01背包问题及变种详解
01背包

【解法一:二维数组】 解法一:二维数组】 算法分析】 【算法分析】 f(i,x)表示前 件物品,总重量不超过x的最优价值, f(i, 表示前i 设 f(i,x)表示前i件物品,总重[i])+c[i],f(i即为最优解。 x)=max(f(i-1,x-w[i])+c[i],f(i-1,x)) ;f(n,m)即为最优解。 下面例出F[I X]的值 F[I, 的值, 表示前I件物品, 下面例出F[I,X]的值,I表示前I件物品,X表示重量
【例题解法二:一维数组】 例题解法二:一维数组】 算法分析】 【算法分析】 本问题的数学模型如下: f(x)表示重量不超过 公斤的最大价值, 表示重量不超过x 本问题的数学模型如下:设 f(x)表示重量不超过x公斤的最大价值, 则 f(x)=max{f(xf(x)=max{f(x-w[i])+c[i]} x>=w[i], 当x>=w[i],1<=i<=n 。 下面例出F[x]表示重量不超过x公斤的最大价值, F[x]表示重量不超过 下面例出F[x]表示重量不超过x公斤的最大价值,x表示重量
【例题】 0/1背包 例题】 0/1背包 【问题描述】 问题描述】 一个旅行者有一个最多能用m公斤的背包,现在有n件物品,它们的 一个旅行者有一个最多能用m公斤的背包,现在有n件物品, 重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn.若每种物品只 重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn.若每种物品只 W1 它们的价值分别为C1,C2,...,Cn. 有一件求旅行者能获得最大总价值。 有一件求旅行者能获得最大总价值。 【输入格式】 输入格式】 第一行:两个整数,M(背包容量,M<=200)和N(物品数量,N<=30); 第一行:两个整数,M(背包容量,M<=200)和N(物品数量,N<=30); 背包容量 物品数量 第2..N+1行:每行二个整数Wi,Ci,表示每个物品的重量和价值。 2..N+1行 每行二个整数Wi,Ci,表示每个物品的重量和价值。 Wi,Ci 【输出格式】 输出格式】 仅一行,一个数,表示最大总价值。 仅一行,一个数,表示最大总价值。 【样例输入】package.in 样例输入】 10 4 2 1 3 3 4 5 7 9 【样例输出】package.out 样例输出】 12
图解01背包问题

表示背包没有空间可以放东西
i/j
表 示 没 有 物 品 放 入
0 0 0 0 0 0
1 0 0 2 2 2
2 0 3 3>2 3>2 3>2
3 0 3 5>3 5>4 5>4
//该方法是使用的记忆搜索的方法,请自行简化。 Int rec( int I , int j){ int res; if(i==n){ res=0; //表明物品已经放完了。 }else if(j<w[i]){ res=rec(i+1,j);//此时包内的空间不够放下第I个物品。 }else{ res=max(rec(i+1,j),rec(i+1,j-w[i])+v[i]); // 进行比较,如果放入物品的价值比原来已经放入物品的总价 值高,则替换原来的 } dp[i][j]=res; return dp[i][j]; }
#include<iostream> using namespace std; #include<iostream> using namespace std; int n,W; int w[10],v[10]; int dp[10][10]; int max(int x,int y){ if(x>y)return x; else return y; } void slove(){ cout<<rec(0,W); } int main(){ cout<<"please enter n and W:"; cin>>n>>W; for(int i=0;i<n;i++){ cin>>w[i]>>v[i]; } slove(); return 0; }
0-1背包问题详解二(完全背包问题)

0-1背包问题详解⼆(完全背包问题)问题描述给定n种物品和⼀个背包。
物品i的重量是w(i),其价值为v(i),背包的容量为c(即最多能够装c重量的物品)。
这n种物品可以重复放置(这是与普通背包问题的不同之处)。
输⼊n=5,c=6.物品容量和价值分别为:2 62 36 55 44 6最后输出时:18问题求解:f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}似乎利⽤上⾯那个公式就可以很好的求出解。
这⾥给出另外⼀组公式,该公式和上⽂的公式是⼀样的,只是第⼆个for语句的倒过来。
for i=1..Nfor v=0..Vf[v]=max{f[v],f[v-cost]+weight}为什么这样⼀改就可⾏呢?⾸先想想为什么上⽂中要按照v=V..0的逆序来循环。
这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-c[i]]递推⽽来。
换句话说,这正是为了保证每件物品只选⼀次,保证在考虑“选⼊第i件物品”这件策略时,依据的是⼀个绝⽆已经选⼊第i件物品的⼦结果f[i-1][v-c[i]]。
⽽现在完全背包的特点恰是每种物品可选⽆限件,所以在考虑“加选⼀件第i种物品”这种策略时,却正需要⼀个可能已选⼊第i种物品的⼦结果f[i][vc[i]],所以就可以并且必须采⽤v=0..V的顺序循环。
这就是这个简单的程序为何成⽴的道理。
1void compelteKnapsack(){2int c,n;3 cout<<"请输⼊最⼤容量,⼩于100"<<endl;4 cin>>c;5 cout<<"请输⼊背包个数"<<endl;6 cin>>n;7 cout<<"请输⼊各个背包重量和价值"<<endl;8for(int i=1;i<=n;i++){9 cin>>w[i]>>v[i];10 }11for(int i=0;i<=n;i++)12 p[i]=0;13for(int i=1;i<=n;i++)14for(int j=w[i];j<=c;j++)15 p[j]=max(p[j],p[j-w[i]]+v[i]);16 cout<<"结果是"<<p[c]<<endl;17 }View Code版权所有,欢迎转载,但是转载请注明出处:。
动态规划——01背包问题

动态规划——01背包问题⼀、最基础的动态规划之⼀01背包问题是动态规划中最基础的问题之⼀,它的解法完美地体现了动态规划的思想和性质。
01背包问题最常见的问题形式是:给定n件物品的体积和价值,将他们尽可能地放⼊⼀个体积固定的背包,最⼤的价值可以是多少。
我们可以⽤费⽤c和价值v来描述⼀件物品,再设允许的最⼤花费为w。
只要n稍⼤,我们就不可能通过搜索来遍查所有组合的可能。
运⽤动态规划的思想,我们把原来的问题拆分为⼦问题,⼦问题再进⼀步拆分直⾄不可再分(初始值),随后从初始值开始,尽可能地求取每⼀个⼦问题的最优解,最终就能求得原问题的解。
由于不同的问题可能有相同的⼦问题,⼦问题存在⼤量重叠,我们需要额外的空间来存储已经求得的⼦问题的最优解。
这样,可以⼤幅度地降低时间复杂度。
有了这样的思想,我们来看01背包问题可以怎样拆分成⼦问题:要求解的问题是:在n件物品中最⼤花费为w能得到的最⼤价值。
显然,对于0 <= i <= n,0 <= j <= w,在前i件物品中最⼤花费为j能得到的最⼤价值。
可以使⽤数组dp[n + 1][w + 1]来存储所有的⼦问题,dp[i][j]就代表从前i件物品中选出总花费不超过j时的最⼤价值。
可知dp[0][j]值⼀定为零。
那么,该怎么递推求取所有⼦问题的解呢。
显⽽易见,要考虑在前i件物品中拿取,⾸先要考虑前i - 1件物品中拿取的最优情况。
当我们从第i - 1件物品递推到第i件时,我们就要考虑这件物品是拿,还是不拿,怎样收益最⼤。
①:⾸先,如果j < c[i],那第i件物品是⽆论如何拿不了的,dp[i][j] = dp[i - 1][j];②:如果可以拿,那就要考虑拿了之后收益是否更⼤。
拿这件物品需要花费c[i],除去这c[i]的⼦问题应该是dp[i - 1][j - c[i]],这时,就要⽐较dp[i - 1][j]和dp[i - 1][j - c[i]] + v[i],得出最优⽅案。
动态规划法求01背包问题

动态规划法求01背包问题思路状态表⽰:f[i][j]表⽰前i个物品在容量为j的背包下的最⼤价值v[i]表⽰第i个物品的价值,w[i]表⽰第i个物品的重量状态转换:对于第i个物品如果当前背包不可以装下这个物品,那么当前的f[i][j] = f[i - 1][j],也就是上⼀个状态的最⼤价值如果当前背包可以装下这个物品,那么当前的f[i][j] = f[i - 1][j - v[i]] + w[i]和f[i - 1][j]取较⼤的那⼀个,第⼀个是考虑把第i个物品装⼊背包,那么背包物品的价值就是前i-1个物品装⼊容量为j-w[i]再加上第i个物品v[i]的价值,第⼆个是不把当前物品装⼊背包的价值,两个取⼤的那⼀个作为最优解代码详解:1. 0/1背包问题#include<iostream>using namespace std;const int N = 1e3 + 10;int f[N], w[N], v[N];int main(){int n, c;cin >> n >> c;for(int i = 1; i <= n; i ++ )cin >> v[i] >> w[i];for(int i = 1; i <= n; i ++)for(int j = c; j >= 0 && j >= v[i]; j --)f[j] = max(f[j], f[j - v[i]] + w[i]);cout << f[c] << endl;return 0;}}完全背包问题(每个物品可以使⽤⽆数次f[i][j] = max(f[i - 1][j], f[i][j - v[i]] + w[i])完全背包问题本来应该是在背包问题上再加⼀个循环的,但是可以推导出下⾯这个样⼦f[i][j] = max(f[i - 1][j], f[i][j - v[i]] + w[i])为什么呢,只是把0/1背包问题的f[i - 1][j - v[i] + w[i])的i-1换成了i就可以了?从头来说:完全背包问题,对于第i个物品,假设剩下的背包容量还可以装n个这个物品,那么⼀共就有n+1中决策⽅案,还有⼀种⽅案就是⼀个都不选那么对于第i个物品:它的最⼤价值就是f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]), f[i - 1][j - 2 * v[i]] + 2 * w[i]....)⼀直到n为⽌(①式)令 j = j - v[i] 那么f[i][j - v[i]] = max(f[i - 1][j - v[i]], f[i - 1][j - 2 * v[i]] + w[i].....)(②式)然后发现⼆式中的右边⽐较像⼀式中的第⼆项到最后⼀项,就是每⼀项都少了⼀个w[i]把⼆式带⼊⼀式,那么⼀式就是 f[i][j] = max(f[i - 1][j], f[i][j - v[i]] + w[i]), 就是下⾯这个状态⽅程啦 ;#include<iostream>using namespace std;const int N = 1e3 + 10;int f[N][N], w[N], v[N];int main(){int n, c;cin >> n >> c;for(int i = 1; i <= n; i ++)cin >> v[i] >> w[i];for(int i = 1; i <= n; i ++ ){for(int j = 1; j <= c; j ++ ){f[i][j] = f[i - 1][j];if(j >= v[i])f[i][j] = max(f[i - 1][j], f[i][j - v[i]] + w[i]);}}cout << f[n][c] << endl;return 0;}完全背包优化:#include<iostream>using namespace std;const int N = 1e3 + 10;int f[N], w[N], v[N];int main(){int n, c;cin >> n >> c;for(int i = 1; i <= n; i ++)cin >> v[i] >> w[i]; for(int i = 1; i <= n; i ++ )for(int j = v[i]; j <= c; j ++ )//从前往后更新 f[j] = max(f[j], f[j - v[i]] + w[i]);cout << f[c] << endl;return 0;}。
利用动态规划解决01背包问题01背包问题动态规划

利用动态规划解决01背包问题01背包问题动态规划背包问题是一个经典的动态规划模型,很多关于算法的教材都把它作为一道例题,该问题既简单又容易理解,而且在某种程度上还能够揭示动态规划的本质。
将具有不同重量和价值的物体装入一个有固定载重量的背包,以获取最大价值,这类问题被称为背包问题。
背包问题可以扩展出很多种问题,而01背包问题是最常见、最有代表性的背包问题。
一、问题描述给定一个载重量为M的背包及n个物体,物体i的重量为wi、价值为pi,1≤i≤n,要求把这些物体装入背包,使背包内的物体价值总量最大。
此处我们讨论的物体是不可分割的,通常称这种物体不可分割的背包问题为01背包问题。
二、基本思路01背包问题的特点是:每种物体只有一件,可以选择放或者不放。
假设:xi表示物体i被装入背包的情况,xi=0,1。
当xi=0时,表示物体没有被装入背包;当xi=1时,表示物体被装入背包。
根据问题的要求,有如下的约束方程(1)和目标函数(2):三、利用动态规划法求解01背包问题(一)动态规划算法的基本思想动态规划算法通常用于求解具有某种最优性质的问题。
在这类问题中,可能会有许多可行解。
每一个解都对应于一个值,我们希望找到具有最优值的解。
动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。
若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算很多次。
如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。
我们可以用一个表来记录所有已解的子问题的答案。
不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中,这就是动态规划法的基本思路。
具体的动态规划算法多种多样,但它们具有相同的填表格式。
(二)算法设计假定背包的载重量范围为0~m。
背包问题状态转移方程
背包问题是一个经典的动态规划问题,有两个主要变种:0/1背包问题和背包问题。
以下是它们的状态转移方程:
1.0/1背包问题:
–设物品的重量数组为weights,价值数组为values,背包容量为W,物品个数为n。
–令dp[i][j]表示在前i个物品中选择一些物品放入容量为j的背包中所能获得的最大价值。
–状态转移方程:
dp[i][j]=max(dp[i−1][j],dp[i−1][j−weigℎts[i]]+values[i])
–其中,dp[i-1][j]表示不选择第i个物品,dp[i-1][j-weights[i]] + values[i]表示选择第i个物品。
2.背包问题(允许物品分割):
–设物品的重量数组为weights,价值数组为values,背包容量为W,物品个数为n。
–令dp[i][j]表示在前i个物品中选择一些物品放入容量为j的背包中所能获得的最大价值。
–状态转移方程:
dp[i][j]=max(dp[i−1][j],dp[i][j−weigℎts[i]]+values[i])
–其中,dp[i-1][j]表示不选择第i个物品,dp[i][j-weights[i]] + values[i]表示选择第i个物品。
这两个状态转移方程是背包问题中最基本的形式,它们都采用动态规划的思想,通过填表格的方式逐步求解问题。
在实际应用中,你可以根据具体问题的要求进行适当的调整。
算法设计-01背包问题的分析
算法设计与分析 ------0/1背包问题实例研究
班级:090402 学号:20091236 姓名:王龙 1 / 7
一、问题描述 有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
二、基本思路 这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
三、优化空间复杂度 我们可以很容易的得出,以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。先考虑上面说的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下:
动态规划求解01背包问题
动态规划求解01背包问题问题给定n种物品和⼀个背包,物品(1<=i<=n)重量是w I ,其价值v i,背包容量为C,对每种物品只有两种选择:装⼊背包和不装⼊背包,即物品是不可能部分装⼊,部分不装⼊。
如何选择装⼊背包的物品,使其价值最⼤?想法该问题是最优化问题,求解此问题⼀般采⽤动态规划(dynamic plan),很容易证明该问题满⾜最优性原理。
动态规划的求解过程分三部分:⼀:划分⼦问题:将原问题划分为若⼲个⼦问题,每个⼦问题对应⼀个决策阶段,并且⼦问题之间具有重叠关系⼆:确定动态规划函数:根据⼦问题之间的重叠关系找到⼦问题满⾜递推关系式(即动态规划函数),这是动态规划的关键三:填写表格:设计表格,以⾃底向上的⽅式计算各个⼦问题的解并填表,实现动态规划过程。
思路:如何定义⼦问题?0/1背包可以看做是决策⼀个序列(x1,x2,x3,…,xn),对任何⼀个变量xi的决策时xi=1还是xi=0. 设V(n,C)是将n个物品装⼊容量为C的背包时背包所获得的的最⼤价值,显然初始⼦问题是将前i个物品装如容量为0的背包中和把0个物品装⼊容量为j的背包中,这些情况背包价值为0即V(i,0)=V(0,j)=0 0<=i<=n, 0<=j<=C接下来考虑原问题的⼀部分,设V(I,j)表⽰将前i个物品装⼊容量为j的背包获得的最⼤价值,在决策xi时,已经确定了(x1,x2,…,xi-1),则问题处于下列两种情况之⼀:1. 背包容量不⾜以装⼊物品i,则装⼊前i-1个物品的最⼤价值和装⼊前i个物品最⼤价值相同,即xi=0,背包价值没有增加2. 背包容量⾜以装⼊物品i,如果把物品i装⼊背包,则背包物品价值等于把前i-1个物品装⼊容量为j-wi的背包中的价值加上第i个物品的价值vi;如果第i个物品没有装⼊背包,则背包价值等于把前i-1个物品装⼊容量为j的背包中所取得的价值,显然,取⼆者最⼤价值作为把物品i装⼊容量为j的背包中的最优解,得到如下递推公式为了确定装⼊背包中的具体物品,从V(n,C)的值向前推,如果V(n,C)>V(n-1,C),则表明第n个物品被装⼊背包中,前n-1个物品被装⼊容量为C-wn的背包中;否则,第n个物品没有被装⼊背包中,前n-1个物品被装⼊容量为C的背包中,依次类推,直到确认第⼀个物品是否被装⼊背包中代码C++实现1. // dp_01Knapsack.cpp : 定义控制台应⽤程序的⼊⼝点。
01背包问题(01knapsackproblem)
01背包问题(01knapsackproblem)0 / 1 背包问题(0 / 1 knapsack problem)背包问题(Knapsack problem)是⼀种组合优化的问题。
问题可以描述为:给定⼀组物品,每种物品都有⾃⼰的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最⾼。
问题的名称来源于如何选择最合适的物品放置于给定背包中。
相似问题经常出现在商业、[组合数学],[计算复杂性理论]、[密码学]和[应⽤数学]等领域中。
也可以将背包问题描述为,即在总重量不超过W的前提下,总价值是否能达到V。
1、题⽬描述假设商店中有如下3个商品,他们的重量和价格如下:索引重量价值011500143000232000假如你是⼀个⼩偷,你有⼀个重量为4的包,每个商品只能偷⼀次,请问你怎么偷才会使得最后的价值最⼤?2、分析这种问题⼀般可以⽤动态规划很好地解决。
但是如果我不⽤动态规划,⽽是⽤搜索所有情况来解决也可以,每个商品都有偷或不偷的选项,所以n个商品就有n^2种情况,所以⽤遍历的⽅法时间复杂度为O(n^2) n为商品的数量现在我们假设B(k, w)表⽰的是前k个商品,在背包容量为w的情况下能偷的最⾼价值当现在⾯对的第k个物品重量太重时:B(k, w) = B(k-1, w),代表我在多了⼀个物品的选择的情况下,仍然和没有这件物品时的选择⼀样,所以结果也⼀样(因为我偷不了或者我不偷的情况)当第k个物品的重量我可以接受时:B(k, w) = B(k-1, w - 这件物品的重量) + 这件物品的价值代表我如果偷了这件物品,那剩下的w - 这件物品重量的空间可以容纳的最⼤价值就是在上⼀次选择时B(k-1, w - 这件物品的重量)的值。
再加上这件物品的价值就是我偷了这件物品的最⼤值。
所以,在衡量⼀个B(k, w)时,⾸先看⼀下能不能偷,能得话看⼀下偷还是不偷两个的最⼤值,就是B(k, w)的值,所以我们回到上⾯的问题,问题的解就是B(2,4)的值我们⽤⼆维数组 dp[][]来表⽰整个的过程可选商品 \ 背包容量012340号商品(1,1500)015001500150015000 ~ 1号商品(4,3000)015001500150030000 ~ 2号商品(3,2000)01500150020003500如图中加粗数字1500代表的是在有前两个商品,背包容量为2时可以偷的最⼤价值为1500图中加粗数字3000,即在有前2个商品,背包重量为4时,可以偷的最⼤价值为3000,这个数是这样算的:第⼆个商品(1号)重量为4,正好满⾜,如果偷的话所以价值为3000 + 0 = 3000如果不偷的话价值和只有1个商品,背包容量为4的价值⼀样,1500取最⼤值为3000所以问题的关键就在构建这个⼆维数组3、实现/*** 时间复杂度:O(n * capacity) n为商品数量,capacity为包的⼤⼩* 空间复杂度:O(n * capacity) 可以优化为capacity*/public class Main{/*** 0/1 背包问题* @param w w[i]代表i号物品的重量(从0开始)* @param v v[i]代表i号物品的价值(从0开始)* @param capacity 代表包的最⼤容量* @return 可以偷的商品的最⼤值*/public static int knapsack(int[] w, int[] v, int capacity){int goods = w.length; // 商品数int[][] dp = new int[goods][capacity + 1];// 初始化第⼀⾏,因为第⼀⾏上层没有元素了,即只有第⼀个商品时for(int j = 1; j <= capacity; j++){if(j >= w[0]) dp[0][j] = v[0];}// 前i个商品, 背包容量为j时偷得最⼤价值for(int i = 1; i < goods; i++) {for(int j = 1; j < capacity + 1; j++) {// 如果容量不够放下第i个商品if(w[i] > j) {dp[i][j] = dp[i-1][j];} else { // 如果可以放下这件商品dp[i][j] =Math.max(dp[i-1][j], v[i] + dp[i-1][j-w[i]]);}}}// System.out.println(Arrays.deepToString(dp));return dp[goods - 1][capacity];}}⽤滚动数组优化空间复杂度:因为如果我们从后往前构建每⼀⾏,那上⼀⾏保留的就可以在构建时候⽤/*** 时间复杂度:O(n * capacity) n为商品数量,capacity为包的⼤⼩* 空间复杂度:O(capacity)*/public class Main{/*** 0/1 背包问题* @param w w[i]代表i号物品的重量(从0开始)* @param v v[i]代表i号物品的价值(从0开始)* @param capacity 代表包的最⼤容量* @return 可以偷的商品的最⼤值*/public static int knapsack(int[] w, int[] v, int capacity){int goods = w.length; // 商品数int[] dp = new int[capacity + 1];// 前i个商品, 背包容量为j时偷得最⼤价值for(int i = 0; i < goods; i++) {for(int j = capacity; j > 0; j--) {// 如果能装下就更新,装不下就不更新(上⼀⾏的值)if(j - w[i] >= 0) {dp[j] = Math.max(dp[j], v[i] + dp[j - w[i]]);}}}return dp[capacity];}}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P01: 01背包问题题目有N件物品和一个容量为V的背包。
第i件物品的费用是c[i],价值是w[i]。
求解将哪些物品装入背包可使价值总和最大。
基本思路这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。
则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。
所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。
如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
优化空间复杂度以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。
那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。
伪代码如下:for i=1..Nfor v=V..0f[v]=max{f[v],f[v-c[i]]+w[i]};其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。
如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。
事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。
过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。
procedure ZeroOnePack(cost,weight)for v=V..costf[v]=max{f[v],f[v-cost]+weight}注意这个过程里的处理与前面给出的伪代码有所不同。
前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。
而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。
费用为cost 的物品不会影响状态f[0..cost-1],这是显然的。
有了这个过程以后,01背包问题的伪代码就可以这样写:for i=1..NZeroOnePack(c[i],w[i]);初始化的细节问题我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。
有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。
一种区别这两种问法的实现方法是在初始化的时候有所不同。
如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。
如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。
为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。
如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。
如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。
这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。
一个常数优化前面的伪代码中有 for v=V..1,可以将这个循环的下限进行改进。
由于只需要最后f[v]的值,倒推前一个物品,其实只要知道f[v-w[n]]即可。
以此类推,对以第j个背包,其实只需要知道到f[v-sum{w[j..n]}]即可,即代码中的for i=1..Nfor v=V..0可以改成for i=1..nbound=max{V-sum{w[i..n]},c[i]}for v=V..bound这对于V比较大时是有用的。
小结01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。
故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。
P02: 完全背包问题题目有N种物品和一个容量为V的背包,每种物品都有无限件可用。
第i种物品的费用是c[i],价值是w[i]。
求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
基本思路这个问题非常类似于01背包问题,所不同的是每种物品有无限件。
也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。
如果仍然按照解01背包时的思路,令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值。
仍然可以按照每种物品不同的策略写出状态转移方程,像这样:f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}这跟01背包问题一样有O(VN)个状态需要求解,但求解每个状态的时间已经不是常数了,求解状态f[i][v]的时间是O(v/c[i]),总的复杂度可以认为是O(V*Σ(V/c[i])),是比较大的。
将01背包问题的基本思路加以改进,得到了这样一个清晰的方法。
这说明01背包问题的方程的确是很重要,可以推及其它类型的背包问题。
但我们还是试图改进这个复杂度。
一个简单有效的优化完全背包问题有一个很简单有效的优化,是这样的:若两件物品i、j满足c[i]<=c[j]且w[i]>=w[j],则将物品j去掉,不用考虑。
这个优化的正确性显然:任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。
对于随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。
然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。
这个优化可以简单的O(N^2)地实现,一般都可以承受。
另外,针对背包问题而言,比较不错的一种方法是:首先将费用大于V的物品去掉,然后使用类似计数排序的做法,计算出费用相同的物品中价值最高的是哪个,可以O(V+N)地完成这个优化。
这个不太重要的过程就不给出伪代码了,希望你能独立思考写出伪代码或程序。
转化为01背包问题求解既然01背包问题是最基本的背包问题,那么我们可以考虑把完全背包问题转化为01背包问题来解。
最简单的想法是,考虑到第i种物品最多选V/c[i]件,于是可以把第i种物品转化为V/c[i]件费用及价值均不变的物品,然后求解这个01背包问题。
这样完全没有改进基本思路的时间复杂度,但这毕竟给了我们将完全背包问题转化为01背包问题的思路:将一种物品拆成多件物品。
更高效的转化方法是:把第i种物品拆成费用为c[i]*2^k、价值为w[i]*2^k的若干件物品,其中k满足c[i]*2^k<=V。
这是二进制的思想,因为不管最优策略选几件第i种物品,总可以表示成若干个2^k件物品的和。
这样把每种物品拆成O(log V/c[i])件物品,是一个很大的改进。
但我们有更优的O(VN)的算法。
O(VN)的算法这个算法使用一维数组,先看伪代码:for i=1..Nfor v=0..Vf[v]=max{f[v],f[v-cost]+weight}你会发现,这个伪代码与P01的伪代码只有v的循环次序不同而已。
为什么这样一改就可行呢?首先想想为什么P01中要按照v=V..0的逆序来循环。
这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-c[i]]递推而来。
换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[i-1][v-c[i]]。
而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-c[i]],所以就可以并且必须采用v=0..V的顺序循环。
这就是这个简单的程序为何成立的道理。
值得一提的是,上面的伪代码中两层for循环的次序可以颠倒。
这个结论有可能会带来算法时间常数上的优化。
这个算法也可以以另外的思路得出。
例如,将基本思路中求解f[i][v-c[i]]的状态转移方程显式地写出来,代入原方程中,会发现该方程可以等价地变形成这种形式:f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]}将这个方程用一维数组实现,便得到了上面的伪代码。
最后抽象出处理一件完全背包类物品的过程伪代码:procedure CompletePack(cost,weight)for v=cost..Vf[v]=max{f[v],f[v-c[i]]+w[i]}总结完全背包问题也是一个相当基础的背包问题,它有两个状态转移方程,分别在“基本思路”以及“O(VN)的算法“的小节中给出。
希望你能够对这两个状态转移方程都仔细地体会,不仅记住,也要弄明白它们是怎么得出来的,最好能够自己想一种得到这些方程的方法。
事实上,对每一道动态规划题目都思考其方程的意义以及如何得来,是加深对动态规划的理解、提高动态规划功力的好方法。
P03: 多重背包问题题目有N种物品和一个容量为V的背包。
第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。