高中数学 第二章 圆锥曲线教案 北师大版选修41(1)
高二数学选修4-4教案04圆锥曲线的统一极坐标方程

圆锥曲线的统一极坐标方程教学目标掌握三种圆锥曲线的统一极坐标方程,了解统一方程中常数的几何意义.会根据已知条件求三种圆锥曲线的极坐标方程,能根据圆锥曲线的统一极坐标方程进行有关计算.通过建立三种二次曲线的统一极坐标方程,对学生进行辩证统一的思想教育.教学重点:圆锥曲线统一的极坐标方程,会根据条件求出圆锥曲线的统一极坐标方程.教学难点:运用圆锥曲线统一的极坐标方程解决有关计算问题.教学疑点:双曲线左支所对应的θ范围,双曲线的渐近线的极坐标方程.活动设计:1.活动:思考、问答、讨论.2.教具:尺规、挂图.教学过程:一、问题引入大家已经学过,椭圆、双曲线、抛物线有两种几何定义,其中,第二定义把三种圆锥曲线统一起来了,请回忆后说出三种圆锥曲线的第二定义.学生1答:列定点F(焦点)的距离与列定直线l(准线)的距离比是一个常数e(离心e∈(0,1)时椭圆,e∈(1,f∞)时双曲线,e=1时抛物线.二、数学构建建立统一方程在极坐标系中,同样可以根据圆锥曲线的几何定义,求出曲线的极坐标方程.过F作FK⊥l于K,以F为极点,KF延长线为极轴,建立极坐标系.设M(ρ,θ)是曲线上任一点,连MF,作MA⊥l于A,MB⊥l于B(如图3-24).|FK|=常数,设为p.∵|MA|=|BK|=|KF|+|FB|,∴|MA|=p+ρcosθ.这就是圆锥曲线统一的极坐标方程.三、知识理解对圆锥曲线的统一极坐标方程,请思考讨论并深入了解下述几个要点:(1)必须以双曲线右焦点和椭圆的左焦点为极点,Ox轴方向向右,尚若Ox方向向左,其方程如何?(讨论后)学生2答:无需重新求方程,只须两个极坐标系Ox与Ox′之间的坐标关系作坐标转换(图3-25).(2)根据统一的极坐标方程,由几何条件求出e、p后即可写出曲线的极坐标方程,这要明确e、p的几何意义分别是离心率和焦准距(ep为有关几何量e,p,a,b,c?(讨论后)学生3答:此式为统一极坐标方程的标准式得到一个二元一次方程组,使问题的计算得以简化.e∈(0,1)时,表椭圆.e=1时,表抛物线.e∈(1,+∞)时,表双曲线.但注意到,e>1时,1-ecosθ≤0关于θ有解,而ep>0,这样ρ<0,甚至无意义.前面学过,通常情况下,ρ≥0,这就似乎出现矛盾,如何解决这一矛盾?(讨论后)学生4答:(如图3-26)上面推导统一方程过程中,当m在左支时,|MA|=|BK|=此时方程与右支的情况不同.这时,若设θ=θ′+π,ρ′=-ρ,上述推导与分析实际上是:若射线OP与双曲线有两个交点;当视θ=∠xOP时,则ρ>0(∵cosθ<0),此时所表点是右支上的点;当视θ=∠xOP-π时,则ρ<0,此时所表点是左支上的点.综上知,e>1时,统一极坐标方程所表双曲线情况是:若ρ>0,即1-ecosθ>0,则表右支;若ρ<0,即1-ecosθ<0,则表左支;取θ∈[0,2π),则θ范围所对曲线如下:线左支;条渐近线.如图3-27所示,只有掌握这一对应关系,才能在有关计算中不会造成混乱和错误.四、应用举例线交椭圆于M、N两点,设∠F2F1M=θ(0≤θ<π),求θ的值,使|MN|等于短轴长.解:以F1为极点,F1F2为极轴建立极坐标系椭圆的极坐标方程为设M(ρ1,θ)、N(ρ2,θ+π),则五、课堂小结(1)三种圆锥曲线的统一极坐标方程,常数的几何意义.(2)曲线的极坐标方程求法,根据极坐标方程确定a、b、c的注意点及进行有关计算.(3)双曲线左、右支所对的ρ及θ的范围.六、布置作业1.第二教材.2.选择题:线方程是(C) A .ρcosθ=1 B .ρcosθ=2(2)椭圆、双曲线、抛物线三条曲线的焦点是极点(椭圆左焦点和双曲线右焦点),它们的图形如图3-28所示,则图中编号为①、②、③的曲线应分别是(D).A .椭圆、双曲线、抛物线B .抛物线、椭圆、双曲线C .椭圆、抛物线、双曲线D .双曲线、抛物线、椭圆双曲线θρcos 5115-=的两渐近线的夹角是 。
北师大版选修1-1高中数学第2章《圆锥曲线与方程》2.2抛物线习题导学案

高中数学 第2章《圆锥曲线与方程》2.2抛物线习题导学案北师大版选修1-1学习目标:1.使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质.2.从抛物线的标准方程出发,推导抛物线的性质,从而培养学生分析、归纳、推理等能力重点、难点:理解并掌握抛物线的几何性质;能从抛物线的标准方程出发,推导这些性质。
练习反馈 一、选择题1.已知抛物线的准线方程是x=-7,则抛物线的标准方程是 ( ) A.x 2=-28yB.y 2=-28yC.y 2=28xD.x 2=28x 2.若是定直线 外的一定点,则过与 相切圆的圆心轨迹是( )A .圆B .椭圆C .双曲线一支D .抛物线 3.抛物线2(0)x ay a =≠的焦点坐标为( ) A .1(,0)a B .1(,0)2a C .1(,0)4a D .0a > 时为1(,0)4a ,0a < 时为1(,0)4a- 4.若点到点(4,0)F 的距离比它到直线50x +=的距离小1,则点的轨迹方程是( )A .216y x =- B .232y x =- C .216y x = D .232y x = 5.抛物线20x y += 的焦点位于( )A . 轴的负半轴上B . 轴的正半轴上C .轴的负半轴上 D .轴的正半轴上6.与椭圆224520x y += 有相同的焦点,且顶点在原点的抛物线方程是( )A .24y x =B .24y x =±C .24x y =D .24x y =± 7.抛物线y 2=ax (a ≠0)的准线方程是 ( )(A )4a x =-;(B)x =4a ;(C)||4a x =- ;(D)x =||4a10. 一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则动圆必过定点( ) A. (4,0) B. (2,0) C.(0,2) D. (0,-2)11. 已知F 为抛物线22y x =的焦点,定点Q (2,1)点P 在抛物线上,要使||PQ PF +的值最小,点P 的坐标为( )A. (0,0)B. 112⎛⎫⎪⎝⎭, C.()22, D. (2,2)12、抛物线y=ax 2的准线方程是y=2,则a 的值为( ) A 、18 B 、18- C 、8 D 、-8 13、已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则||||MF MP +的最小值为( )(A )3 (B )4 (C )5 (D )614、抛物线y=4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A 、1716 B 、1516 C 、78D 、0 15、在抛物线y 2=2px 上,横坐标为4的点到焦点的距离为5,则P 的值为( ) A 、12B 、1C 、2D 、418 设AB 为过抛物线)0(22>=p px y 的焦点的弦,则AB 的最小值为( )A2pB pC p 2D 无法确定 19.已知直线y kx k =-及抛物线22y px =(0p >)则( )A .直线与抛物线有一个公共点B .直线与抛物线有两个公共点C .直线与抛物线有一个或两个公共点 D .直线与抛物线可能没公共点 20﹑与直线240x y -+=平行的抛物线2y x =的切线方程为( )A. 230x y -+=B. 230x y --=C. 210x y -+=D. 210x y --=21、过抛物线x y 42=的焦点作直线交抛物线于()11,y x A ,()22,y x B 两点,如果621=+x x ,那么||AB =( )(A )10 (B )8 (C )6 (D )422.过点(-3,2)的直线与抛物线24y x =只有一个公共点,求此直线方程。
《直线与圆锥曲线的位置》课件1 (北师大版必修2).ppt

16 2 10 )2 4 2 9 3 3 4 5 又∵ 点F2(1,0)到直线BF1的距离d= 5
∴CD= 1 ( 2)2 (
1 4 ∴SΔCDF2= CD.d= 10 9 2
点评:本题使用了弦长公式及点到直线的距离公式来解决问题, 这是一种基本的解题方法。
思考题:若将直线绕F1旋转,求⊿CDF2面积的最大值。
点,|AB|=4 ,则这样的直线存在( ) A.一条 B.二条 C.三条 D.四条
解:观察演示可得三条。选C
四.总结:
1. 利用基本方法,如对方程组解的讨论、弦长公式等是解决问题的基本方法。 2. 数形结合、以形助数是我们解决问题的一个重要思想。
时,直线与抛物线无公共点。
点评:本题利用方程思想及数形结合的思想解决问题。尤其是k=0时 直线与抛物线有一个公共点,而k=0时,⊿>0.
例2.已知:A(-3,4),B(4,4)若线段AB与椭圆
没有公共点。求正数a的取值范围。
解:线段AB的方程为 y=4 (-3≤x≤4) 得:x =a2 - 8
ⅰ.当a2 -8<0时,方程组无解,即 ⅱ.当a2 -8>4 时的值进行讨论求解。
例3.已知:椭圆
及点B(0,-2)过左焦点F 与B的
直线交椭圆于 C 、D 两点,椭圆的右焦点为F2 ,
求⊿CDF2
的面积。
D
y
F2 F1
C o
x
B (0,-2)
解:∵ F1(-1,0)
∴ 直线BF1的方程为 y= -2x-2代入椭圆方程得:9x2 +16x+6=0
例4.过点(0,2)的直线l与抛物线 y =4x2仅有一个公共点,则
满足条件的直线l有 ( ) A. 1条 B. 2条 C. 3条 D. 4条
《直线与圆锥曲线的位置》课件1 (北师大版必修2).ppt

点,|AB|=4 ,则这样的直线存在( ) A.一条 B.二条 C.三条 D.四条
解:观察演示可得三条。选C
四.总Байду номын сангаас:
1. 利用基本方法,如对方程组解的讨论、弦长公式等是解决问题的基本方法。 2. 数形结合、以形助数是我们解决问题的一个重要思想。
时,直线与抛物线无公共点。
点评:本题利用方程思想及数形结合的思想解决问题。尤其是k=0时 直线与抛物线有一个公共点,而k=0时,⊿>0.
例2.已知:A(-3,4),B(4,4)若线段AB与椭圆
没有公共点。求正数a的取值范围。
解:线段AB的方程为 y=4 (-3≤x≤4) 得:x =a2 - 8
ⅰ.当a2 -8<0时,方程组无解,即 ⅱ.当a2 -8>4 时,方程组无解,即
16 2 10 )2 4 2 9 3 3 4 5 又∵ 点F2(1,0)到直线BF1的距离d= 5
∴CD= 1 ( 2)2 (
1 4 ∴SΔCDF2= CD.d= 10 9 2
点评:本题使用了弦长公式及点到直线的距离公式来解决问题, 这是一种基本的解题方法。
思考题:若将直线绕F1旋转,求⊿CDF2面积的最大值。
例4.过点(0,2)的直线l与抛物线 y =4x2仅有一个公共点,则
满足条件的直线l有 ( ) A. 1条 B. 2条 C. 3条 D. 4条
解:观察演示 选C
例5.不论k为何值,直线y=kx+b 与椭圆 总有公共点,求b的取值范围。
解:观察演示可得:
例6.过双曲线
的右焦点作直线l交双曲线于 A、B两
例1.当k为何值时,直线y=kx+k-2与抛物线 y =4x2有两个公共点? 仅有一个公共点? 无公共点。
新教材2023版高中数学第二章圆锥曲线3抛物线3.2抛物线的简单几何性质课件北师大版选择性必修第一册

答案:A
解析:由题意知6a+3=5,解得a=13,因此抛物线方程为y2=8x.
4.已知抛物线y2=2px(p>0)的焦点F1,若点A(2,-4)在抛物线上, 则点A到焦点的距离为________.
答案:4 解析:把点(2,-4)代入抛物线y2=2px,得16=4p,即p=4,从而抛物线的焦 点为(2,0).故点A到焦点的距离为4.
6)或(-9,-6).
答案:x2=8y或x2=-16y
解析:y=mx2(m≠0)可化为x2=m1 y,其准线方程为y=-41m.由题意知-41m=-2
或- 1 =4,解得m=1或m=- 1 ,故所求抛物线的标准方程为x2=8y或x2=-16y.
4m
8
16
【易错警示】 易错原因
纠错心得
求与抛物线方程有关问题时, 首先要把抛物线方程化为标 准方程,其次再根据题意求 解,求解时,一定要考虑抛 物线的几种情况,否则漏解 致误.
_(_-_p2_,__0_)_
__(_0,__p2_)__
_(_0,__-__p2_)_
__x_=_-__p2__
___x_=__p2__
__y_=__-_p2__
___y_=__p2__
x_≥__0_,_y_∈__R x_≤__0_,_y_∈__R y_≥_0_,__x_∈__R y_≤__0_,__x∈__R
[课堂1,4),则抛物线的焦点坐标为( )
A.(1,0)
C.
0,
1 16
B.
1 ,0
16
D.(0,1)
答案:C
解析:由抛物线y=2px2过点(1,4),可得p=2,
《直线与圆锥曲线的位置》课件1 (北师大版必修2).ppt

16 2 10 )2 4 2 9 3 3 4 5 又∵ 点F2(1,0)到直线BF1的距离d= 5
∴CD= 1 ( 2)2 (
1 4 ∴SΔCDF2= CD.d= 10 9 2
点评:本题使用了弦长公式及点到直线的距离公式来解决问题, 这是一种基本的解题方法。
思考题:若将直线绕F1旋转,求⊿CDF2面积的最大值。
∴
或
点评:本例利用了方程的思想对参数的值进行讨论求解。
例3.已知:椭圆
及点B(0,-2)过左焦点F 与B的
直线交椭圆于 C 、D 两点,椭圆的右焦点为F2 ,
求⊿CDF2
的面积。
D
y
F2 F1
C o
x
B (0,-2)
解:∵ F1(-1,0)
∴ 直线BF1的方程为 y= -2x-2代入椭圆方程得:9x2 +16x+6=0
例1.当k为何值时,直线y=kx+k-2与抛物线 y =4x2有两个公共点? 仅有一个公共点? 无公共点。
解:
得k 2x 2+2(k 2-2k-2)x+(k-2)2 =0 ⊿=-16(k2 -2k-1)
1).当⊿>0时,即 2). 当⊿=0时,即
个公共点。 3).当 或
且k≠0时有两个公共点。
或k=0 时,直线与抛物线有一
例4.过点(0,2)的直线l与抛物线 y =4x2仅有一个公共点,则
满足条件的直线l有 ( ) A. 1条 B. 2条 C. 3条 D. 4条
解:观察演示 选C
例5.不论k为何值,直线y=kx+b 与椭圆 总有公共点,求b的取值范围。
解:观察演示可得:
例6.过双曲线
的右焦点作直线l交双曲线于 A、B两
《直线与圆锥曲线的位置》课件1 (北师大版必修2).ppt
点,|AB|=4 ,则这样的直线存在( ) A.一条 B.二条 C.三条 D.四条
解:观察演示可得三条。选C
四.总结:
1. 利用基本方法,如对方程组解的讨论、弦长公式等是解决问题的基本方法。 2. 数形结合、以形助数是我们解决问题的一个重要思想。
16 2 10 )2 4 2 9 3 3 4 5 又∵ 点F2(1,0)到直线BF1的距离d= 5
∴CD= 1 ( 2)2 (
1 4 ∴SΔCDF2= CD.d= 10 9 2
点评:本题使用了弦长公式及点到直线的距离公式来解决问题, 这是一种基本的解题方法。
思考题:若将直线绕F1旋转,求⊿CDF2面积的最大值。
直线与圆锥曲线的位置关系
一. 基本方法: 1. 直线与圆锥曲线的位置关系可以通过对直线方 程与圆锥曲线方程组成的二元二次方程组的解的 情况的讨论来研究。即方程消元后得到一个一元 二次方程,利用判别式⊿来讨论(注⊿≠0时,未 必只有二个交点)。 2. 直线与圆锥曲线的位置关系,还可以利用数形 结合、以形助数的方法来解并决。 3. 如果直线的斜率为k,被圆锥曲线截得弦AB两 端点坐标分别为(x1,y1)、(x2,y2)则弦长公式为:
时,直线与抛物线无公共点。
点评:本题利用方程思想及数形结合的思想解决问题。尤其是k=0时 直线与抛物线有一个公共点,而k=0时,⊿>0.
例2.已知:A(-3,4),B(4,4)若线段AB与椭圆
没有公共点。求正数a的取值范围。
解:线段AB的方程为 y=4 (-3≤x≤4) 得:x =a2 - 8
ⅰ.当a2 -8<0时,方程组无解,即 ⅱ.当a2 -8>4 时,方程组无解,即
例4.过点(0,2)的直线l与抛物线 y =4x2仅有一个公共点,则
《直线与圆锥曲线的位置》课件1 (北师大版必修2).ppt
时,直线与抛物线无公共点。
点评:本题利用方程思想及数形结合的思想解决问题。尤其是k=0时 直线与抛物线有一个公共点,而k=0时,⊿>0.
例2.已知:A(-3,4),B(4,4)若线段AB与椭圆
没有公共点。求正数a的取值范围。
Hale Waihona Puke 解:线段AB的方程为 y=4 (-3≤x≤4) 得:x =a2 - 8
ⅰ.当a2 -8<0时,方程组无解,即 ⅱ.当a2 -8>4 时,方程组无解,即
例4.过点(0,2)的直线l与抛物线 y =4x2仅有一个公共点,则
满足条件的直线l有 ( ) A. 1条 B. 2条 C. 3条 D. 4条
解:观察演示 选C
例5.不论k为何值,直线y=kx+b 与椭圆 总有公共点,求b的取值范围。
解:观察演示可得:
例6.过双曲线
的右焦点作直线l交双曲线于 A、B两
直线与圆锥曲线的位置关系
一. 基本方法: 1. 直线与圆锥曲线的位置关系可以通过对直线方 程与圆锥曲线方程组成的二元二次方程组的解的 情况的讨论来研究。即方程消元后得到一个一元 二次方程,利用判别式⊿来讨论(注⊿≠0时,未 必只有二个交点)。 2. 直线与圆锥曲线的位置关系,还可以利用数形 结合、以形助数的方法来解并决。 3. 如果直线的斜率为k,被圆锥曲线截得弦AB两 端点坐标分别为(x1,y1)、(x2,y2)则弦长公式为:
点,|AB|=4 ,则这样的直线存在( ) A.一条 B.二条 C.三条 D.四条
解:观察演示可得三条。选C
四.总结:
1. 利用基本方法,如对方程组解的讨论、弦长公式等是解决问题的基本方法。 2. 数形结合、以形助数是我们解决问题的一个重要思想。
高中数学选修4-1(高考全部内容)课件
参数方程的形式
参数方程的一般形式为{ x=x(t), y=y(t) },其中t是 参数。
参数方程的应用
参数方程在解决几何问题 、物理问题等领域有广泛 应用。
极坐标与直角坐标的互化
极坐标转换为直角坐标
通过公式x = r cosθ, y = r sinθ可以 将极坐标转换为直角坐标。
直角坐标转换为极坐标
定义
矩阵的运算包括加法、减法、数乘、 乘法等。加法和数乘是矩阵的基本运 算,而乘法是矩阵运算中的重点和难 点。
性质
实例
矩阵的运算可以用来解决一些实际问 题,如线性方程组的求解、向量的线 性变换等。
矩阵的运算满足一些基本的数学性质 ,如结合律、交换律、分配律等。这 些性质在解决实际问题时非常重要。
逆矩阵与行列式
参数方程的应用
03
解决与参数方程相关的实际问题,如轨迹问题、最值问题等。
复数及其应用习题及答案
复数的基本概念
复数的定义、表示方法、四则 运算等。
复数的几何意义
理解复数在平面上的表示方法 ,掌握复数的模的概念和性质 。
复数的三角形式
掌握复数的三角形式的表示方 法,理解其几何意义。
复数的应用
解决与复数相关的实际问题, 如求复数方程的根、解决几何
抛物线的标准方程为 $y^2 = 4px$ 或 $x^2 = 4py$,其中 $p$ 是抛物线的准线到焦点的距
离。
抛物线的性质
抛物线具有对称性,即关于x轴 或y轴都是对称的。此外,抛物 线还有焦点,这些焦点到抛物线 上任一点的距离等于该点到准线
的距离。
抛物线的面积
由于抛物线是一条射线,所以它 的面积是无穷大。但是,在实际 应用中,我们通常只考虑抛物线 与坐标轴或某个平面的交点所围
《直线与圆锥曲线的位置》课件1 (北师大版必修2).ppt
例4.过点(0,2)的直线l与抛物线 y =4x2仅有一个公共点,则
满足条件的直线l有 ( ) A. 1条 B. 2条 C. 3条 D. 4条
解:观察演示 选C
例5.不论k为何值,直线y=kx+b 与椭圆 总有公共点,求b的取值范围。
解:观察演示可得:
例6.过双曲线
的右焦点作直线l交双曲线于 A、B两
点,|AB|=4 ,则这样的直线存在( ) A.一条 B.二条 C.三条 D.四条
解:观察演示可得三条。选C
四.总结:
1. 利用基本方法,如对方程组解的讨论、弦长公式等是解决问题的基本方法。 2. 数形结合、以形助数是我们解决问题的一个重要思想。
16 2 10 )2 4 2 9 3 3 4 5 又∵ 点F2(1,0)到直线BF1的距离d= 5
∴CD= 1 ( 2)2 (
1 4 ∴SΔCDF2= CD.d= 10 9 2
点评:本题使用了弦长公式及点到直线的距离公式来解决问题, 这是一种基本的解题方法。
思考题:若将直线绕F1旋转,求⊿CDF2面积的最大值。
∴
或
点评:本例利用了方程的思想对参数的值进行讨论求解。
例3.已知:椭圆
及点B(0,-2)过左焦点F 与B的
直线交椭圆于 C 、D 两点,椭圆的右焦点为F2 ,
求⊿CDF2
的面积。
D
y
F2 F1
C oBiblioteka xB (0,-2)
解:∵ F1(-1,0)
∴ 直线BF1的方程为 y= -2x-2代入椭圆方程得:9x2 +16x+6=0
例1.当k为何值时,直线y=kx+k-2与抛物线 y =4x2有两个公共点? 仅有一个公共点? 无公共点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章圆锥曲线§1截面欣赏§2直线与球、平面与球的位置关系课标解读1.了解截面的概念.2.理解直线与球的位置关系.3.理解平面截球及球面的意义及性质.1.直线与球的位置关系(1)直线与球的位置关系已知球O的半径为r,球心到直线l的距离为d.位置关系公共点d与r的关系相离没有公共点d>r相切只有一个公共点d=r相交有两个公共点d<r (2)从球外一点作球的切线,它们的切线长相等,所有的切点组成一个圆.2.平面与球的位置关系(1)平面与球的位置关系设球的半径为r,球心到平面的距离为d.位置关系公共点d与r的关系相离没有公共点d>r相切只有一个公共点d=r相交有无数个公共点d<r(2)球的截面性质图2-1-1一个平面与球面相交,所得的交线是一个圆,且圆心与球心的连线垂直于这一平面.如图2-1-1所示,平面α截球得一截面圆O,OO1与平面α垂直,P为截面圆上一点,在Rt△OO1P中有OP2=OO21+O1P2,这个等式给出了球半径、截面圆半径与球心到截面圆的距离三者之间的关系.1.如何求球的两个平行截面间的距离?【提示】(1)作出过球心和截面圆圆心的截面.(2)分两种情况:一是两截面在球心同侧;二是两截面在球心异侧.(3)利用球的半径R,截面圆半径r及球心到截面圆的距离d的关系r2+d2=R2来求解.2.如何判断点、直线、平面与球的位置关系?【提示】点、直线、平面与球的位置关系与它们到球心的距离和球的半径的大小有着密切的关系.因而要判断点、直线和平面与球的位置关系,关键是寻找球心到点、直线、平面的距离d与球的半径R的大小关系,特别地要证明点在球面上、直线或平面与球相切,只需证明d=R.与球有关的截面问题已知半径为10的球的两个平行截面的周长分别是12π和16π,求这两个截面间的距离.【思路探究】【自主解答】设球心为O,两截面的圆心分别为C、D,由已知2π·CE=12π,得CE =6,2π·DF=16π,得DF=8,当两截面在球心同侧时,如图(1).CD=OC-OD=OE2-EC2-OF2-DF2=102-62-102-82=2,当两截面在球心两侧时,如图(2)所示.CD=OC+OD=OE2-EC2+OF2-DF2=14.故两个截面间的距离为2或14.1.本题中两个平行截面与球心的位置关系不确定,故应分类求解.2.解决有关球的问题,通常是通过研究球的截面来实现的,实质上是利用球的截面,化空间问题为平面问题.图2-1-2已知球O的半径为3,它有一内接正方体ABCD—A1B1C1D1,如图2-1-2所示,则球心到平面ABCD的距离为________.【解析】平面ACC1A1截球所得截面图形如图所示.∵AC1=3AA1,∴AA1=2 3.OO1=12AA1= 3.∴球心到平面ABCD的距离为 3. 【答案】 3直线、平面与球的位置关系一个球放在水平地面上,球在阳光下的影子伸到距球与地面接触点的10米远处,同一时刻,一根高1米的垂直立于地面的标杆的影子长是2米,求球的半径.【思路探究】 作出球的截面,构造三角形,利用切线长定理及三角形相似求解.【自主解答】 如图所示,⊙O 为球的轴截面图,AB 与⊙O 切于A ,AB =10米,它是AC 的影长,则AC =5米,BC 切⊙O 于D ,由切线长定理知BD =10米,CB =AC 2+AB 2=55,∴CD =CB -BD =55-10,∵∠C =∠C ,∠ODC =∠CAB =90°, ∴△OCD ∽△BCA ,∴CD OD =AC AB, ∴OD =CD ·AB AC =55-10×105=105-20(米), 故球的半径为105-20米.1.解答本题时首先应明确地面与球相切,球的投影最远点是由光线与球的切点决定的,然后作出截面,构造三角形求解.2.利用球的轴截面可把球的问题转化为圆的问题求解.已知过球面上三点A 、B 、C 的截面到球心的距离等于球半径的一半,且AC =BC =6,AB =4,求球面面积.【解】 如图所示,设球心为O ,球半径为R ,M 是AB 的中点. 作OO 1⊥平面ABC 于O 1,由于OA =OB =OC =R ,则O 1∈CM .设O 1M =x ,易知O 1M ⊥AB ,则22+x 2=O 1A =O 1C =CM -O 1M =62-22-x ,即22+x 2=42-x ,解得x =724,则O 1A =O 1B =O 1C =924,在Rt △OO 1A 中,O 1O =R2,∠OO 1A =90°,OA =R .由勾股定理得(R 2)2+(924)2=R 2,解得R =362. 故S 球面=4πR 2=54π.综合问题已知正四棱锥的底面边长为a ,侧棱长2a . (1)求它的外接球的体积; (2)求它的内切球的表面积.【思路探究】 (1)外接球的球心就是△SAC 外接圆的圆心;(2)以内切球的球心为顶点,以正四棱锥的各个面为底面的棱锥的体积之和等于正四棱锥的体积.【自主解答】 (1)如图,设外接球的半径为R ,球心为O ,则OA =OC =OS , 所以O 为△SAC 的外心,即△SAC 的外接圆半径就是球的半径, ∵AB =BC =a ,∴AC =2a . ∵SA =SC =AC =2a , ∴△SAC 为正三角形. 由正弦定理得2R =ACsin ∠ASC =2a sin 60°=263a ,因此R =63a ,V 球=43πR 3=8627πa 3.(2)设内切球的半径为r ,作SE ⊥底面于E ,作SF ⊥BC 于F ,连接EF .则有SF =SB 2-BF 2=2a2-a22=72a . S △SBC =12BC ·SF =12a ×72a =74a 2, S 棱锥全=4S △SBC +S 底=(7+1)a 2,又SE =SF 2-EF 2=72a 2-a22=62a , ∴V 棱锥=13S 底h =13a 2×62a =66a 3,∴r =3V 棱锥S 全=3×66a 37+1a2=42-612a , S 球=4πr 2=4-73πa 2.1.解答本题第(2)小题时,内切球的球心无法确定,从而利用等体积法直接求内切球的半径.2.当几个平面与球都相切时,根据平面与球相切的定义,球心到各平面的距离都等于球半径.同时在解决此类问题时,一要注意用好图形,二要注意使用线面关系解题.图2-1-3如图2-1-3所示,已知棱长为a 的正四面体ABCD 有内切球O ,求球心O 到棱AB 的距离.【解】 设内切球半径为r ,由等积法:BO 1=23·32a =33a , ∴AO 1=a 2-13a 2=63a . ∵4×13×34a 2·r =V A —BCD =212a 3,∴r =612a . ∴AO =AO 1-OO 1=63a -612a =64a . 又AO =BO ,设E 为AB 的中点,连接OE ,则OE 为球心O 到AB 的距离, ∴OE =AO 2-AE 2=616a 2-a 24=24a .(教材第50页复习题二A 组第1题)在半径为13 cm 的球面上有A 、B 、C 三点,AB =6 cm ,BC =8 cm ,CA =10 cm ,求过这三点的截面与球心O 的距离.(2013·大连模拟)在球面上有四点P 、A 、B 、C ,若PA 、PB 、PC两两垂直,且PA =PB =PC =a ,求这个球的体积和表面积.【命题意图】 本题主要考查直线与球、平面与球的位置关系.【解】 由PA ⊥PB 可知P 、A 、B 确定一个平面,设它与球O 的交线为⊙O 1,由于PA ⊥PB ,故AB 是⊙O 的直径,且AB =AP 2+BP 2=2a .∵PC ⊥PA ,PC ⊥PB , ∴PC ⊥平面PAB .又OO 1⊥平面PAB , ∴OO 1∥PC .过OO 1、PC 作平面α交球面为大圆O ,设⊙O 与⊙O 1的另一个交点为Q ,则直线PQ 是平面α与平面PAB 的交线,点O 1∈PQ ,连CQ ,在⊙O 中,∵PC ⊥PQ ,∠CPQ 为直角, ∴CQ 为⊙O 的直径.设⊙O 的半径为R ,即球O 的半径为R ,在Rt △CPQ 中,CQ =PC 2+PQ 2= a 2+2a2=3a ,∴2R =3a , 即R =32a , ∴V 球=4π3(32a )3=32πa 3,S 球=4π(32a )2=3πa 2.1.一个平面去截一个球面,其截线是( ) A .圆 B .椭圆 C .点D .圆或点【解析】 由平面与球的位置关系知,选D. 【答案】 D2.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且距离为1,那么这个球的半径为( )A .4B .3C .2D .5【解析】 设球的半径为R ,由题意知R 2-5-R 2-8=1,解得R =3. 【答案】 B3.球的半径为R ,则它的外切正方体的棱长为________,内接正方体的棱长为________. 【解析】 外切正方体的棱长为2R ,内接正方体的体对角线是球的直径,故3a =2R ,(a 是内接正方体的边长)∴a =233R .【答案】 2R233R 4.平面α与球O 相交,交线圆圆心为O 1,若OO 1=3,交线圆半径为4,则球O 的半径为________.【解析】 设球O 的半径为R ,由题意知R 2=32+42=25,∴R =5. 【答案】 5一、选择题1.从球外一点引球的切线,则( )A .可以引无数条切线,所有切点组成球的一个大圆B .可以引无数条切线,所有切点组成球的一个小圆C .只可以引两条切线,两切点的连线过球心D.只可以引两条切线,两切点的连线不过球心【解析】根据球的切线性质知B正确.【答案】 B2.已知球的半径R=6,过球外一点P作球的切线长为8,则P点到球面上任意一点Q 的最短距离为( )A.3 B.4C.5 D.6【解析】设点P到球心的距离为d,则d=62+82=10.∴PQ的最短距离为10-6=4.【答案】 B3.一个正方体内接于一个球,过球心作一截面,如图2-1-4所示,则截面图可能是( )图2-1-4A.①③ B.②③C.①④③ D.①②③【解析】根据截面的位置不同,可得到的截面形状可能是①②③,但不可能为④,故选D.【答案】 D4.已知三棱锥S-ABC的各顶点都在一个半径为r的球面上,球心O在AB上,SO⊥底面ABC,AC=2r,则球的体积与三棱锥体积之比是( )A.π B.2πC.3π D.4π【解析】如图所示,由题意知OA=OB=OS=r,易知△ACB为直角三角形,所以V 球V 锥=43πr 313×122r2×r=4π. 【答案】 D 二、填空题5.若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是________. 【解析】 三棱锥的三个侧面两两垂直,说明三棱锥的三条侧棱两两垂直,设其外接球的半径为R ,则有(2R )2=(3)2+(3)2+(3)2=9,∴外接球的表面积为S =4πR 2=9π. 【答案】 9π图2-1-56.如图2-1-5所示,已知球O 的面上四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =3,则球O 的体积等于________.【解析】 ∵DA ⊥平面ABC ,BC ⊂平面ABC ,AC ⊂平面ABC , ∴DA ⊥BC ,DA ⊥AC . 又BC ⊥AB ,AB ∩DA =A , ∴BC ⊥平面ABD , ∴BC ⊥DB ,则DC 的中点即为球心O . 又DA =AB =BC =3, ∴AC =6,DC =3,∴球O 的体积V 球=43π(32)3=9π2.【答案】9π2三、解答题7.已知半径为R 的四个球两两相切,下面三个球与桌面相切,求上面一个球的球心到桌面的距离.【解】 设四个球的球心分别为O 1、O 2、O 3、O 4,将它们两两连接恰好组成一个正三棱锥,各棱长均为2R ,如图作O 1H ⊥面O 2O 3O 4,垂足为H ,则O 1H 为棱锥的高.连接O 4H ,则O 4H =233R .∵△O 1HO 4为直角三角形, ∠O 1HO 4=90°, ∴O 1H =263R ,∴从上面一个球的球心到桌面的距离为(263+1)R .8.若正四面体的四个顶点都在表面积为36π的一个球面上,求这个正四面体的高.【解】 如图,设正四面体边长为x ,设球半径为R . ∴AH =33x,4πR 2=36π. ∴R =3,在Rt △AHS 中,SH 2=SA 2-AH 2,∴SH 2=x 2-(33x )2=23x 2, (23x -R )2+(33x )2=9, ∴x =2 6∴SH =4,故正四面体的高为4.图2-1-69.如图2-1-6所示,一个倒圆锥形容器,它的轴截面是正三角形,在容器内放一个半径为r的铁球,并向容器内注水,使水面恰与铁球相切,将球取出后,容器内的水深是多少?【解】由题意,轴截面PAB为正三角形,故当球在容器内时,水深为3r,水面半径为3r,容器内水的体积就是V=V圆锥-V球=13π(3r)2·3r-43πr3=53πr3.将球取出后,设容器中水的深度为h,则水面半径为33h.此时容器内水的体积为V′=13π(33h)2·h=19πh3.由V=V′,得h=315r.即铁球取出后水深为315r.10.已知球面上的三点A、B、C,且AB=6 cm,BC=8 cm,AC=10 cm,球的半径为13 cm.求球心到平面ABC的距离(如图).【解】因为62+82=102,所以△ABC是直角三角形.因为球心O在平面ABC内的射影M是△ABC所在截面圆的圆(外接圆)心,所以M是直角三角形斜边AC上的中点,且OM⊥AC.在Rt△OAM中,OM=OA2-AM2=132-52=12,所以球心到平面ABC的距离为12 cm.§3柱面与平面的截面§4平面截圆锥面课标解读1.了解柱面、旋转面、圆锥面的形成过程.2.了解平面截圆柱面所得交线为圆或椭圆.3.了解平面截对顶圆锥面所得交线为圆、椭圆、双曲线和抛物线.1.柱面与平面的截面(1)柱面、旋转面①圆柱面如图2-3-1①所示,圆柱面可以看成是一个矩形ABCD以一边CD所在的直线为轴,旋转一周后AB边所形成的曲面.图2-3-1②旋转面如图2-3-1②所示,平面上一条曲线C绕着一条直线l旋转一周后所形成的曲面称为旋转面.(2)垂直截面用垂直于轴的平面截圆柱面,所得的交线为一个圆.(3)一般截面当截面与圆柱面的轴不垂直时,所得交线为椭圆.2.平面截圆锥面(1)圆锥面取直线l为轴,直线l′与l相交于点O,其夹角为σ(0°<σ<90°),l′绕l旋转一周得到一个以O为顶点,l′为母线的圆锥面.(2)垂直截面当截面与圆锥面的轴垂直时,所得的交线是一个圆.(3)一般截面定理:在空间,直线l′与l相交于点O,其夹角为σ,l′绕l旋转一周得到以O为顶点,l′为母线的圆锥面,任取平面β,若它与轴l的交角为θ,则①当θ>σ时,平面β与圆锥面的交线为椭圆;②当θ=σ时,平面β与圆锥面的交线为抛物线;③当θ<σ时,平面β与圆锥面的交线为双曲线.1.平面β截圆柱面,β与圆柱面的轴的夹角θ变化,所截出的椭圆有什么变化? 【提示】 θ变化不影响椭圆的短轴,θ越小,长轴越长,椭圆越扁,离心率越大. 2.试研究以过抛物线的焦点的弦为直径的圆与抛物线的准线的位置关系.【提示】 如图,弦AB 过焦点F ,设其中点为P ,A 、B 、P 在抛物线准线l 上的射影分别为A ′、B ′、P ′,则PP ′为梯形A ′ABB ′的中位线,∴PP ′=12(AA ′+BB ′),又由抛物线定义可知,AA ′+BB ′=AF +BF =AB ,∴以弦AB 为直径的圆与l 相切.3.若平面与圆柱面轴的夹角为θ,圆柱面的半径为r ,则平面截圆柱面所得的椭圆的长轴长2a ,短轴长2b ,离心率e 的值如何用θ、r 表示?【提示】 由两焦球球心距离等于截得椭圆的长轴长,故2a =2rsin θ,椭圆的短轴长2b =2r ,离心率e =c a=cos θ.平面与圆柱面交线性质的应用圆柱的底面半径为5,高为5,若一平行于轴的平面截圆柱得一正方形,求轴到截面的距离.【思路探究】 将题目中给出的关系转化为线面关系求解.【自主解答】 如图所示,ABCD 为边长为5的正方形,连接OC 、OD ,∴△OCD 为等边三角形. 设CD 的中点为E ,连接OE , 则OE ⊥CD ,且OE =523,又AD ⊥上底面,∴AD ⊥OE ,故OE ⊥平面ABCD ,故OE 为轴到截面的距离,∴轴到截面的距离为523.1.解答本题时,应根据线面关系作出线面距.2.当圆柱面的截面平行于轴或垂直于轴时,利用点、线、面关系可解决.图2-3-2如图2-3-2所示,圆柱面的母线长为2 cm ,点O ,O ′分别是上、下底面的圆心. 若OA ⊥O ′B ′,OA =1 cm.求:(1)OO ′与AB ′所成的角的正切值; (2)过AB ′与OO ′平行的截面面积; (3)O 到截面的距离.【解】 (1)设过A 的母线为AA ′,则OO ′∥AA ′,OO ′A ′A 是矩形.易知△O ′B ′A ′是等腰直角三角形,∴A ′B ′= 2.又AA ′=2,OO ′与AB ′所成的角为∠B ′AA ′, ∴tan ∠B ′AA ′=A ′B ′AA ′=22. (2)所求截面为矩形AA ′B ′B ,面积等于2 2 cm 2.(3)O 到截面的距离即OO ′到截面的距离,也是O ′到截面的距离为22cm.平面与圆锥面交线性质的应用图2-3-3如图2-3-3所示,AB 、CD 是圆锥面的正截面(垂直于轴的截面)上互相垂直的两条直线,过CD 和母线VB 的中点E 作一截面.已知圆锥侧面展开图扇形的中心角为2π,求截面与圆锥的轴线所夹的角的大小,并说明截线是什么曲线.【思路探究】 求圆锥顶角――→据OE ∥VA求∠VOE ――→等角结论:抛物线【自主解答】 设⊙O 的半径为R ,母线VB =l ,则圆锥侧面展开图的中心角为2πR l=2π,∴R l =22,∴sin ∠BVO =22.∴圆锥的母线与轴的夹角σ=∠BVO =π4.∵O 、E 分别是AB 、VB 的中点, ∴OE ∥VA .∴∠VOE =∠AVO =∠BVO =π4,∴∠VEO =π2,即VE ⊥OE .又∵AB ⊥CD ,VO ⊥CD ,∴CD ⊥平面VAB . ∵VE ⊂平面VAB ,∴VE ⊥CD . 又∵OE ∩CD =O ,∴VE ⊥平面CDE ,∴OE 是VO 在平面CDE 上的射影. ∴∠VOE 是截面与轴线的夹角,∴截面轴线夹角大小为π4.由圆锥的半顶角与截面与轴线的夹角相等,知截面CDE 与圆锥面的截线为一抛物线.1.解答本题的关键是求出截面与轴的夹角以及母线与轴的夹角. 2.判断平面与圆锥面交线形状的方法(1)求圆锥面的母线与轴线的夹角σ,截面与轴的夹角θ; (2)判断σ与θ的大小关系; (3)根据定理判断截线是什么曲线.图2-3-4如图2-3-4所示,平面ABC 是圆锥面的正截面,PAB 是圆锥的轴截面,已知∠APC =60°,∠BPC =90°,PA =4.(1)求二面角A —PC —B 的余弦值; (2)求正截面圆圆心O 到平面PAC 的距离. 【解】 (1)∵∠APC =60°, ∴△APC 为等边三角形.如图所示,分别取PC ,BC 的中点D ,E ,连接AD ,DE ,则AD ⊥PC ,DE ∥PB . 又PB ⊥PC ,∴DE ⊥PC .故∠ADE 为二面角A —PC —B 的平面角. 连接AE ,在Rt △ACE 中,求得AE 2=24. 又AD =32PA =23,DE =12PB =2,在△ADE 中,由余弦定理,得cos ∠ADE =-33. (2)取AC 的中点F ,连接PF ,OF ,则AC ⊥平面POF ,从而平面PAC ⊥平面POF . 过O 点作OH ⊥PF ,垂足为H ,则OH ⊥平面PAC ,故OH 的长为O 点到平面PAC 的距离. 在Rt △ACB 中,AC =PA =4,BC =2PB =42,从而AB =43,OP =2. 在Rt △POF 中,OF =12BC =22,OP =2,PF =32PA =23,由面积关系,得OH =OF ·OP PF =263. 即O 点到平面PAC 的距离为236.(教材第39页练习题2-3B 组第1题)在教材第38页图2-18中,设圆KK ′所在的平面为β′,平面β与β′的交线为直线m ,试证明:椭圆上任意一点P 到F 1和直线m 的距离之比为一个常数(记为e ),且0<e <1.(2013·沈阳质检)如图2-3-5,已知两焦点的距离F 1F 2=2c ,两端点G 1G 2=2a .求证:l 1与l 2之间的距离为2a2c.图2-3-5【命题意图】 本题考查平面与圆柱面的交线及椭圆的定义与离心率. 【证明】 设椭圆上任意一点P ,过P 作PQ 1⊥l 1于Q 1,过P 作PQ 2⊥l 2于Q 2. ∵e =PF 1PQ 1=PF 2PQ 2=c a , ∴PF 1=c aPQ 1,PF 2=c aPQ 2. 由椭圆定义PF 1+PF 2=2a , ∴c a PQ 1+c aPQ 2=2a .∴PQ 1+PQ 2=2a2c,即l 1与l 2之间的距离为2a2c.1.一个平面和圆柱面的轴成θ角(0°<θ<90°),则同时与圆柱面和该平面都相切的球的个数为( )A.0 B.1C.2 D.由θ的不同而定【解析】由焦球的定义知,符合定义的球有2个.【答案】 C2.用一个过圆锥面顶点的平面去截圆锥面,则交线为( ) A.椭圆B.双曲线C.抛物线D.两条相交直线【解析】所得交线为圆锥面的两条母线.【答案】 D3.圆锥面的母线与轴线成σ角,过顶点的平面和轴线成θ角,且与圆锥面的交线是椭圆,则θ和σ的大小关系为________.【解析】由平面截圆锥面的定理知θ>σ.【答案】θ>σ4.在圆锥的内部嵌入Dandelin双球,一个位于平面π的上方,一个位于平面π的下方,并且与平面π和圆锥面均相切,则两切点是所得圆锥曲线的________.【解析】根据焦球的定义知,两切点是所得圆锥曲线的焦点.【答案】两焦点一、选择题1.用一个平面去截一个圆柱面,其交线是( )A.圆B.椭圆C.两条平行线 D.以上均可能【解析】当平面垂直于圆柱面的轴时,交线为圆;当平面与圆柱面的轴平行时,交线为两条平行线,当平面与圆柱面的轴不平行也不垂直时,交线为椭圆,故选D.【答案】 D2.一个圆锥轴截面的顶角为120°,母线长为1,过顶点作圆锥的截面中,最大截面面积为( )A.12B.13C.35D.34【解析】 设截面两母线的夹角为θ,则0°<θ≤120°, 当θ=90°时,截面面积S 最大,此时S =12×1×1×sin 90°=12.【答案】 A3.已知半径为2的圆柱面,一平面与圆柱面的轴线成45°角,则截线椭圆的焦距为( )A .2 2B .2C .4D .4 2 【解析】 由2a =2rsin 45°=42,∴a =22,b =2,∴c =a 2-b 2=2,故焦距为4. 【答案】 C4.已知圆锥面的轴截面为等腰直角三角形,用一个与轴线成30°角的不过圆锥顶点的平面去截圆锥面时,所截得的截线的离心率为( )A.62 B.63C.32D.22【解析】 ∵圆锥的轴截面为等腰直角三角形,所以母线与轴线的夹角σ=45°;又截面与轴线的夹角θ=30°,即θ<σ,∴截线是双曲线,其离心率e =cos θcos σ=cos 30°cos 45°=32=62.【答案】 A 二、填空题5.已知圆锥面的母线与轴成44°角,用一个与轴线成44°角的不过圆锥顶点的平面去截圆锥面时,所截得的交线是________.【解析】 根据平面截圆锥面定理知,交线为抛物线. 【答案】 抛物线6.一平面截半径为3的圆柱面得椭圆,若椭圆的Dandelin 双球的球心距离为10,则截面与圆柱面母线夹角的余弦值为________.【解析】 Dandelin 双球球心距离即为椭圆的长轴长,∴2a =10,即a =5,又椭圆短轴长2b =6,∴b =3.∴c =4.故离心率e =c a =45,∴cos θ=45,故截面与母线所成角的余弦值为45.【答案】 45三、解答题7.已知圆柱面轴线上一点O 到圆柱的同一条母线上两点A 、B 的距离分别为2和32,且∠AOB =45°.求圆柱面内切球的半径.【解】 右图所示为圆柱面的轴截面. 依题意,OA =2,OB =32,∠AOB =45°,∴AB 2=OA 2+OB 2-2OA ·OB cos 45°=4+18-2×2×32×22=10, ∴AB =10.设内切球的半径为r ,则S △AOB =12·AB ·r =102r . 又∵S △OAB =12OA ·OB sin ∠AOB =12×2×32sin 45°=3,∴102r =3,∴r =3105,即圆柱面内切球半径为3105.8.已知圆锥面S ,母线与轴线所成的角为45°,在轴线上取一点C ,使SC =5,过点C 作一平面与轴线的夹角为30°,所截得的曲线是什么样的图形?求出Dandelin 双球的半径.【解】 由已知σ=45°,θ=30°. ∵θ<σ, ∴截线是双曲线.设Dandelin 双球中其中一球的半径为R ,球心为O . 则SO =2R ,OC =2R ,∴SC =SO +OC =(2+2)R . 又SC =5,∴R =52+2=52-22.设Dandelin 双球另一球的半径为R ′,球心为O ′. 则OO ′=R +R ′cos 45°=2(R +R ′).又截面与轴线的夹角为30°, ∴R ′-R =12OO ′=22(R +R ′),∴R ′=(3+22)R =52+22, 即Dandelin 双球半径分别为 52-22,52+22.图2-3-69.在阳光照射下,地面上篮球的影子是个椭圆,如图2-3-6所示,求证:篮球与地面的接触点是椭圆的焦点.【证明】 如图,作篮球与影子的纵截面图,M 为球心,D 为篮球与地面的接触点,易知MD ⊥A 1A 2,MD =b .因为光线EA 1∥FA 2,且EA 1,FA 2,A 1A 2均与圆M 相切,所以∠MA 1D +∠MA 2D =90°,所以∠A 1MA 2=90°,于是MO =A 1O =A 2O =a .于是OD =MO 2-MD 2=a 2-b 2=c , 所以D 是椭圆的一个焦点.10.如图,圆柱被平面α所截.已知AC是圆柱口在平面α上最长投影线段,BD是最短的投影线段,EG=FH,EF⊥AB,垂足在圆柱的轴上,EG和FH都是投影线,分别与平面α交于点G,H.(1)比较EF,GH的大小;(2)若圆柱的底面半径为r,平面α与母线的夹角为θ,求CD.【解】(1)∵EG和FH都是投影线∴EG∥FH又EG=FH∴四边形EFHG是平行四边形∴EF=GH(2)如题图,过点D作DP⊥AC于点P则在Rt△CDP中,有:sin∠DCP=DPCD又∠DCP=θ,DP=2r,∴CD=2rsin θ.§5圆锥曲线的几何性质课标解读1.了解圆锥曲线的形成过程.2.理解圆锥曲线的统一定义.3.能用圆锥曲线的几何性质解决问题.圆锥曲线的统一定义抛物线、椭圆、双曲线都是平面上到定点的距离与到定直线的距离之比为常数e(离心率)的动点的轨迹,此时定点称为焦点,定直线称为准线.当e =1时,轨迹为抛物线; 当0<e <1时,轨迹为椭圆; 当e >1时,轨迹为双曲线.1.你能列举几条椭圆的几何性质吗?【提示】 (1)椭圆中有“四线”(两条对称轴、两条准线),“六点”(两个焦点、四个顶点).注意它们之间的位置关系(如准线垂直于长轴所在的直线、焦点在长轴上等)及相互间的距离(如焦点到相应顶点的距离为a -c ,到相应准线的距离为a 2c-c 等).(2)设椭圆方程x 2a 2+y 2b2=1(a >b >0)上任意一点为P (x ,y ),则|OP |=x 2+y 2=x 2+b 2a2a 2-x 2=c 2x 2+a 2b 2a 2. ∵-a ≤x ≤a ,∴x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =±a 时,|OP |有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成△PF 1F 2称之为焦点三角形,周长为2(a +c ).(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形的边长有a 2=b 2+c 2. 2.由双曲线的特征三角形我们可得到什么? 【提示】双曲线的特征三角形和椭圆类似,如图中△OAB 称为双曲线的特征三角形,它几乎包含了双曲线的所有基本特征量:|OA |=a ,|AB |=b ,|OB |=|OF 2|=c ,cos ∠AOB =a c =1e,OB所在的直线即为双曲线的渐近线y =b ax ,又F 2在OB 上的射影记作G ,则|OG |=a ,|F 2G |=b (注意:△OAB ≌△OGF 2).G 的横坐标记作x G ,则x G =a 2c (由射影定理可得),那么过G 作y 轴的平行线l ,显然l 为双曲线右焦点F 2对应的准线.圆锥曲线的几何性质图2-5-1如图2-5-1所示,椭圆的左、右焦点分别为F 1,F 2,A 为椭圆内部一点,且F 1A ⊥F 1F 2,椭圆的长轴长为8,焦距为4,M 为椭圆上任意一点,求AM +2MF 2的最小值.【思路探究】 设法将AM,2MF 2转化到一条直线上,才能利用所学的求最值的基本思路,否则不易求.【自主解答】 如图所示,l 1,l 2为椭圆的准线,过M 作MN ⊥l 2于N .∵e =c a =2c 2a =48=12,∴MF 2=eMN =12MN ,∴AM +2MF 2=AM +MN ,故AM +2MF 2的最小值为A 到l 2的距离, ∵AF 1⊥F 1F 2,∴即求F 1到l 2的距离.延长F 1F 2交l 2于Q ,F 1Q =c +a 2c =2+422=10,故AM +2MF 2的最小值为10.1.本题求解的关键是把到焦点的距离转化为到定直线的距离,而转化的依据是圆锥曲线的统一定义.2.两线段和或差的最值问题一般转化成直线上的线段和、差的最值问题;曲面上(球面除外)的最值问题也是转化为平面上的最值问题.已知双曲线左右两个焦点分别为F 1、F 2,P 是双曲线左支上一点,P 点到左准线的距离为d ,若d 、PF 1、PF 2成等比数列,求双曲线离心率e 的取值范围.【解】 如图所示, 由题知PF 1d =PF 2PF 1=e , ∴PF 2=ePF 1, 由PF 2-PF 1=2a , ∴PF 1=2a e -1, 根据PF 1≥F 1A , ∴2ae -1≥c -a , ∴(e -1)2≤2,1-2≤e ≤1+2, 又∵e >1, ∴1<e ≤1+2,即双曲线的离心率e 的取值范围是1<e ≤1+ 2.圆锥曲线方程点M (x ,n )与定点F (c,0)的距离和它到定直线l :x =a 2c的距离的比是常数c a(c >a >0),求点M 的轨迹方程.【思路探究】 表示出点M 到定点F 和定直线l 的距离,直接列关系式求解.【自主解答】 设d 是点M 到直线l 的距离. 根据题意,所求轨迹就是集合P ={M ||MF |d =ca},由此得x -c 2+y 2|x -a 2c|=ca .化简,得(c 2-a 2)x 2-a 2y 2=a 2(c 2-a 2).设c 2-a 2=b 2,就可化为x 2a 2-y 2b2=1(a >0,b >0).1.解答本题时化简是关键.2.平面直角坐标系也是解决几何问题的重要工具.通过平面直角坐标系可对几何元素进行定量的分析.在平面内,两个定点的距离为8,动点M 到两个定点的距离的和为10,求动点M 的轨迹方程.【解】 以两点的连线段所在的直线为x 轴,线段的中垂线为y 轴建立直角坐标系. 则由椭圆的定义知,所求动点的轨迹为椭圆.设所求椭圆方程为x 2a 2+y 2b2=1,∵2a =10,2c =8,∴a =5,c =4,则b 2=9, 故所求椭圆的方程为x 225+y 29=1.利用Dandelin 双球研究圆锥曲线问题图2-5-2一个顶角为60°的圆锥面被一个平面π所截,如图2-5-2所示,Dandelin 双球均在顶点S 的下方,且一个半径为1,另一个半径为5,则截线的形状是什么曲线?其离心率是多少?【思路探究】 解答本题可先在所给的几何图形中找到椭圆的元素,再利用相应关系研究截线的性质.【自主解答】 Dandelin 双球均在顶点S 的同侧,所以截线为椭圆.设A 、B 分别是该椭圆的长轴的两个端点,F 1、F 2分别是其焦点,O 1、O 2分别为Dandelin 双球中小、大球的球心,C 、D 分别为截面圆与母线的切点.∵∠CSO 1=30°,O 1C =1,∴SC = 3. 同理SD =53,则CD =4 3. 又∵BF 1+BF 2=BC +BD =CD , ∴2a =BF 1+BF 2=43,即a =2 3.再延长O 1F 1交O 2D 于点G ,过O 2作O 2F ⊥F 1G 交F 1G 于点F , 则O 1F =r 1+r 2=6.又∵CD =43,∠DSO 2=30°,∴O 1O 2=8, 在Rt △O 1O 2F 中,FO 2=82-62=27. 即2c =F 1F 2=FO 2=27, 故c =7.所以,离心率e =c a =723=216.1.解答本题时,先在图形中找出长轴与焦点,然后再求值.2.解决此类问题可先把空间图形转化为平面图形,然后利用圆锥曲线的定义及性质来解决.已知圆锥面S ,其母线与轴线所成的角为30°,在轴线上取一点C ,使SC =5,通过点C 作一截面δ使它与轴线所成的角为45°,截出的圆锥曲线是什么样的图形?求它的离心率及圆锥曲线上任一点到两个焦点的距离之和.【解】 截得的曲线是椭圆.e =cos 45°cos 30°=2232=63.设圆锥曲线上任意一点为M ,其两焦点分别为F 1,F 2,如图所示,MF 1+MF 2=AB . 设圆锥面内切球O 1的半径为R 1,内切球O 2的半径为R 2. ∵SO 1=2R 1,CO 1=2R 1, ∴SC =(2+2)R 1=5, 即R 1=52-22.∵SO 2=2R 2,CO 2=2R 2, ∴SC =(2-2)R 2=5,即R 2=52+22. ∵O 1O 2=CO 1+CO 2=2(R 1+R 2)=102, ∴AB =O 1O 2cos 30°=O 1O 2·32=56, 即MF 1+MF 2=5 6.图2-5-3(教材第47页习题2-5第2题)如图2-5-3,F 1、F 2为椭圆的两个焦点,直线m 为其准线.(1)设椭圆的离心率e =23,试确定点P 的位置,使PA +32PF 1取得最小值;(2)设椭圆的长轴长等于6,AF 2=2,试求PA +PF 1的最大值和最小值.(2013·合肥质检)已知双曲线x 29-y 216=1的右焦点为F 1,点A (9,2)不在双曲线上,试在这个曲线上求一点M ,使|MA |+35|MF 1|的值最小,并求出最小值.【命题意图】 本题主要考查双曲线的几何性质,由题设a =3,b =4,c =9+16=5,e =c a =53.【解】 如图所示,l 为双曲线的右准线,M 为双曲线上任意一点,作MN ⊥l 于N , 则|MN |=35|MF 1|,因此|MA |+35|MF 1|=|MA |+|MN |,当A 、M 、N 三点共线时,即点M 坐标为(352,2)时,|MA |+35|MF 1|取最小值为|AN |=9-95=365.1.平面内若动点M 到两定点F 1,F 2的距离和为定值m (m >0),则动点M 的轨迹是( ) A .椭圆B .线段。