01背包问题总结(一)

合集下载

动态规划——01背包问题

动态规划——01背包问题

动态规划——01背包问题⼀、最基础的动态规划之⼀01背包问题是动态规划中最基础的问题之⼀,它的解法完美地体现了动态规划的思想和性质。

01背包问题最常见的问题形式是:给定n件物品的体积和价值,将他们尽可能地放⼊⼀个体积固定的背包,最⼤的价值可以是多少。

我们可以⽤费⽤c和价值v来描述⼀件物品,再设允许的最⼤花费为w。

只要n稍⼤,我们就不可能通过搜索来遍查所有组合的可能。

运⽤动态规划的思想,我们把原来的问题拆分为⼦问题,⼦问题再进⼀步拆分直⾄不可再分(初始值),随后从初始值开始,尽可能地求取每⼀个⼦问题的最优解,最终就能求得原问题的解。

由于不同的问题可能有相同的⼦问题,⼦问题存在⼤量重叠,我们需要额外的空间来存储已经求得的⼦问题的最优解。

这样,可以⼤幅度地降低时间复杂度。

有了这样的思想,我们来看01背包问题可以怎样拆分成⼦问题:要求解的问题是:在n件物品中最⼤花费为w能得到的最⼤价值。

显然,对于0 <= i <= n,0 <= j <= w,在前i件物品中最⼤花费为j能得到的最⼤价值。

可以使⽤数组dp[n + 1][w + 1]来存储所有的⼦问题,dp[i][j]就代表从前i件物品中选出总花费不超过j时的最⼤价值。

可知dp[0][j]值⼀定为零。

那么,该怎么递推求取所有⼦问题的解呢。

显⽽易见,要考虑在前i件物品中拿取,⾸先要考虑前i - 1件物品中拿取的最优情况。

当我们从第i - 1件物品递推到第i件时,我们就要考虑这件物品是拿,还是不拿,怎样收益最⼤。

①:⾸先,如果j < c[i],那第i件物品是⽆论如何拿不了的,dp[i][j] = dp[i - 1][j];②:如果可以拿,那就要考虑拿了之后收益是否更⼤。

拿这件物品需要花费c[i],除去这c[i]的⼦问题应该是dp[i - 1][j - c[i]],这时,就要⽐较dp[i - 1][j]和dp[i - 1][j - c[i]] + v[i],得出最优⽅案。

(完整版)01背包问题

(完整版)01背包问题

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。

01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] }只要你能通过找规律手工填写出上面这张表就算理解了01背包的动态规划算法。

首先要明确这张表是至底向上,从左到右生成的。

为了叙述方便,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。

对于d2单元格,表示只有物品e,d时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。

同理,c2=0,b2=3,a2=6。

对于承重为8的背包,a8=15,是怎么得出的呢?根据01背包的状态转换方程,需要考察两个值,一个是f[i-1,j],对于这个例子来说就是b8的值9,另一个是f[i-1,j-Wi]+Pi;在这里,f[i-1,j]表示我有一个承重为8的背包,当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]表示我有一个承重为6的背包(等于当前背包承重减去物品a的重量),当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]就是指单元格b6,值为9,Pi指的是a物品的价值,即6由于f[i-1,j-Wi]+Pi = 9 + 6 = 15 大于f[i-1,j] = 9,所以物品a应该放入承重为8的背包以下是actionscript3 的代码public function get01PackageAnswer(bagItems:Array,bagSize:int):Array{var bagMatrix:Array=[];var i:int;var item:PackageItem;for(i=0;i<bagItems.length;i++){bagMatrix[i] = [0];}for(i=1;i<=bagSize;i++){for(varj:int=0;j<bagItems.length;j++){item = bagItems[j] as PackageItem;if(item.weight > i){//i背包转不下itemif(j==0){bagMatrix[j][i] = 0;}else{bagMatrix[j][i]=bagMatrix[j-1][i];}}else{//将item装入背包后的价值总和var itemInBag:int;if(j==0){bagMatrix[j][i] = item.value;continue;}else{itemInBag = bagMatrix[j-1][i-item.weight]+item.value;}bagMatrix[j][i] = (bagMatrix[j-1][i] > itemInBag ? bagMatrix[j-1][i] : itemInBag)}}}//find answervar answers:Array=[];var curSize:int = bagSize;for(i=bagItems.length-1;i>=0;i--){item = bagItems[i] as PackageItem;if(curSize==0){break;}if(i==0 && curSize > 0){answers.push();break;}if(bagMatrix[i][curSize]-bagMatrix[i-1][curSize-item.weight ]==item.value){answers.push();curSize -= item.weight;}}return answers;}PackageItem类public class PackageItem{public var name:String;public var weight:int;public var value:int;public function PackageItem(name:String,weight:int,value:int){ = name;this.weight = weight;this.value = value;}}测试代码varnameArr:Array=['a','b','c','d','e'];var weightArr:Array=[2,2,6,5,4];var valueArr:Array=[6,3,5,4,6];var bagItems:Array=[];for(vari:int=0;i<nameArr.length;i++){var bagItem:PackageItem = new PackageItem(nameArr[i],weightArr[i],valueArr[i]);bagItems[i]=bagItem;}var arr:Array = ac.get01PackageAnswer(bagItems,10);。

leetcode 背包总结

leetcode 背包总结

leetcode 背包总结"背包问题"是计算机科学中常见的一类问题,主要涉及到如何有效地在给定容量的背包中装入最大价值的物品。

这类问题通常可以使用动态规划(Dynamic Programming)的方法来解决。

以下是我在 LeetCode 平台上遇到的一些背包问题的总结:1. 01背包问题:这是一个经典的背包问题,给定一个物品列表和一个容量,目标是选择一些物品放入背包中,使得背包中的物品总价值最大。

每个物品只有一个,可以选择放入背包或者不放入。

可以使用动态规划来解决。

2. 完全背包问题:与01背包问题相似,但每个物品可以放入多个。

目标是在不超过背包容量的情况下,选择一些物品放入背包中,使得背包中的物品总价值最大。

也可以使用动态规划来解决。

3. 多重背包问题:与完全背包问题相似,但每个物品可以放入多个,且每个物品有不同的重量和价值。

目标是在不超过背包容量的情况下,选择一些物品放入背包中,使得背包中的物品总价值最大。

可以使用动态规划来解决。

4. 带有优先级的背包问题:在标准的背包问题中,所有的物品都有相同的优先级。

但在某些情况下,一些物品可能比其他物品更重要,需要优先考虑。

这个问题需要考虑物品的优先级和价值,选择重要的物品放入背包中,使得总价值最大。

5. 分组背包问题:这个问题是将一组物品分组,然后每组物品共享相同的重量。

目标是选择一些组,使得这些组的总价值最大,同时不超过背包的容量。

可以使用动态规划来解决。

解决这类问题的关键是理解问题的本质和限制条件,然后选择合适的算法和数据结构来解决问题。

动态规划是解决这类问题的常用方法,因为它可以有效地处理重叠子问题和最优子结构的问题。

背包问题解题方法总结

背包问题解题方法总结

背包问题解题⽅法总结最近在⽜客刷题遇到好⼏道背包问题,索性这两天集中⽕⼒刷了⼀些这类的题。

这⾥总结⼀下0-1背包、完全背包和多重背包三种基本的背包问题的解题套路。

(均基于动态规划的思想)0-1背包题⽬:有 N 件物品和容量为 W 的背包。

第 i 件物品的重量为 w_i,价值为 v_i,求将不超过背包容量的物品装⼊背包能得到的最⼤价值。

特点,每件物品的数量只有⼀个,可以选择放或不放某件物品。

⽤dp[i][j]表⽰将前 i+1 件总重量不超过 j 的物品放⼊背包能获得的最⼤价值,则可以⽤以下的转移⽅程来表⽰这个过程:\[dp[i,j] = max(dp[i - 1, j], dp[i-1, j-w[i]] + v[i]) \]注意到dp数组第i⾏的值更新只跟 i-1 ⾏有关,因此可以通过滚动数组或者反向更新的⽅式优化⼀下空间复杂度,在动态规划解题的时候这是⼀种常⽤的空间复杂度优化⽅式。

优化后的代码如下:for(int i = 0; i < N; i++){// 注意到这⾥dp需要从后往前更新,避免更新前就把旧值覆盖// 从实际意义上来说,因为每件物品只有⼀个,从后向前更新保证了更新是在还没放⼊过当前物品的前提下进⾏的for(int j = W; j >= w[i]; j--){dp[j] = Math.max(dp[j], dp[j - w[i]] + v[i]);}}完全背包题⽬:有 N 种物品和容量为 W 的背包。

第 i 种物品的重量为 w_i,价值为 v_i,每种物品的数量⽆限。

求将不超过背包容量的物品装⼊背包能得到的最⼤价值。

特点:每种物品的数量⽆限多。

考虑到每种物品的数量⽆限。

⽤dp[j]表⽰在重量不超过 j 的情况下背包中物品可以达到的最⼤价值,则转移⽅程如下:\[dp[j]=max(dp[j], dp[j-w[i]]+v[i]) \]核⼼代码如下:for(int i = 0; i < N; i++){for(int j = w[i]; j <= W; j++){ // 这⾥和0-1背包不同dp[j] = Math.max(dp[j], dp[j - w[i]] + v[i]);}}注意内层for循环是从前向后更新dp数组的,这是唯⼀和上⾯的0-1背包问题区别的地⽅。

背包问题

背包问题

(0-1)背包问题的解法小结1.动态规划法递推关系:– 考虑一个由前i 个物品(1≤i ≤n )定义的实例,物品的重量分别为w 1,…,w i ,价值分别为v 1,…,v i ,背包的承重量为j (1≤j ≤W )。

设V [I,j]为该实例的最优解的物品总价值– 分成两类子集:• 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V [i -1,j ]• 在包括第i 个物品的子集中(因此,j -w ≥0),最优子集是由该物品和前i -1个物品中能够放进承重量为i -w j 的背包的最优子集组成。

这种最忧子集的总价值等于v i +V [i -1,j -w i ].0]0,[时,0 当0;][0,时,0初始条件:当],1[}],1[],,1[max{],[=≥=≥<≥⎩⎨⎧-+---=i V i j V j w j w j j i V v w j i V j i V j i V i i i i以记忆功能为基础的算法:用自顶向下的方式对给定的问题求解,另外维护一个类似自底向上动态规划算法使用的表格。

一开始的时候,用一种“null”符号创始化表中所有的单元,用来表明它们还没有被计算过。

然后,一旦需要计算一个新的值,该方法先检查表中相应的单元:如果该单元不是“null ”,它就简单地从表中取值;否则,就使用递归调用进行计算,然后把返回的结果记录在表中。

算法 MFKnapsack(I,j)//对背包问题实现记忆功能方法//输入:一个非负整数i 指出先考虑的物品数量,一个非负整数j 指出了背包的承重量 //输出:前i 个物品的最伏可行子集的价值//注意:我们把输入数组Weights[1..n],Values[1..n]和表格V[0..n,0..W]作为全局变量,除了行0和列0用0初始化以外,V 的所有单元都用-1做初始化。

if V[I,j]<01if j<Weights[i]value ←MFKnapsack(i-1,j)elsevalue ←max(MFKnapsack(i-1),j), Value[i]+MFKnapsack(i-1,j-eights[i]))V[I,j]←valuereturn V[I,j]2.贪心算法1) 背包问题基本步骤:首先计算每种物品单位重量的价值Vi/Wi ,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。

贪心算法-01背包问题

贪心算法-01背包问题

贪⼼算法-01背包问题1、问题描述:给定n种物品和⼀背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问:应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最⼤.即⼀个特殊的整数规划问题。

2、最优性原理:设(y1,y2,…,yn)是 (3.4.1)的⼀个最优解.则(y2,…,yn)是下⾯相应⼦问题的⼀个最优解:证明:使⽤反证法。

若不然,设(z2,z3,…,zn)是上述⼦问题的⼀个最优解,⽽(y2,y3,…,yn)不是它的最优解。

显然有∑vizi > ∑viyi (i=2,…,n)且 w1y1+ ∑wizi<= c因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的⼀个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,⽭盾。

3、递推关系:设所给0-1背包问题的⼦问题的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。

由0-1背包问题的最优⼦结构性质,可以建⽴计算m(i,j)的递归式:注:(3.4.3)式此时背包容量为j,可选择物品为i。

此时在对xi作出决策之后,问题处于两种状态之⼀:(1)背包剩余容量是j,没产⽣任何效益;(2)剩余容量j-wi,效益值增长了vi ;使⽤递归C++代码如下:#include<iostream>using namespace std;const int N=3;const int W=50;int weights[N+1]={0,10,20,30};int values[N+1]={0,60,100,120};int V[N+1][W+1]={0};int knapsack(int i,int j){int value;if(V[i][j]<0){if(j<weights[i]){value=knapsack(i-1,j);}else{value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));}V[i][j]=value;}return V[i][j];}int main(){int i,j;for(i=1;i<=N;i++)for(j=1;j<=W;j++)V[i][j]=-1;cout<<knapsack(3,50)<<endl;cout<<endl;}不使⽤递归的C++代码:简单⼀点的修改//3d10-1 动态规划背包问题#include <iostream>using namespace std;const int N = 4;void Knapsack(int v[],int w[],int c,int n,int m[][10]);void Traceback(int m[][10],int w[],int c,int n,int x[]);int main(){int c=8;int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始int x[N+1];int m[10][10];cout<<"待装物品重量分别为:"<<endl;for(int i=1; i<=N; i++){cout<<w[i]<<" ";}cout<<endl;cout<<"待装物品价值分别为:"<<endl;for(int i=1; i<=N; i++){cout<<v[i]<<" ";}cout<<endl;Knapsack(v,w,c,N,m);cout<<"背包能装的最⼤价值为:"<<m[1][c]<<endl;Traceback(m,w,c,N,x);cout<<"背包装下的物品编号为:"<<endl;for(int i=1; i<=N; i++){if(x[i]==1){cout<<i<<" ";}}cout<<endl;return 0;}void Knapsack(int v[],int w[],int c,int n,int m[][10]){int jMax = min(w[n]-1,c);//背包剩余容量上限范围[0~w[n]-1] for(int j=0; j<=jMax;j++){m[n][j]=0;}for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]{m[n][j] = v[n];}for(int i=n-1; i>1; i--){jMax = min(w[i]-1,c);for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c{m[i][j] = m[i+1][j];//没产⽣任何效益}for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c{m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi }}m[1][c] = m[2][c];if(c>=w[1]){m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}}//x[]数组存储对应物品0-1向量,0不装⼊背包,1表⽰装⼊背包void Traceback(int m[][10],int w[],int c,int n,int x[]){for(int i=1; i<n; i++){if(m[i][c] == m[i+1][c]){x[i]=0;}else{x[i]=1;c-=w[i];}}x[n]=(m[n][c])?1:0;}运⾏结果:算法执⾏过程对m[][]填表及Traceback回溯过程如图所⽰:从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。

背包问题之零一背包

背包问题之零一背包

背包问题之零⼀背包注:参考⽂献《背包九讲》.零⼀背包问题⼀:题⽬描述 有 N 件物品和⼀个容量为 V 的背包.放⼊第 i 件物品耗⽤的费⽤为C i(即所占⽤背包的体积),得到的价值是 W i.求将哪些物品装⼊背包所得到的总价值最⼤.⼆:基本思路 01背包是最基础的背包问题,这道题的特点是每种物品仅有⼀件,可以选择放或不放,且不要求背包必须被放满,只要求最后的总价值最⼤. ⽤⼦问题定义状态:F[i][v] 表⽰对于前 i 件物品,当背包容量为 v 时所能得到的价值最⼤值.设想,将 "前 i 件物品放⼊容量为 v 的背包中" 这个⼦问题,若只考虑第 i 件物品的策略(要么放要么不放),那么就可以转化为⼀个之和前 i - 1 件物品相关的问题.如果不放第 i 件物品, 那么问题就转化为 ”前 i - 1 件物品放⼊容量为 v 的背包中“,价值就是 F[i - 1][v]; 如果放第 i 件物品,那么问题就转化为 ”前 i - 1 件物品放⼊剩下的容量为v - C i的背包中”, 此时获得的价值为 F[i - 1][v - C i] + W i。

特殊的,当 v < C i时,可以认为当前的容量是放不下第 i 件物品的,即此时相当于不放第 i 件物品的价值F[i - 1][v].分析到这⾥则可得状态转移⽅程为: F[i][v] = v < C i F[i - 1][v] : max( F[i - 1][v], F[i - 1][v - C i] + W i ).在这⾥要特别的说明⼀下,这个⽅程⾮常重要,⼀定要知道这是怎么推出来的,⼏乎后⾯的所有的背包问题都和这个⽅程有着密不可分的联系.伪代码如下:F[0...N][0...V] <--- 0for i <--- 1 to N for v <--- C i to V F[i][v] = v < C i F[i - 1][v] : max( F[i - 1][v], F[i - 1][v - C i] + W i );具体代码:1void _01Pack(int F[][MAXV], int N, int V, int C[], int W[]){2 memset(F, 0, sizeof(F));3for(int i = 1; i <= N; i++) {4for(int v = 0; v <= V; v++) {5 F[i][v] = v < C[i] ? F[i - 1][v] : max(F[i - 1][v], F[i - 1][v - C[i]] + W[i]); //放或者不放两者之中选择最优者6 }7 }8 }三:优化空间复杂度 可以清楚的看到上⾯算法的时间复杂度和空间复杂度均为 O(N * V), 这⾥时间复杂度已经不能得到优化,但是空间复杂度确可以优化到O(V). 先看上⾯代码是如何实现的.最外⾯⼀层循环,每次计算出⼆维数组 F[i][0...V] 的值,计算的时候 F[i][0...V] 是由它的上⼀层 F[i - 1][0...V] ⽽得到的.那么如果把这个数组换成⼀维的 F[v] 那么还能保留上⼀次的状态吗.答案是可以的.由于动态规划算法的⽆后效性,第 i + 1 件物品的选择与否不会影响到第 i 件物品(即它的前⼀件物品)的选择状态.那么可以在上⾯第⼆次循环中按照 v <--- V...0 递减的顺序来计算 F[v], 这样计算F[v] 时所需要的状态 F[v] 和 F[v - C i] + W i 仍然还是上⼀次的状态.⽽计算 F[v] 之后, v 的顺序是递减的, F[v] 不会影响到 F[v'] (v' < v), 因为F[v']只与 F[v'](上⼀次的值) 和 F[v - C i] 有关, ⽽ F[v] > F[v'] > F[v' - C i]. 所以⼜可得状态转移⽅程. F[v] = max( F[v], F[v - C i] + W i ).伪代码如下:F[0...V] <--- 0for i <--- 1 to N for v <--- V to C i F[v] = max( F[v], F[v - C i] + W i );具体代码:1void _01Pack(int F[], int N, int V, int C[], int W[]){2 memset(F, 0, sizeof(F));3for(int i = 1; i <= N; i++) {4for(int v = V; v >= C[i]; v--) {5 F[i][v] = max(F[v], F[v - C[i]] + W[i]);6 }7 }8 }可以看到从第⼀个状态转移⽅程到第⼆个状态转移⽅程的空间优化效率还是挺⼤的: F[i][v] = max( F[i - 1][v], F[i - 1][v - C i] + W i ). ----> F[v] = max( F[v], F[v - C i] + W i ).在第⼆个⽅程中 F[v]1 = max(F[v]2, F[v - C i] + W i), 其实 F[v]2 就相当与⽅程⼀中的 F[i - 1][v], 对应的 F[v - C i] + W i就相当于 F[i -1][v - C i] + W i.这⼀正确性是在内层循环递减的前提下才成⽴的.否则, 将内层循环改为递增, 那么 F[i][v] 其实是由 F[i][v] 和 F[i][v - C i] 推出来的,这不符合基本思路中的探讨.之前说过由于 01背包的特殊性,这⾥将 01背包抽象化,⽅便之后的调⽤.解决单个物品 01背包的伪代码:def ZeroOnePack (F, C, W) for v <--- V to C F[v] = max( F[v], F[v - C] + W );这么写之后, 01背包总问题解决的伪代码就可以改写成:F[0...V] <--- 0for i <--- 1 to N ZeroOnePack(F, C[i], W[i]);具体代码:1const int MAXN = 10000;2int N, V, C[MAXN], W[MAXN];34void ZeroOnePack(int F[], int C, int W) { // 对于单个物品的决策5for(int v = V; v >= C; v--) {6 F[v] = max(F[v], F[v- C] + W);7 }8 }910void solv(int F[]) {11 memset(F, 0, sizeof(F));12for(int i = 1; i <= V; i++) {13 ZeroOnePack(F, C[i], W[i]);14 }15 }四: 01背包问题的拓展 ------ 初始化的细节问题 在上述 01背包的问题中,仅问得是 “如何选取,才能使的最后的总价值最⼤”, 这⾥并没有规定是否必须装满背包, 但是有的题将会给予这个附加条件, 即“在要求恰好装满背包的前提下, 如何选取物品, 才能使的最后的总价值最⼤ ”. 这两种问法, 在代码实现上相差⽆⼏.如果是上述问法,要求 “恰好装满背包”, 那么在初始化时除了将 F[0] 赋值为 0 之外, 其他的 F[1...V] 都应该赋值为 -∞,这样就可以保证最后的得到的 F[V] 是⼀种恰好装满背包的最优解.如果没有要求必须把背包装满,⽽是只希望价值尽量最⼤,初始化时应该将F[0...V] 全部设置为 0. 之所以可以这么做,是因为初始化的 F[] 事实就是没有任何物品放⼊背包时的合法状态.如果要求背包恰好装满,那么只有容量为 0 的背包在什么也不装且价值为 0 的情况下被装 "恰好装满",其他容量的背包如果不装物品, 那么默认的情况下都是不合法状态,应该被赋值为 -∞, 即对于第⼀个物品⽽⾔, 其合法状态只能由 F[0] 转移得到.如果背包并⾮必须被装满,那么任何容量的背包在没有物品可装时都存在⼀个合法解,即什么都不装,且这个解的价值为 0.所以将其全部初始化为 0 是可以的. 注:这个技巧完全可以拓展到其他背包问题中.伪代码:def ZeroOnePack (F, C, W) for v <--- V to C F[v] = max( F[v], F[v - C] + W )end defdef slov() F[0] = 0, F[1...V] <--- -∞ for i <--- 1 to N ZeroOnePack(F, C[i], W[i])end def具体代码:1const int MAXN = 10000;2int N, V, C[MAXN], W[MAXN];34void ZeroOnePack(int F[], int C, int W) {5for(int v = V; v >= C; v--) {6 F[v] = max(F[v], F[v- C] + W);7 }8 }910void solv(int F[]) {11 F[0] = 0;12for(int i = 1; i <= V; i++) F[i] = INT_MIN; // 除F[0] = 0之外, 其他全部赋值为负⽆穷13for(int i = 1; i <= V; i++) {14 ZeroOnePack(F, C[i], W[i]);15 }16 }五:⼀个常数级别的优化上述伪代码的:for i <--- 1 to N for v <--- V to C i可以优化为:for i <--- 1 to N for v <--- V to max( V - SUM(i...N)C i, C i)。

背包算法知识点总结

背包算法知识点总结

背包算法知识点总结背包问题是一种典型的组合优化问题,在计算机科学和运筹学中具有广泛的应用。

它的核心思想是在给定一组物品和背包容量的条件下,如何选择物品以使得背包中物品的总价值最大化。

背包问题可以分为0-1背包问题、完全背包问题和多重背包问题等类型。

0-1背包问题是最基本的背包问题,其中每个物品只有一件,且只能选择放入或不放入背包。

解决0-1背包问题通常采用动态规划的方法。

动态规划算法通过构建一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。

通过状态转移方程dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]),其中w[i]和v[i]分别表示第i个物品的重量和价值,可以逐步填充dp数组,最终得到最优解。

完全背包问题与0-1背包问题的主要区别在于,完全背包问题中的物品可以无限选取。

这意味着对于每个物品,可以选择放入0个、1个、2个,甚至更多个。

解决完全背包问题同样可以采用动态规划的方法,但状态转移方程有所不同。

对于完全背包问题,dp[i][j] =max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]),其中如果j >= w[i],则需要考虑所有可能的选取数量。

多重背包问题是0-1背包问题和完全背包问题的结合,其中每种物品有限定的数量。

解决多重背包问题需要对每种物品的数量进行遍历,然后采用0-1背包问题的动态规划方法来求解。

除了动态规划,背包问题还可以通过贪心算法、回溯算法等方法求解。

贪心算法通过每次选择当前价值最大的物品来构建解,但这种方法并不总是能够得到最优解。

回溯算法则通过搜索所有可能的解空间来寻找最优解,但时间复杂度较高。

在实际应用中,背包问题可以用于资源分配、投资组合优化、货物装载等问题。

通过合理的算法设计和优化,可以有效地解决这些实际问题,提高资源的利用效率。

总结来说,背包问题是一类重要的组合优化问题,通过动态规划等算法可以有效求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档