∠ODB,∵DE⊥CB交CB的延长线于点E,∴∠E=90°,∴∠EDB+∠DBE=90°,∴∠EDB+∠ODB=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)如图,连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵DE=3,=,∠E=90°,∴tan∠EDB==,BD==2,∴∠EDB=30°,∴∠DBE=∠DBA=60°,∴∠ABC=180°﹣60°﹣60°=60°,∵OB=OD,∠DBA=60°,∴△OBD是等边三角形,∴OB=OD=BD=2,∴AB=4,∵∠ABC=60°,∠ACB=90°,∴∠A=30°,∴BC=AB=2,∴图中阴影部分的面积﹣S△OBC=S扇形OBC=﹣×2×3=2π﹣3.【点评】此题考查了切线的判定与性质,熟记切线的判定与性质、扇形面积计算公式是解题的关键.六、(本题10分)23.【分析】(1)用待定系数法即可求解;(2)当以B、C、Q为顶点的三角形与△ADC相似时,存在△BCQ∽△ACD和△BCQ∽△ADC,①当△BCQ∽△ADC时,则,解得:BQ=,即可求解;②△BCQ ∽△ACD时,同理可解;(3)作点D关于直线OC的对称点R,连接AR交直线OC于点P,则点P为所求点,进而求解.【解答】解:(1)由题意得:,解得:,故直线y=kx+b(k≠0)的函数表达式为:y=﹣x+2;(2)将线段OC绕着点C顺时针旋转,点O的对应点D落在y轴的正半轴上,则点D (0,3),∵点A、D的纵坐标相同,则AD∥x轴,∴∠DAC=∠CBO,当以B、C、Q为顶点的三角形与△ADC相似时,存在△BCQ∽△ACD和△BCQ∽△ADC,由点A、C、D的坐标得,BC==AC,AD=2,①当△BCQ∽△ADC时,则,即,解得:BQ=,则点Q(﹣,0),△BCQ和△ADC相似比为:=3:4;②△BCQ∽△ACD时,则,解得:BQ=2,即点Q(2,0);②△BCQ和△ACD相似比为:1:1;综上,点Q的坐标为:(﹣,0)或(2,0);相似比为:3:4或1:1,故答案为:(﹣,0)或(2,0);(3)作点D关于直线OC的对称点R,连接AR交直线OC于点P,则点P为所求点,理由:根据点的对称性,PR=PD,则AP+DP=AP+PR=AR为最小.由点C的坐标得,直线OC的表达式为:y=x①,则直线DR的表达式为:y=﹣x+3,联立上述两式得:﹣x+3=x,解得:x=,即PR和OC的交点坐标为(,),则点(,)是RD的中点,由中点坐标公式得,点R(,),由点R、A的坐标得,直线AR的表达式为:y=﹣(x+2)+3②,联立①②得:﹣(x+2)+3=x,解得:x=,即点P(,).【点评】本题考查了一次函数综合应用,涉及到三角形相似、一次函数的性质、点的对称性等,有一定的综合性,其中(2),分类求解是本题解题的关键.七、(本题12分)24.【分析】(1)利用旋转变换的性质,正方形的性质,解直角三角形求出AB′,EB′,AE即可;(2)证明△FA′H∽△FDE,推出=,求出FH,EF,可得结论;(3)如图3中,延长CD交A′B′于点J,连接CE.设DJ=x,EJ=y,利用相似三角形的性质,勾股定理,构建方程组求解;(4)分DQ是菱形的边或对角线,分别画出图形求解即可.【解答】解:(1)如图1中,∵四边形ABCD是正方形,∴AB=BC=3,∠B=∠BAD=90°,∠CAD=∠CAB=∠ACB=∠ACD=45°,∴AC===3,由旋转变换的性质可知CB=CB′=3,∠A′B′C=90°,∴∠AB′E=90°,∴∠AEB′=∠CAE=45°,∴AB′=B′E=3﹣3,∴AE=AB′=6﹣3,∴△AEB′的周长=2(3﹣3)+6﹣3=3.故答案为:45°,3;(2)如图2中,由旋转变换的性质可知∠BCB′=∠HCD′=60°,∵∠BCD=∠B′=∠D=90°,∴∠DCB′=30°,∴CF==2,∴DF=CF﹣CD=2﹣3,∵CH=CD′•cos60°=6,∴FH=CH﹣CF=6﹣2,∵∠EDF=90°,∠DFE=60°,∴EF==4﹣6,∵∠A′FH=∠EFD,∠FA′H=∠EDF=90°,∴△FA′H∽△FDE,∴===+1;(3)如图3中,延长CD交A′B′于点J,连接CE.∵∠B′=∠CE=90°,CE=CE,CD=CB′,∴Rt△CEB′≌Rt△CED(HL),∴DE=EB′,由题意2××DE×CD=3,∴DE=EB′=1,设DJ=x,EJ=y,∵∠EJD=∠CJB,∠EDJ=∠CB′J=90°,∴△EDJ∽△CB′J,∴=,∴=,∴x=3y﹣3,∵y2=x2+1,∴y2=9y2﹣18y+9+1,∴y=或1(舍弃),∴x=,∵CD′∥A′B′,∴∠DJE=∠DCD′=α,∴tanα===;(4)如图当DQ是菱形的边时,菱形DQKP,菱形DQK′P′的周长都是8.菱形DK1P′Q″的周长为8,当DQ′是菱形的对角线时,菱形DP′Q′K″的周长为8.综上所述,满足条件的菱形的周长为8或8..【点评】本题属于四边形综合题,考查了正方形的性质,旋转变换,菱形的判定和性质解直角三角形等知识,解题的关键是理解题意,学会利用参数构建方程解决问题.八、(本题12分)25.【分析】(1)利用待定系数法即可求得答案;(2)①运用待定系数法可得直线BC的解析式为y=﹣x+,根据题意可得点E为线段BC的三等分点,即E1(1,1),E2(2,),分别运用待定系数法求出直线AM的解析式,联立方程组即可求得点M的坐标;②由题意得△ABO沿着x轴正方向平移2个单位,即A′(1,0),O′(2,0),利用勾股定理可得AB=,CB=,再由△CFO′∽△CBO,可求得FO′=,CF =,由△CGA′∽△CBA,可得CG=,A′G=,即可求得答案;(3)设K(1,m),分两种情况:①如图3,当点K在x轴下方时,过点P作PH⊥x 轴于点H,设抛物线对称轴交x轴于点L,则L(1,0),由△CKL∽△BAO,可得K(1,﹣),运用待定系数法可得直线CK的解析式为y=x﹣2,联立方程组可求得P(﹣,﹣),由题意得Q(3﹣t,0),根据∠AQP=∠AKP,可推出PQ=CQ=t,利用勾股定理建立方程求解即可求得t的值;②当点K在x轴的上方时,如图4,过点P作PH ⊥x轴于点H,同①的方法即可求得t的值.【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),,C(3,0)三点,∴,解得:,∴该抛物线的函数表达式为y=﹣x2+x+;(2)①设直线BC的解析式为y=kx+d,∵,C(3,0),∴,解得:,∴直线BC的解析式为y=﹣x+,∵直线AM将△ABC分为两个三角形的面积之比为1:2,∴点E为线段BC的三等分点,∵OC=3,∴点E的横坐标分别为1或2,如图1,取线段BC的三等分点E1、E2,当x=1时,y=﹣×1+=1,当x=2时,y=﹣×2+=,∴E1(1,1),E2(2,),设直线AM的解析式为y=mx+n,把A(﹣1,0),E1(1,1)分别代入y=mx+n,得:,解得:,∴直线AM的解析式为y=x+,联立方程组,得:,解得:(舍去),,∴M1(2,);把A(﹣1,0),E2(2,)分别代入y=mx+n,得:,解得:,∴直线AM的解析式为y=x+,联立方程组,得:,解得:(舍去),,∴M2(,);综上所述,点M的坐标为M1(2,)、M2(,),直线AM的函数表达式为y=x+或y=x+;故答案为:M1(2,)、M2(,),y=x+或y=x+;②将△ABO沿着x轴正方向平移,当点B与点M重合时停止,∵B(0,),M1(2,),∴△ABO沿着x轴正方向平移2个单位,∴A′(1,0),O′(2,0),在Rt△ABO中,OA=1,OB=,∠AOB=90°,∴AB===,在Rt△CBO中,OC=3,OB=,∠COB=90°,∴CB===,又CA=4,CO′=1,CA′=2,∵O′B′∥OB,∴△CFO′∽△CBO,∴==,即==,∴FO′=,CF=,∵A′B′∥AB,∴△CGA′∽△CBA,∴==,即==,∴CG=,A′G=,∴FG=CG﹣CF=﹣=,A′O′=2﹣1=1,∴四边形A′GFO′的周长=A′O′+FO′+FG+A′G=1+++=,故△A'MO'与△BOC重合部分的图形的周长为;(3)存在.∵y=﹣x2+x+=﹣(x﹣1)2+2,∴抛物线对称轴为直线x=1,设K(1,m),①如图3,当点K在x轴下方时,过点P作PH⊥x轴于点H,设抛物线对称轴交x轴于点L,则L(1,0),∴CL=2,LK=﹣m,∵∠ACK+∠BAO=90°,∠ABO+∠BAO=90°,∴∠ACK=∠ABO,∵∠CLK=∠BOA=90°,∴△CKL∽△BAO,∴=,即=,解得:m=﹣,∴K(1,﹣),设直线CK的解析式为y=k′x+b′,则,解得:,∴直线CK的解析式为y=x﹣2,联立方程组得:,解得:(舍去),,∴P(﹣,﹣),H(﹣,0),由题意得Q(3﹣t,0),∴CQ=t,∵A、C关于对称轴对称,∴∠ACK=∠CAK,∵∠AKP=∠ACK+∠CAK,∴∠AKP=2∠ACK,∵∠AQP=∠AKP,∴∠AQP=2∠ACK,当点Q位于点A的右侧时,∠AQ1P=∠ACK+∠Q1PC,∴∠ACK=∠Q1PC,∴PQ1=CQ1=t,∴Q1H=3﹣t﹣(﹣)=﹣t,PH=,∵Q1H2+PH2=Q1P2,∴(﹣t)2+()2=t2,解得:t=,∴Q1(﹣,0),当点Q在点A的左侧时,∠AQ2P=∠AQ1P,∴Q2P=Q1P,∵PH⊥Q1Q2,∴Q2H=Q1H=﹣﹣(﹣)=,∴Q2(﹣,0),∴3﹣t=﹣,解得:t=;②当点K在x轴的上方时,如图4,过点P作PH⊥x轴于点H,由(3)①知∠ACK=∠ABO,△CKL∽△BAO,∴=,即=,解得:m=,∴K(1,),设直线CK的解析式为y=k″x+b″,则,解得:,∴直线CK的解析式为y=﹣x+2,联立方程组得:,解得:(舍去),,∴P(,),H(,0),∵∠AQP=∠AKP,∴∠AQP=2∠ACK=∠ACK+∠CPQ,∴∠ACK=∠CPQ,∴PQ=CQ=t,∵HQ=﹣t,PH=,∴(﹣t)2+()2=t2,解得:t=;综上所述,t的值为或或.【点评】本题是二次函数综合题,考查了待定系数法求函数解析式,直线与抛物线的交点,三角形面积,平移变换的性质,勾股定理,相似三角形的判定和性质,本题综合性很强,难度较大,解题关键是运用方程思想和分类讨论思想思考解决问题。
2022年辽宁省铁岭市、葫芦岛市中考数学试题及答案解析
2022年辽宁省铁岭市、葫芦岛市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣3的绝对值是()A.3 B.﹣3 C.D.2.如图是由6个完全相同的小正方体组成的几何体,这个几何体的主视图是()A.B.C.D.3.下列运算正确的是()A.2a2•3a=6a3B.(2a)3=2a3C.a6÷a2=a3D.3a2+2a3=5a54.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列事件中,是必然事件的是()A.射击运动员射击一次,命中靶心B.掷一次骰子,向上一面的点数是6C.任意买一张电影票,座位号是2的倍数D.从一个只装有红球的盒子里摸出一个球是红球6.如图,直线m∥n,AC⊥BC于点C,∠1=30°,则∠2的度数为()A.140°B.130°C.120°D.110°7.下面是九年一班23名女同学每分钟仰卧起坐的测试情况统计表:个数/个35 38 42 45 48人数 3 5 7 4 4则该班女同学每分钟仰卧起坐个数的中位数是()A.35个B.38个C.42个D.45个8.小明和小强两人在公路上匀速骑行,小强骑行28km所用时间与小明骑行24km所用时间相等,已知小强每小时比小明多骑行2km,小强每小时骑行多少千米?设小强每小时骑行xkm,所列方程正确的是()A.=B.=C.=D.=9.如图,OG平分∠MON,点A,B是射线OM,ON上的点,连接AB.按以下步骤作图:①以点B为圆心,任意长为半径作弧,交AB于点C,交BN于点D;②分别以点C和点D为圆心,大于CD长为半径作弧,两弧相交于点E;③作射线BE,交OG于点P.若∠ABN=140°,∠MON=50°,则∠OPB的度数为()A.35°B.45°C.55°D.65°10.如图,在等边三角形ABC中,BC=4,在Rt△DEF中,∠EDF=90°,∠F=30°,DE=4,点B,C,D,E在一条直线上,点C,D重合,△ABC沿射线DE方向运动,当点B与点E重合时停止运动.设△ABC运动的路程为x,△ABC与Rt△DEF重叠部分的面积为S,则能反映S与x之间函数关系的图象是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)11.某新闻媒体发布“王亚平成为中国首位出舱的女航天员”,据不完全统计,总播放量超过29600000次,将数据29600000用科学记数法表示为.12.分解因式:3x2y﹣3y=.13.若关于x的一元二次方程x2+2x﹣k+3=0有两个不相等的实数根,则k的取值范围是.14.如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖(每次飞镖均落在纸板上),击中阴影区域的概率是.15.如图,直线y=2x+4与x轴交于点A,与y轴交于点B,点D为OB的中点,▱OCDE的顶点C在x 轴上,顶点E在直线AB上,则▱OCDE的面积为.16.如图,CD是△ABC的角平分线,过点D分别作AC,BC的平行线,交BC于点E,交AC于点F.若∠ACB=60°,CD=4,则四边形CEDF的周长是.17.如图,矩形OABC的顶点B在反比例函数y=(x>0)的图象上,点A在x轴的正半轴上,AB =3BC,点D在x轴的负半轴上,AD=AB,连接BD,过点A作AE∥BD交y交于点E,点F在AE 上,连接FD,FB.若△BDF的面积为9,则k的值是.18.如图,在正方形ABCD中,对角线AC,BD相交于点O,点E是OD的中点,连接CE并延长交AD 于点G,将线段CE绕点C逆时针旋转90°得到CF,连接EF,点H为EF的中点.连接OH,则的值为.三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:(﹣)÷,其中x=6.20.(12分)学校开展“阳光体育”运动,根据实际情况,决定开设篮球、健美操、跳绳、键球四个运动项目,为了解学生最喜爱哪一个运动项目,学校从不同年级随机抽取部分学生进行调查,每人必须选择且只能选择一个项目,并将调查结果绘制成如下两幅统计图.请根据图中提供的信息,解答下列问题:(1)本次调查的学生共有人;(2)在扇形统计图中,求健美操项目所对应的扇形圆心角的度数;并把条形统计图补充完整;(3)在最喜爱健美操项目的学生中,八年一班和八年二班各有2名同学有健美操基础,学校准备从这4人中随机抽取2人作为健美操领操员,请用列表或画树状图的方法求选中的2名同学恰好是同一个班级的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12分)多功能家庭早餐机可以制作多种口味的美食,深受消费者的喜爱,在新品上市促销活动中,已知8台A型早餐机和3台B型早餐机需要1000元,6台A型早餐机和1台B型早餐机需要600元.(1)每台A型早餐机和每台B型早餐机的价格分别是多少元?(2)某商家欲购进A,B两种型号早餐机共20台,但总费用不超过2200元,那么至少要购进A 型早餐机多少台?22.(12分)数学活动小组欲测量山坡上一棵大树CD的高度,如图,DC⊥AM于点E,在A处测得大树底端C的仰角为15°,沿水平地面前进30米到达B处,测得大树顶端D的仰角为53°,测得山坡坡角∠CBM=30°(图中各点均在同一平面内).(1)求斜坡BC的长;(2)求这棵大树CD的高度(结果取整数),(参考数据:sin30°≈,cos53°≈,tan53°≈,≈1.73)五、解答题(满分12分)23.(12分)某蔬菜批发商以每千克18元的价格购进一批山野菜,市场监督部门规定其售价每千克不高于28元.经市场调查发现,山野菜的日销售量y(千克)与每千克售价x(元)之间满足一次函数关系,部分数据如表:每千克售价x……20 22 24 ……(元)……66 60 54 ……日销售量y(千克)(1)求y与x之间的函数关系式;(2)当每千克山野菜的售价定为多少元时,批发商每日销售这批山野菜所获得的利润最大?最大利润为多少元?六、解答题(满分12分)24.(12分)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.(1)求证:BF与⊙O相切;(2)若AP=OP,cos A=,AP=4,求BF的长.七、解答题(满分12分)25.(12分)在▱ABCD中,∠C=45°,AD=BD,点P为射线CD上的动点(点P不与点D重合),连接AP,过点P作EP⊥AP交直线BD于点E.(1)如图①,当点P为线段CD的中点时,请直接写出PA,PE的数量关系;(2)如图②,当点P在线段CD上时,求证:DA+DP=DE;(3)点P在射线CD上运动,若AD=3,AP=5,请直接写出线段BE的长.八、解答题(满分14分)26.(14分)抛物线y=ax2﹣2x+c经过点A(3,0),点C(0,﹣3),直线y=﹣x+b经过点A,交抛物线于点E.抛物线的对称轴交AE于点B,交x轴于点D,交直线AC于点F.(1)求抛物线的解析式;(2)如图①,点P为直线AC下方抛物线上的点,连接PA,PC,△BAF的面积记为S1,△PAC的面积记为S2,当S2=S1时.求点P的横坐标;(3)如图②,连接CD,点Q为平面内直线AE下方的点,以点Q,A,E为顶点的三角形与△CDF 相似时(AE与CD不是对应边),请直接写出符合条件的点Q的坐标.答案解析一、选择题(本题共10小题,每小题3分,共30分。
2022年辽宁省朝阳市中考数学试卷(学生版+解析版)
2022年辽宁省朝阳市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.每小题给出的四个选项中,只有一个选项是正确的)1.(3分)2022的倒数是( ) A .﹣2022B .2022C .12022D .−120222.(3分)如图所示的几何体是由5个大小相同的小立方块搭成的,它的主视图是( )A .B .C .D .3.(3分)如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是( )A .38B .12C .58D .14.(3分)下列运算正确的是( ) A .a 8÷a 4=a 2B .4a 5﹣3a 5=1C .a 3•a 4=a 7D .(a 2)4=a 65.(3分)将一个三角尺按如图所示的方式放置在一张平行四边形的纸片上,∠EFG =90°,∠EGF =60°,∠AEF =50°,则∠EGC 的度数为( )A .100°B .80°C .70°D .60°6.(3分)新冠肺炎疫情期间,学校要求学生每天早晨入校前在家测量体温,七年三班第二学习小组6名同学某天的体温(单位:℃)记录如下:36.1,36.2,36.0,36.0,36.1,36.1.则这组数据的中位数和众数分别是( ) A .36.0,36.1B .36.1,36.0C .36.2,36.1D .36.1,36.17.(3分)如图,在⊙O 中,点A 是BĈ的中点,∠ADC =24°,则∠AOB 的度数是( )A .24°B .26°C .48°D .66°8.(3分)如图,正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =kx (k 为常数,且k ≠0)的图象相交于A (﹣2,m )和B 两点,则不等式ax >kx的解集为( )A .x <﹣2或x >2B .﹣2<x <2C .﹣2<x <0或x >2D .x <﹣2或0<x <29.(3分)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km ,一部分学生乘慢车先行,出发30min 后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶xkm ,根据题意,所列方程正确的是( ) A .60x −601.5x =3060B .601.5x −60x =3060C .60x−601.5x=30 D .601.5x−60x=3010.(3分)如图,二次函数y =ax 2+bx +c (a 为常数,且a ≠0)的图象过点(﹣1,0),对称轴为直线x =1,且2<c <3,则下列结论正确的是( )A .abc >0B .3a +c >0C .a 2m 2+abm ≤a 2+ab (m 为任意实数)D .﹣1<a <−23二、填空题(本大题共6个小题,每小题3分,共18分.只需要将结果直接填写在横线上,不必写出解答过程,不填、错填,一律得0分)11.(3分)光在真空中1s 传播299792km .数据299792用科学记数法表示为 . 12.(3分)甲、乙、丙、丁四名同学参加掷实心球测试,每人掷5次,他们的平均成绩恰好相同,方差分别是s 甲2=0.55,s 乙2=0.56,s 丙2=0.52,s 丁2=0.48,则这四名同学掷实心球的成绩最稳定的是 . 13.(3分)计算:√63÷√7−|﹣4|= .14.(3分)如图,在Rt △ABC 中,∠ACB =90°,AB =13,BC =12,分别以点B 和点C 为圆心、大于12BC 的长为半径作弧,两弧相交于E ,F 两点,作直线EF 交AB 于点D ,连接CD ,则△ACD 的周长是 .15.(3分)如图,在矩形ABCD 中,AD =2√3,DC =4√3,将线段DC 绕点D 按逆时针方向旋转,当点C 的对应点E 恰好落在边AB 上时,图中阴影部分的面积是 .16.(3分)等边三角形ABC中,D是边BC上的一点,BD=2CD,以AD为边作等边三角形ADE,连接CE.若CE=2,则等边三角形ABC的边长为.三、解答题(本大题共9小题,共72分.解答应写出必要的步骤、文字说明或证明过程)17.(5分)先化简,再求值:x2−4x2−4x+4÷x+3x2−2x+xx+3,其中x=(12)﹣2.18.(6分)某中学要为体育社团购买一些篮球和排球,若购买3个篮球和2个排球,共需560元;若购买2个篮球和4个排球,共需640元.(1)求每个篮球和每个排球的价格分别是多少元;(2)该中学决定购买篮球和排球共10个,总费用不超过1100元,那么最多可以购买多少个篮球?19.(7分)为了解学生的睡眠情况,某校随机抽取部分学生对他们最近两周的睡眠情况进行调查,得到他们每日平均睡眠时长x(单位:h)的一组数据,将所得数据分为四组(A:x<8;B:8≤x<9;C:9≤x<10;D:x≥10),并绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)本次一共抽样调查了名学生.(2)求出扇形统计图中D组所对应的扇形圆心角的度数.(3)将条形统计图补充完整.(4)若该校共有1200名学生,请估计最近两周有多少名学生的每日平均睡眠时长大于或等于9h.20.(7分)某社区组织A,B,C,D四个小区的居民进行核酸检测,有很多志愿者参与此项检测工作,志愿者王明和李丽分别被随机安排到这四个小区中的一个小区组织居民排队等候.(1)王明被安排到A小区进行服务的概率是.(2)请用列表法或画树状图法求出王明和李丽被安排到同一个小区工作的概率.21.(7分)某数学兴趣小组准备测量校园内旗杆顶端到地面的高度(旗杆底端有台阶).该小组在C处安置测角仪CD,测得旗杆顶端A的仰角为30°,前进8m到达E处,安置测角仪EF,测得旗杆顶端A的仰角为45°(点B,E,C在同一直线上),测角仪支架高CD=EF=1.2m,求旗杆顶端A到地面的距离即AB的长度.(结果精确到1m.参考数据:√3≈1.7)22.(8分)如图,AC是⊙O的直径,弦BD交AC于点E,点F为BD延长线上一点,∠DAF=∠B.(1)求证:AF是⊙O的切线;(2)若⊙O的半径为5,AD是△AEF的中线,且AD=6,求AE的长.23.(10分)某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.(1)求y与x之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?24.(10分)【思维探究】(1)如图1,在四边形ABCD中,∠BAD=60°,∠BCD=120°,AB=AD,连接AC.求证:BC+CD=AC.小明的思路是:延长CD到点E,使DE=BC,连接AE.根据∠BAD+∠BCD=180°,推得∠B+∠ADC=180°,从而得到∠B=∠ADE,然后证明△ADE≌△ABC,从而可证BC+CD=AC,请你帮助小明写出完整的证明过程.【思维延伸】(2)如图2,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,连接AC,猜想BC,CD,AC之间的数量关系,并说明理由.【思维拓展】(3)在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=√6,AC与BD相交于点O.若四边形ABCD中有一个内角是75°,请直接写出线段OD的长.25.(12分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,﹣3),连接BC.(1)求抛物线的解析式及点B的坐标.(2)如图,点P为线段BC上的一个动点(点P不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,求线段PQ长度的最大值.(3)动点P以每秒√2个单位长度的速度在线段BC上由点C向点B运动,同时动点M 以每秒1个单位长度的速度在线段BO上由点B向点O运动,在平面内是否存在点N,使得以点P,M,B,N为顶点的四边形是菱形?若存在,请直接写出符合条件的点N的坐标;若不存在,请说明理由.2022年辽宁省朝阳市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.每小题给出的四个选项中,只有一个选项是正确的)1.(3分)2022的倒数是( ) A .﹣2022B .2022C .12022D .−12022【解答】解:2022的倒数是12022,故选:C .2.(3分)如图所示的几何体是由5个大小相同的小立方块搭成的,它的主视图是( )A .B .C .D .【解答】解:从正面看,只有一层,共有四个小正方形,. 故选:B .3.(3分)如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是( )A .38B .12C .58D .1【解答】解:由图知,阴影部分的面积占图案面积的38, 即这个点取在阴影部分的概率是38,故选:A .4.(3分)下列运算正确的是( )A .a 8÷a 4=a 2B .4a 5﹣3a 5=1C .a 3•a 4=a 7D .(a 2)4=a 6【解答】解:A .a 8÷a 4=a 4,故本选项不合题意; B .4a 5﹣3a 5=a 5,故本选项不合题意; C .a 3•a 4=a 7,故本选项符合题意; D (a 2)4=a 8,故本选项不合题意; 故选:C .5.(3分)将一个三角尺按如图所示的方式放置在一张平行四边形的纸片上,∠EFG =90°,∠EGF =60°,∠AEF =50°,则∠EGC 的度数为( )A .100°B .80°C .70°D .60°【解答】解:∵四边形ABCD 是平行四边形, ∴AB ∥DC , ∴∠AEG =∠EGC ,∵∠EFG =90°,∠EGF =60°, ∴∠GEF =30°, ∴∠GEA =80°, ∴∠EGC =80°. 故选:B .6.(3分)新冠肺炎疫情期间,学校要求学生每天早晨入校前在家测量体温,七年三班第二学习小组6名同学某天的体温(单位:℃)记录如下:36.1,36.2,36.0,36.0,36.1,36.1.则这组数据的中位数和众数分别是( ) A .36.0,36.1B .36.1,36.0C .36.2,36.1D .36.1,36.1【解答】解:将这组数据重新排列为36.0,36.0,36.1,36.1,36.1,36.2, 所以这组数据的中位数为36.1+36.12=36.1,众数为36.1,故选:D .7.(3分)如图,在⊙O 中,点A 是BĈ的中点,∠ADC =24°,则∠AOB 的度数是( )A.24°B.26°C.48°D.66°【解答】解:∵点A是BĈ的中点,∴AĈ=AB̂,∴∠AOB=2∠ADC=2×24°=48°.故选:C.8.(3分)如图,正比例函数y=ax(a为常数,且a≠0)和反比例函数y=kx(k为常数,且k≠0)的图象相交于A(﹣2,m)和B两点,则不等式ax>kx的解集为()A.x<﹣2或x>2B.﹣2<x<2C.﹣2<x<0或x>2D.x<﹣2或0<x<2【解答】解:∵正比例函数y=ax(a为常数,且a≠0)和反比例函数y=kx(k为常数,且k≠0)的图象相交于A(﹣2,m)和B两点,∴B(2,﹣m),∴不等式ax>kx的解集为x<﹣2或0<x<2,故选:D.9.(3分)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km,一部分学生乘慢车先行,出发30min后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶xkm ,根据题意,所列方程正确的是( ) A .60x −601.5x =3060B .601.5x −60x =3060C .60x−601.5x=30 D .601.5x−60x=30【解答】解:设慢车每小时行驶xkm ,则快车每小时行驶1.5xkm , 根据题意可得:60x−601.5x=3060.故选:A .10.(3分)如图,二次函数y =ax 2+bx +c (a 为常数,且a ≠0)的图象过点(﹣1,0),对称轴为直线x =1,且2<c <3,则下列结论正确的是( )A .abc >0B .3a +c >0C .a 2m 2+abm ≤a 2+ab (m 为任意实数)D .﹣1<a <−23【解答】解:A .抛物线的对称轴在y 轴右侧,则ab <0,而c >0, 故abc <0,不正确,不符合题意;B .函数的对称轴为直线x =−b2a =1,则b =﹣2a , ∵从图象看,当x =﹣1时,y =a ﹣b +c =3a +c =0, 故不正确,不符合题意;C .∵当x =1时,函数有最大值为y =a +b +c , ∴am 2+bm +c ≤a +b +c (m 为任意实数),∴am2+bm≤a+b,∵a<0,∴a2m2+abm≥a2+ab(m为任意实数)故不正确,不符合题意;D.∵−b2a=1,故b=﹣2a,∵x=﹣1,y=0,故a﹣b+c=0,∴c=﹣3a,∵2<c<3,∴2<﹣3a<3,∴﹣1<a<−23,故正确,符合题意;故选:D.二、填空题(本大题共6个小题,每小题3分,共18分.只需要将结果直接填写在横线上,不必写出解答过程,不填、错填,一律得0分)11.(3分)光在真空中1s传播299792km.数据299792用科学记数法表示为 2.99792×105.【解答】解:数据299792用科学记数法表示为2.99792×105.故答案为:2.99792×105.12.(3分)甲、乙、丙、丁四名同学参加掷实心球测试,每人掷5次,他们的平均成绩恰好相同,方差分别是s甲2=0.55,s乙2=0.56,s丙2=0.52,s丁2=0.48,则这四名同学掷实心球的成绩最稳定的是丁.【解答】解:∵s甲2=0.55,s乙2=0.56,s丙2=0.52,s丁2=0.48,∴s丁2<s丙2<s甲2<s乙2,∴这四名同学掷实心球的成绩最稳定的是丁,故答案为:丁.13.(3分)计算:√63÷√7−|﹣4|=﹣1.【解答】解:原式=√63÷7−4=3﹣4=﹣1. 故答案为:﹣1.14.(3分)如图,在Rt △ABC 中,∠ACB =90°,AB =13,BC =12,分别以点B 和点C 为圆心、大于12BC 的长为半径作弧,两弧相交于E ,F 两点,作直线EF 交AB 于点D ,连接CD ,则△ACD 的周长是 18 .【解答】解:由题可知,EF 为线段BC 的垂直平分线, ∴CD =BD ,∵∠ACB =90°,AB =13,BC =12, ∴AC =√AB 2−BC 2=5,∴△ACD 的周长为AC +AD +CD =AC +AD +BD =AC +AB =5+13=18. 故答案为:18.15.(3分)如图,在矩形ABCD 中,AD =2√3,DC =4√3,将线段DC 绕点D 按逆时针方向旋转,当点C 的对应点E 恰好落在边AB 上时,图中阴影部分的面积是 24﹣6√3−4π .【解答】解:∵将线段DC 绕点D 按逆时针方向旋转, ∴DE =DC =4√3, ∵cos ∠ADE =AD DE =2√34√3=12, ∴∠ADE =60°, ∴∠EDC =30°, ∴S 扇形EDC =30×π×48360=4π,∵AE =√DE2−AD2=√48−12=6,∴BE =AB ﹣AE =4√3−6, ∵四边形ABCD 是矩形,∴EB ∥CD ,∠B =∠DCB =90°, ∵EB ≠CB ,∴四边形DCBE 是直角梯形, ∴S 四边形DCBE =(4√3−6+4√3)×2√32=24﹣6√3,∴阴影部分的面积=24﹣6√3−4π, 故答案为:24﹣6√3−4π.16.(3分)等边三角形ABC 中,D 是边BC 上的一点,BD =2CD ,以AD 为边作等边三角形ADE ,连接CE .若CE =2,则等边三角形ABC 的边长为 3或6√1313. . 【解答】解:如图,E 点在AD 的右边,∵△ADE 与△ABC 都是等边三角形,∴AC =AB ,AE =AD ,∠DAE =∠BAC =60°, ∴∠DAE ﹣∠CAD =∠BAC ﹣∠CAD , 即∠CAE =∠BAD . 在△CAE 和△BAD 中, {AC =AB∠CAE =∠BAD AE =AD,∴△CAE ≌△BAD (SAS ), ∴CE =BD =2, ∵BD =2CD , ∴CD =1,∴BC =BD +CD =2+1=3,∴等边三角形ABC 的边长为3, 如图,E 点在AD 的左边,同上,△BAE ≌△CAD (SAS ), ∴BE =CD ,∠ABE =∠ACD =60°, ∴∠EBD =120°,过点E 作EF ⊥BC 交CB 的延长线于点F ,则∠EBF =60°, ∴EF =√32BE =√32CD ,BF =12BE =12CD ,∴CF =BF +BD +CD =72CD , 在Rt △EFC 中,CE =2, ∴EF 2+CF 2=CE 2=4, ∴(√32CD)2+(72CD)2=4,∴CD =2√1313或CD =−2√1313(舍去), ∴BC =6√1313, ∴等边三角形ABC 的边长为6√1313, 故答案为:3或6√1313.三、解答题(本大题共9小题,共72分.解答应写出必要的步骤、文字说明或证明过程) 17.(5分)先化简,再求值:x 2−4x 2−4x+4÷x+3x 2−2x+xx+3,其中x =(12)﹣2.【解答】解:原式=(x+2)(x−2)(x−2)2•x(x−2)x+3+x x+3=x 2+2x x+3+x x+3=x 2+3xx+3 =x(x+3)x+3=x ,∵x =(12)﹣2=4,∴原式=4.18.(6分)某中学要为体育社团购买一些篮球和排球,若购买3个篮球和2个排球,共需560元;若购买2个篮球和4个排球,共需640元. (1)求每个篮球和每个排球的价格分别是多少元;(2)该中学决定购买篮球和排球共10个,总费用不超过1100元,那么最多可以购买多少个篮球?【解答】解:(1)设每个篮球的价格是x 元,每个排球的价格是y 元, 根据题意得:{3x +2y =5602x +4y =640,解得{x =120y =100,∴每个篮球的价格是120元,每个排球的价格是100元; (2)设购买m 个篮球,根据题意得:120m +100(10﹣m )≤1100, 解得m ≤5,答:最多可以购买5个篮球.19.(7分)为了解学生的睡眠情况,某校随机抽取部分学生对他们最近两周的睡眠情况进行调查,得到他们每日平均睡眠时长x (单位:h )的一组数据,将所得数据分为四组(A :x <8;B :8≤x <9;C :9≤x <10;D :x ≥10),并绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)本次一共抽样调查了 50 名学生.(2)求出扇形统计图中D 组所对应的扇形圆心角的度数. (3)将条形统计图补充完整.(4)若该校共有1200名学生,请估计最近两周有多少名学生的每日平均睡眠时长大于或等于9h .【解答】解:(1)本次调查的学生人数为16÷32%=50(名), 故答案为:50;(2)表示D 组的扇形圆心角的度数为360°×250=14.4°; (3)A 组人数为50﹣(16+28+2)=4(名), 补全图形如下:(4)1200×28+250=720(名).答:估计该校最近两周有720名学生的每日平均睡眠时长大于或等于9h .20.(7分)某社区组织A ,B ,C ,D 四个小区的居民进行核酸检测,有很多志愿者参与此项检测工作,志愿者王明和李丽分别被随机安排到这四个小区中的一个小区组织居民排队等候.(1)王明被安排到A 小区进行服务的概率是14.(2)请用列表法或画树状图法求出王明和李丽被安排到同一个小区工作的概率. 【解答】解:(1)王明被安排到A 小区进行服务的概率是14,故答案为:14;(2)列表如下:A B CDA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)由表知,共有16种等可能结果,其中王明和李丽被安排到同一个小区工作的有4种结果,所以王明和李丽被安排到同一个小区工作的概率为416=1 4.21.(7分)某数学兴趣小组准备测量校园内旗杆顶端到地面的高度(旗杆底端有台阶).该小组在C处安置测角仪CD,测得旗杆顶端A的仰角为30°,前进8m到达E处,安置测角仪EF,测得旗杆顶端A的仰角为45°(点B,E,C在同一直线上),测角仪支架高CD=EF=1.2m,求旗杆顶端A到地面的距离即AB的长度.(结果精确到1m.参考数据:√3≈1.7)【解答】解:延长DF交AB于点G,由题意得:DF=CE=8m,DC=EF=BG=1.2m,∠AGF=90°,设AG=xm,在Rt△AFG中,∠AFG=45°,∴FG=AGtan45°=x(m),∴DG=DF+FG=(x+8)m,在Rt△ADG中,∠ADG=30°,∴tan30°=AGDG=x x+8=√33,∴x=4√3+4,经检验:x=4√3+4是原方程的根,∴AB=AG+BG≈12(m),∴旗杆顶端A到地面的距离即AB的长度约为12m.22.(8分)如图,AC是⊙O的直径,弦BD交AC于点E,点F为BD延长线上一点,∠DAF=∠B.(1)求证:AF是⊙O的切线;(2)若⊙O的半径为5,AD是△AEF的中线,且AD=6,求AE的长.【解答】(1)证明:∵AC是直径,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵∠ACD=∠B,∠B=∠DAF,∴∠DAF+∠DAC=90°,∴OA⊥AF,∵OA是半径,∴AF是⊙O的切线;(2)解:作DH⊥AC于点H,∵⊙O的半径为5,∴AC =10,∵∠AHD =∠ADC ,∠DAH =∠CAD , ∴△ADH ∽△ACD , ∴AD AC=AH AD,∴AD 2=AH •AC , ∴AH =3610=185,∵AD 是△AEF 的中线,∠EAF =90°, ∴AD =ED , ∴AE =2AH =365. 23.(10分)某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y (件)与每件售价x (元)之间存在一次函数关系(其中8≤x ≤15,且x 为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.(1)求y 与x 之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w (元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?【解答】解:(1)设每天的销售量y (件)与每件售价x (元)函数关系式为:y =kx +b , 由题意可知:{9k +b =10511k +b =95,解得:{k =−5b =150,∴y 与x 之间的函数关系式为:y =﹣5x +150; (2)(﹣5x +150)(x ﹣8)=425, 解得:x 1=13,x 2=25(舍去),∴若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为13元; (3)w =y (x ﹣8), =(﹣5x +150)(x ﹣8), w =﹣5x 2+190x ﹣1200,=﹣5(x﹣19)2+605,∵8≤x≤15,且x为整数,当x<19时,w随x的增大而增大,∴当x=15时,w有最大值,最大值为525.答:每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.24.(10分)【思维探究】(1)如图1,在四边形ABCD中,∠BAD=60°,∠BCD=120°,AB=AD,连接AC.求证:BC+CD=AC.小明的思路是:延长CD到点E,使DE=BC,连接AE.根据∠BAD+∠BCD=180°,推得∠B+∠ADC=180°,从而得到∠B=∠ADE,然后证明△ADE≌△ABC,从而可证BC+CD=AC,请你帮助小明写出完整的证明过程.【思维延伸】(2)如图2,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,连接AC,猜想BC,CD,AC之间的数量关系,并说明理由.【思维拓展】(3)在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=√6,AC与BD相交于点O.若四边形ABCD中有一个内角是75°,请直接写出线段OD的长.【解答】(1)证明:如图1中,延长CD到点E,使DE=BC,连接AE.∵∠BAD +∠BCD =180°,∴∠B +∠ADC =180°,∵∠ADE +∠ADC =180°∴∠B =∠ADE ,在△ADE 和△ABC 中,{DA =BA ∠ADE =∠B DE =BC,∴△ADE ≌△ABC (SAS ),∴∠DAE =∠BAC ,AE =AC ,∴∠CAE =∠BAD =60°,∴△ACE 的等边三角形,∴CE =AC ,∵CE =DE +CD ,∴AC =BC +CD ;(2)解:结论:CB +CD =√2AC .理由:如图2中,过点A 作AM ⊥CD 于点M ,AN ⊥CB 交CB 的延长线于点N .∵∠DAB =∠DCB =90°,∴∠CDA +∠CBA =180°,∵∠ABN +∠ABC =180°,∴∠D =∠ABN ,∵∠AMD =∠N =90°,AD =AB ,∴△AMD ≌△ANB (AAS ),∴DM =BN ,AM =AN ,∵AM ⊥CD ,AN ⊥CN ,∴∠ACD =∠ACB =45°,∴AC =√2CM ,∵AC =AC .AM =AN ,∴Rt △ACM ≌Rt △ACN (HL ),∴CM =CN ,∴CB +CD =CN ﹣BN +CM +DM =2CM =√2AC ;(3)解:如图3﹣1中,当∠CDA =75°时,过点O 作OP ⊥CB 于点P ,CQ ⊥CD 于点Q .∵∠CDA =75°,∠ADB =45°,∴∠CDB =30°,∵∠DCB =90°,∴CD =√3CB ,∵∠DCO =∠BCO =45°,OP ⊥CB ,OQ ⊥CD ,∴OP =OQ ,∴S △OBCS △CDO=12⋅CD⋅OQ 12⋅BC⋅OP =CD CB , ∴OD OB =CD CB =√3,∵AB =AD =√6,∠DAB =90°,∴BD =√2AD =2√3,∴OD =√31+√32√3=3√3−3.如图3﹣2中,当∠CBD =75°时,同法可证OD OB =√3,OD =11+√32√3=3−√3,综上所述,满足条件的OD 的长为3√3−3或3−√3.25.(12分)如图,在平面直角坐标系中,抛物线y =ax 2+2x +c 与x 轴分别交于点A (1,0)和点B ,与y 轴交于点C (0,﹣3),连接BC .(1)求抛物线的解析式及点B 的坐标.(2)如图,点P 为线段BC 上的一个动点(点P 不与点B ,C 重合),过点P 作y 轴的平行线交抛物线于点Q ,求线段PQ 长度的最大值.(3)动点P 以每秒√2个单位长度的速度在线段BC 上由点C 向点B 运动,同时动点M 以每秒1个单位长度的速度在线段BO 上由点B 向点O 运动,在平面内是否存在点N ,使得以点P ,M ,B ,N 为顶点的四边形是菱形?若存在,请直接写出符合条件的点N 的坐标;若不存在,请说明理由.【解答】解:(1)由题意得,{c =−3a +2×1+c =0,∴{c =−3a =1, ∴y =x 2+2x ﹣3,当y =0时,x 2+2x ﹣3=0,∴x 1=1,x 2=﹣3,∴B (﹣3,0);(2)设直线BC 的解析式为:y =kx +b ,∴{b =−3−3k +b =0, ∴{k =−1b =−3, ∴y =﹣x ﹣3,设点P (m ,﹣m ﹣3),Q (m ,m 2+2m ﹣3),∴PQ =(﹣m ﹣3)﹣(m 2+2m ﹣3)=﹣m 2﹣3m =﹣(m +32)2+94, ∴当m =−32时,PQ 最大=94;(3)如图1,∵B (﹣3,0),C (0,﹣3),∴OB =OC =3,∴∠OCB =∠OBC =45°,作PD ⊥y 轴于D ,∴CD =PD =PC •sin ∠OCB =√2t ×√22=t ,当BM =PM 时,∴∠MPB =∠OBC =45°,∵∠PMO =∠PDO =∠MOD =90°,∴四边形OMPD 时矩形,∴OM=PD=t,由BM+OM=OB得,∴2t=3,∴t=3 2,∴P(−32,−32),∴N(﹣3,−3 2),如图2,当PM=PB时,作PD⊥y轴于D,作PE⊥x轴于E,∴BM=2BE,可得四边形PDOE是矩形,∴OE=PD=t,∴BE=3﹣t,∴t=2(3﹣t),∴t=2,∴P(﹣2,﹣1),∴N(﹣2,1),如图3,当PB=MB时,3√2−√2t=t,∴t=6﹣3√2,∴P(3√2−6,3﹣3√2),∴N(0,3﹣3√2),综上所述:N(﹣3,−32)或(﹣2,1)或(0,3﹣3√2).。
2022年辽宁省鞍山市中考数学试题及答案解析
2022年辽宁省鞍山市中考数学试卷一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1.2022的相反数是( )A. 2022B. −12022C. 12022D. −20222.如图所示的几何体是由4个大小相同的小正方体搭成的,它的左视图是( )A.B.C.D.3.下列运算正确的是( )A. √2+√8=√10B. a3⋅a4=a12C. (a−b)2=a2−b2D. (−2ab2)3=−8a3b64.为了解居民用水情况,小丽在自家居住的小区随机抽查了10户家庭月用水量,统计如下表:月用水量/m378910户数2341则这10户家庭的月用水量的众数和中位数分别是( )A. 8,7.5B. 8,8.5C. 9,8.5D. 9,7.55.如图,直线a//b,等边三角形ABC的顶点C在直线b上,∠2=40°,则∠1的度数为( )A. 80°B. 70°C. 60°D. 50°6.如图,在△ABC中,AB=AC,∠BAC=24°,延长BC到点D,使CD=AC,连接AD,则∠D的度数( )A. 39°B. 40°C. 49°D. 51°7.如图,在矩形ABCD中,AB=2,BC=√3,以点B为圆心,BA长为半径画弧,交CD于点E,连接BE,则扇形BAE的面积为( )A. π3B. 3π5C. 2π3D. 3π48.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4√3cm,CD⊥AB,垂足为点D,动点M从点A出发沿AB方向以√3cm/s的速度匀速运动到点B,同时动点N从点C出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN.设运动时间为t s,△MND的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是( )A. B.C. D.二、填空题(本大题共7小题,共21.0分)9.教育部2022年5月17日召开第二场“教育这十年”“1+1”系列新闻发布会,会上介绍我国已建成世界最大规模高等教育体系,在学总人数超过44300000人.将数据44300000用科学记数法表示为______.10.一个不透明的口袋中装有5个红球和m个黄球,这些球除颜色外都相同,某同学进行了如下试验:从袋中随机摸出1个球记下它的颜色后,放回摇匀,为一次摸球试验.根据记录在下表中的摸球试验数据,可以估计出m的值为______.摸球的总次数a10050010002000…摸出红球的次数b19101199400…0.1900.2020.1990.200…摸出红球的频率ba11.如图,AB//CD,AD,BC相交于点E,若AE:DE=1:2,AB=2.5,则CD的长为______.12.某加工厂接到一笔订单,甲、乙车间同时加工,已知乙车间每天加工的产品数量是甲车间每天加工的产品数量的1.5倍,甲车间加工4000件比乙车间加工4200件多用3天.设甲车间每天加工x件产品,根据题意可列方程为______.13.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D,E分别在AB,BC上,将△BDE沿直线DE翻折,点B的对应点B′恰好落在AB上,连接CB′,若CB′=BB′,则AD的长为______.14.如图,菱形ABCD的边长为2,∠ABC=60°,对角线AC与BD交于点O,E为OB中点,F为AD中点,连接EF,则EF的长为______.15.如图,在正方形ABCD中,点E为AB的中点,CE,BD交于点H,DF⊥CE于点F,FM平分∠DFE,分别交AD,BD于点M,G,延长MF交BC于点N,连接BF.下列结论:①tan∠CDF=12;②S△EBH:S△DHF=3:4;③MG:GF:FN=5:3:2;④△BEF∽△HCD.其中正确的是______.(填序号即可).三、解答题(本大题共10小题,共102.0分。
2022年辽宁省沈阳市沈北新区雨田实验学校 中考数学零模试卷
辽宁省沈阳市沈北新区雨田实验学校2022年中考数学零模试卷一、选择题(本题共10小题,每小题3分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.2的倒数是()A.﹣B.﹣2C.D.22.如图所示,该几何体的左视图是()A.B.C.D.3.2018年1月至8月,沈阳市汽车产量为60万辆,其中60万用科学记数法表示为()A.6×104B.0.6×106C.6×106D.6×1054.下列运算正确的是()A.2a2•a3=2a6B.3m2+2m3=5m5C.(﹣3m2n)2=6m4n2D.m6÷m2=m45.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球6.如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是()A.60°B.100°C.110°D.120°7.一次函数y=(m﹣1)x+m+1(m≠﹣1)的图象如图所示,则m的取值范围是()A.﹣1<m<1B.m<1 且m≠﹣1C.m>1D.m>1 或m<﹣18.下列命题是真命题的是()A.对角线互相平分的四边形是平行四边形B.相等的两个角是对顶角C.两边和一角分别对应相等的两个三角形全等D.圆内接四边形对角相等9.关于二次函数y=x2+2x﹣8,下列说法正确的是()A.图象的对称轴在y轴的右侧B.图象与y轴的交点坐标为(0,8)C.图象与x轴的交点坐标为(﹣2,0)和(4,0)D.y的最小值为﹣910.如图,AB、CD为⊙O的直径,且AB⊥CD,点P在上,连接PC、PD,OH⊥PB于点H,若OH=PD,则∠C的度数是()A.30°B.25°C.22.5°D.21.5°二、填空题(每小题3分,共18分)11.因式分解:﹣5a3+10a2=.12.化简:=.13.在平面直角坐标系中,点A的坐标为(2,2),点B的坐标为(4,﹣2),以原点O为位似中心,在y 轴的同侧将△OAB缩小为原来的得到△OA′B′,点A的对应点为A′,点B的对应点为B′,则A′B′的长为.14.如图,点B在反比例函数y=(x>0)的图象上,点C在反比例函数y=﹣(x>0)的图象上,且BC∥y轴,AC⊥BC,垂足为点C,交y轴于点A,则△ABC的面积为.15.如图,四边形ABCD中的两条对角线AC,BD互相垂直,AC+BD=10,当AC为时.四边形ABCD的面积最大.16.如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:.18.(8分)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.19.(8分)为大力弘扬勤俭节约的传统美德,扎实推进“光盘行动”,某校八年级举办“拒绝浪费、从我做起”的学生演讲比赛.八(1)班有小怡、小宏、小童3名同学报名,老师制作了3张完全相同的卡片,正面分别写上这3名同学的姓名,将卡片反面朝上洗匀.(温馨提示:可以用A,B,C分别表示小怡、小宏、小童的名字)(1)老师从中随机抽取1张,卡片正面的名字是小童的概率为;(2)老师从3张卡片中随机抽取2张,卡片正面是谁的名字,谁就代表班级参加比赛.求出选中小怡和小宏的概率.四、(每小题8分,共16分)20.(8分)为了提高学生综合素质,丰富学校生活.某中学开设了多元活动班,设置“绘画、剪纸、舞蹈、摄影四类活动课程,每名学生从中选择并且只能选择其中一类参加,学校就报名情况对学生进行了抽样调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了名学生,在扇形统计图中,n的值是;(2)请直接补全条形统计图;(3)扇形统计图中,摄影部分所占的圆心角度数为°;(4)若这所中学共有2500名学生,请估计有多少名学生选择了“绘画”.21.(8分)5月18日,襄阳市5.3万余名初三学生回到阔别100多天的校园.为了返校学生的安全,快速筛查体温异常学生,某校在学生返校前购买了一批额温枪发放到班主任及相关人员手中.购买前有A,B 两种型号的额温枪可供选择,已知每只A型额温枪比每只B型额温枪贵20元,用5000元购进A型额温枪与用4500元购进B型额温枪的数量相等.(1)每只A型,B型额温枪的价格各是多少元?(2)该校欲购进A,B两种型号的额温枪共30只,购买两种额温枪的总资金不超过5800元.则最多可购进A型号额温枪多少只?五、(本题10分)22.(10分)如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD于点E,交CD于点F.(1)求证:∠ADC=∠AOF;(2)若sin C=,BD=8,求EF的长.六、(本题10分)23.(10分)如图1,在平面直角坐标系中,点O是坐标原点,直线y=﹣x+12与y轴交于点A,与x轴交于B点,点C的坐标为(6,0).(1)求直线AC的解析式;(2)点P为线段OC上一点,过点P作PD⊥OB,交AC于E,交AB于D,设点P横坐标为t,DE的长为d,求d与t的函数关系(不要求写出自变量t的取值范围);(3)在(2)的条件下,H为x轴负半轴上的一点,连接AH,EF⊥AH于点F,交y轴于点G,连接OF,若∠OFE=2∠OAC,d=,求点G的坐标.七、(本题12分)24.(12分)(1)如图①,等边△ABC的边长为6,则该等边三角形的外接圆半径长为.(2)如图②,在△ABC中,∠BAC=120°,AB=AC=8,点D、E、F分别在边BC、AB和AC上,∠EDF=60°,若点D为BC边的中点,AE=AB,求AF的长度.(3)如图③,在△ABC中,∠BAC=120°,BC=10,等边△DEF的三个顶点分别在边BC、AB、AC上.该等边三角形的面积是否存在最大值,如果存在,求出面积最大值,如果不存在,说明理由.八、(本题12分)25.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)直接写出抛物线的解析式为:;(2)点D为第一象限内抛物线上的一动点,作DE⊥x轴于点E,交BC于点F,过点F作BC的垂线与抛物线的对称轴和y轴分别交于点G,H,设点D的横坐标为m.①求DF+HF的最大值;②连接EG,若∠GEH=45°,求m的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2022年辽宁省沈阳市中考数学试卷 一.选择题〔每题3分,共24分,只有一个答案是正确的〕 1.〔3分〕〔2022•沈阳〕比0大的数是〔 〕 A. ﹣2 B. ﹣ C. ﹣0.5 D. 1
2.〔3分〕〔2022•沈阳〕如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是〔 〕 A. B. C. D.
3.〔3分〕〔2022•沈阳〕以下事件为必然事件的是〔 〕 A. 经过有交通信号灯的路口,遇到红灯 B. 明天一定会下雨 C. 抛出的篮球会下落 D. 任意买一张电影票,座位号是2的倍数 4.〔3分〕〔2022•沈阳〕如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,那么∠A的度数是〔 〕 A. 100° B. 90° C. 80° D. 70° 5.〔3分〕〔2022•沈阳〕以下计算结果正确的选项是〔 〕 A. a4•a2=a8 B. 〔a5〕2=a7 C. 〔a﹣b〕2=a2﹣b2 D. 〔ab〕2=a2b2
6.〔3分〕〔2022•沈阳〕一组数据2、3、4、4、5、5、5的中位数和众数分别是〔 〕 A. 3.5,5 B. 4,4 C. 4,5 D. 4.5,4 7.〔3分〕〔2022•沈阳〕顺次连接对角线相等的四边形的各边中点,所形成的四边形是〔 〕 A. 平行四边形 B. 菱形 C. 矩形 D. 正方形 8.〔3分〕〔2022•沈阳〕在平面直角坐标系中,二次函数y=a〔x﹣h〕2〔a≠0〕的图象可能是〔 〕 A. B. C. D.
二.填空题〔每题4分,共32分〕 9.〔4分〕〔2022•沈阳〕分解因式:ma2﹣mb2=.
10.〔4分〕〔2022•沈阳〕不等式组的解集是. 11.〔4分〕〔2022•沈阳〕如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm为半径作⊙A,当AB=cm时,BC与⊙A相切. 12.〔4分〕〔2022•沈阳〕某跳远队甲、乙两名运发动最近10次跳远成绩的平均数为602cm,假设甲跳远成绩的方差为S甲2=65.84,乙跳远成绩的方差为S乙2=285.21,那么成绩比较稳定的是.〔填“甲〞或“乙〞〕 13.〔4分〕〔2022•沈阳〕在一个不透明的袋中装有12个红球和假设干个黑球,每个球除颜
色外都相同,任意摸出一个球是黑球的概率为,那么袋中的黑球有个. 14.〔4分〕〔2022•沈阳〕如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,那么AB:DE=. 15.〔4分〕〔2022•沈阳〕如图1,在某个盛水容器内,有一个小水杯,小水杯内有局部水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y〔cm〕和注水时间x〔s〕之间的关系满足如图2中的图象,那么至少需要s能把小水杯注满. 16.〔4分〕〔2022•沈阳〕如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.假设正方形ABCD边长为,那么AK=. 三.解答题
17.〔8分〕〔2022•沈阳〕计算:+|﹣2|﹣〔〕﹣2+〔tan60°﹣1〕0. 18.〔8分〕〔2022•沈阳〕如图,点E为矩形ABCD外一点,AE=DE,连接EB、EC分别与AD相交于点F、G.求证: 〔1〕△EAB≌△EDC; 〔2〕∠EFG=∠EGF. 19.〔10分〕〔2022•沈阳〕我国是世界上严重缺失的国家之一,全国总用水量逐年上升,全国总用水量可分为农业用水量、工业用水量和生活用水量三局部.为了合理利用水资源,我国连续多年对水资源的利用情况进行跟踪调查,将所得数据进行处理,绘制了2022年全国总用水量分布情况扇形统计图和2022﹣2022年全国生活用水量折线统计图的一局部如下: 〔1〕2022年全国生活用水量比2022年增加了16%,那么2022年全国生活用水量为亿m3,2022年全国生活用水量比2022年增加了20%,那么2022年全国生活用水量为亿m3; 〔2〕根据以上信息,请直接在答题卡上补全折线统计图; 〔3〕根据以上信息2022年全国总水量为亿; 〔4〕我国2022年水资源总量约为2.75×104亿m3,根据国外的经验,一个国家当年的全国总用水量超过这个国家年水资源总量的20%,就有可能发生“水危机〞.依据这个标准,2022年我国是否属于可能发生“水危机〞的行列并说明理由. 20.〔10分〕〔2022•沈阳〕高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度. 21.〔10分〕〔2022•沈阳〕如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E. 〔1〕求∠OCA的度数; 〔2〕假设∠COB=3∠AOB,OC=2,求图中阴影局部面积〔结果保存π和根号〕
22.〔10分〕〔2022•沈阳〕如图,一次函数y=x﹣3与反比例函数y=的图象相交于点A〔4,n〕,与x轴相交于点B. 〔1〕填空:n的值为,k的值为; 〔2〕以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;
〔3〕考察反比函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围. 23.〔12分〕〔2022•沈阳〕如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B的坐标为〔60,0〕,OA=AB,∠OAB=90°,OC=50.点P是线段OB上的一个动点〔点P不与点O、B重合〕,过点P与y轴平行的直线l交边OA或边AB于点Q,交边OC或边BC于点R,设点P横坐标为t,线段QR的长度为m.t=40时,直线l恰好经过点C. 〔1〕求点A和点C的坐标; 〔2〕当0<t<30时,求m关于t的函数关系式; 〔3〕当m=35时,请直接写出t的值; 〔4〕直线l上有一点M,当∠PMB+∠POC=90°,且△PMB的周长为60时,请直接写出满足条件的点M的坐标. 24.〔12分〕〔2022•沈阳〕如图,在▱ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将▱ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G. 〔1〕当点H与点C重合时. ①填空:点E到CD的距离是; ②求证:△BCE≌△GCF; ③求△CEF的面积; 〔2〕当点H落在射线BC上,且CH=1时,直线EH与直线CD交于点M,请直接写出△MEF的面积.
25.〔14分〕〔2022•沈阳〕如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x轴交于B、C两点〔点B在点C的左侧〕,与y轴交于点A,抛物线的顶点为D. 〔1〕填空:点A的坐标为〔,〕,点B的坐标为〔,〕,点C的坐标为〔,〕,点D的坐标为〔,〕; 〔2〕点P是线段BC上的动点〔点P不与点B、C重合〕 ①过点P作x轴的垂线交抛物线于点E,假设PE=PC,求点E的坐标; ②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长; ③假设点Q是线段AB上的动点〔点Q不与点A、B重合〕,点R是线段AC上的动点〔点R不与点A、C重合〕,请直接写出△PQR周长的最小值.
2022年辽宁省沈阳市中考数学试卷
参考答案与试题解析 一.选择题〔每题3分,共24分,只有一个答案是正确的〕 1.〔3分〕〔2022•沈阳〕比0大的数是〔 〕 A. ﹣2 B. ﹣ C. ﹣0.5 D. 1
考点: 有理数大小比较. 分析: 正实数都大于0,负实数都小于0,据此判断即可. 解答: 解:A、B、C都是负数,故A、B、C错误; D、1是正数,故D正确; 应选D. 点评: 此题考查了有理数比较大小,正数大于0是解题关键. 2.〔3分〕〔2022•沈阳〕如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是〔 〕 A. B. C. D.
考点: 简单组合体的三视图. 分析: 找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中. 解答: 解:从左面看易得第一层有4个正方形,第二层最左边有一个正方形. 应选A. 点评: 此题考查了三视图的知识.注意左视图是指从物体的左边看物体. 3.〔3分〕〔2022•沈阳〕以下事件为必然事件的是〔 〕 A. 经过有交通信号灯的路口,遇到红灯 B. 明天一定会下雨 C. 抛出的篮球会下落 D. 任意买一张电影票,座位号是2的倍数 考点: 随机事件. 分析: 根据事件的分类对各选项进行逐一分析即可. 解答: 解:A、经过某一有交通信号灯的路口遇到红灯是随机事件,故本选项错误; B、明天可能是晴天,也可能是雨天,属于不确定性事件中的可能性事件,故本选项错误; C、在操场上抛出的篮球会下落,是必然事件,故本选项正确; D、任意买一张电影票,座位号是2的倍数为不确定事件,即随机事件,故本选项错误; 应选:C. 点评: 此题考查的是事件的分类,即事件分为确定事件和不确定事件〔随机事件〕,确定事件又分为必然事件和不可能事件,熟知以上知识是解答此题的关键. 4.〔3分〕〔2022•沈阳〕如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,那么∠A的度数是〔 〕 A. 100° B. 90° C. 80° D. 70° 考点: 平行线的性质;三角形内角和定理.
分析: 先根据平行线的性质求出∠C的度数,再根据三角形内角和定理求出∠A的度数即可.
解答: 解:∵DE∥BC,∠AED=40°, ∴∠C=∠AED=60°, ∵∠B=40°, ∴∠A=180°﹣∠C﹣∠B=180°﹣40°﹣60°=80°.