离散分布控制系统的容错设计

离散分布控制系统的容错设计
离散分布控制系统的容错设计

图2智能抽油机节能控制器方案框图

感器模块实时检测电机输出功率的变化,由单片机系统来控制IGBT的关断,控制电机输入端电压的大小,以调整电动机输出功率,减少电动机的铁损和铜损。达到节能降耗的目的。

为克服负功率对I GBT模块的影响并进一步节能,系统设置了负功率处理模块,通过该模块,系统以和电网同样的频率和相位将电动机发出的电能馈送到电网中,进一步降低电机损耗。

由于IGBT是比较昂贵的器件,而且对使用条件要求比较高,必须加以保护。根据抽油机的实际特点,系统设置了过流保护、过压保护、缺相保护和温度保护,从而使系统能够更安全地运行。

智能型抽油机节能控制器具有以下的功能:

1可设置电动机的最大工作电流、空载电流和最高工作温度等参数,根据电动机工作电流的大小判断抽油机的工况。当电动机工作电流超过额定电流和最高工作温度超过额定工作温度时停抽油机工作,从而保护电动机。当抽油机电动机工作电流小于空载电流,认为抽油机空载,可停止抽油机工作,等待原油聚集。根据所设定的停机时间,抽油机停止工作一段时间后,控制系统自动启动抽油机,从而实现抽油机停机节能。

o断电后来电时自动延时启动时间,避免油田抽油机同时启动。

?软启动功能,减少启动对电网的冲击并节约电能。

?可根据抽油机运行的载荷工况,自动控制电机输入电压,控制抽油机电动机的输出功率,达到节能目的。

?独特的负功率处理功能,能有效减小电机发电所带来的影响,提高节能效果。

?具有数据存储和数据通信功能。通过专用数据回放卡可转储数据进行数据处理分析和绘制抽油机电能图,从而方便油田对抽油机的管理。

3结束语

智能型抽油机节能控制器的开发经过了样机开发和油田试验两个阶段,我们逐渐掌握了游梁式抽油机工作规律和抽油机节能控制器的关键技术,为系统投入运行奠定了基础。

参考文献

1周新生,程汉湘,刘建,等.抽油机的负载特性及提高功率因数措施的研究.北华大学学报(自然科学版),2003(6)

2张继震,马广杰,杨靖.游梁抽油机电机电量测试的特殊性.电机技术,2003(2)

3丁建林,姜建胜,刘瓯,等.抽油机变频调速智能控制技术研究.

石油机械,2003

修改稿收到日期:2004-08-20。

第一作者彭国标,男,1972年生,1995年毕业于国防科技大学精密仪器与检测技术专业,获学士学位,工程师;主要从事载人航天发射场地面系统自动控制、建筑智能化和工业自动化控制。

离散分布控制系统的容错设计

Fault Tolerant Design of Discrete D istributed Control System

王根平

(深圳职业技术学院机电系,深圳518055)

摘要在所考虑的离散分布控制系统中,每个可编程控制器作为一个控制结点,结点之间通过网络进行连接保持通信。容错的设计思路是,增加一个在Galois域进行运算的冗余控制器,从而使系统能够自动侦查系统中的结点(可编程控制器)是否正常工作,并能5自动化仪表6第25卷第9期2004年9月

恢复非正常工作的结点(可编程控制器)正常工作,从而使系统能够正常运行,提高其可靠性。实验证明这种设计是有效可行的。关键词 离散分布控制系统 Galoi s 域 可编程控制器 容错

A bstract In the discrete distri buted control system presen ted,each program mable logic controller is a control node and keeps com munication wi th other nodes through network.The concep t of fault tolerance desi gn i s adding a red undant controller in Galoi s field for operation function.The statu s of the n ode (program mable controller)in the system can be detected automatically,further more,the node i n abnormal condition can be recovered into normal opera -ti on.Thus the system keeps run ning properly and the reliabili ty is enhanced.The experiment s hows that the desi gn is effecti ve and feasible.Key w ords Discrete dis tributed control system Galois field Program mable logic controller Fault tolerance.

0 引言

在制造业和过程自动化领域,可编程控制器得到了广泛应用,对提高我国制造业的生产效率和自动化水平起到了积极的作用。相应地,由这些可编程控制器所构成的离散分布控制系统的可靠性和抗故障性也显得越来越重要,因为任何导致生产线和自动化过程失误和停顿的故障都将导致极为严重的损失和后果。基于对这类问题的考虑和关注,本文提出了一种离散分布控制系统的容错配置设计思路。基于这种配置设计的离散分布控制系统,任何一个控制结点的可编程控制器发生故障,整个系统仍能正常工作。另外,这种设计只需增加一个冗余控制结点,而不是对所有的控制结点进行冗余备份,便能提高整个离散分布控制系统的可靠性,其经济性和高效性是显而易见的。

1 基于Galois 域的控制器模型

考虑由N 个非同质的可编程控制器构成的离散分布控制系统。每个控制器均能独立运行完成某特定的控制功能且每个控制器都有一个远程的输入/输出接口,如图1所示。假定所有控制器的远程输入/输出接口通过网络进行连接从而形成离散分布控制系统。设第i 个控制器的控制输入、输出模型为

x i (t +1)=f Bi (x i (t ),u i (t ))

(1)y i (t )=h Bi (x i (t ),u i (t ))

(2

)

图1 离散分布控制系统的构成

式中:x i 是一个n 维的状态向量;u i 是一个m 维的输入向量;y i 是一个p i 维的输出向量;这些向量的元素属于域{0,1},即可取0或1。函数f Bi 、h Bi 则由布尔逻辑运算构成,也即由逻辑加/G 0和逻辑乘/H0构成。

布尔函数f Bi 可以相应地转换成Galois 域即GF(2)域的函数f i 。对于布尔函数f B i (#)中的任意两个变量{a,b}的运算,可转换成Galois 域中的相应运算。具体转换关系见(3)式。

a G

b y a +b +ab a H b y ab a y 1+a

(3)

同理,可以将布尔函数h Bi (#)转换成Galois 函数

h i (#)。

因而,可以用Galois 函数模型替换相应的式(1)和式(2)所表示的布尔函数模型,得到控制器的输入输出状态模型:

x i (t +1)=f i (x i (t ),u i (t ))

(4)y i (t )=h i (x i (t ),u i (t ))

(5)式中:f i 和h i 为相应的Galois 函数多项式。将(1)、(2)式的布尔运算模型换成Galois 模型后,便可以通过/+0运算来处理各种逻辑运算了。

2 故障自诊断和自恢复

本文的系统容错设计思路是,通过在离散分布控制系统中增加一个容错的控制结点,从而达到系统故障自动诊断和自我恢复的目的。2.1 冗余结点控制器设计

容错离散分布控制系统具有冗余结点控制器(PLC n+1,图1中的虚线部分)。冗余结点控制器的故障自我诊断是通过奇偶码的校验来实现的。冗余结点的控制器在P t E 0的时间里能动态地产生奇偶校验码。具体设计实现见(6)、(7)式:

x N+1(t +1)=f N+1(x N+1(t ),u N+1(t))

(6)y N+1(t )=h N+1(x N+1(t ),u N+1(t))

(7)

式中:x N +1(t +1)=[x 1(t )x 2(t ),x n (t )]T I GF (2)n N +1是一个将离散分布控制系统中的所有控制结点状态集成而成的一个扩充状态变量,n N +1=n 1+

n 2+,+n N ,u N +1(t +1)=[u 1(t )u 2(t ),u n (t )]T

离散分布控制系统的容错设计 王根平

I GF(2)m N+1是相应的集成其他所有结点的变量和扩

充的状态变量。由于网络的互联,信号u i(t)也可以发送给冗余结点的控制器。

同样,函数f

N+1

也由各结点的函数集合而成,即存在关系:f N+1=[f1f2,f n]T,输出函数y N+1(t)I GF (2)P N+1中P N+1(t)=max(p1,p2,,,p N)。函数h N+1由下式给出:

h N+1=h1+h2+,+h N(8)由(5)和(8)式可知:

y N+1=y1+y2+,+y N(9)可以证明:当离散分布控制系统中不存在故障时,冗余结点控制器式(6)和式(7)的输出y N+1满足奇偶校验条件(累加结果为0):

y1(t)+y2(t)+,+y N+y N+1(t)=0(10)由(9)式,我们可以做以下计算:

y

1

(t)+y2(t)+,+y N+y N+1(t)

=h1(x1(t),u1(t))+h2(x2(t),u2(t))+,+

h

N

(x N(t),u N(t))+h N+1(x N+1(t),u N+1(t)) =[h1(x1(t),u1(t))+h1(x1(t),u1(t))]+

[h

2

(x2(t),u2(t))+h2(x2(t),u2(t))]+,+

[h N(x N(t),u N(t))+,+

h

N

(x N(t),u N(t))]=0(11)注意:Galois域中的加(+)等价于布尔代数中的异或,而式(11)中每一函数式h i(x i(t),u i(t))都是成对相加(即相同两式做异或操作),所以上述加法的结果必定为0。这样,通过检测冗余结点控制器的输出便可以判断离散分布控制系统是否存在故障,从而实现了系统的自诊断。

2.2系统故障的自我恢复

在离散分布控制系统中,如果某控制器结点出现

故障,设其输出y

i

(t)=N(t),其中N(t)I GF(2)p i为噪

声信号。对第?个控制器,再定义一个变量H

i

(t),当

该控制器故障时,使H

i

(t)=1,正常则为0。这样,冗余结点控制器对第i个控制器的估计输出为

y^i(t)=(1-H i(t))y i(t)+H i(t)6N+1j X i y j(t)(12)当控制器没有发生故障时,估计输出y^i(t)=y i(t),因为

H

i

(t)=0;当控制器出现故障时,H i(t)=1,根据(7)式有: y^i(t)=6N+1j X i y j(t)

=6N j X i h j(x j(t),u j(t))+6N j X l h j(x j(t),u j(t))

=h i(x i(t),u i(t))

=

y i(t)显然,

y

i

(t)便是控制器正常时的正常输出。因而当冗余结点控制器检测到系统中有结点控制器出现故障时,便可以将对该控制器的估计输出取代该控制器的输出,从而保证了系统的正常工作,实现了系统故障的自我恢复。

3实验举例

图2表示的是一个简单的物料抓送机器系统和开关自动操纵设备组成的分布离散控制系统的示意图。物料抓送机器和开关操纵设备分别由独立的控制器(1#Controlle r和2#Controlle r)实现控制。控制器所控制的动作包括:当物料抓送机器将所需的物料运送到开关自动控制设备的操作场所时,开关自动操纵设备

按下开关。

图2系统示意图

根据前面的冗余设计思路,增加了一个冗余控制器(3#Controller)来实现该离散分布控制系统的冗余容错控制。

表1控制器和控制对象的时序状态

时间

(周期)

1#

控制器

2#

控制器

3#

控制器

物料

抓送器

开关操

纵设备0~199工作工作工作正常运转正常运转200~326故障工作工作正常运转正常运转327~399工作工作工作正常运转正常运转400~526工作故障工作正常运转正常运转527~599工作工作工作正常运转正常运转600~726工作工作故障正常运转正常运转727~999工作工作工作正常运转正常运转从表1可以看出,1#控制器在t=200时序时出现故障,到t=327时序时得到修复,控制对象在t= 200~326(即1#控制器出现故障)的时序段正常工作;同样,2#控制器在t=400~526时序段和3#控制器在t=600~726时序段出现故障时,整个系统运转正常。

在整个控制器的故障诊断和修复过程中,控制器

5自动化仪表6第25卷第9期2004年9月

的状态信息通过网络通信获取并在冗余控制器中进行重新构建。

实验结果证明,所设计的冗余结点控制器能够进行自我故障诊断,并证明离散分布控制系统在某控制器出现故障时仍然正常工作,系统具有较好的容错性。

参考文献

1 A.Bi ron li ni.Quality an d Reli ability of Tech nical S ystems.Berlin:

S pringer-Verlag,1994:789~793

2V.Blond del.S imultaneou s stabi li zation of li near systems[C].Berlin: S pringer-Verlag,1994:842~8463I.E.F Sp arlin ski.Fini te field:The ory and compu tation[M].Norwell: Klu wer Acad emic Publi shers,1999

4Y.Fujimoto,T.Sek iguchi.An al geb raic app roach to d esign of di screte systems[C].Proc.of IEEE IEC,2000:2608~2613

5R.Ise rmann.fau lt detection and diagnosi s in techn ical systems[C].

Preface to the s peci al edi ti on of p apers i n su pervisi on,Con trol Eng.

Practice,1997(5):671~682

修改稿收到日期:2004-03-28。

作者王根平,男,1966年生,1998年毕业于浙江大学,获工学博士学位,高级工程师;主要从事自动控制、信号处理与检测技术的研究。

基于Matlab的电容层析成像系统软场特性仿真研究

Study on Soft Field Ch aracteristic of Electronic Capacitance Tomography System B ased on M atlab

李文涛1王志春1王建国2

(内蒙古科技大学信息工程学院1,包头014010;中国海洋大学工程学院2,青岛266000)

摘要电容层析成像是监测两相流动的一种新技术。它可重建两相流在其流经管道横截面上的相分布图像,而重建图像的先决条件是需获得成像系统的灵敏场分布。电容层析成像(EC T)系统阵列传感器的敏感场受被测介质的影响,这一/软场0特性是EC T应用于两相流参数测量中的一个主要问题。本文介绍了基于有限元模型的仿真实验,通过典型介电常数分布下灵敏度分布与空管下灵敏度分布的差值计算与分析,研究了影响灵敏场分布的因素及其规律。

关键词两相流电容层析成像敏感电极阵列灵敏场Matlab

A bstract Electronic capacitance tomograp hy is a new technique for monitori ng two-p hase flow.It can recon struct cross-section al p hase distri bution i m-ages on of the pipeline th rough which t wo-p hase flow runs.The precondition of i mage recon structi on i s that the sen si tive field di stribution of the tomogra-phy sys tem shall be ob tained.The sensitive fiel d of sensor array of the electrical capacitance tom ograph y(E C T)syste m is affected by medi um meas ured, s uch-s oft field.characteristic is the maj or key p roblem in its application for measuring the p arameters in two p hase flow.The simulation experi ment based on fi ni te ele men t model i s introduced in this paper.It studies Several factors affecti ng sensiti ve field distribu tion and the governing rule are studied by calculati ng and anal yzin g the difference bet ween the sen si tive field distribu tion un der typical dielectric cons tant and the sensiti ve field distribu tion i n em pty pipe.

Key w ords Two-p hase fl ow Capacitance tomograp hy Sensing electrode array Sensitive field Matlab

0引言

随着工业的发展,对两相流参数进行测量的需求越来越迫切,因此,两相流参数检测技术在科学研究和工业生产中具有重要作用。电容层析成像(elec trical capacita nce tomography,简记ECT)技术利用多相介质具有不同的介电常数的性质,通过电容阵列电极获得管截面上介质的介电常数分布,从而获得介质分布的图像。ECT系统的传感器通常由均匀安装在绝缘管道外壁的多对电容极板及接地屏蔽罩构成。对于一N极板系统,有N(N-1)/2个极板对。测量时,源极板加激励电压,其余N(N-1)个极板与屏蔽罩处于地电位,极板1至极板N-1依次被选作源极板,可得到N (N-1)/2个电容测量值。由这些电容值,采用图像重建算法可给出被测对象介质分布的断层图。目前,人们常把EC T传感器简化为二维静电场,并采用有限元法来分析其敏感场。

ECT系统的敏感场具有-软场.特性,即场分布随

基于Matlab的电容层析成像系统软场特性仿真研究李文涛,等

自动控制原理例题详解线性离散控制系统的分析与设计考习题及答案

精心整理 ----------2007-------------------- 一、(22分)求解下列问题: 1. (3分)简述采样定理。 解:当采样频率s ω大于信号最高有效频率h ω的2倍时,能够从采样信号)(*t e 中 完满地恢复原信号)(t e 。(要点:h s ωω2>)。 2.(3分)简述什么是最少拍系统。 解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻上无稳态误差的随动系统。 3.(3 4.(x()∞5.(5解:(G 6.(5试用Z 解:二、( (i X s ) z 图1 1.(5分)试求系统的闭环脉冲传递函数 () () o i X z X z ; 2.(5分)试判断系统稳定的K 值范围。

解:1.101 1 1 1 11 1()(1)(1)11(1)1(1)()1e 11e 1e G G z z Z s s z Z s s z z z z z z z e z -------??=-??+????=--??+?? =-----=---= -1 1 010******* 1e ()()e 1e ()1()1e (1e )(e )(1e )(1e )e e o i K X z KG G z z X z KG G z K z K z K K z K K ------------== -++--=-+--=-+- 2.(5 三、(8 已知(z)1Φ=1.(3分)简述离散系统与连续系统的主要区别。 解:连续系统中,所有信号均为时间的连续函数;离散系统含有时间离散信号。 2.(3分)简述线性定常离散系统的脉冲传递函数的定义。 解:在系统输入端具有采样开关,初始条件为零时,系统输出信号的Z 变换与输入信号的Z 变换之比。 3.(3分)简述判断线性定常离散系统稳定性的充要条件。 解:稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。 4.(5分)设开环离散系统如图所示,试求开环脉冲传递函数)(z G 。

容错控制的研究现状

容错控制的研究现状 容错控制研究的是当系统发生故障是的控制问题,因此必须首先明确故障的定义。故障可以定义为:“系统至少一个特性或参数出现较大偏差,超出了可以接受的范围,此时系统性能明显低于正常水平,难以完成系统预期的功能”[28]。而一直以来,对容错控制并没有一个明确的定义。这里给出一个比较容易理解的概念,即所谓容错控制是指当控制系统中的某些部件发生故障时,系统仍能按期望的性能指标或性能指标略有降低(但可接受)的情况下,还能安全地完成控制任务。容错控制的研究,使得提高复杂系统的安全性和可靠性成为可能。容错控制是一门新兴的交叉学科,其理论基础包括统计数学、现代控制理论、信号处理、模式识别、最优化方法、决策论等,与其息息相关的学科有故障检测与诊断、鲁棒控制、自适应控制、智能控制等。 容错控制方法一般可以分成两大类,即被动容错控制(passive FTC)和主动容错控制(active FTC)。被动容错控制通常利用鲁棒控制技术使得整个闭环系统对某些确定的故障具有不敏感性,其设计不需要故障诊断,也不必进行控制重组,其一般具有固定形式的控制器结构和参数。但常常由于故障并不是经常发生的,其设计难免过于保守,并且其性能也不可能是最优的,而且一旦出现不可预知故障,系统的性能甚至稳定性都可能无法保障[29-31]。但它可以避免在主动容错控制当中由于需要检测诊断故障以及重组控制律造成的时间滞后,而这在时间要求严格的系统控制中是很重要的,因此被动容错控制在故障检测和估计阶段是必须的,它可以保证在系统切换至主动容错控制之前系统的稳定性[29-31]。主动容错控制可以对发生的故障进行主动处理,其利用获知的各种故障信息,在故障发生后重新调整控制器参数,甚至在某些情况下需要改变控制器结构。主动容错控制大多需要故障诊断(FDD)子系统,这正是其优于被动容错控制之处。Patton教授有一著名论断,即“离开了FDD单元,容错控制所能发挥的作用就会非常有限,只能对一些特殊类型的故障起到容错的作用”[20]。 (1)被动容错控制 被动容错控制基本思想就是在不改变控制器和系统结构的条件下,从鲁棒控制思想出发设计控制系统,使其对故障不敏感。其特点是不管故障发生不发生,它都采用不变的控制器保证闭环系统对特定的故障具有鲁棒性。因此被动容错控制不需要故障诊断单元,也就是说不需要任何实时的故障信息。从处理不同类型故障分,被动容错控制有可靠镇定、联立镇定和完整性三种类型。 可靠镇定是针对控制器故障的容错控制。其研究思想始于Siljak 在1980 年[2]提出的使用多个补偿器并行镇定一个被控对象。之后一些学者又对该方法进行了深入研究[32-34]。文[32]针对单个被控对象证明了当采用两个补偿器时,能够可靠镇定的充要条件是被控对象是强可镇定的。但条件若不满足,补偿器就会出现不稳定的极点,闭环系统就不稳定;另一方面,即使条件满足并有解,如何设计这两个补偿器也是极其困难的。文[33]做了进一步研究,给出了两个动态补偿器的参数化设计方法,能够得到可靠镇定问题的解,从而部分解决了上

容错控制理论及其应用

第26卷 第6期2000年11月自 动 化 学 报A CT A A U T OM A T ICA SI NI CA V o l.26,N o.6N ov.,20001)国家自然科学基金、“八六三”计划与教育部资助项目.收稿日期 1999-03-08 收修改稿日期 1999-10-11 综述 容错控制理论及其应用 1)周东华 (清华大学自动化系 北京 100084) Ding X (Lausitz 大学电气工程系 德国) (E-mail:ZDH @m ail.au.tsin https://www.360docs.net/doc/e29915667.html,) 摘 要 介绍了经典容错控制的主要研究成果及近年来发展起来的鲁棒容错控制和非线性 系统的故障诊断与容错控制,并给出了容错控制的一些典型应用成果.最后,指出了该领域 亟待解决的一些热点与难点问题. 关键词 动态系统,容错控制,故障诊断,集成,鲁棒性. THEORY AND APPLICATIONS OF FAULT TOLERANT C ONTROL ZHOU Donghua (Dep t .of A utomation ,Tsing hua Univer sity ,Beij in g 100084) DING X (De p t .of E E ,L ausitz Univ .,Ger ma ny ) Abstract A survey of fault tolerant cont rol for dynamic syst ems is present ed .T he main result s in classical fault tolerant cont rol are f irstly int roduced.T hen,empha- sis is put on t he robust fault tolerant control as well as the fault diagnosis and f ault tolerant control of nonlinear systems developed in recent years.Some typical appli- cation result s of fault t olerant cont rol are discussed ,and finally ,some open ques- tions are pointed out . Key words Dynamic syst ems,fault t olerant cont rol,fault diagnosis,int egrat ion, robust ness . 1 引言 现代系统正朝着大规模、复杂化的方向发展,这类系统一旦发生事故就有可能造成

控制系统的极点配置设计法

控制系统的极点配置设计法 一、极点配置原理 1.性能指标要求 2.极点选择区域 主导极点: n s t ζω 4 = ;当Δ=0.02时,。 n s t ζω 3 = 当Δ=0.05时,

3.其它极点配置原则 系统传递函数极点在s 平面上的分布如图(a )所示。极点s 3距虚轴距离不小于共轭复数极点s 1、s 2距虚轴距离的5倍,即n s s ξω5Re 5Re 13=≥(此处ξ,n ω对应于极点s 1、s 2) ;同时,极点s 1、s 2的附近不存在系统的零点。由以上条件可算出与极点s 3所对应的过渡过程分量的调整时间为 135 1 451s n s t t =?≤ ξω 式中1s t 是极点s 1、s 2所对应过渡过程的调整时间。 图(b )表示图(a )所示的单位阶跃响应函数的分量。由图可知,由共轭复数极点s 1、s 2确定的分量在该系统的单位阶跃响应函数中起主导作用,即主导极点。因为它衰减得最慢。其它远离虚轴的极点s 3、s 4、s 5 所对应的单位阶跃响应衰减较快,它们仅在极短时间内产生一定的影响。因此,对系统过渡过程进行近似分析时。可以忽略这些分量对系统过渡过程的影响。 n x o (t) (a ) (b ) 系统极点的位置与阶跃响应的关系

二、极点配置实例 磁悬浮轴承控制系统设计 1.1磁悬浮轴承系统工作原理 图1是一个主动控制的磁悬浮轴承系统原理图。主要由被悬浮转子、传感器、控制器和执行器(包括电磁铁和功率放大器)四大部分组成。设电磁铁绕组上的电流为I0,它对转子产生的吸力F和转子的重力mg相平衡,转子处于悬浮的平衡位置,这个位置称为参考位置。 (a)(b) 图1 磁悬浮轴承系统的工作原理 Fig.1 The magnetic suspension bearing system principle drawing 假设在参考位置上,转子受到一个向下的扰动,转子就会偏离其参考位置向下运动,此时传感器检测出转子偏离其参考位置的位移,控制器将这一位移信号变换成控制信号,功率放大器又将该控制信号变换成控制电流I0+i,控制电流由I0增加到I0+i,因此,电磁铁的吸力变大了,从而驱动转子返回到原来的平衡位置。反之,当转子受到一个向上的扰动并向上运动,此时控制器使得功率放大器的输出电流由I0,减小到I0-i,电磁铁的吸力变小了,转子也能返回到原来的平衡位置。因此,不论转子受到向上或向下的扰动,都能回到平衡状态。这就是主动磁轴承系统的工作原理。即传感器检测出转子偏移参考点的位移,作为控制器的微处理器将检测到的位移信号变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力从而使转子维持其悬浮位置不变。悬浮系统的刚

容错控制简介

1.2容错技术简介 容错控制及其系统组成 容错控制的发展及研究现状 1.2.1容错控制的概念和任务 容错概念最初来源于计算机系统设计领域,是指系统内部环节发生局部故障或失效情况下,计算机系统仍能继续正常运行的一种特性。后来人们逐渐把容错的概念引入到控制系统,这样人们虽然无法保证控制系统每个环节的绝对可靠,但是构成容错控制系统后,可以使系统中的各个故障因素对控制性能的影响被显著削弱,从而间接地提高了控制系统的可靠性。特别是控制系统的重要部件的可靠度未知时,容错技术更是在系统设计阶段保证系统可靠性的必要手段。 容错控制的指导思想是在基于一个控制系统迟早会发生故障的前提下,在设计控制系统初期时就将可能发生的故障对系统的稳定性及静态和动态性能影响考虑在内。最简单的情况,如果传感器或执行器发生故障,在故障后不改变控制律的情况下,如何来维持系统的稳定性就是控制器设计过程中值得注意的问题。在容错控制技术中,这种问题属于完整性控制的范畴。 在某种程度上,容错控制系统是指具有内部冗余(硬件冗余、解析冗余、功能冗余和参数冗余等)能力的控制系统,即在某些部件(执行器、传感器或元部件)发生故障的情况下,闭环系统仍然能保持稳定,并在原定性能指标或性能指标有所降低但可接受的条件下,安全地完成控制任务,并具有较理想的特性。动态系统的容错控制是伴随着基于解析冗余的故障诊断技术的发展而发展起来的。 1.2.2容错控制的现状研究 容错控制系统的基本结构为:传感器、故障检测与诊断子系统、执行器和控制器。其中,故障检测与诊断子系统能够对控制系统进行实时故障监测与辨识等;控制器则根据故障诊断信息作出相应的处理,实施新的容错控制策略,保证系统在故障状态下仍能获得良好的控制效果。在实际控制系统中,各个基本环节都有可能发生故障。 容错控制系统有多种分类方法,如按系统分为线性系统容错控制和非线性系统容错控制,确定性系统容错控制和随机系统容错控制等;按克服故障部件分类为执行器故障容错控制,传感器故障容错控制,控制器故障容错控制和部件故障容错控制等;按控制对象不同分为基于硬件冗余和解析冗余的容错控制分类。一般,为了全面反映容错控制系统的特性,常将上述各种分类方法组合运用。 1.硬件冗余方法 硬件冗余是指对系统的重要部件及易发生故障部件设置各种备份,当系统内某部件发生故障时,对故障部分进行隔离或自动更换,使系统正常工作不受故障元器件的影响,保证系统的容错性能。硬件冗余方法根据备份部件是否参与系统工作可分为静态硬件冗余和动态硬件冗余。 l)静态硬件冗余:并联多个相同的组件,当其中某几个发生故障时并不影响其它组件的正常工作。 2)动态硬件冗余:在系统中不接入备份组件,只有在原组件发生故障后,才把输入和输出端转接到备份组件上来,同时切断故障组件的输入和输出端,即运行模块的失效,备用模块代替运行模块工作。系统应该具有自动发现故障的能力与自动转接设备。 硬件冗余方法可以用于任何硬件环节失效的容错控制,建立起来的控制系统将具有较强

谈机电传动控制系统的设计方法

龙源期刊网 https://www.360docs.net/doc/e29915667.html, 谈机电传动控制系统的设计方法 作者:李绍璞 来源:《科学与财富》2012年第06期 摘要:机电传动控制系统是由相互制约的五大要素组成的具有一定功能的整体,不但要求每个要素具有高性能和高功能,更强调它们之间的协调与配合,以便更好地实现预期的功能。特别是在机电一体化传动系统设计中,存在着机电有机结合如何实现,机、电、液传动如何匹配,机电一体化系统如何进行整体优化等问题,以达到系统整体最佳的目标。 关键词:机电;传动;控制系统;设计;方法 在机电传动与控制中,将与控制设备的运动、动作等参数有关的部分组成的具有控制功能的整体称为系统。用控制信号(输入量)通过系统诸环节来控制被控变量(输出量),使其按规定的方式和要求变化,这样的系统称为控制系统。 1、控制系统的分类 控制系统的分类方式很多,但机械设备的控制系统常按系统的组成原理分为开环控制系统、半闭环控制系统和闭环控制系统。 输出量只受输入量控制的系统称为开环控制系统。在任何开环控制系统中,系统的输出量都不与参考输人量进行比较。对应于每个参考输人量,都有一个相应的固定工作状态与之相对应,系统中没有反馈回路(反馈是把一个系统的输出量不断直接或间接变换后,全部或部分地返回到输入量,再将输入量输入到系统中去的过程)。用步进电动机作为执行元件的经济简易型数控机床,其控制系统就是一个开环系统。这种机床的控制装置和驱动装置根据机床的坐标进给控制信号推动工作台运动到指定位置,该位置的坐标信号不再反馈;当控制系统出现扰动时,输出量便会出现偏差。因此,开环控制系统缺乏精确性和适应性。但它是最简单、最经济的一类控制系统,一般使用在对精度要求不高的机械设备中。 在有些控制系统中,输出量同时受输人量和输出量的控制,即输出量通过反馈回路再对系统产生控制作用。这种存在反馈回路的系统称为闭纾控制系统。全功能型CNC机器人属闭环控制系统。在CNC机床的坐标驱动系统中,以坐标位置量为直接输出量,并在工作台上安装长光栅等位移测量元件作为反馈元件的系统才称为闭环系统。那些以交、直流伺服电动机的角位移作为输出量,用圆光栅作为反馈元件的系统则称为半闭环系统。目前的CNC机床大多为半闭环控制系统。采用半闭环控制系统的优点在于没有将伺服电动机与工作台之间的传动机构和工作台本身包括在控制系统内,系统易调整、稳定性好且整体造价低。 2、机电传动控制系统的设计方法 2.1模块化设计法

容错控制理论及其应用_周东华

第26卷 第6期 2000年11月自 动 化 学 报A CT A A U T OM A T IC A SIN ICA V o l.26,N o.6N ov.,20001)国家自然科学基金、“八六三”计划与教育部资助项目. 收稿日期 1999-03-08 收修改稿日期 1999-10-11 综述 容错控制理论及其应用 1)周东华 (清华大学自动化系 北京 100084) Ding X (Lausitz 大学电气工程系 德国)(E-mail :ZDH @mail.au.tsingh https://www.360docs.net/doc/e29915667.html,) 摘 要 介绍了经典容错控制的主要研究成果及近年来发展起来的鲁棒容错控制和非线性 系统的故障诊断与容错控制,并给出了容错控制的一些典型应用成果.最后,指出了该领域 亟待解决的一些热点与难点问题. 关键词 动态系统,容错控制,故障诊断,集成,鲁棒性. THEORY AND APPLICATIONS OF FAULT TOLERANT C ONTROL ZHO U Donghua (Dept .of Auto matio n ,Ts inghua University ,Beijing 100084) DIN G X (Dept .of EE ,Lausitz Un iv .,G erman y ) Abstract  A survey of f ault t olerant cont rol f or dynamic systems is presented .The main results i n classical fault tolerant cont rol are first ly int roduced.Then,empha-sis is put on the robust f ault tolerant cont rol as w ell as the fault diag nosi s and fault tolerant cont rol of nonlinear syst ems dev eloped i n recent years.Some typical appli- cation results of faul t tolerant cont rol are discussed ,and finally ,some open ques-tions are point ed out . Key words Dynamic systems,f ault tolerant cont rol,fault diagnosis,i ntegratio n, robust ness . 1 引言 现代系统正朝着大规模、复杂化的方向发展,这类系统一旦发生事故就有可能造成

容错控制系统

容错控制系统培训 2011年8月

3.1 容错控制系统 3.1.1 容错控制概述 容错原是计算机系统设计技术中的一个概念,指当系统在遭受到内部环节的局部故障或失效后,仍然可以继续正常运行的特性。将此概念引入到控制系统中,产生了容错控制的概念。 容错技术是指系统对故障的容忍技术,也就是指处于工作状态的系统中一个或多个关键部分发生故障时,能自动检测与诊断,并能采取相应措施保证系统维持其规定功能或保持其功能在可接受的范围内的技术。如果在执行器、传感器、元部件或分系统发生故障时,闭环控制系统仍然是稳定的,仍具有完成基本功能的能力,并仍然具有较理想的动态特性,就称此闭环控制系统为容错控制系统。 3.1.2 容错控制分类 根据不同的产品和客户需求,容错控制系统分类方式有多种,重点介绍两种: ?按设计分类:被动容错控制、主动容错控制; ?按实现分类:硬件容错、功能容错和软件容错。 3.1.2.1按设计分类的容错控制 1 被动容错控制介绍 被动容错控制是设计适当固定结构的控制器,该控制器除了考虑正常工作状态的参数值以外,还要考虑在故障情况下的参数值。被动容错控制是在故障发生前和发生后使用同样的控制策略,不进行调节。被动容错控制包括:同时镇定,完整性控制,鲁棒性容错控制,即可靠控制等几种类型。 2 主动容错控制介绍 主动容错控制是在故障发生后需要重新调整控制器参数,也可能改变控制器结构。主动容错控制包括:控制器重构,基于自适应控制的主动容错控制,智能容错控制器设计的方法。 3.1.2.2按实现分类的容错控制 1 硬件容错技术 容错控制系统中通常采用的余度技术,主要涉及硬件方面,是指对计算机、传感器和执行机构进行硬件备份,如图3所示。在系统的一个或多个关键部件失效时,通过监控系统检测及监控隔离故障元件,并采用完全相同的备用元件来替代它们以维持系统的性能不变或略有降级(但在允许范

可编程控制器控制系统设计方法

可编程控制器控制系统设计方法 一、问题提出 可编程控制器技术最主要是应用于自动化控制工程中,如何综合地运用前面学过知识点,根据实际工程要求合理组合成控制系统,在此介绍组成可编程控制器控制系统的一般方法。 二、可编程控制器控制系统设计的基本步骤 1 .系统设计的主要内容 ( 1 )拟定控制系统设计的技术条件。技术条件一般以设计任务书的形式来确定,它是整个设计的依据; ( 2 )选择电气传动形式和电动机、电磁阀等执行机构; ( 3 )选定 PLC 的型号;

( 4 )编制 PLC 的输入 / 输出分配表或绘制输入 / 输出端子接线图; ( 5 )根据系统设计的要求编写软件规格说明书,然后再用相应的编程语言(常用梯形图)进行程序设计; ( 6 )了解并遵循用户认知心理学,重视人机界面的设计,增强人与机器之间的友善关系; ( 7 )设计操作台、电气柜及非标准电器元部件; ( 8 )编写设计说明书和使用说明书; 根据具体任务,上述内容可适当调整。 2 .系统设计的基本步骤 可编程控制器应用系统设计与调试的主要步骤,如图 1 所示。图 1 可编程控制器应用系统设计与调试的主要步骤

( 1 )深入了解和分析被控对象的工艺条件和控制要求 a .被控对象就是受控的机械、电气设备、生产线或生产过程。 b .控制要求主要指控制的基本方式、应完成的动作、自动工作循环的组成、必要的保护和联锁等。对较复杂的控制系统,还可将控制任务分成几个独立部分,这种可化繁为简,有利于编程和调试。 ( 2 )确定 I/O 设备 根据被控对象对 PLC 控制系统的功能要求,确定系统所需的用户输入、输出设备。常用的输入设备有按钮、选择开关、行程开关、传感器等,常用的输出设备有继电器、接触器、指示灯、电磁阀等。 ( 3 )选择合适的 PLC 类型 根据已确定的用户 I/O 设备,统计所需的输入信号和输出信号的点数,选择合适的 PLC 类型,包括机型的选择、容量的选择、I/O 模块的选择、电源模块的选择等。

容错控制

容错控制知识 一知识点 1冗余:多余的重复或啰嗦内容,通常指通过多重备份来增加系统的可靠性。 2冗余设计:通过重复配置某些关键设备或部件,当系统出现故障时,冗余的设备或部件介入工作,承担已损设备或部件的功能,为系统提供服务,减少宕机事件的发生。 3冗余设计常用方法有硬件冗余、软件冗余(主要指解析冗余)、功率冗余。 3.1硬件冗余方法是通过对重要部件和易发生故障的部件提供备份,以提高系统的容错性能。软件冗余方法主要是通过设计控制器来提高整个控制系统的冗余度,从而改善系统的容错性能。硬件冗余方法按冗余级别不同又可分为元件冗余、系统冗余和混合冗余。元件冗余通常是指控制系统中关键部件(如陀螺仪和加速度计等)的冗余。 (l)静态“硬件冗余” 例如设置三个单元执行同一项任务,把它的处理结果,如调节变量相互比较,按多数原则(三中取二)判断和确定结构值。采用这种办法潜伏着这样的可能性: 有两个单元同时出错则确定的结果也出错,不过发生这种现象的概率极小。 (2)动态“硬件冗余” 即在系统运行之初,并不接入所有元件,而是留有备份,当在系统运行过程中某元件出错时,再将候补装置切换上去,由其接替前者的工作。这种方法需要注意的问题是切换的时延过程,最好能保持备份元件与运行元件状态的同步。 3.2软件冗余又可分为解析冗余、功能冗余和参数冗余等,软件冗余是通过估计技术或软件算法来实现控制系统的容错性, 解析冗余技术是利用控制系统不同部件之间的内在联系和功能上的冗余性,当系统的某些部件失效时,用其余完好部件部分甚至全部地承担起故障部件所丧失的作用,以将系统的性能维持在允许的范围之内。 冗余技术在某种程度上能提高DCS 本身的可靠性和数据通信的可靠性, 但对于整个闭环系统来讲,系统中还包含传感器,变送器,和执行器等现场设备,他们往往工作在恶劣的环境下,出现故障的概率也比较高,软硬件冗余一般无能为力,我们要采用容错控制来提升系统稳定性。 4 容错控制指控制系统在传感器,执行器或元部件发生故障时,闭环系统仍

离散分布控制系统的容错设计

图2智能抽油机节能控制器方案框图 感器模块实时检测电机输出功率的变化,由单片机系统来控制IGBT的关断,控制电机输入端电压的大小,以调整电动机输出功率,减少电动机的铁损和铜损。达到节能降耗的目的。 为克服负功率对I GBT模块的影响并进一步节能,系统设置了负功率处理模块,通过该模块,系统以和电网同样的频率和相位将电动机发出的电能馈送到电网中,进一步降低电机损耗。 由于IGBT是比较昂贵的器件,而且对使用条件要求比较高,必须加以保护。根据抽油机的实际特点,系统设置了过流保护、过压保护、缺相保护和温度保护,从而使系统能够更安全地运行。 智能型抽油机节能控制器具有以下的功能: 1可设置电动机的最大工作电流、空载电流和最高工作温度等参数,根据电动机工作电流的大小判断抽油机的工况。当电动机工作电流超过额定电流和最高工作温度超过额定工作温度时停抽油机工作,从而保护电动机。当抽油机电动机工作电流小于空载电流,认为抽油机空载,可停止抽油机工作,等待原油聚集。根据所设定的停机时间,抽油机停止工作一段时间后,控制系统自动启动抽油机,从而实现抽油机停机节能。 o断电后来电时自动延时启动时间,避免油田抽油机同时启动。 ?软启动功能,减少启动对电网的冲击并节约电能。 ?可根据抽油机运行的载荷工况,自动控制电机输入电压,控制抽油机电动机的输出功率,达到节能目的。 ?独特的负功率处理功能,能有效减小电机发电所带来的影响,提高节能效果。 ?具有数据存储和数据通信功能。通过专用数据回放卡可转储数据进行数据处理分析和绘制抽油机电能图,从而方便油田对抽油机的管理。 3结束语 智能型抽油机节能控制器的开发经过了样机开发和油田试验两个阶段,我们逐渐掌握了游梁式抽油机工作规律和抽油机节能控制器的关键技术,为系统投入运行奠定了基础。 参考文献 1周新生,程汉湘,刘建,等.抽油机的负载特性及提高功率因数措施的研究.北华大学学报(自然科学版),2003(6) 2张继震,马广杰,杨靖.游梁抽油机电机电量测试的特殊性.电机技术,2003(2) 3丁建林,姜建胜,刘瓯,等.抽油机变频调速智能控制技术研究. 石油机械,2003 修改稿收到日期:2004-08-20。 第一作者彭国标,男,1972年生,1995年毕业于国防科技大学精密仪器与检测技术专业,获学士学位,工程师;主要从事载人航天发射场地面系统自动控制、建筑智能化和工业自动化控制。 离散分布控制系统的容错设计 Fault Tolerant Design of Discrete D istributed Control System 王根平 (深圳职业技术学院机电系,深圳518055) 摘要在所考虑的离散分布控制系统中,每个可编程控制器作为一个控制结点,结点之间通过网络进行连接保持通信。容错的设计思路是,增加一个在Galois域进行运算的冗余控制器,从而使系统能够自动侦查系统中的结点(可编程控制器)是否正常工作,并能5自动化仪表6第25卷第9期2004年9月

自动控制原理例题详解-线性离散控制系统的分析与设计考试题及答案(DOC)

----------2007-------------------- 一、(22分)求解下列问题: 1. (3分)简述采样定理。 解:当采样频率s ω大于信号最高有效频率h ω的2倍时,能够从采样信号)(*t e 中 完满地恢复原信号)(t e 。(要点:h s ωω2>)。 2.(3分)简述什么是最少拍系统。 解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻上无稳态误差的随动系统。 3.(3分)简述线性定常离散系统稳定性的定义及充要条件。 解:若系统在初始扰动的影响下,其输出动态分量随时间推移逐渐衰减并趋于零,则称系统稳定。稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。 4.(3分)已知X(z)如下,试用终值定理计算x (∞)。 ) 5.0)(1()(2+--= z z z z z X 解: 经过验证(1)X()z z -满足终值定理使用的条件,因此, 211x()lim(1)X()lim 20.5 z z z z z z z →→∞=-==-+。 5.(5分)已知采样周期T =1秒,计算G (z ) = Z [G h (s )G 0(s ) ]。 ) 2)(1(1 e 1)()()(0++-= =-s s s s G s G s G Ts h 解:11 1 12 11 11(1)(1e )()(1)Z[](1)()s s 11e (1e )e z z z G z z z z z z z --------=--=--=+---++ 6.(5分) 已知系统差分方程、初始状态如下: )k (1)(8)1(6)2(=++-+k c k c k c ,c(0)=c(1)=0。 试用Z 变换法计算输出序列c (k ),k ≥ 0。 解: 22 ()6()8()() ()(1)(68)3(1)2(2)6(4)1 (){2324},0 6 k k z C z C z C z R z z z z z C z z z z z z z c k k -+===-+--+---=-?+≥ 二、(10分)已知计算机控制系统如图1所示,采用数字比例控制() D z K =, 其中K >0。设采样周期T =1s ,368.0e 1=-。 注意,这里的数字控制器D (z )就是上课时的()c G z 。

容错控制

一、概述 ? 1.1 引言 随着工业过程越来越趋向于大型化和复杂化,以及大规模高水平的综合自动化系统的出现,对控制质量的要求日趋突出,切实保障现代复杂过程的可靠性与安全性,具有十分重要的意义。 ? 1.2 概念 容错控制系统是在元部件(或分系统)出现故障时仍具有完成基本功能能力的系统,其科学意义就是要尽量保证动态系统在发生故障时仍然可以稳定运行,并具有可以接受的性能指标。

二、容错控制分类 容错控制可以从不同的角度分类?按系统:线性系统容错控制和非线性系统容错控制 ?按克服故障部件:执行器、传感器、控制器故障容错控制 ?按设计方法特点:被动容错控制、主动容错控制

?被动容错控制 其是设计适当固定结构的控制器,该控制器除 了考虑正常工作状态的参数值以外,还要考虑在故障情况下的参数值。 被动容错控制是在故障发生前和发生后使用同 样的控制策略,不进行调节。 被动容错控制包括:同时镇定,完整性控制, 鲁棒性容错控制,即可靠控制等几种类型。 ?主动容错控制 主动容错控制是在故障发生后需要从新调整控 制器参数,也可能改变控制器结构。 主动容错控制包括:控制器重构,基于自适应 控制的主动容错控制,智能容错控制器设计的方法。

三、容错控制设计的主要方法 容错控制器的设计方法有硬件冗余方法和解析冗余方法两大类。 3.1 基于硬件结构上的考虑 对于某些子系统可以采用双重或更高重备份的方法来提高系统的可靠性。只要能建立起冗余的信号通道,这种方式可用于对任何硬件环节失效的容错控制。 从设计原则着眼,又可分为下列几种: 3.1.1 静态硬件冗余 例如设置三个单元执行同一项任务,把他的处理结果,如被控变量相互比较,按多数原则(三中取二)确定判断和确定结构值。

基于分布式控制系统的冗余容错控制系统和方法与制作流程

图片简介: 本技术介绍了基于分布式控制系统的冗余容错控制系统和方法,涉及控制技术领域,解决了被控设备断路故障失控问题。本技术中冗余支路的电气控制模块的输出端并联连入k路被控制回路中所述控制支路的电气控制模块输出端的两端,选通支路用于控制所述冗余支路的电气控制模块的输出端k路并联支路的通断;当k路控制支路出现一条控制支路故障时,故障的控制支路为故障支路,冗余控制上位机主动发出数据通信导通故障支路对应的选通支路,所述冗余支路的电气控制模块输出端替换故障支路电气控制模块输出端的所在的故障支路回路位置。本技术以一条冗余控制支路可以对多条实际控制支路进行容错运行,灵活方便,节约了成本。 技术要求 1.基于分布式控制系统的冗余容错控制系统,其特征在于,包括一路冗余支路、k路控制支路和k路选通支路,其中k≥2且k为整数; 所述控制支路包括电气控制模块、被控设备,所述控制支路的电气控制模块的输出端与被控设备构成被控制回路;

所述冗余支路包括电气控制模块,所述冗余支路的电气控制模块的输出端,并联连入k路被控制回路中的所述控制支路的电气控制模块输出端的两端,形成k路并联支路; k路选通支路为k个分别位于k路并联支路上,所述选通支路用于控制k路并联支路的通断。 2.根据权利要求1所述的基于分布式控制系统的冗余容错控制系统,其特征在于,所述冗余容错被控设备控制系统包括控制室,在控制室中控制控制支路的电气控制模块输入端信号,在控制室中控制冗余支路的电气控制模块输入端信号。 3.根据权利要求2所述的基于分布式控制系统的冗余容错控制系统,其特征在于,所述控制室包括分布式控制系统用上位机,所述分布式控制系统用上位机控制控制支路的电气控制模块输入端信号,所述分布式控制系统用上位机控制冗余支路的电气控制模块输入端信号。 4.根据权利要求1所述的基于分布式控制系统的冗余容错控制系统,其特征在于,所述选通支路包括多个MCU驱动的小型电机驱动电路、小型电机驱动电路发出电机控制信号驱动的机械旋转连接单元,MCU发出选通模块驱动信号控制选通模块驱动电路,选通模块驱动电路连入机械旋转连接单元控制k个选通模块; 机械旋转单元包括小型电机、转轴信号端子、固定信号端子,转轴信号端子接收选通模块驱动电路输出的信号,k个固定信号端子上对应k个选通模块,MCU通过电机间接控制转轴信号端子旋转到特定固定信号端子位置,所述特定固定信号端子对应的选通模块上导通,此时,冗余支路的电气控制模块代替所述特定固定信号端子对应的被控制回路中的电气控制模块,选通模块与被控制回路一一对应。 5.根据权利要求4所述的基于分布式控制系统的冗余容错控制系统,其特征在于,所述控制室包括冗余控制上位机,冗余控制上位机控制k路选通支路,冗余控制上位机通过发出信号与多个MCU进行数据通信间接控制k个选通模块。 6.根据权利要求4所述的基于分布式控制系统的冗余容错控制系统,其特征在于,所述选通模块驱动电路数目为一。 7.根据权利要求1-6任意一条所述的基于分布式控制系统的冗余容错控制系统,其特征在于: 所述电气控制模块包括固态继电器; 所述被控设备包括电磁阀、电源; 所述固态继电器包括输入侧、输出侧; 分布式控制系统用上位机发出信号至控制支路的固态继电器输入侧,响应固态继电器输出侧;

1、控制系统设计的一般思路

“理解为先”单元教学设计模板 课程标准 学生者能够:理解控制的含义了解控制的手段,理解控制在生产和生活中的应用。 通过学习,培养学生注意观察问题,发现问题,帮助学生了解控制的作用。 情感和价值观目标:激发学生了解控制,研究控制的兴趣与热情。掌握智能( 学生该掌握的知识是: 理解控制的含义了解控 制的手段,理解控制在 生产和生活中的应用。 理解意义( 学生将会理解: 识应用于技术实践的过程,初步掌握结构、流程、系统与控制的基本思想方法,并能综合运用所学知识和技能解决一些实际问题,发展创新精神和理论运用于实践的能力。形成和保持对技术问题的敏感性和探究欲望,具有对待技术的积极态度和正确使用技术的意识 学习迁移( 学会初步分析生活中的控制现象。学会联想与应用。

教学活动(运用A、M、T编码学习活动) 1、控制是普遍存在。 用一些典型的、生活中的例子让学生了解控制是普遍存在,对控制有初步的认识,打破其神秘感。 现代社会中的例子: 生产、生活中的例子(图片) 马上行动:指出下列事物发展与变化的多种可能性: 鱼塘:成熟的西瓜:流行性病毒:学生活动,完成任务。 古代社会中的例子: 案例1:大禹治水(图片) 请学生讲述〈〈大禹治水〉〉的故事 并提出问题,让学生思考。 问题:大禹治水过程中,通过什么手段实现治理好水患的目的? 通过“疏通河道,泄洪为主”手段实现治理好水患的目的。 2、控制的涵义 什么叫控制? 控制是根据自己的目的,通过一定的手段使事物沿着某一确定方向发展的行为和过程。 理解任何控制现象,都要明确:[来源:学&科&网Z&X&X&①控制的对象是什么,②控制要达到什么目的,③采取什么控制手段。 [探究活动][来源:学,科,网] 请同学们说说你在生活学习中所见到的应用控制的事例。(2-3位同学) 如:学校:学校的音乐铃声、多媒体教学系统、足球场草地自动喷淋系统、圈存机、体育馆的自动伸缩坐椅等。教学监控 一、游戏活动:控制的判断 自动控制 人工控制 摇动辘轳, 农用灌溉抽水机抽水的控制 用气筒给自行车的轮胎打气 电梯的上下运行控制 二选择题、 国汽车市场的不断发展,中国汽车的产、 喷式的高速增长。合了手、 的 出现在中国汽车市场上, 种全新的自动挡控制技术, 能通过智能控制系统实现对档位的自动控制, 与油门、 最佳的配合状态,而达到省油、节能、简化操作的效果。解这一控制现象,该从( A. B. C. D. 三、 控制系统的工作过程是: 汽车碰撞信号, 断模块判定和处理后, 给气囊充气。 系统中,

自动控制原理例题详解-线性离散控制系统的分析与设计考习题及答案

精心整理 ----------2007-------------------- 一、(22分)求解下列问题: 1. (3分)简述采样定理。 解:当采样频率s ω大于信号最高有效频率h ω的2倍时,能够从采样信号)(*t e 中 完满地恢复原信号)(t e 。(要点:h s ωω2>)。 2.(3分)简述什么是最少拍系统。 解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻 3.(3 4.(解:x()∞5.(5解:(G 6.(5 解: 二、(c (i X s ) z 图1 1.(5分)试求系统的闭环脉冲传递函数 () () o i X z X z ;

2.(5分)试判断系统稳定的K 值范围。 解:1. 101 1 1 1 1 1 1()(1)(1)11(1)1(1)(1e 11e 1G G z z Z s s z Z s s z z z z z z z e -------?? =-?? +????=--??+?? =-----=---= 1 10101111111 1e () ()e 1e ()1()1e (1e )(e )(1e )(1e )e e o i K X z KG G z z X z KG G z K z K z K K z K K ------------== -++--=-+--=-+- 2.(5 三、(8 已知一、求解下列问题: 1.(3分) 简述离散系统与连续系统的主要区别。 解:连续系统中,所有信号均为时间的连续函数;离散系统含有时间离散信号。 2.(3分) 简述线性定常离散系统的脉冲传递函数的定义。 解:在系统输入端具有采样开关,初始条件为零时,系统输出信号的Z 变换与输入信号的Z 变换之比。 3.(3分) 简述判断线性定常离散系统稳定性的充要条件。 解:稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。 4.(5分) 设开环离散系统如图所示,试求开环脉冲传递函数)(z G 。

利用MATLAB进行离散控制系统模拟

实验利用MATLAB进行离散控制系统模拟 本试验的目的主要是让学生初步掌握MATLAB软件在离散控制系统分析和设计中的应用。 1.连续系统的离散化。 在MATLAB软件中,对连续系统的离散化主要是利用函数c2dm( )函数来实现的,c2dm( )函数的一般格式为 C2dm( num, den, T, method),可以通过MATLAB的帮助文件进行查询。其中: Num:传递函数分子多项式系数; Den:传递函数分母多项式系数; T:采样周期; Method:转换方法; 允许用户采用的转换方法有:零阶保持器(ZOH)等五种。 2.求离散系统的相应: 在MATLAB中,求采样系统的响应可运用dstep( ),dimpulse( ),dlsim( )来实现的。分别用于求取采样系统的阶跃,脉冲,零输入及任意输入时的响应,其中dstep( )的一般格式如下: dstep( num, den, n),可以通过MATLAB的帮助文件进行查询。其中: Num:传递函数分子多项式系数; Den:传递函数分母多项式系数; N:采样点数;

3.此外,离散控制系统也可以用simulink工具箱进行仿真,仿真界面如下图(采样周期可以在对应模块中进行设定)。 1.编制程序实现上面三个仿真程序。 2.把得到的图形和结果拷贝在试验报告上。 3.在第1个例子中,改变采样周期为0.25,重新运行程序,把结果和原来结果进行比较,并说明为什么? 4.在第2个例子中,改变采样点数为70,重新运行程序,把结果和原来结果进行比较,并说明为什么?同样,改变采样周期T,观察不同周期下 系统阶跃响应的动态性能,分析采样周期对系统动态性能的影响。 1. 1) num=10; den=[1,7,10]; t=0.1 [numz,denz]=c2dm(num,den,t,'zoh'); printsys(numz,denz,'z') 得出结果: t =

相关文档
最新文档