蜂鸣器播放歌曲

蜂鸣器播放歌曲
蜂鸣器播放歌曲

整理者:左手流年丶右手命运

蜂鸣器播放歌曲

首先,大家要知道蜂鸣器按其结构可分为两种蜂鸣器:压电式、电磁式。关于其内部构造这里就不详细讨论!也许大家遇到过这样的事情:为什么周围人买的蜂鸣器只要给个合适的电压蜂鸣器就不停的叫,而我的却只叫一下,原因很简单!因为蜂鸣器按其是否带有信号源又分为有源跟无源两种类型!注意:有源蜂鸣器和无源蜂鸣器。有源蜂鸣器内部带振荡源,无源蜂鸣器内部不带振荡源。这里所说的“源”不是指“电源”,而是指“振荡源”。有源蜂鸣器直接接上额定电源就可连续发声;而无源的需要在其供电端上加上高低不断变化的电信号才可以驱动发出声音。这里举个简单的例子,对于无源的我们可以先让BUZZ=1接着延时一小段时间,在又关闭BUZZ(即BUZZ=0);这样才能听到连续变化的声音。

蜂鸣器的工作原理

蜂鸣器发声原理是电流通过电磁线圈,使电磁线圈产生磁场来驱动振动膜发声的,因此需要一定的电流才能驱动它,单片机IO引脚输出的电流较小,单片机输出的TTL电平基本上驱动不了蜂鸣器,因此需要增加一个电流放大的电路,一多半采取一个三极管来放大驱动蜂鸣器。蜂鸣器的正极接到Q1的集电极C 极上面,蜂鸣器的负极地,三极管发射极E极接电源VCC,基极B经过限流电阻R33后由单片机的P1.7引脚控制,当P1.7输出高电平时,三极管T1截止,没有电流流过线圈,蜂鸣器不发声;当P1.7输出低电平时,三极管导通,这样蜂鸣器的电流形成回路,发出声音。

因此,我们可以通过程序控制P1.7脚的电平来使蜂鸣器发出声音和关闭声音。程序中改变单片机P1.7引脚输出波形的频率,就可以调整控制蜂鸣器音调,产生各种不同音色音调的声音,另外改变P1.7输出电平的高低电平占空比则可以控制蜂鸣器的声音大小。

单片机如何输出频率,为了让单片机发出不同频率的声音,我们采用定时中断来计算延时时间,我们只需将定时器预置不同的定时值就可实现不同时间的定时。那么怎样确定一个频率所对应的定时器的定时值呢?以标准音高A为例:

A的频率f=440Hz,其对应的周期为:T=1/f=1/440=2272us

单片机如何输出频率

单片机控制蜂鸣器的波形图,通过对端口P17循环的置位、清零来达到输出固定频率波形,

相对于A音频率440Hz图T=2272us,那么t=T/2=2272/2=1136us所以,我们只要在程序中将P17置为高电平,延时1136us,再置为低电平,延时1136us,如此循环,就可以得到440Hz 频率的声音。这个延时,可以用定时器中断来做,假设单片机晶振频率为12MHz,以定时器工作方式1来做定时中断,可以得到定时器计数器初值为

TH = (65536 – 1136 ) /256 =0xFB

TL = (65536 – 1136 )%256 =0x90

音符频率及定时器初值对照表

单片机频率音频计算方法

从上图中可以看出,高、中、低音的音符频率存在倍频关系,比如1其低音频率是262Hz,中音频率是523Hz,中音是低的2倍频率,高音频率是1045Hz,高音又是中音的2倍频率,所以,我们可以根据其中的12个音符频率来推算出其它的音符频率。这种可推算的频率关系有利于我们在程序采用运算方法来确定音符的频率。

音乐基础知识

如果驱动无源蜂鸣器发出频率、持续时间不同的声音,就可以达到单片机控制演奏歌曲的目的。一般说来,单片机演奏音乐基本都是单音频率,因为单片机的IO端口,只能输出高电平或低电平,相当于方波信号,它虽然谐波很丰富,但不包含足够幅度的谐波频率,也就是说不能象电子琴那样能奏出多种音色的声音,这也就是为什么单片机演奏歌曲听起来声音单调的原因。因此单片机用于演奏歌曲,只需搞清楚两个概念即可,也就是“音调”和“节拍”。音调表示一个音符该唱的频率,节拍表示一个音符该唱多长的时间。

音乐中的音调

在音乐中所谓“音调”,其实就是我们常说的“音高”,实质就是频率不同的声音。音乐中以ABCDEFG来表示音高,A音定为标准音高,其频率f=440Hz。当两个声音信号的频率相差一倍时,也即f2=2f1时,则称f2比f1高一个倍频程, 在音乐中1(do)与,2(来)与……正好相差一个倍频程,在音乐学中称它相差一个八度音。在一个八度音内,有12个半音。音乐中的音调

以1—i八音区为例,12个半音是:1—#1、#1—2、2—#2、#2—3、3—4、4—#4,#4—5、5一#5、#5—6、6—#6、#6—7、7—i。这12个音阶的分度基本上是以对数关系来划分的。如果我们只要知道了这十二个音符的音高,也就是其基本音调的频率,我们就可根据倍频程的关系得到其他音符基本音调的频率。

音乐基础

所谓1=A,就是说,这首歌曲的“导”要唱得同A一样高,人们也把这首歌曲叫做A调歌曲,或叫“唱A调”。1=C,就是说,这首歌曲的“导”要唱得同C一样高,或者说“这歌曲唱C调”。同样是“导”,不同的调唱起来的高低是不一样的。

音乐基础

音调的确定,我们在前面已经详细讲解过,这里就不再重复。对于一个音符,确定了它的发音频率后,就要确定这个音符发音要发多长时间,也就是节拍,在一张乐谱中,我们经常会看到这样的表达式,如1=C 、1=G……等等,这里1=C、1=G表示乐谱的曲调,和我们前面所谈的音调有很大的关联,、就是用来表示节拍的。以为例加以说明,它表示乐谱中以四分音符为节拍,每一小结有三拍。

音乐基础

其中1 、2 为一拍,3、4、5为一拍,6为一拍共三拍。1 、2的时长为四分音符的一半,即为八分音符长,3、4的时长为八分音符的一半,即为十六分音符长,5的时长为四分音符的一半,即为八分音符长,6的时长为四分音符长。那么一拍到底该唱多长呢?一般说来,如果乐曲没有特殊说明,一拍的时长大约为400~500ms 。我们以一拍的时长为400ms为例,则当以四分音符为节拍时,四分音符的时长就为400ms,八分音符的时长就为200ms,十六分音符的时长就为100ms。

连音,顿音,符点

音乐中较为常见的还有连音、顿音、符点等,连音就是乐谱上用连线连起来的音,它是用连线来标记的,表示连线内不同音高的音要奏的连贯,即中间不需要停顿。顿音是用三角符标记在音符的上面,在演奏或表演上要表现得短促而又轻巧有弹性。符点就是记在音符右边的小圆点,表示增加前面音符时值的一半,带符点的音符叫符点音符。音符演奏长度控制实现在单片机上控制一个音符唱多长可采用循环延时的方法来实现。首先,我们确定一个基本时长的延时程序,为了使这个时间更精确,使用定时器来实现,设定定时器为10ms中断一次,那么,我们需要多少延长时间就延时多少次中断。比如说十六分音符的时长为100ms,八分音符的时长就为200ms,那么,对于一个音符,如果它为十六分音符,则只需产生10次中断,延时时间就刚好是100ms,如果它为八分音符,则只需产生20次中断,依次类推。

音频数据保存格式

在编写程序中,定义数组用于存放乐曲的信息,用2个字节来表示,第1个存储音调信息,第2个存储音长信息,而以两个字节均为0表示乐曲信息数组的结尾。其格式如下:uchar code MusicName{音调,音长,音调,音长...., 0,0};

音调存储结构

音长数据结构

单片机演奏步骤(1)

1.根据歌曲的演奏调号和演奏音区生成新的频率表。因为不同的演奏调号,意味着最低的频率不一定是从A起,像(生日快乐)就是F调起。升F调:1=#F,也就是降G调:1=BG;369HZ演奏音区代表是(降调)(平调)(升调)演奏。这些参数都影响音调的频率,所以需要这二个参数来生成新的频率表。

单片机演奏步骤2

2.计算歌曲长度。计算出歌曲的长度,方便判断出歌曲是否播放完毕。这个部分可以用一个while循环来做判断。

单片机演奏步骤3

3.取出音乐数组数据,并根据新的频率表,计算出新的频率参数,并送到定时器中。

百位:0 不升,1 升半音

十位:1低音,2中音,3高音

个位:1-7代表这七个音符

定时器值=65536 - (1000000/频率/2)

单片机演奏步骤4

4.读出音乐数组数据,设置1分音的时长,再根据音乐数组数据,计算出连音,顿音,符号等数据。如果当前音符小于16分音,则发连音时需要间隔。间隔时间=原时间的4/5。

单片机演奏步骤5

5.读取演奏的时长数据,并读取不演奏时长数据。同时打开蜂鸣器。演奏完指向下一数据,并一直演奏完。

流程图

注意:一定先要把流程图统统看一遍,由于编译器的问题,不能把流程图合成一部。

蜂鸣器唱两只老虎单片机程序

#include<> //包含52单片机寄存器定义的头文件 sbit sound=P3^7; //将sound位定义为 unsigned int C; //储存定时器的定时常数 //以下是C调中音的音频宏定义 #define dao 523 //将"dao"宏定义为中音"1"的频率523Hz #define re 587 //将"re"宏定义为中音"2"的频率587Hz #define mi 659 //将"mi"宏定义为中音"3"的频率659Hz #define fa 698 //将"fa"宏定义为中音"4"的频率698Hz #define sao 784 //将"sao"宏定义为中音"5"的频率784Hz #define la 880 //将"la"宏定义为中音"6"的频率880Hz #define xi 987 //将"xi"宏定义为中音"7"的频率523Hz /******************************************* 函数功能:1个延时单位,延时200ms ******************************************/ void delay() { unsigned char i,j; for(i=0;i<250;i++) for(j=0;j<250;j++) ; } /******************************************* 函数功能:主函数 ******************************************/ void main(void) { unsigned char i,j; //以下是《两只老虎》歌曲 unsigned int code f[]={dao,re,mi,dao, //每行对应一小节音符 dao,re,mi,dao, mi,fa,sao, mi,fa,sao, sao,la,sao,fa,mi,dao, sao,la,sao,fa,mi,dao, dao,sao,dao, dao,sao,dao, 0xff}; //以0xff作为音符的结束标志 //以下是简谱中每个音符的节拍 //"4"对应4个延时单位,"2"对应2个延时单位,"1"对应1个延时单位unsigned char code JP[ ]={2,2,2,2, 2,2,2,2, 2,2,3, 2,2,3,

蜂鸣器歌唱原理以及代码

3.3 蜂鸣器播放歌曲原理 一般说来,单片机演奏音乐基本都是单音频率,它不包含相应幅度的谐波频率。因此单片机奏乐只需弄清楚两个概念即可,也就是“音调”和“节拍”。音调表示一个音符唱多高的频率,节拍表示一个音符唱多长的时间。 1)音调的确定 音调就是我们常说的音高。它是由频率来确定的!我们可以查出各个音符所对应的相应的频率,那么现在就需要我们来用51来发出相应频率的声音!我们常采用的方法就是通过单片机的定时器定时中断,将单片机上对应蜂鸣器的I/O口来回取反,或者说来回清零,置位,从而让蜂鸣器发出声音,为了让单片机发出不同频率的声音,我们只需将定时器予置不同的定时值就可实现。 2)节拍的确定 一般说来,如果乐曲没有特殊说明,一拍的时长大约为400—500ms 。 3.3 蜂鸣器播放歌曲程序 #include sbit speaker = P1^5; //定义蜂鸣器端口 unsigned char timer0h, timer0l, time; //-------------------------------------- //单片机晶振采用11.0592MHz

// 频率-半周期数据表高八位本软件共保存了四个八度的28个频率数据code unsigned char FREQH[] = { 0xF2, 0xF3, 0xF5, 0xF5, 0xF6, 0xF7, 0xF8, //低音1234567 0xF9, 0xF9, 0xFA, 0xFA, 0xFB, 0xFB, 0xFC, 0xFC,//1,2,3,4,5,6,7,i 0xFC, 0xFD, 0xFD, 0xFD, 0xFD, 0xFE, //高音 234567 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFF}; //超高音 1234567 // 频率-半周期数据表低八位 code unsigned char FREQL[] = { 0x42, 0xC1, 0x17, 0xB6, 0xD0, 0xD1, 0xB6, //低音1234567 0x21, 0xE1, 0x8C, 0xD8, 0x68, 0xE9, 0x5B, 0x8F, //1,2,3,4,5,6,7,i 0xEE, 0x44, 0x6B, 0xB4, 0xF4, 0x2D, //高音 234567 0x47, 0x77, 0xA2, 0xB6, 0xDA, 0xFA, 0x16}; //超高音 1234567 //-------------------------------------- //世上只有妈妈好数据表要想演奏不同的乐曲, 只需要修改这个数据表 code unsigned char sszymmh[] = { 6, 2, 3, 5, 2, 1, 3, 2, 2, 5, 2, 2, 1, 3, 2, 6, 2, 1, 5, 2, 1, //一个音符有三个数字。前为第几个音、中为第几个八度、后为时长(以半拍为单位)。 //6, 2, 3 分别代表:啦, 中音, 3个半拍; //5, 2, 1 分别代表:嗦, 中音, 1个半拍; //3, 2, 2 分别代表:咪, 中音, 2个半拍; //5, 2, 2 分别代表:嗦, 中音, 2个半拍; //1, 3, 2 分别代表:哆, 高音, 2个半拍; 6, 2, 4, 3, 2, 2, 5, 2, 1, 6, 2, 1, 5, 2, 2, 3, 2, 2, 1, 2, 1, 6, 1, 1, 5, 2, 1, 3, 2, 1, 2, 2, 4, 2, 2, 3, 3, 2, 1, 5, 2, 2, 5, 2, 1, 6, 2, 1, 3, 2, 2, 2, 2, 2, 1, 2, 4, 5, 2, 3, 3, 2, 1, 2, 2, 1, 1, 2, 1, 6, 1, 1, 1, 2, 1, 5, 1, 6, 0, 0, 0}; //-------------------------------------- void t0int() interrupt 1 //T0中断程序,控制发音的音调 { TR0 = 0; //先关闭T0 speaker = !speaker; //输出方波, 发音 TH0 = timer0h; //下次的中断时间, 这个时间, 控制音调高低 TL0 = timer0l; TR0 = 1; //启动T0 } //-------------------------------------- void delay(unsigned char t) //延时程序,控制发音的时间长度 { unsigned char t1; unsigned long t2;

单片机蜂鸣器播放音乐

#include #define uchar unsigned char #define uint unsigned int sbit speaker = P1^7; uint j; uchar m=1; uchar flag; uchar line; uchar code * data song; // 休止符低6 低7 中1 中2 中3 中4 中5 中 6 中7 高 1 低 3 低 5 低 4 高3 uchar code yin[30]={0xFF,0xFF,0xFB,0x90,0xFC,0x0C,0xFC,0x44,0xFC,0xAC,0xFD,0x09,0xFD,0x34,0xF D,0x82,0xFD,0xC8,0xFE,0x06,0xFE,0x22,0xFA,0X15,0XFB,0x04,0xFA,0x67,0xFE,0x85}; uchar code song1[97]={0x34,0x32,0x32,0x34,0x42,0x51, //<<干杯,朋友>> 0x62,0x52,0x42,0x32,0x34,0x04, 0x74,0x74,0x62,0x62,0x64, 0x3c,0x04, 0x64,0x62,0x52,0x42,0x32,0x34, 0x33,0x31,0x32,0x72,0x76,0x72, 0x83,0x81,0x82,0x82,0x82,0x74,0x72, 0x7c,0x04, 0x63,0x61,0x62,0x62,0x64,0x72,0x82, 0x72,0x74,0x72,0x62,0x52,0x42,0x32, 0x42,0x44,0x42,0x42,0x52,0x62,0x52, 0x5c,0x04, 0x64,0x62,0x62,0x64,0x72,0x82, 0x72,0x74,0x72,0x62,0x52,0x42,0x32, 0x42,0x46,0x53,0x41,0x42,0x32, 0x3c,0x04, 0x44,0x48,0x02,0x32, 0x3f, 0x44,0x48,0x02,0x32, 0x3f, 0x34,0x0c, 0xFF}; uchar code song2[46]={0x12,0x52,0x52,0x52,0x56,0x42, //<<兰花草>>

蜂鸣器工作原理介绍及并联电阻原理

蜂鸣器工作原理介绍及并联电阻原理 目前市场上广泛使用的蜂鸣器有电磁式与压电式,我司使用的蜂鸣器以压电式为主。 压电式蜂鸣器主要由多谐振荡器,压电蜂鸣片(以压电陶瓷为主,如下图所示),阻抗匹配器及共鸣箱,外壳等组成。其主要原理是以压电陶瓷的压电效应,来带动金属片的震动而发声。 压电陶瓷其实是一能够将机械能和电能互相转换的功能陶瓷材料。 所谓压电效应是指某些介质在受到机械压力时,哪怕这种压力微小得像声波振动那样小,都会产生压缩或伸长等形状变化,引起介质表面带电,便会产生电位差,这是正压电效应。反之,施加激励电场或电压,介质将产生机械变形,产生机械应力,称逆压电效应。如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能。压电式蜂鸣器就是运用其将电能转换问机械能的逆压电效应。 压电蜂鸣器的主要应用电路如下图所示,R为阻抗匹配电阻。 当脉冲信号为高电平时,通过三级管导通,则在蜂鸣器两端形成一个VDC的电压,使压电陶瓷产生形变。当脉冲信号为低电平时,通过三极管关断。此时压电陶瓷形变复原,则在其两端产生一个由机械能转换为电能的电压,此时的电压需要通过阻抗匹配电阻进行释放,从而可使蜂鸣器产生一个稳定频率的声音信号。如下图所示,幅值与VDC相等,频率与芯片控制端口频率相等。 压电蜂鸣片

蜂鸣器端口信号主控芯片端口信号 R=1K时蜂鸣器两端信号

蜂鸣器两端,以及当R=1K时,其等效电容的放电时间为46us 蜂鸣器两端,以及当R=100Ω时,其等效电容的放电时间为6.8us

51单片机蜂鸣器播放音乐代码

/*生日快乐歌曲*/ #include <> #define uint unsigned int #define uchar unsigned char sbit beep = P1^5; uchar code SONG_TONE[]={212,212,190,212,159,169,212,212,190,212,142,159, 212,212,106,126,159,169,190,119,119,126,159,142,159,0}; uchar code SONG_LONG[]={9,3,12,12,12,24,9,3,12,12,12,24, 9,3,12,12,12,12,12,9,3,12,12,12,24,0}; //延时 void DelayMS(uint x) { uchar t; while(x--) for(t=0;t<120;t++); } void PlayMusic() { uint i=0,j,k; while(SONG_LONG[i]!=0||SONG_TONE[i]!=0) { //播放各个音符,SONG_LONG 为拍子长度 for(j=0;j // 这是单片机音乐代码生成器生成的代码 #define uchar unsigned char sbit beepIO=P1^5; // 输出为可以修改成其它 IO 口uchar m,n;

单片机课程设计报告(利用蜂鸣器播放音乐)

课程设计:电子设计 题目名称:音乐流水灯 姓名:戴锦超 学号:08123447 班级:信科12-3班 完成时间:2014年10月23日

1设计的任务 设计内容:动手焊接一个51单片机 设计目标:利用单片机上的蜂鸣器以及二极管实现音乐播放以及根据音乐的节奏而规律性闪亮的二极管。并且通过程序调节音乐节奏的快慢。 2 设计的过程 2.1 基本结构 1.STC89C52RC 在本次的试验中采用了STC89C52RC单片机,STC89C52RC单片机是宏晶科技推出的新一代高速/低功耗/超强抗干扰的单片机,指令代码完全兼容传统8051单片机,12时钟/机器周期,工作电压:5.5V~3.3V(5V单片机)/3.8V~2.0V(3V单片机),工作频率范围:0~40MHz,相当于普通8051的0~80MHz,实际工作频率可达48MHz,用户应用程序空间为8K字节。

(STC89C52RC引脚图) STC89C52RC单片机的工作模式: (1)典型功耗<0.1μA,可由外部中断唤醒,中断返回后,继续执行原程序 (2)空闲模式:典型功耗2mA (3)正常工作模式:典型功耗4Ma~7mA (4)唤醒,适用于水表、气表等电池供电系统及便携设备 2.蜂鸣器及其工作原理: 蜂鸣器按其结构分主要分为压电式蜂鸣器和电磁式蜂鸣器两种类型。电磁式蜂鸣器由振荡器、电磁线圈、磁铁、振动膜片及外壳等组成。接通电源后,振荡器产生的音频信号电流通过电磁线圈,使电磁线圈产生磁场,振动膜片在电磁线圈和磁铁的相互作用下,周期性地振动发声。本实验采用的是电磁式 蜂鸣器。

蜂鸣器按其是否带有信号源又分为有源和无源两种类型。 有源蜂鸣器只需要在其供电端加上额定直流电压,其内部的震荡器就可以产生固定频率的信号,驱动蜂鸣器发出声音。无源 蜂鸣器可以理解成与喇叭一样,需要在其供电端上加上高低不断变化的电信号才可以驱动发出声音。本实验采用的是有源蜂鸣器。 (蜂鸣器与单片机连接电路图) 2.2 软件设计过程 1.蜂鸣器发声原理 本实验由于采用有源蜂鸣器,只需将引脚端口P1^4清

蜂鸣器的介绍

蜂鸣器的介绍 推荐 一)蜂鸣器的介绍 1.蜂鸣器的作用蜂鸣器是一种一体化结构的电子讯响器,采用直流电压供电,广泛应用于计算机、打印机、复印机、报警器、电子玩具、汽车电子设备、电话机、定时器等电子产品中作发声器件。 2.蜂鸣器的分类蜂鸣器主要分为压电式蜂鸣器和电磁式蜂鸣器两种类型。 3.蜂鸣器的电路图形符号蜂鸣器在电路中用字母“H”或“HA”(旧标准用“FM”、“LB”、“JD”等)表示。 (二)蜂鸣器的结构原理 1.压电式蜂鸣器压电式蜂鸣器主要由多谐振荡器、压电蜂鸣片、阻抗匹配器及共鸣箱、外壳等组成。有的压电式蜂鸣器外壳上还装有发光二极管。 多谐振荡器由晶体管或集成电路构成。当接通电源后(1.5~15V直流工作电压),多谐振荡器起振,输出1.5~2.5kHZ的音频信号,阻抗匹配器推动压电蜂鸣片发声。 压电蜂鸣片由锆钛酸铅或铌镁酸铅压电陶瓷材料制成。在陶瓷片的两面镀上银电极,经极化和老化处理后,再与黄铜片或不锈钢片粘在一起。 2.电磁式蜂鸣器电磁式蜂鸣器由振荡器、电磁线圈、磁铁、振动膜片及外壳等组成。 接通电源后,振荡器产生的音频信号电流通过电磁线圈,使电磁线圈产生磁场。振动膜片在电磁线圈和磁铁的相互作用下,周期性地振动发声。 一、常规电磁蜂鸣器产品是如何工作的? 无源电磁蜂鸣器工作原理是:交流信号通过绕在支架上的线包在支架的芯柱上产生一交变的磁通,交变的磁通和磁环恒定磁通进行叠加,使钼片以给定的交流信号频率振动并配合共振腔发声。产品的整个频率和声压的响应曲线与间隙值、钼片的固有振动频率(可粗略折射为小钼片的厚度)、外壳(亥姆霍兹共振声腔)频率、磁环的磁强漆包线的线径有直接关系。 二、常规电磁无源蜂鸣器产品由哪些材料组成? 三、常规压电蜂鸣器产品是如何工作的?

单片机 利用蜂鸣器演奏音乐

实验三-利用蜂鸣器演奏音乐 一、实验目的 1.了解BlueSkyC51单片机实验板中蜂鸣器的硬件电路 2.学会利用蜂鸣器实现音乐的演奏 3.掌握蜂鸣器实现音乐演奏的编程 二、实验硬件设计及电路 1. BlueSkyC51单片机实验板 ` 2.单片机最小系统

。 3.蜂鸣器电路连接 三极管主要是做驱动用的。因为单片机的IO口驱动能力不够让蜂鸣器发出声音,所以

我们通过三极管放大驱动电流,从而可以让蜂鸣器发出声音,你要是输出高电平,三极管导通,集电极电流通过蜂鸣器让蜂鸣器发出声音,当输出低电平时,三极管截止,没有电流流过蜂鸣器,所以就不会发出声音。 三、实验原理 1.音调及节拍 用一个口,输出方波,这个方波输入进蜂鸣器就会产生声音,通过控制方波的频率、时间,就能产生简单的音乐。一般说来,单片机演奏音乐基本都是单音频率,因此单片机奏乐只需控制音调和节拍。 (1)音调的确定 音调是由频率来确定的。通过单片机的定时器定时中断,将单片机上对应蜂鸣器的I/O 口来回取反,从而让蜂鸣器发出不同频率的声音。只需将定时器给以不同的定时值就可实现。通过延时,即可发出所需要的频率。 … (2)节拍的确定 一拍的时长大约为400—500ms,每个音符的时长通过节拍来计算。详细见程序代码。 2.软件设计相关 (1)头文件 #include<> #define uint unsigned int #define uchar unsigned char #define ulong unsigned long sbit beep=P1^4; 译实验相关问题 ; (1)实际发音颤音重 解决方法为修改蜂鸣器的驱动频率. (2)实际节奏过快或者过慢 调整延时 四、C51程序代码(部分来源于网络) #include<> #define uint unsigned int #define uchar unsigned char #define ulong unsigned long ~ sbit beep=P1^4; //蜂鸣器与口连接 uchar th0_f; //中断装载T0高8位 uchar tl0_f; //T0低8位 uchar code freq[36*2]={ //音阶码表 0xf7,0xd8, //440hz , 1 //0 0xf8,0x50, //466hz , 1# //1

蜂鸣器电路及其原理

蜂鸣器电路及其原理 蜂鸣器是一种一体化结构的电子讯响器,在电路中用字母“H”或“HA”(旧标准用“FM”、“LB”、“JD”等)表示。蜂鸣器采用直流电压供电,其能发出单调的或者某个固定频率的声音,如嘀嘀嘀,嘟嘟嘟等。蜂鸣器主要分为压电式蜂鸣器和电磁式蜂鸣器两种类型,通常在计算机、打印机、复印机、报警器、电子玩具、汽车电子设备、电话机、定时器等电子产品中作发声器件使用。下面为大家介绍的是蜂鸣器的工作原理。 蜂鸣器的工作原理 电路原理图使用SH69P43 为控制芯片,使用4MHz 晶振作为主振荡器。 PORTC.3/T0 作为I/O 口通过三极管Q2 来驱动蜂鸣器LS1,而PORTC.2/PWM0 则作为PWM 输出口通过三极管Q1 来驱动蜂鸣器LS2。另外在PORTA.3 和PORTA.2 分别接了两个按键,一个是PWM 按键,是用来控制PWM 输出口驱动蜂鸣器使用的;另一个是PORT 按键,是用来控制I/O 口驱动蜂鸣器使用的。连接按键的I/O口开内部上拉电阻。

先分析一下蜂鸣器。所使用的蜂鸣器的工作频率是2000Hz,也就是说蜂鸣器的驱动信号波形周期是500μs,由于是1/2duty 的信号,所以一个周期内 的高电平和低电平的时间宽度都为250μs。软件设计上,将根据两种驱动方式来进行说明。 a)蜂鸣器工作原理:PWM 输出口直接驱动蜂鸣器方式 由于PWM 只控制固定频率的蜂鸣器,所以可以在程序的系统初始化时就对PWM 的输出波形进行设置。 首先根据SH69P43 的PWM 输出的周期宽度是10 位数据来选择PWM 时钟。系统使用4MHz 的晶振作为主振荡器,一个tosc 的时间就是0.25μs,若是将PWM 的时钟设置为tosc 的话,则蜂鸣器要求的波形周期500μs 的计数值为

Arduino控制蜂鸣器播放音乐设计说明书

目录 一、新媒体装置艺术 1、作品原理介绍 (1) 2、作品设计的意义 (1) 3、作品的主要内容 (1) 4、制作方法和流程 (1) 5、成果 (9) 6、价值和影响 (9) 7、创新点 (10) 二、结论 8、技术方面 (10) 9、艺术方面 (10) 10、不足及展望 (11) 11、谢辞 (11)

设计说明书 一、作品原理介绍: 能感应到物体靠近并且低于50CM时,蜂鸣器发出音乐,并且小灯泡随着音乐节奏变化。 二、作品设计意义: 将它应用到图书馆或者购物的地方,当人们靠近的时间能只能朗读出这一栏或者这一块区域有什么东西,能够更加让人们更快速的找到自己需要的东西,很大程度上节约的时间!也可以应用到车上,当开车的人快要和前面或者后面的物体撞上的时候,会发出声音来提醒你,从而给生命和财产加上保护套。 三、作品主要内容: 1、Arduino控制蜂鸣器播放音乐、小灯泡。 2、小灯泡跟随蜂鸣器的音乐节奏变化。 3、当物体离超声波低于50CM时发出指令,控制蜂鸣器、 小灯泡。 四、制作方法和流程: adruinouno一块(其他Arduino板子也可,注意引脚就行),面保线若干条,蜂鸣器或小喇叭一个。 原理: 首先讲下简单的乐理知识,知道音乐是怎么演奏出来的自然就可以通过代码来进行编排了。

1.演奏单音符的原理 一首音乐由若干音符组成,每一个音符唯一对应一个频率。如果我们知道了音符相对应的频率,再让 Arduino 按照这个频率输出到蜂鸣器或喇叭,蜂鸣器或喇叭就会发出相应频率下的声音。 Arduino官方网站给出了不同音符对应的不同频率的头文件,具体请见下文介绍。 2.音符演奏的持续时间 每个音符都会播放一定的时间,这样才能构成一首优美的曲子,而不是每个音符都播放一样长的时间。如何确定每个音符演奏的单位时间呢?我们知道,音符节奏分为1拍、1/2拍、1/4拍、1/8拍等等,我们规定一拍音符的时间为1;半拍为0.5;1/4拍为0.25;1/8拍为0.125……,所以我们可以为每个音符赋予这样的拍子播放出来,音乐就成了。 制作过程:所需硬件:Arduino板子一块,小型扬声器/蜂鸣器一个,导线两根。如果扬声器声音太大,也可适当配置220欧姆电阻一个与扬声器串联。 我们将扬声器一端串联电阻后接到数字6接口,另一端接地(GND)。数字接口可以自己选择,只是在代码中要对应修改一下。 函数的参数说明: pin: 你要接扬声器的接口,是整数(int 型) frequency:频率,是一个整数(int 型) duration: 音符持续的时间,是毫秒值,无符号长整型

单片机课程设计报告利用蜂鸣器播放音乐

课程设计:嵌入式系统应用 题目名称:利用蜂鸣器实现音乐播放功能 姓名: 学号: 班级: 完成时间:

1设计的任务 设计内容:动手焊接一个51单片机 设计目标:利用单片机上的蜂鸣器实现音乐播放功能 2 设计的过程 2.1 基本结构 1.STC89C52RC 在本次的试验中采用了STC89C52RC单片机,STC89C52RC单片机是宏晶科技推出的新一代高速/低功耗/超强抗干扰的单片机,指令代码完全兼容传统8051单片机,12时钟/机器周期,工作电压:5.5V~3.3V(5V单片机)/3.8V~ 2.0V(3V单片机),工作频率范围:0~40MHz,相当于普通8051的0~80MHz, 实际工作频率可达48MHz,用户应用程序空间为8K字节。 (STC89C52RC引脚图) STC89C52RC单片机的工作模式: (1)典型功耗<0.1μA,可由外部中断唤醒,中断返回后,继续执行原程序(2)空闲模式:典型功耗2mA (3)正常工作模式:典型功耗4Ma~7mA (4)唤醒,适用于水表、气表等电池供电系统及便携设备 2.蜂鸣器及其工作原理: 蜂鸣器按其结构分主要分为压电式蜂鸣器和电磁式蜂鸣器两种类型。电磁式蜂鸣器由振荡器、电磁线圈、磁铁、振动膜片及外壳等组成。 接通电源后,振荡器产生的音频信号电流通过电磁线圈,使电磁线圈产 生磁场,振动膜片在电磁线圈和磁铁的相互作用下,周期性地振动发声。

本实验采用的是电磁式蜂鸣器。 蜂鸣器按其是否带有信号源又分为有源和无源两种类型。有源蜂鸣器只需要在其供电端加上额定直流电压,其内部的震荡器就可以产生固 定频率的信号,驱动蜂鸣器发出声音。无源蜂鸣器可以理解成与喇叭一 样,需要在其供电端上加上高低不断变化的电信号才可以驱动发出声音。 本实验采用的是有源蜂鸣器。 (蜂鸣器与单片机连接电路图) 2.2 软件设计过程 1.蜂鸣器发声原理 本实验由于采用有源蜂鸣器,只需将引脚端口P3^4清零,蜂鸣器即可发声;P3^4置位,蜂鸣器停止发声。采用置1置0的方法只 能使蜂鸣器发声或停止发声,想要使蜂鸣器发出声音,必须对蜂鸣 器发出声音的音频和节拍进行控制。 (音乐基础 音调: 不同音高的乐音是用C、D、E、F、G、A、B来表示,这7个字母就是音乐的音名,它们一般依次唱成DO、RE、MI、FA、SO、LA、SI,即唱

单片机控制蜂鸣器唱歌的原理

单片机控制蜂鸣器唱歌 的原理 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

一般说来,单片机演奏音乐基本都是单音频率,它不包含相应幅度的谐波频率,也就是说不能象电子琴那样能奏出多种音色的声音。因此单片机奏乐只需弄清楚两个概念即可,也就是“音调”和“节拍”。音调表示一个音符唱多高的频率,节拍表示一个音符唱多长的时间。1)音调的确定 音调就是我们常说的音高。它是由频率来确定的!我们可以查出各个音符所对应的相 应的频率,那么现在就需要我们来用51来发出相应频率的声音! 我们常采用的方法就是通过单片机的定时器定时中断,将单片机上对应蜂鸣器的I/O口来回取反,或者说来回清零,置位,从而让蜂鸣器发出声音,为了让单片机发出不同频率的声音,我们只需将定时器予置不同的定时值就可实现。那么怎样确定一个频率所对应的定时器的定时值呢? 以标准音高A 为例: A 的频率f = 440 Hz, 其对应的周期为:T = 1/ f = 1/440 =2272μs 那么,单片机上对应蜂鸣器的I/O 口来回取反的时间应为: t = T/2 = 2272/2 = 1136 μs ,也就是清零、置位在一个周期内完成. 这个时间t 也就是单片机上定时器应有的中断触发时间。一般情况下,单片机奏乐时,其定时器为工作方式1,它以振荡器的十二分频信号为计数脉冲。设振荡器频率为f0 ,则定时器的予置初值由下式来确定: t = 12 * (TALL – THL)/ f0 式中TALL = 216= 65536,T HL为定时器待确定的计数初值。因此定时器的高低计数器的初值为: TH =THL/ 256 = ( TALL – t* f0/12) / 256

单片机蜂鸣器播放音乐

#include #define uchar unsigned char #define uint unsigned int sbit sp eaker = P1^7; uint j; uchar m=1; uchar flag; uchar line; uchar code * data song; // 中4 高3 中5 休止 符 低6 中7 低7 高1 中1 低3 中2 低5 中3 低4 uchar code yin[30]={0xFF,0xFF,0xFB,0x90,0xFC,0x0C,0xFC,0x44,0xFC,0xAC,0xFD,0x09,0xFD,0x34,0xF D,0x82,0xFD,0xC8,0xFE,0x06,0xFE,0x22,0xFA,0X15,0XFB,0x04,0xFA,0x67,0xFE,0x85}; uchar code song1[97]={0x34,0x32,0x32,0x34,0x42,0x51, 0x62,0x52,0x42,0x32,0x34,0x04, //<< 干杯,朋友>> 0x74,0x74,0x62,0x62,0x64, 0x3c,0x04, 0x64,0x62,0x52,0x42,0x32,0x34, 0x33,0x31,0x32,0x72,0x76,0x72, 0x83,0x81,0x82,0x82,0x82,0x74,0x72, 0x7c,0x04, 0x63,0x61,0x62,0x62,0x64,0x72,0x82, 0x72,0x74,0x72,0x62,0x52,0x42,0x32, 0x42,0x44,0x42,0x42,0x52,0x62,0x52, 0x5c,0x04, 0x64,0x62,0x62,0x64,0x72,0x82, 0x72,0x74,0x72,0x62,0x52,0x42,0x32, 0x42,0x46,0x53,0x41,0x42,0x32, 0x3c,0x04, 0x44,0x48,0x02,0x32, 0x3f, 0x44,0x48,0x02,0x32, 0x3f, 0x34,0x0c, 0xFF}; uchar code song2[46]={0x12,0x52,0x52,0x52,0x56,0x42, //<< 兰花草>>

单片机驱动蜂鸣器原理与程序学习资料

单片机驱动蜂鸣器原 理与程序

单片机驱动蜂鸣器原理与设计 作者:mcu110 来源:51hei 点击数:12159 更新时间:2007年08月01日【字体:大中小】 蜂鸣器是一种一体化结构的电子讯响器,本文介绍如何用单片机驱动蜂鸣器,他广泛应用于计算机、打印机、复印机、报警器、电话机等电子产品中作发声器件。 蜂鸣器主要分为压电式蜂鸣器和电磁式蜂鸣器两种类型。 电磁式蜂鸣器由振荡器、电磁线圈、磁铁、振动膜片及外壳等组成。接通电源后,振荡器产生的音频信号电流通过电磁线圈,使电磁线圈产生磁场,振动膜片在电磁线圈和磁铁的相互作用下,周期性地振动发声。 压电式蜂鸣器主要由多谐振荡器、压电蜂鸣片、阻抗匹配器及共鸣箱、外壳等组成。多谐振荡器由晶体管或集成电路构成,当接通电源后(1.5~15V直流工作电压),多谐振荡器起振,输出1.5~2.5kHZ的音频信号,阻抗匹配器推动压电蜂鸣片发声。 下面是电磁式蜂鸣器的外形图片及结构图。。。 电磁式蜂鸣器实物图:电磁式蜂鸣器结构示意图:

图 1 图 2 电磁式蜂鸣器内部构成: 1. 防水贴纸 2. 线轴 3. 线圈 4. 磁铁 5. 底座 6. 引脚 7. 外壳 8. 铁芯 9. 封胶 10. 小铁片 11. 振动膜 12. 电路板 一、电磁式蜂鸣器驱动原理 蜂鸣器发声原理是电流通过电磁线圈,使电磁线圈产生磁场来驱动振动膜发声的,因此需要一定的电流才能驱动它,单片机IO引脚输出的电流较小,单片机输出的TTL电平基本上驱动不了蜂鸣器,因此需要增加一个电流放大的电路。S51增强型单片机实验板通过一个三极管C8550来放大驱动蜂鸣器,原理图见下面图3: S51增强型单片机实验板蜂鸣器驱动原理图:

51单片机蜂鸣器播放单音节音乐

51单片机的唱歌实验 晶振:11.0592MHZ 程序: #include #define uchar unsigned char bit flag; //标志音乐输出脚电平的高低 uchar ptr = 0x00; //取音符 uchar high; //计数器高位 uchar low; //计数器低位 // 本曲谱为"新年好",前两个十六进制表示发声频率,后一个表示发声时间,0xFF,0xFF 表示休止符 // 0x00 表示结束 // 1 _ 1_ 1 .5 uchar code music[] = { 0xFC,0x44,0x7F, 0xFC,0x44,0x7F, 0xFC,0x44,0xFF, 0xFA,0x68,0xFF, // 3 _ 3_ 3 1 0xFD,0x23,0x7F, 0xFD,0x23,0x7F, 0xFD,0x23,0xFF, 0xFC,0x44,0xFF, // 1_ 3_ 5 5 0xFC,0x44,0x7F, 0xFD,0x23,0x7F, 0xFD,0x82,0xFF, 0xFD,0x82,0xFF, // 4_ 3_ 2 - 0xFD,0x23,0x7F, 0xFD,0x23,0x7F, 0xFC,0xAC,0xFF, 0xFF,0xFF,0xFF, // 2_ 3_ 4 4 0xFC,0xAC,0x7F, 0xFD,0x23,0x7F, 0xFD,0x34,0xFF, 0xFD,0x34,0xFF, // 3_ 2_ 3 1 0xFD,0x23,0x7F, 0xFC,0xAC,0x7F, 0xFD,0x23,0xFF, 0xFC,0x44,0xFF, // 1_ 3_ 2 .5 0xFC,0x44,0x7F, 0xFD,0x23,0x7F, 0xFC,0xAC,0xFF, 0xFA,0x68,0xFF, // .7_ 2_ 1 - 0xFC,0x0C,0x7F, 0xFC,0xAC,0x7F, 0xFC,0x44,0xFF, 0xFF,0xFF,0xFF, 0x00//结束 }; void Init(void); //初始化函数 void DelayMs(unsigned int time); //毫秒级延时函数 void main() { uchar time; Init(); TH0 = high; TL0 = low; while (1) {

蜂鸣器的驱动电路设计及原理分析.pdf

蜂鸣器的驱动电路设计及原理分析 蜂鸣器的驱动电路设计及原理分析 以下介绍的几种蜂鸣器驱动电路是针对单片机I/O口的驱动电路,适用于现行的压电式蜂鸣器。 压电式蜂鸣器主要由多谐振荡器、压电蜂鸣片、阻抗匹配器及共鸣箱、外壳等组成。 当接通电源后(1.5~15V直流工作电压),多谐振荡器起振,输出1.5~2.5kH Z的音频信号,阻抗匹配器推动压电蜂鸣片发声。 一、以一个9012驱动P1.0口方波 测试程序: 二、双端口驱动

电路原理图 工作原理简介 BUZ1、BUZ2两端口均接单片机的I/O口或单片机的蜂鸣器驱动口。 BUZ1端口为“高频口”(相对BUZ2而言),其脉冲电压频率一般为几KHz,具体频率依蜂鸣器需发出的音乐声来调整; BUZ2端口为“低频口”,其电压周期相对较长一些,一般为数十ms至数百ms。工作时,两端口输出电压脉冲驱动三极管Q2和Q3,当BUZ2端口出现高电平时, 三极管Q3导通, +12V电压经Q4三极管给蜂鸣器提供工作电压,同时为电容E7充电; BUZ2端口电平变低时,Q3和Q4三极管均截止,+12V电压被隔离,此时 已充满电的电容E7放电,为蜂鸣器工作提供能量。蜂鸣器的工作状态直接由三极管Q2决定,当BUZ1端口出现高电平时,三极管Q2导通,蜂鸣器工作,BUZ1 端口电平变低时,Q2三极管截止,蜂鸣器停止工作。蜂鸣器的通电频率与内部的谐振频率(固定)相互作用就产生我们所需的音乐声。

——本站文章均来自本公司工程师整理或用户来稿或网络,如果我们转载的文章中有涉及或侵犯您的相关权益,请即时与我们取得联系。邮件内容中请注明文章所在网址及文章标题,我们会即时处理或删除,感谢您的合作!

单片机控制蜂鸣器概要

单片机控制蜂鸣器20年月日

目录 绪论 (1) 1、硬件设计 (2) 1.1 总体设计图 (2) 1.2 简易结构框图 (2) 1.3各部分硬件设计及功能 (3) 1.3.1 蜂鸣器发声电路:(如图1.3.1) (3) 1.3.2 电源稳压电路: (4) 1.4 元件清单 (4) 2、软件设计 (5) 2.1设计思想 (5) 2.2 程序流程图 (5) 2.3 音调、节拍以及编码的确定方法 (6) 2.3.1音调的确定 (6) 2.3.2 节拍的确定 (8) 2.3.3 编码 (9) 3、电路仿真与分析 (10) 4、电路板焊接、调试 (11) 4.1 焊接 (11) 4.2 调试 (12) 5、讨论及进一步研究建议 (12) 6、心得 (12) 7、单片机音乐播放器程序实例(卡农) (13)

绪论 蜂鸣器播放音乐电路设计对于单片机初学者来说是一个简单易实现的课题。通过编写程序使单片机产生一定频率的方波信号,方波信号进入蜂鸣器便产生我们熟知的音调。 我们用定时/计数器使单片机产生方波,利用定时/计数器使输出管脚在一定周期内反复翻转,达到所需频率,而我们给定时/计数器的初始值就是我们的音符—半周期数据表,通过我们播放的音乐的乐谱,来对数据表进行调用。 我们用延时子程序来表示节拍,不同的节拍代表不同的延时。 完成此次设计之后完全可以进行扩展,例如增加按键以及LED灯光效果,制成一个简易的音乐盒,给人以视觉听觉等全方位的享受。

1、硬件设计1.1 总体设计图 1.2 简易结构框图

1.3各部分硬件设计及功能 1.3.1 蜂鸣器发声电路:(如图1.3.1) 图1.3.1 如图所示,蜂鸣器发声电路是播放音乐电路的主要执行电路,它由一个蜂鸣器,一个三极管和一个电位器组成。蜂鸣器负责发声,三极管将电流放大,而电位器则控制流过蜂鸣器电流的大小,来达到控制音量的目的。

单片机课程设计报告利用蜂鸣器播放音乐

单片机课程设计报告利用蜂鸣器播放 音乐

课程设计:电子设计 题目名称:音乐流水灯 姓名:戴锦超 学号:08123447 班级:信科12-3班 完成时间: 10月23日 1设计的任务 设计内容:动手焊接一个51单片机

设计目标:利用单片机上的蜂鸣器以及二极管实现音乐播放以及根据音乐的节奏而规律性闪亮的二极管。而且经过程序调节音乐节奏的快慢。 2 设计的过程 2.1 基本结构 1.STC89C52RC 在本次的试验中采用了STC89C52RC单片机,STC89C52RC 单片机是宏晶科技推出的新一代高速/低功耗/超强抗干扰的单片机,指令代码完全兼容传统8051单片机,12时钟/机器周期,工作电压:5.5V~3.3V(5V单片机)/3.8V~2.0V(3V单片机),工作频率范围:0~40MHz,相当于普通8051的0~80MHz,实际工作频率可达48MHz,用户应用程序空间为8K 字节。 (STC89C52RC引脚图)

STC89C52RC单片机的工作模式: (1)典型功耗<0.1μA,可由外部中断唤醒,中断返回后,继续执行原程序 (2)空闲模式:典型功耗2mA (3)正常工作模式:典型功耗4Ma~7mA (4)唤醒,适用于水表、气表等电池供电系统及便携设备 2.蜂鸣器及其工作原理: 蜂鸣器按其结构分主要分为压电式蜂鸣器和电磁式蜂鸣器两种类型。电磁式蜂鸣器由振荡器、电磁线圈、磁铁、振动膜片及外壳等组成。接通电源后,振荡器产生的音频信号电流经过电磁线圈,使电磁线圈产生磁场,振动膜片在电磁线圈和磁铁的相互作用下,周期性地振动发声。本实验采用的是电磁式蜂鸣器。 蜂鸣器按其是否带有信号源又分为有源和无源两种类

蜂鸣器知识汇总

蜂鸣器知识汇总 1)蜂鸣器的介绍 1.蜂鸣器的作用蜂鸣器是一种一体化结构的电子讯响器,采用直流电压供电,广泛应用于计算机、打印机、复印机、报警器、电子玩具、汽车电子设备、电话机、定时器等电子产品中作发声器件。 2.蜂鸣器的分类蜂鸣器主要分为压电式蜂鸣器和电磁式蜂鸣器两种类型。 3.蜂鸣器的电路图形符号蜂鸣器在电路中用字母“H”或“HA”(旧标准用“FM”、“LB”、“JD”等)表示。 2)蜂鸣器的分类 蜂鸣器根据结构不同分为压电式蜂鸣器和电磁式蜂鸣器;无论是压电式蜂鸣器还是电磁式蜂鸣器,都有有源和无源的区分,其中,“有源”是指蜂鸣器本身内含驱动了,直接给它一定的电压就可以响;“无源”是需要靠外部的驱动才可以响的 1.蜂鸣器的结构原理 压电式蜂鸣器:以压电陶瓷的压电效应,来带动金属片的振动而发声,主要由多谐振荡器、压电蜂鸣片、阻抗匹配器及共鸣箱、外壳等组成。有的压电式蜂鸣器外壳上还装有发光二极管。多谐振荡器由晶体管或集成电路构成。当接通电源后(1.5~15V直流工作电压),多谐振荡器起振,输出1.5~2.5kHZ的音频信号,阻抗匹配器推动压电蜂鸣片发声。 压电蜂鸣片由锆钛酸铅或铌镁酸铅压电陶瓷材料制成。在陶瓷片的两面镀上银电极,经极化和老化处理后,再与黄铜片或不锈钢片粘在一起。 压电式蜂鸣器需要比较高的电压才能有足够的音压,一般建议为9V以上。压电的有些规格,可以达到120dB以上,较大尺寸的也很容易达到100dB 电磁式蜂鸣器:用电磁的原理,通电时将金属振动膜吸下,不通电时依振动膜的弹力弹回,由振荡器、电磁线圈、磁铁、振动膜片及外壳等组成。接通电源后,振荡器产生的音频信号电流通过电磁线圈,使电磁线圈产生磁场。振动膜片在电磁线圈和磁铁的相互作用下,周期性地振动发声。 用1.5V就可以发出85dB以上的音压了,唯消耗电流会大大的高于压电式蜂鸣器, 2.有源蜂鸣器和无源蜂鸣器 有源蜂鸣器直接接上额定电源(新的蜂鸣器在标签上都有注明)就可连续发声,有源蜂鸣器工作的理想信号是直流电,通常标示为VDC、VDD等。因为蜂鸣器内部有一简单的振荡电路,能将恒定的直流电转化成一定频率的脉冲信号,从面实出磁场交变,带动钼片振动发音。

蜂鸣器响声三种音乐

两只蝴蝶音乐编程程序: #include // 这是单片机音乐代码生成器生成的代码 #define uchar unsigned char sbit beepIO=P3^6; // 输出为P1.5 可以修改成其它IO 口 uchar m,n; uchar code T[49][2]={{0,0}, {0xF8,0x8B},{0xF8,0xF2},{0xF9,0x5B},{0xF9,0xB7},{0xFA,0x14},{0xFA,0x66},{0xFA,0xB9},{0xFB,0x03 },{0xFB,0x4A},{0xFB,0x8F},{0xFB,0xCF},{0xFC,0x0B}, {0xFC,0x43},{0xFC,0x78},{0xFC,0xAB},{0xFC,0xDB},{0xFD,0x08},{0xFD,0x33},{0xFD,0x5B},{0xFD,0x8 1},{0xFD,0xA5},{0xFD,0xC7},{0xFD,0xE7},{0xFE,0x05}, {0xFE,0x21},{0xFE,0x3C},{0xFE,0x55},{0xFE,0x6D},{0xFE,0x84},{0xFE,0x99},{0xFE,0xAD},{0xFE,0xC0 },{0xFE,0x02},{0xFE,0xE3},{0xFE,0xF3},{0xFF,0x02}, {0xFF,0x10},{0xFF,0x1D},{0xFF,0x2A},{0xFF,0x36},{0xFF,0x42},{0xFF,0x4C},{0xFF,0x56},{0xFF,0x60},{ 0xFF,0x69},{0xFF,0x71},{0xFF,0x79},{0xFF,0x81} }; uchar code music[][2]={{0,4}, {23,4},{21,4},{23,16},{23,4},{21,4},{23,4},{21,4},{19,16},{16,4},{19,4},{21,8},{21,4},{23,4},{21,4},{19 ,4},{16,4},{19,4},{14,24}, {23,4},{21,4},{23,16},{23,4},{21,4},{23,4},{21,4},{19,24},{16,4},{19,4},{21,8},{21,4},{23,4},{21,4},{19 ,4},{16,4},{19,4},{21,24}, {23,4},{21,4},{23,16},{23,4},{21,4},{23,4},{21,4},{19,16},{16,4},{19,4},{21,8},{21,4},{23,4},{21,4},{19 ,4},{16,4},{19,4},{14,24}, {23,4},{26,4},{26,16},{26,4},{28,4},{26,4},{23,24},{21,4},{23,4},{21,8},{21,4},{23,4},{21,4},{19,4},{16 ,4},{16,2},{19,2},{19,24},{0,20}, {26,4},{26,4},{28,4},{31,4},{30,4},{30,4},{28,4},{23,4},{21,4},{21,4},{23,16},{0,4},{23,4},{23,4},{26,4} ,{28,8},{28,12},{16,4},{23,4},{21,4}, {21,24},{23,4},{26,4},{26,4},{23,4},{26,8},{0,4},{31,8},{30,4},{28,4},{30,4},{23,8},{0,4},{28,4},{28,4},{ 30,4},{28,4},{26,4},{23,4},{21,8},{23,4},{21,4},{23,4},{26,16}, {0xFF,0xFF}}; void delay(uchar p) { uchar i,j; for(;p>0;p--) for(i=181;i>0;i--) for(j=181;j>0;j--);

相关文档
最新文档