因式分解经典题型(含详细答案)

合集下载

(专题精选)初中数学因式分解经典测试题附答案解析

(专题精选)初中数学因式分解经典测试题附答案解析

(专题精选)初中数学因式分解经典测试题附答案解析一、选择题1.下列各式从左到右的变形中,属于因式分解的是( )A .m (a +b )=ma +mbB .a 2+4a ﹣21=a (a +4)﹣21C .x 2﹣1=(x +1)(x ﹣1)D .x 2+16﹣y 2=(x +y )(x ﹣y )+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.故选B .考点:提公因式法与公式法的综合运用.3.把代数式322363x x y xy -+分解因式,结果正确的是( )A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【答案】D【解析】 此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.解答:解:322363x x y xy -+,=3x (x 2-2xy+y 2),=3x (x-y )2.故选D .4.下列等式从左到右的变形是因式分解的是( )A .2x (x +3)=2x 2+6xB .24xy 2=3x •8y 2C .x 2+2xy +y 2+1=(x +y )2+1D .x 2﹣y 2=(x +y )(x ﹣y )【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5.下列分解因式正确的是( )A .x 2-x+2=x (x-1)+2B .x 2-x=x (x-1)C .x-1=x (1-1x )D .(x-1)2=x 2-2x+1 【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A 、x 2-x+2=x (x-1)+2,不是分解因式,故选项错误;B 、x 2-x=x (x-1),故选项正确;C 、x-1=x (1-1x),不是分解因式,故选项错误;D 、(x-1)2=x 2-2x+1,不是分解因式,故选项错误.故选:B .【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.6.若三角形的三边长分别为a 、b 、c ,满足22230a b a c b c b -+-=,则这个三角形是( )A .直角三角形B .等边三角形C .锐角三角形D .等腰三角形 【答案】D【解析】【分析】首先将原式变形为()()()0b c a b a b --+=,可以得到0b c -=或0a b -=或0a b +=,进而得到b c =或a b =.从而得出△ABC 的形状.【详解】∵22230a b a c b c b -+-=,∴()()220a b c b c b -+-=,∴()()220b c a b --=,即()()()0b c a b a b --+=,∴0b c -=或0a b -=或0a b +=(舍去),∴b c =或a b =,∴△ABC 是等腰三角形.故选:D .【点睛】本题考查了因式分解-提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.7.多项式x 2y (a -b )-xy (b -a )+y (a -b )提公因式后,另一个因式为( ) A .21x x -+B .21x x ++C .21x x --D .21x x +-【答案】B【解析】解:x 2y (a -b )-xy (b -a )+y (a -b )= y (a -b )(x 2+x +1).故选B .8.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.9.已知x ﹣y =﹣2,xy =3,则x 2y ﹣xy 2的值为( )A .2B .﹣6C .5D .﹣3 【答案】B【解析】【分析】先题提公因式xy ,再用公式法因式分解,最后代入计算即可.【详解】解:x 2y ﹣xy 2=xy (x ﹣y )=3×(﹣2)=﹣6,故答案为B .【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.10.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.11.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】 解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B12.已知a ,b ,c 满足3a b c ++=,2224a b c ++=,则222222222a b b c c a c a b+++++=---( ). A .0B .3C .6D .9【答案】D【解析】【分析】将等式变形可得2224+=-a b c ,2224+=-b c a ,2224+=-a c b ,然后代入分式中,利用平方差公式和整体代入法求值即可.【详解】解:∵2224a b c ++=∴2224+=-a b c ,2224+=-b c a ,2224+=-a c b∵3a b c ++= ∴222222222+++++---a b b c c a c a b=222444222---++---c a b c a b=()()()()()()222222222-+-+-+++---c c a a b b c ab=222+++++c a b=()6+++c a b=6+3=9故选D .【点睛】 此题考查的是分式的化简求值题和平方差公式,掌握分式的基本性质和平方差公式是解决此题的关键.13.下列从左边到右边的变形,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .221(2)1x x x x -+=-+C .224(4)(4)x y x y x y -=+-D .26(2)(3)x x x x --=+-【答案】D【解析】A. 和因式分解正好相反,故不是分解因式;B. 结果中含有和的形式,故不是分解因式;C. 22x 4y -=(x+2y)(x−2y),解答错误;D. 是分解因式。

因式分解练习题加答案 200道

因式分解练习题加答案 200道

因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。

因式分解经典测试题含解析

因式分解经典测试题含解析

因式分解经典测试题含解析一、选择题1.多项式22ab bc a c -+-分解因式的结果是( )A .()()a c a b c -++B .()()a c a b c -+-C .()()a c a b c ++-D .()()a c a b c +-+【答案】A【解析】【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:22))))))=((((((+)+(ab bc a c b a c a c a c a c b a c a c a b c -+--++-=-+=-+; 故选:A.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.2.下列多项式不能使用平方差公式的分解因式是( )A .22m n --B .2216x y -+C .22b a -D .22449a n -【答案】A【解析】【分析】原式各项利用平方差公式的结构特征即可做出判断.【详解】下列多项式不能运用平方差公式分解因式的是22m n --.故选A .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.3.下列等式从左到右的变形是因式分解的是( )A .2x (x +3)=2x 2+6xB .24xy 2=3x •8y 2C .x 2+2xy +y 2+1=(x +y )2+1D .x 2﹣y 2=(x +y )(x ﹣y )【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4.设a ,b ,c 是ABC V 的三条边,且332222a b a b ab ac bc -=-+-,则这个三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形【答案】D【解析】【分析】把所给的等式能进行因式分解的要因式分解,整理为整理成多项式的乘积等于0的形式,求出三角形三边的关系,进而判断三角形的形状.【详解】解:∵a 3-b 3=a 2b-ab 2+ac 2-bc 2,∴a 3-b 3-a 2b+ab 2-ac 2+bc 2=0,(a 3-a 2b )+(ab 2-b 3)-(ac 2-bc 2)=0,a 2(a-b )+b 2(a-b )-c 2(a-b )=0,(a-b )(a 2+b 2-c 2)=0,所以a-b=0或a 2+b 2-c 2=0.所以a=b 或a 2+b 2=c 2.故选:D.【点睛】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.5.已知12,23x y xy -==,则43342x y x y -的值为( )A .23B .2C .83D .163【答案】C【解析】【分析】利用因式分解以及积的乘方的逆用将43342x y x y -变形为(xy)3(2x-y),然后代入相关数值进行计算即可.【详解】 ∵12,23x y xy -==,∴43342x y x y -=x 3y 3(2x-y)=(xy)3(2x-y)=23×13=83, 故选C .【点睛】本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知识是解题的关键.6.下列各式中不能用平方差公式进行计算的是( )A .(m -n )(m +n )B .(-x -y )(-x -y )C .(x 4-y 4)(x 4+y 4)D .(a 3-b 3)(b 3+a 3)【答案】B【解析】A.(m -n)(m +n),能用平方差公式计算;B.(-x -y)(-x -y),不能用平方差公式计算;C.(x 4-y 4)(x 4+y 4),能用平方差公式计算;D. (a 3-b 3)(b 3+a 3),能用平方差公式计算.故选B.7.下列各式分解因式正确的是( )A .22()()()(1)a b a b a b a b +-+=++-B .236(36)x xy x x x y --=-C .223311(4)44a b ab ab a b -=- D .256(1)(6)x x x x --=+- 【答案】D【解析】【分析】 利用提公因式法、十字相乘法法分别进行分解即可.【详解】A. 22()()()(1)+-+≠++-a b a b a b a b ,故此选项因式分解错误,不符合题意;B. 23-6-(3-6-1)=x xy x x x y ,故此选项因式分解错误,不符合题意;C. 223211(4)44-=-a b ab ab a b ,故此选项因式分解错误,不符合题意; D. 256(1)(6)x x x x --=+-,故此选项因式分解正确,符合题意.故选:D【点睛】本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用其他方法进行分解.8.若()()21553x kx x x --=-+,则k 的值为( )A .-2B .2C .8D .-8【答案】B【解析】【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值.【详解】∵()()253215x x x x -+=--∴2k -=-解得2k =故答案为:B .【点睛】本题考查了因式分解的问题,掌握十字相乘法是解题的关键.9.下列运算结果正确的是( )A .321x x -=B .32x x x ÷=C .326x x x ⋅=D .222()x y x y +=+【答案】B【解析】【分析】根据合并同类项法则、同底数幂乘除法法则、公式法分解因式逐项进行计算即可得.【详解】A 、3x ﹣2x =x ,故A 选项错误;B 、x 3÷x 2=x ,正确;C 、x 3•x 2=x 5,故C 选项错误;D 、x 2+2xy+y 2=(x+y)2,故D 选项错误,故选B.【点睛】本题考查了合并同类项、同底数幂乘除、公式法分解因式,熟练掌握相关的运算法则以及完全平方公式的结构特征是解题的关键.10.下列分解因式,正确的是( )A .()()2x 1x 1x 1+-=+B .()()29y 3y y 3-+=+-C .()2x 2x l x x 21++=++D .()()22x 4y x 4y x 4y -=+- 【答案】B【解析】【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【详解】A. 和因式分解正好相反,故不是分解因式;B. 是分解因式;C. 结果中含有和的形式,故不是分解因式;D. x 2−4y 2=(x+2y)(x−2y),解答错误.故选B.【点睛】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.11.下列因式分解结果正确的是( ).A .10a 3+5a 2=5a(2a 2+a)B .4x 2-9=(4x+3)(4x-3)C .a 2-2a-1=(a-1)2D .x 2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A 可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A 作出判断;而B 符合平方差公式的结构特点,因此可对B 作出判断;C 不符合完全平方公式的结构特点,因此不能分解,而D 可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A 、原式=5a 2(2a+1),故A 不符合题意;B 、原式=(2x+3)(2x-3),故B 不符合题意;C 、a 2-2a-1不能利用完全平方公式分解因式,故C 不符合题意;D 、原式=(x-6)(x+1),故D 符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.12.已知a b >,a c >,若2M a ac =-,N ab bc =-,则M 与N 的大小关系是( )A .M N <B .M N =C .M N >D .不能确定【答案】C【解析】【分析】 计算M-N 的值,与0比较即可得答案.【详解】∵2M a ac =-,N ab bc =-,∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),∵a b >,a c >,∴a-b >0,a-c >0,∴(a-b)(a-c)>0,∴M >N ,故选:C .【点睛】本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.13.下面的多项式中,能因式分解的是( )A .2m n +B .221m m -+C .2m n -D .21m m -+ 【答案】B【解析】【分析】完全平方公式的考察,()2222a b a ab b -=-+【详解】A 、C 、D 都无法进行因式分解B 中,()2222212111m m m m m -+=-⋅⋅+=-,可进行因式分解故选:B【点睛】本题考查了公式法因式分解,常见的乘法公式有:平方差公式:()()22a b a b a b -=+- 完全平方公式:()2222a b a ab b ±=±+14.将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .221a a ++C .2a a +D .22a a +-【答案】D【解析】【分析】先把各个多项式分解因式,即可得出结果.【详解】解:21(1)(1)a a a -=+-Q ,()2221=1a a a +++2(1)a a a a +=+,22(2)(1)a a a a +-=+-, ∴结果中不含有因式1a +的是选项D ;故选:D .【点睛】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.15.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 【答案】C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确.故选C .【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.16.把多项式3(x -y)-2(y -x)2分解因式结果正确的是( )A .()()322x y x y ---B .()()322x y x y --+C .()()322x y x y -+-D .()()322y x x y -+-【答案】B【解析】【分析】提取公因式x y -,即可进行因式分解.【详解】 ()()232x y y x --- ()()322x y x y =--+故答案为:B .【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.17.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.18.下列等式从左到右的变形,属于因式分解的是( )A .2(3)(2)6x x x x +-=+-B .24(2)(2)x x x -=+-C .2323824a b a b =⋅D .1()1ax ay a x y --=-- 【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C .左边不是多项式,不是因式分解,故C 错误;D .右边不是整式积的形式,故D 错误.故选B .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.19.下列因式分解正确的是( )A .()22121x x x x ++=++B .()222x y x y -=-C .()1xy x x y -=-D .()22211x x x +-=- 【答案】C【解析】【分析】根据平方差公式,提公因式法分解因式,完全平方公式,对各选项逐一分析判断即可得答案.【详解】A.x 2+2x+1=(x+1)2,故该选项不属于因式分解,不符合题意,B.x 2-y 2=(x+y)(x-y),故该选项因式分解错误,不符合题意,C.xy-x=x(y-1),故该选项正确,符合题意,D.x 2+2x-1不能因式分解,故该选项因式分解错误,不符合题意,故选:C .【点睛】本题考查因式分解,因式分解首先看是否有公因式,如果有先提取公因式,然后再利用公式法或十字相乘法进行分解,要分解到不能再分解为止.20.下列各式从左到右因式分解正确的是( )A .()26223x y x y +=--B .()22121x x x x +=+--C .()2242x x =--D .()()311 x x x x x =+-- 【答案】D【解析】【分析】因式分解,常用的方法有:(1)提取公因式;(2)利用乘法公式进行因式分解【详解】A 中,需要提取公因式:()26223+1x y x y +=--,A 错误;B 中,利用乘法公式:()2221x x x +=--1,B 错误;C 中,利用乘法公式:2()4()22x x x =-+-,C 错误;D 中,先提取公因式,再利用乘法公式:()()311x x x x x -=+-,正确 故选:D【点睛】在进行因式分解的过程中,若能够提取公因式,往往第一步是进行提取公因式,在观察剩下部分是否还可进行因式分解.。

因式分解专项练习试题(含答案)

因式分解专项练习试题(含答案)

因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y27.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2 (3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x (x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2..专业.专注.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x ﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).. word可编辑.。

《因式分解500题》(含答案)

《因式分解500题》(含答案)
2
服务内核部-初数教研
\ 3 /
25. 因式分解:−4 3 2 + 6 2 3 − 12 2 2
26. 分解因式:−6 − 142 3 + 123
27. 分解因式:−26 3 2 + 13 2 2 + 52 5 2 4
28. 因式分解:
\ 5 /
43. 分解因式:( − )5 + ( − )5
44. 分解因式:(1 − + 2 ) − 1 + − 2
45. 将下列各式因式分解:
①53 ( − )3 − 104 3 ( − )2 ;
②( − )2 + ( − ) + ( − );
6. 分解因式:32 + 6 2
7. 因式分解:2 2 −
8. 分解因式:32 − 6
9. 分解因式:12 − 3 2
10. 用提公因式法因式分解:22 3 + 6 2
11. 因式分解:2( − ) − ( − )
12. 分解因式:( − ) − ( − )
29. 分解因式:( − 3)2 − (2 − 6);
30. 分解因式:18( − )2 − 12( − )3
31. 因式分解:10( − )2 + 5( − )
32. 计算:( + )2 − ( + )( − )
33. 分解因式:( + 1)( − 1) + ( − 1)
19. 因式分解:−43 + 162 − 26
20. 分解因式:6 2 − 9 + 3
21. 分解因式:−82 − 2 + 6 2
22. 因式分解:−14 − 7 + 49 2

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)1. 二次多项式的因式分解问题描述给定一个二次多项式ax2+bx+c,请将其进行因式分解。

解答步骤1.首先确定二次多项式的系数a、b和c。

2.接着,我们需要找到两个因子,使得它们的乘积等于ac,并且它们的和等于b。

3.最后,将多项式按照因子的形式进行因式分解。

示例问题:将二次多项式2x2+3x−2进行因式分解。

解答:1.确定系数a=2,b=3和c=−2。

2.找到两个因子,它们的乘积等于ac=−4,并且它们的和等于b=3。

在本例中,-2 和 2 是满足要求的因子。

3.将多项式进行因式分解:2x2+3x−2=(x−2)(2x+1)。

因此,二次多项式2x2+3x−2的因式分解结果为(x−2)(2x+1)。

答案(x−2)(2x+1)2. 完全平方式的因式分解问题描述给定一个完全平方式a2−b2,请将其进行因式分解。

解答步骤1.首先确定完全平方式的两个因子a和b。

2.接着,根据公式(a−b)(a+b)进行因式分解。

示例问题:将完全平方式9x2−4进行因式分解。

解答:1.确定完全平方式的两个因子a=3x和b=2。

2.根据公式进行因式分解:9x2−4=(3x−2)(3x+2)。

因此,完全平方式9x2−4的因式分解结果为(3x−2)(3x+2)。

答案(3x−2)(3x+2)3. 其它特殊情况的因式分解问题描述除了二次多项式和完全平方式外,还有一些特殊情况需要进行因式分解。

下面是几个例子:1.差平方式:形式为a2−b2的差平方式可以利用公式(a−b)(a+b)进行因式分解。

2.特殊二次多项式:形式为ax2+bx+c的二次多项式,如果不能直接进行因式分解,可以尝试使用求根公式进行因式分解。

3.多项式的公因式提取:对于多项式ax2+bx,可以提取公因式得到x(ax+b)进行因式分解。

示例问题:将差平方式16x2−9进行因式分解。

解答:根据公式(a−b)(a+b)进行因式分解:16x2−9=(4x−3)(4x+3)。

超经典的因式分解练习题有答案精品

超经典的因式分解练习题有答案精品1. 因式分解.(1) a(a-b) -2(w-b).(2)x²-2x²+x.2.因式分解:(1)12m²κ⁻¹−8m²κ⁴;(2) x³-4x²y+4xy².3.将下列多项式因式分解:(1) 2x²-6x;(2) -6x²+12a-6;(3) 4x²-(y²-4y-4).4. 因式分解: (m+1) (m-9) +8m.5.因式分解:25x²{a-b}+49y² (b-a).6.因式分解:2x¹-8r³y8xy².7.因式分解:(1) 4a²-9;(2) 16m³-8me+n³.8. 因式分解:(1) 2ax²-2m²;(2) 3a²-6a²b+3ab².9. 因式分解:(1) m²-m;(2) x³-4x²+4x.10. 因式分解:4.²(x-1) -9 (x+7).11.因式分解:-3a+12a²-12a³.12. 因式分解:(1) m²-y³;(2) x(x-y) ty(y-x).参考答案10. 因式分解.(1) a(a-b) -2(a-b).(2) x³2x³+x.【分析】(1) 原式提取公因式分解即可;(2) 原式提取公因式,再利用完全平方公式分解即可.【解答】解: (1) a (a -b) -2(a -b) = (a-b) ( a -2).(2)x³-2x²+x=x (x²-2x-1)=x(x-1)².【点评】此题考查了提公园式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.因式分解:(1) 12m³k⁴-8m²n³;(2)x³-4r³y+4xy².【分析】(1) 找到公因式,提取公因式即可:(2) 先提取公因式,再看用完全平方公式.【解答】解: (1) 原式=4m²n⁴ (3m-2m²);(2)原式: =x(x²-4xy-4y²)=x (x-2y)².【点评】本题考查了整式的因式分解,掌握提取公因式法,公式法是解决本题的关键。

因式分解精选习题及答案

因式分解精选习题及答案因式分解是初中数学中比较重要的一个知识点。

在应用中,因式分解可以减少计算量,化简复杂式子,对解决一些实际问题有很大的帮助。

下面我会列出几道经典的因式分解题目,帮助大家复习和巩固这一知识点。

1. $x^4 - y^4$解析:此题是容易被忽略的一种情况,即正负相反的二次幂相加。

将原式转化为 $x^2$ 的二次幂减去 $y^2$ 的二次幂,此式即为两个平方差的乘积,即 $(x^2+y^2)(x^2-y^2)$,继续化简即可得到答案 $(x+y)(x-y)(x^2+y^2)$。

2. $a^3 - b^3$解析:此题是一个正3次幂减去负3次幂的情况。

由于 $a^3-b^3=(a-b)(a^2+ab+b^2)$,所以答案为 $(a-b)(a^2+ab+b^2)$。

3. $192x^2 + 54y^2$解析:此题中有两个系数都是 2 的数字。

为了化简,我们可以先把这两个系数取消掉。

将式子进行分解,得到 $6(32x^2+9y^2)$,然后我们发现$32x^2+9y^2$ 可以写成 $16x^2+16x^2+9y^2$ 或者$9y^2+16x^2+16x^2$。

由于 $16x^2+16x^2$ 可以提取出一个 $16$,而$9y^2+16x^2$ 不能提取出任何数字,所以将$9y^2+16x^2+16x^2$ 继续分解,得到 $9y^2+32x^2$。

因此原式即为 $6(16x^2+9y^2)+18x^2$,进一步合并可得到$6(4x+3y)(4x-3y)$。

4. $x^3 + 3x^2 + 3x + 1$解析:这是一个比较特殊的情况,题干中是一个四次多项式式子,但是它本身已经是一个完全平方式了。

我们可以把题干式子展开,得到 $(x+1)^3$,而 $(x+1)^2$ 也可以写成 $(x+1)(x+1)$,所以答案即为 $(x+1)^2(x+1)$ 或者$x(x+1)^2+(x+1)^2$。

初三因式分解练习题及答案40题

初三因式分解练习题及答案40题一、单项选择题1. x² + 4x + 4 的因式分解形式是:A) (x + 2)²B) (x - 2)²C) (x + 4)²D) (x - 4)²2. 2x² + 3x - 2 的因式分解形式是:A) (2x - 1)(x + 2)B) (2x + 1)(x - 2)C) (2x + 2)(x - 1)D) (2x - 2)(x + 1)3. x² - 36 的因式分解形式是:A) (x - 6)(x + 6)B) (x - 12)(x + 12)C) (x - 18)(x + 18)D) (x - 9)(x + 9)4. 3x² - 7x + 2 的因式分解形式是:A) (3x - 2)(x - 1)B) (3x + 2)(x + 1)C) (3x - 1)(x - 2)D) (3x + 1)(x + 2)5. x³ - 12x 的因式分解形式是:A) x(x - 6)(x + 6)B) x(x - 2)(x + 2)C) x(x - 4)(x + 4)D) x(x - 3)(x + 3)二、填空题1. 16a² - 4b²的因式分解形式是:() ×()2. 2xy² + 5x²y 的因式分解形式是:() ×()3. 4x² - 12xy + 9y²的因式分解形式是:() ×()4. 9a³ - 27a²b + 18ab²的因式分解形式是:() ×()5. 6x³y - 9xy² + 15x²y 的因式分解形式是:() ×() ×()三、解方程1. 解方程 x² - 2x - 15 = 0 的因式分解形式是:() ×()2. 解方程 4x² - 4x - 12 = 0 的因式分解形式是:() ×()3. 解方程 3x² + 11x + 6 = 0 的因式分解形式是:() ×()4. 解方程 x² - 16 = 0 的因式分解形式是:() ×()5. 解方程 x² + 14x + 48 = 0 的因式分解形式是:() ×()四、综合题解方程组:1. 2x + y = 7x - y = 1的解为:(),()2. 3x - 4y = 22x + 5y = 17的解为:(),()3. x - 2y - z = 02x + y - 3z = -1x + 2y + 3z = 6的解为:(),(),()4. 3x + 2y + z = 6x - y + 2z = 102x - 3y - 2z = -10的解为:(),(),()5. x + y + z = 22x - y + 3z = 17x + 3y + 2z = 8的解为:(),(),()答案:一、1. A 2. A 3. A 4. A 5. A二、1. (4a + 2b)(4a - 2b) 2. xy(2y + 5x) 3. (2x - 3y)² 4. 3a(a - b)(3a - 2b) 5. 3xy(2x - 3y + 5)三、1. (x - 5)(x + 3) 2. 2(x - 2)(x + 3) 3. (x + 2)(x + 3) 4. (x - 4)(x + 4)5. (x + 6)(x + 8)四、1. (2, 5) (-1, 0) 2. (2, 1) (5, 3) 3. (1, 2, 1) (2, -2, -2) 4. (1, 2, 3) (-2, 1, 3) 5. (2, 3, -3) (-1, 2, 3)。

100道因式分解及答案例题

=(c+b)(c-a)(a+b)( 1 )因式分解 8-2x2=2(2-x)(2+x)( 2 )因式分解 x4-1=(x-1)(x+1)(x^2+1)(3)因式分解 x2+4x-xy-2y+4=(x+2)(x-y+2)(4)因式分解 4x2-12x+5=(2x-1)(2x-5)( 5 )因式分解 21x2-31x-22=(21x+11)(x-2)(6)因式分解 4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1) ( 7)因式分解 9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)( 8 )分解因式 bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)(9)因式分解 xy+6-2x-3y=(x-3)(y-2)( 10)因式分解 x2(x-y)+y2(y-x)=(x+y)(x-y)^2( 11 )因式分解 2x2-(a-2b)x-ab=(2x-a)(x+b)( 12 )因式分解 a4-9a2b2=a^2(a+3b)(a-3b)( 13)因式分解 ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)( 14)因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)( 15 )因式分解 a2-a-b2-b=(a+b)(a-b-1)( 16 ) (3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2( 17 )因式分解(a+3)2-6(a+3)=(a+3)(a-3)( 18 )因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2) abc+ab-4a=a(bc+b-4) ( 19 ) 16x2-81=(4x+9)(4x-9)( 20 ) 9x2-30x+25=(3x-5)^2( 21 ) x2-7x-30=(x-10)(x+3)( 23 )因式分解 x2-20x+100=(x-10)^2( 24)因式分解 x2+4x+3=(x+1)(x+3)( 25 )因式分解 4x2-12x+5=(2x-1)(2x-5)( 26 ) 3ax2-6ax=3ax(x-2)( 27 ) x(x+2)-x=x(x+1)( 28 ) (3)x2-4x-ax+4a=(x-4)(x-a) (4)25x2-49=(5x-9)(5x+9) ( 29 ) 36x2-60x+25=(6x-5)^2( 30 ) 4x2+12x+9=(2x+3)^2( 31 ) x2-9x+18=(x-3)(x-6) (8)2x2-5x-3=(x-3)(2x+1)( 32 ) 12x2-50x+8=2(6x-1)(x-4)( 33 )因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)( 34)因式分解 2ax2-3x+2ax-3= (x+1)(2ax-3)( 35 )因式分解 9x2-66x+121=(3x-11)^2( 37 )因式分解 x2-x+14 =整数内无法分解( 38 )因式分解 9x2-30x+25=(3x-5)^2( 39 )因式分解 -20x2+9x+20=(-4x+5)(5x+4) ( 40 )因式分解 12x2-29x+15=(4x-3)(3x-5)( 41 )因式分解 36x2+39x+9=3(3x+1)(4x+3) ( 42 )因式分解 21x2-31x-22=(21x+11)(x-2) ( 43 )因式分解 9x4-35x2-4=(9x^2+1)(x+2)(x-2) ( 44 ) X3+7X2+X+7 = (X3+7X2)+(X+7) (分组) = X2(X+7)+(X+7) ( 在 X3+7X2 中提出 X2)= (X2+1)(X+7) (提出 X+7)( 45 ) X3+3X2-5X-15= X3+3X2-(5X+15) (分组)= X2(X+3)-5(X+3) ( 在 X3+3X2 中提出 X2,5X+15 中提出 5) = (X2-5)(X+3) (提出 X+3)( 46 ) a2b+ab2-ab=ab(a+b-1).( 47 ) -7ab+14a2-49ab2=-7a(b-2a+7b2).( 48 ) 3(y-x)2+2(x-y)=(x-y)(3x-3y+2)( 49 ) x(a-1)(a-2)-y(1-a)(2-a)=(a-1)(a-2)(x-y).( 50 ) -a2+b2=(a+b)(_b-a_)( 51 ) 1-a4=(1+a)(1-a)(1+a2)( 51 ) 992-1012=-400( 53)若 a+b=1,x-y=2,则 a2+2ab+b2-x+y=-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解
经典题型
【编著】黄勇权
经典题型一:
1、x3+2x2-1
2、4x2+4x-4y2+1
3、3x+xy-y-3
4、3x3+5x2-2
5、3x2y-3xy-6y
6、x2-7x-60
7、3x2-2xy-8y2
8、x(y-2)-x2(2-y)
9、x2+8xy-33y2
10、(x2+3x)4-8(x2+3x)2+16
经典题型一:
【答案】
1、x32-1
将2x2拆分成x2+x2
=x3+x2+x2-1
=(x3+x2)+(x2-1)
=x2(x+1)+(x+1)(x-1)
提取公因式(x+1)
=(x+1)[x2+(x-1)]
=(x+1)(x2+x-1)
2、4x2+4x-4y2+1
将-4y2与+1 位置互换=4x2+4x+1-4y2
=(4x2+4x+1)-4y2
=(2x+1)2-4y2
=[(2x+1)+2y][(2x+1)-2y]
=(2x+2y+1)(2x-2y+1)
3、3x+xy-y-3
将前两项结合,后两项结合=(3x+xy)+(-y-3)
= x(3+y)-(y+3)
提取公因式(y+3)
=(y+3)(x-1)
4、3x3+5x2-2
将5x2拆分成3x2+2x2
=3x3+3x2+2x2-2
=(3x3+3x2)+(2x2-2)
=3x2(x+1)+2(x2-1)
=3x2(x+1)+2(x+1)(x-1)
提取公因式(x+1)
=(x+1)[3x2+2(x-1)]
=(x+1)(3x2+2x-2)
5、3x2y-3xy-6y
将-6y拆分成-3y-3y
=3x2y-3xy-3y-3y
将3x2y与-3y结合,-3xy与-3y结合
=(3x2y-3y)+(-3xy-3y)
=3y(x2-1)-3y(x+1)
=3y(x+1)(x-1)-3y(x+1)
提取公因式3y(x+1)
=3y(x+1)[(x-1)-1]
=3y(x+1)(x-2)
6、x2-7x-60
用十字叉乘法,将-60拆分成-12与5的乘积
X -12
X 5
=(x-12)(x+5)
7、3x2-2xy-8y2【详细讲解十字叉乘法】用十字叉乘法,用逐一罗列
(1)3x2只能拆分成3x与x的乘积,
(2)-8y2,可拆分成
①-8y与y的乘积
②8y与-y的乘积
③-4y与2y的乘积
④4y与-2y的乘积
逐一尝试,看哪一组结果是-2xy
(1)
3X -8y
X y
3xy-8xy=-5xy(结果不是-2xy,舍去)
(2)
3X y
X -8y
-24xy+xy=-23xy(结果不是-2xy,舍去)
(3)
3X 8y
X -y
-3xy+8xy=5xy(结果不是-2xy,舍去)
(4)
3X -y
X 8y
24xy-xy=23xy(结果不是-2xy,舍去)(5)
3X -2y
X 4y
12xy-2xy=10xy(结果不是-2xy,舍去)(6)
3X 4y
X -2y
-6xy+4xy=-2xy(结果是-2xy,符合题意)(7)
3X 2y
X -4y
-12xy+2xy=-10xy(结果不是-2xy,舍去)(8)
3X -4y
X 2y
6xy-4xy=2xy(结果不是-2xy,舍去)
通过逐一尝试,第(6)就是我们要的答案,
所以:3x2-2xy-8y2
用十字叉乘法,
3X 4y
X -2y
=(3x+4y)(x-2y)
8、x(y-2)-x2(2-y)
将(2-y)变为-(y-2)= x(y-2)+x2(y-2)
提取公因式x(y-2)
-2)(1+x)
整理一下(y-2)、(1+x)的顺序
= x(1+x)(y-2)
9、x2+8xy-33y2
用十字叉乘法
X 11y
X -3y
=(x+11y)(x-3y)
10、(x2+3x)4-8(x2+3x)2+16
把(x2+3x)4看着(x2+3x)2看平方,
把16 看着4的平方。

=[(x2+3x)2]2-2*4(x2+3x)2+42
利用完全平方公式
=[(x2+3x)2-4]2
利用平方差公式
=[(x2+3x)-2]2 * [(x2+3x)+2]2
=(x2+3x-2)2(x2+3x+2)2
经典题型二:
11、x4-3x2+2
12、x2-ax-bx+ab
13、9-x2+12xy-36y2
14、a4-3a2b2+b4
15、xy+6-2x-3y
16、(2x-y)2+8xy
17、x3+3x2-4
18、ab(x2-y2)+xy(a2-b2)
19、(x-y)(a-b-c)+(x+y)(b+c-a)
20、x2-x-y2-y
经典题型二:
【答案】
11、x4-3x2+2
利用十字叉乘法
X2 -1
X2 -2
原式=(x2-1)(x2-2)
=(x+1)(x-1)(x2-2)【在有理数范围内分解】 =(x+1)(x-1)(x-2)(x+√2)
【在实数范围内分解】
12、x2-ax-bx+ab
前面两项结合后面两项结合
原式=(x2-ax)+(-bx+ab)
= x(x-a)-b(x-a)
=(x-a)(x-b)
13、9-x2+12xy-36y2
后面三项结合
原式=9+(-x2+12xy-36y2)
=9-(x2-12xy+36y2)
=32-(x-6y)2
=[3+(x-6y)][3-(x-6y)]
=(3+x-6y)(3-x+6y)
= -(x-6y+3)(x-6y-3)
14、a42b2+b4
将-3a2b2 拆分成-2a2b2,-a2b2
原式=(a4-2a2b2+b4)-a2b2
=(a2-b2)2-(ab)2
=[(a2-b2)+ab][(a2-b2)-ab] =(a2-b2+ab)(a2-b2-ab)
15、xy+6-2x-3y
①将xy、-2x组合在一起,
②将6、-3y组合在一起原式=(xy-2x)+(6-3y)
=x(y-2)-3(y-2)
=(y-2)(x-3)
16、(2x-y)2+8xy
先将此项展开
原式=4x22
再将此两项合并同类项
=4x2+(-4xy+8xy)+y2
=4x2+4xy+y2
=(2x+y)2
17、x3+3x2-4
将-4拆分成-1,-3
原式=x3+3x2-1-3
①将x3、-1组合在一起,
②将3x2、-3组合在一起
=(x3-1)+(3x2-3)
=(x-1)(x2+x+1)+3(x2-1)
=(x-1)(x2+x+1)+3(x+1)(x-1)
提取公因式(x-1)
=(x-1)[(x2+x+1)+3(x+1)]
去括号,再合并同类项
=(x-1)(x2+4x+4)
=(x-1)(x+2)2
1822+xy(a2-b2)
去括号去括号
=abx2-aby2+xya2-xyb2
①将abx2 -xyb2组合在一起,
②将-aby2 +xya2组合在一起
=(abx2-xyb2)+(-aby2+xya2)
=xb(ax-yb)+ya(-yb+xa)
提取公因式(ax-yb)
=(ax-yb)(xb+ya)
19、(x-y)()+(x+y)(b+c-a)
变形变形
原式=(x-y)[a-(b+c)]+(x+y)[(b+c)-a]
= a(x-y)-(x-y)(b+c)
-a(x+y)+(x+y)(b+c)
=[ a(x-y)-a(x+y)]
+[-(x-y)(b+c)+(x+y)(b+c)]
=a[(x-y)-(x+y)]+
(b+c)[-(x-y)+(x+y)]
=a(-2y)+(b+c)(2y)
=2y[-a+(b+c)]
=2y(b+c-a)
20、x2-x-y2-y
①将x2 y2组合在一起,
②将-x-y组合在一起
原式=(x2-y2)+(-x-y)
=(x+y)(x-y)-(x+y)
提取公因式(x+y)
=(x+y)[(x-y)-1]
=(x+y)(x-y-1)。

相关文档
最新文档