(完整版)高三一轮复习三角函数专题及答案解析
2024届高三数学一轮复习--三角函数与解三角形第3练 两角和与差的正弦、余弦和正切公式(解析版)

【详解】因为
cos
4
5 ,所以 5
2 cos 2
2 sin 2
5 ,平方后可得 5
1 cos2 sin2 sin cos 1 ,整理得 1 1 sin 2 1 ,所以 sin 2 3 .
2
5
22
5
5
故选:D.
2.B
【分析】运用两角和与差的正弦公式和同角的商数关系,计算即可得到所求值
6
,则
tan
(
)
A. 3
B. 2 3
C. 6
D. 6 3
3.(2023·全国·高三专题练习)若
1 1
tan tan
π 4 π 4
1 2
,则
cos
2
的值为(
)
A.- 3 5
B. 3 5
C. 4 5
D. 4 5
4.(2023
秋·江苏泰州·高三泰州中学校考开学考试)已知
cos
12
【详解】因为
sin
3
sin
6
,所以
1 2
sin
3 cos 2
3 sin 1 cos ,
2
2
所以 3 1 cos 3 1 sin ,所以 tan 3 1 2 3 . 3 1
故选:B
3.A
【分析】由已知可得
tan
π 4
1 3
,进而求出
四个命题:
甲: tan 1 ;
2 乙: tan tan 7 : 3 ;
丙:
sin cos
5 4
;
丁: tan tan tan tan 5 : 3 .
如果其中只有一个假命题,则该命题是( )
A.甲
2025年高考数学一轮复习讲义含答案解析 第5节 函数y=Asin(ωx+φ)的图象及应用

第五节函数y=A sin(ωx+φ)的图象及应用1.y=A sin(ωx+φ)的有关概念五个关键点如下表所示:x05-φωπ2ω-φω06π-φω3π2ω-φω072π-φωωx+φ008π2π093π22πy=A sin(ωx+φ)0A0-A0 3.函数y=sin x的图象经变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的两种途径提醒:两种变换的区别:①先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位长度;②先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位长度.1.概念辨析(正确的打“√”,错误的打“×”)(1)把y=sin x的图象上各点的横坐标缩短为原来的12,纵坐标不变,所得图象对应的函数解析式为y=sin 12x.()(2)将y=sin(-2x)的图象向右平移π6个单位长度,得到y=sin -2x-π3的图象.()(3)利用图象变换作图时,可以“先平移,后伸缩”,也可以“先伸缩,后平移”,平移的长度一致.()(4)y=2sin 13x-π4的初相为-π4.()答案(1)×(2)×(3)×(4)√2.小题热身(1)y=2sin 12x-π3的振幅、频率和初相分别为()A.2,4π,π3B.2,14π,π3C.2,14π,-π3D.2,4π,-π3答案C解析由题意知A =2,f =1T =ω2π=14π,初相为-π3.故选C.(2)(人教A 必修第一册习题5.6T1改编)为了得到函数y =2sin x y=2sin2x 的图象()A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度答案A解析y =x 2sin 2故选A.(3)(人教B 必修第三册7.3.2练习B T1改编)为了得到y =3cos x y =3cos ()A .纵坐标伸长到原来的3倍,横坐标不变B .横坐标伸长到原来的3倍,纵坐标不变C .纵坐标缩短到原来的13,横坐标不变D .横坐标缩短到原来的13,纵坐标不变答案D解析因为变换前后,两个函数的初相相同,所以只需把y =3cos纵坐标不变,横坐标缩短到原来的13,即可得到函数y =3cos x .故选D.(4)(人教A 必修第一册5.7例1改编)如图,某地一天从6~14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+B ,A >0,ω>0,0<φ<π,则这段曲线的函数解析式为________.答案y =10,x ∈[6,14]解析从题图中可以看出,从6~14时的图象是函数y =A sin(ωx +φ)+B 的半个周期,则+B =15,A +B =5,所以A =12×(15-5)=5,B =12×(15+5)=10.又12×2πω=14-6,所以ω=π8.又π8×10+φ=2π+2k π,k ∈Z ,0<φ<π,所以φ=3π4,所以y =10,x ∈[6,14].考点探究——提素养考点一函数y =A sin(ωx +φ)的图象变换例1(1)将函数f (x )=cos x 的图象向左平移π2个单位长度,得到的图象的函数解析式为()A .y =-xB .y =xC .y =-xD .y =x 答案D解析由题意知,将函数f (x )=cosx 图象向左平移π2个单位长度,得g (x )=cos 3+π6=x +3π2+cos πx +π2+x +π2+x 所以函数解析式为y =x 故选D.(2)已知函数f (x )=sin(ωx +φ>0,0<φ-π6,f (x )的相邻两个零点的距离为π2,为得到y =f (x )的图象,可将y =sin x 图象上的所有点()A .先向右平移π3个单位长度,再将所得图象上所有点的横坐标缩短为原来的12,纵坐标不变B .先向左平移π3个单位长度,再将所得图象上所有点的横坐标缩短为原来的12,纵坐标不变C .先向左平移π3个单位长度,再将所得图象上所有点的横坐标伸长为原来的2倍,纵坐标不变D .先向右平移π3个单位长度,再将所得图象上所有点的横坐标伸长为原来的2倍,纵坐标不变答案B解析因为相邻两个零点的距离为π2,所以函数f (x )的最小正周期T =2×π2=π,则ω=2πT=2,又点B -π6,,所以sin 2×φ=0,解得-π3+φ=k π,k ∈Z ,即φ=π3+k π,k ∈Z ,又0<φ<π2,所以当k =0时,φ=π3,所以f (x )=x 则将y =sin x 的图象先向左平移π3个单位长度可得y =sin ,再将所得图象上所有点的横坐标缩短为原来的12,纵坐标不变,得到y =f (x )的图象.故选B.【通性通法】三角函数图象变换的关键点及解题策略(1)定函数:一定要看准是将哪个函数的图象变换得到哪一个函数的图象.(2)变同名:如果平移前后两个图象对应的函数的名称不一致,那么应先利用诱导公式化为同名函数,ω为负时应先变成正值.(3)选方法:根据变换前后函数的特点,选择先平移后伸缩还是先伸缩后平移.注意:对于函数y =sin ωx (ω>0)的图象,向左平移|φ|个单位长度得到的是函数y =sin[ω(x +|φ|)]的图象,而不是函数y =sin(ωx +|φ|)的图象.【巩固迁移】1.(2023·武汉模拟)为了得到y =sin y =sin x 图象上的所有点的纵坐标不变()A .所有点的横坐标变为原来的14,再向右平移π8个单位长度B .所有点的横坐标变为原来的4倍,再向右平移π8个单位长度C .先向右平移π8个单位长度,再将所有点的横坐标变为原来的4倍D .先向右平移π2个单位长度,再将所有点的横坐标变为原来的14答案C解析y =sin x 图象上所有点的横坐标变为原来的4倍得到y =sin x 4的图象,再向右平移π2个单位长度得到y =sin ,故A ,B 错误;y =sin x 的图象先向右平移π8到y =sin,再将所有点的横坐标变为原来的4倍得到y =sin ,故C 正确,D 错误.考点二求函数y =A sin(ωx +φ)的解析式例2已知函数f (x )=A sin(ωx +φ)的部分图象如图所示,则f (x )的表达式可以为()A .f (x )=xB .f (x )=xC .f (x )=xD .f (x )=答案A解析不妨令A >0,ω>0.由题图可知,A =2,34T =13π12-π3,∴T =π,∴ω=2πT=2,f (x )的2×13π12+φ=π2+2k π,k ∈Z ,故φ=-13π6+π2+2k π,k ∈Z ,∴f (x )=x -13π6+π2+2k x -π6+x 故选A.【通性通法】确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法(1)求A ,b ,确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m 2.(2)求ω,确定函数的最小正周期T ,则可得ω=2πT.(3)求φ,常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上);②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时,ωx +φ=π2+2k π(k ∈Z );“最小值点”(即图象的“谷点”)时,ωx +φ=3π2+2k π(k ∈Z ).提醒:如果已知图象上有最值点,最好代入最值点求解.若将图象上的非最值点代入解析式求解时,注意点在上升区间还是在下降区间.【巩固迁移】2.(2024·湘潭模拟)已知函数f (x )=A sin(ωx +φ>0,ω>0,|φ将y =f (x )的图象向左平移π3个单位长度后,得到的图象对应的函数解析式为()A .y =-cos2xB .y =cos2xC .y =xD .y =x 答案C解析观察图象得A =1,令函数f (x )的周期为T ,则有3T 4=11π12-π6=3π4,解得T =π,则ω=2πT=2,而当x =π6时,f (x )max =1,则有2×π6+φ=2k π+π2,k ∈Z ,又|φ|<π2,则φ=π6,因此f (x )=x 将y =f (x )的图象向左平移π3个单位长度得x 所以将y =f (x )的图象向左平移π3个单位长度后,得到的图象对应的函数解析式为y =x 故选C.考点三函数y =A sin(ωx +φ)的图象与性质(多考向探究)考向1图象与性质的综合应用例3(1)已知函数f (x )=sin ωx (ω>0)的最小正周期为π,将函数y =f (x )的图象向左平移π6个单位长度后,再将图象上的所有点的纵坐标缩短为原来的33,得到函数y =g (x )的图象,则函数y =g (x )-3cos x 的最小值为()A .4B .-4C .178D .-178答案D解析f (x )=sin +sin ωx =12sin ωx +32cos ωx +sin ωx =32sin ωx +32cos ωx =3sin因为f (x )的最小正周期为π,ω>0,所以π=2πω,所以ω=2,所以f (x )=3sin x 又将函数y =f (x )的图象向左平移π6个单位长度后,再将图象上的所有点的纵坐标缩短为原来的33,得到函数y =g (x )的图象,所以g (x )=33×3sin 2+π6=cos2x ,所以y =g (x )-3cos x =cos2x -3cos x =2cos 2x -3cos x -1,当cos x =34时,y =g (x )-3cos x 有最小值,为-178.故选D.(2)已知函数f (x )=ω>0),若函数f (x )在区间(0,π)上有且只有两个零点,则ω的取值范围为________.答案,136解析由x ∈(0,π)可得ωx -π6∈-π6,ωπ若函数f (x )在区间(0,π)上有且只有两个零点,则π<ωπ-π6≤2π,解得76<ω≤136故ω,136.【通性通法】(1)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.(2)解决三角函数中的零点(方程根)问题的关键是根据条件作出对应函数的图象,然后利用数形结合思想求解.【巩固迁移】3.(多选)(2023·黑龙江佳木斯一中模拟)已知函数f (x )=sin(2x +φ)+1的图象向左平移π3个单位长度后关于直线x =0对称,则下列说法正确的是()A .f (x )在区间π3,4π3上有一个零点B .f (x )C .f (x )在区间π12,5π12上单调递增D .f (x )在区间π12,π4上的最大值为32+1答案AD解析函数f (x )=sin(2x +φ)+1的图象向左平移π3个单位长度后的图象对应的解析式为g (x )=sin 2φ+1=x +2π31,又g (x )的图象关于直线x =0对称,且|φ|<π2,所以2π3+φ=π2,φ=π2-2π3=-π6,所以f (x )=x 1,因为0,所以f (x )的图象,故B 错误;当π3≤x ≤4π3时,π2≤2x -π6≤5π2,令t =2x -π6,则f (x )在π3,4π3的零点个数可转化为y =sin t +1在t ∈π2,5π2的零点个数,结合图象可知,当π2≤t ≤5π2时,y =sin t +1的图象与x 轴只有一个交点,即f (x )在π3,4π3上只有一个零点,故A 正确;当π12≤x ≤5π12时,0≤2x -π6≤2π3,结合图象可知,此时f (x )有增有减,故C 错误;当π12≤x ≤π4时,0≤2x -π6≤π3,结合图象可知,此时f (x )单调递增,所以当x =π4时,函数取最大值,为sin π3+1=32+1,故D 正确.故选AD.考向2三角函数模型的简单应用例4如图,点A ,B 分别是圆心在坐标原点,半径为1和2的圆上的动点.动点A 从初始位置A cos π3,2rad/s 做圆周运动,同时点B 从初始位置B 0(2,0)开始,按顺时针方向以角速度2rad/s 做圆周运动.记t 时刻,点A ,B 的纵坐标分别为y 1,y 2.(1)求t =π4时,A ,B 两点间的距离;(2)若y =y 1+y 2,求y 关于时间t (t >0)的函数关系式,并求当t ,π2时,y 的取值范围.解(1)连接AB ,OA ,OB (图略),当t =π4时,∠xOA =π2+π3=5π6,∠xOB =π2,所以∠AOB =2π3.又OA =1,OB =2,所以AB 2=12+22-2×1×2cos 2π3=7,即A ,B 两点间的距离为7.(2)依题意,y 1=t y 2=-2sin2t ,所以y =t 2sin2t =32cos2t -32sin2t =3cos t即函数关系式为y =3cos t t >0),当t ,π2时,2t +π3∈,4π3,所以t ∈-1故当t ,π2时,y ∈-3【通性通法】利用三角函数模型解决实际问题的步骤(1)寻找与角有关的信息,确定选用正弦、余弦还是正切型函数模型.(2)寻找数据,建立函数解析式并解题;最后将所得结果“翻译”成实际答案,要注意根据实际作答.解题思路如下:【巩固迁移】4.(多选)(2024·西南大学附中模拟)水车在古代是进行灌溉引水的工具,亦称“水转筒车”,是一种以水流作动力,取水灌田的工具.据史料记载,水车发明于隋而盛于唐,距今已有1000多年的历史,是人类的一项古老的发明,也是人类利用自然和改造自然的象征,如图是一个半径为R 的水车,一个水斗从点A (3,-33)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时120秒.经过t 秒后,水斗旋转到点P ,设点P 的坐标为(x ,y ),其纵坐标满足y =f (t )=R sin(ωt +φ0,ω>0,|φ()A .水斗做周期运动的初相为-π3B .在水斗开始旋转的60秒(含)中,其高度不断增加C .在水斗开始旋转的60秒(含)中,其最高点离平衡位置的纵向距离是33D .当水斗旋转100秒时,其和初始点A 的距离为6答案AD解析对于A ,由A (3,-33),知R =32+(-33)2=6,T =120,所以ω=2πT =π60.当t =0时,点P 在点A 位置,有-33=6sin φ,解得sin φ=-32,又|φ|<π2,所以φ=-π3,故A 正确;对于B ,由A 项可知f (t )=当t ∈(0,60]时,π60t -π3∈-π3,2π3,所以函数f (t )先增后减,故B 错误;对于C ,当t ∈(0,60]时,π60t -π3∈-π3,2π3,-32,1,所以点P 到x 轴的距离的最大值为6,故C 错误;对于D ,当t =100时,π60t -π3=4π3,点P 的纵坐标为y =-33,横坐标为x =-3,所以|PA |=|-3-3|=6,故D 正确.课时作业一、单项选择题1.为了得到函数y =2sin y =sin x -3cos x 的图象()A .向左平移π4个单位长度B .向右平移π4个单位长度C .向左平移π2个单位长度D .向右平移π2个单位长度答案C解析y =sin x -3cos x =x -32cos x cos π3-cos x 故将其图象向左平移π2个单位长度可得y =+π2-2sin .故选C.2.关于函数f (x )=x ()A .-π是f (x )的一个周期B .f (x )的图象可由y =sin2x 的图象向右平移π3个单位长度得到C .f (x +π)的一个零点为x =π6D .y =f (x )的图象关于直线x =17π12对称答案B解析f (x )=sinx π,故-π也是其周期,故A 正确;f (x )的图象可由y=sin2x 的图象向右平移π6个单位长度得到,故B sin2π=0,故C 正确;sin 5π2=sin π2=1,故D 正确.3.已知函数f (x )=A sin(ωx +φ,ω,φ是常数,A >0,ω>0,0<φ为了得到函数f (x )的图象,可以将函数y =2sin x 的图象()A .先向右平移π6个单位长度,再将所得图象的横坐标缩短为原来的12,纵坐标不变B .先向左平移π6个单位长度,再将所得图象的横坐标伸长为原来的2倍,纵坐标不变C .先向左平移π3个单位长度,再将所得图象的横坐标伸长为原来的2倍,纵坐标不变D .先向左平移π3个单位长度,再将所得图象的横坐标缩短为原来的12,纵坐标不变答案D解析由题图可知,A =2,14T =7π12-π3=π4,所以T =π,即2πω=π,解得ω=2.当x =7π12时,7π12×2+φ=3π2+2k π,k ∈Z ,所以φ=π3+2k π,k ∈Z ,又|φ|<π2,所以φ=π3.所以f (x )=2sin x将y =2sin x 的图象先向左平移π3个单位长度,得到y =2sin ,再将所得图象的横坐标缩短为原来的12,纵坐标不变,得到f (x )=2sin x .故选D.4.(2023·湖南永州模拟)将函数f (x )=3sin x cos x +cos 2x -1的图象向右平移π6个单位长度,然后将所得函数图象上所有点的横坐标缩短为原来的12(纵坐标不变),得到函数y =g (x )的图象,则g (x )的单调递增区间是()A .-π12+k π2,π6+k π2(k ∈Z )B .-π24+k π2,5π24+k π2(k ∈Z )C .-π3+2k π,2π3+2k π(k ∈Z )D .-π6+2k π,5π6+2k π(k ∈Z )答案A解析f (x )=32sin2x +1+cos2x 2-1=32sin2x +cos2x 2-12=x -12,则g (x )=x -12,令-π2+2k π≤4x -π6≤π2+2k π(k ∈Z ),解得-π12+k π2≤x ≤π6+k π2(k ∈Z ).5.(2023·贵州贵阳模拟)将函数f (x )=sin(2x -φ)(φ>0)的图象向右平移π8个单位长度,得到函数g (x )的图象.若g (x )在0,φ2上单调递增,则φ的最大值为()A .3π4B .π2C .π3D .π4答案D解析由题意可得g (x )=f=sin x -π4-当x ∈0,φ2时,2x -π4-φ∈-π4-φ,-π4,因为g (x )在0,φ2上单调递增,所以-π2≤-π4-φ<-π4,解得0<φ≤π4,所以φ的最大值为π4.6.已知函数f (x )=4sin(ωx +φ+φω>0,|φ|<π2,如图是y =f (x )的部分图象,则=()A .-3B .3C .-2D .2答案A解析f (x )=4sin(ωx +φ+φ4sin(ωx +φ)cos(ωx +φ)=2sin(2ωx +2φ).由题图可知f (0)=3,即sin2φ=32,由于点(0,3)在单调递增的区间内,所以2φ=π3+2k π,k ∈Z ,解得φ=π6+k π,k ∈Z ,根据题意知φ=π6,则5π6ω+π3=2π,解得ω=2,故f (x )=x 则2sin 4π3=-2sin π3=- 3.故选A.7.若关于x 的方程23cos 2x -sin2x =3-m 在区间-π4,π6上有且只有一个解,则m 的取值范围为()A .(-1,0]B .{-2}∪(-1,0]C .[-2,0]D .{-1}∪[0,1)答案B解析23cos 2x -sin2x =3-m 整理可得x =-m 2,令t =2x +π6,因为x ∈-π4,π6,则t ∈-π3,π2,所以cos t =-m2在区间-π3,π2上有且只有一个解,即y =cos t 的图象和直线y =-m 2只有1个交点.由图可知,-m 2=1或0≤-m 2<12,解得m =-2或-1<m ≤0.故选B.8.(2023·湖北三校联考)已知函数f (x )=2sin(ωx +φ)ω>0,0<φ<π2f (x 1)=f (x 2)=-32,则cos π6(x 2-x 1)=()A .-34B .-74C .34D .74答案C解析由f (0)=2sin φ=1,得sin φ=12,因为0<φ<π2,所以φ=π6,又由图象可知12T >52,即T =2πω>5,解得0<ω<2π5,又由f 52=2sin 52ω+π60,即52ω+π6=k π,k ∈Z ,即ω=-π15+25k π,k ∈Z ,从而ω=π3,故f (x )=2sin π3x +π6,令π3x +π6=π2+k π,k ∈Z ,则x =1+3k ,k ∈Z ,从而函数f (x )图象的对称轴为直线x =1+3k ,k ∈Z ,由图象可知,直线x =x 1与直线x =x 2关于直线x =-2对称,即x 1+x 2=-4,则x 2=-4-x 1,且x 1∈-72,-2,因为f (x 1)=2sin π3x 1+π6=-32,所以sin π3x 1+π6=-34,所以cos π6(x 2-x 1)=cos π6(-4-2x 1)=cos π3x 1+π6+π2sin π3x 1+π6=34.二、多项选择题9.函数f (x )=cos(ωx +φ)(ω>0,|φ|≤π)的部分图象如图所示,则()A .ω=πB .f (x )的单调递减区间为2k -14,2k +34,k ∈Z C .φ=π4D .f (x )的单调递减区间为k -14,k +34,k ∈Z 答案ABC解析由图象可知T 2=πω=54-14,所以ω=π,则f (x )=cos(πx +φ),故A 正确;因为点14,0在图象上,所以cos π4+φ0,所以π4+φ=π2+k π,k ∈Z ,即φ=π4+k π,k ∈Z ,又|φ|≤π,f (0)=cos φ∈(0,1),所以φ=π4,所以函数f (x )=cos πx +π4故C 正确;令2k π≤πx +π4≤2k π+π,k ∈Z ,即2k -14≤x ≤2k +34,k ∈Z ,所以f (x )的单调递减区间为2k -14,2k +34,k ∈Z ,故B正确,D 错误.故选ABC.10.函数f (x )=3sin(ωx +φ)(ω>0,0<φ<π)的部分图象如图所示,则()A .f (x )=3sin 2x +5π8B .f (x )图象的一条对称轴方程是x =-5π8C .f (x )k π-π8,0k ∈ZD .函数y =f 答案BD解析由函数f (x )=3sin(ωx +φ)的图象知,12T =3π8-=π2,所以T =π,即2πω=π,解得ω=2,所以f (x )=3sin(2x +φ),因为3,所以φ-π4=π2+2k π,k ∈Z ,即φ=3π4+2k π,k ∈Z ,因为0<φ<π,所以φ=3π4,f (x )=x 对于A ,由以上分析可知A错误;对于B ,-5π4+3,故B 正确;对于C ,令2x +3π4=k π,k ∈Z ,解得x =12k π-3π8,k ∈Z ,所以f (x )-3π8,k ∈Z ,故C错误;对于D ,设g (x )=x +7π4+x 3cos2x ,则g (x )的定义域为R ,g (-x )=3cos(-2x )=3cos2x =g (x ),所以g (x )为偶函数,故D 正确.故选BD.三、填空题11.(2023·山东日照模拟)已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,则φ=________.答案π6解析由题图知T 2=5π12=π2,T =π,ω=2ππ=2,由五点法可知,φ=0+2k π,k ∈Z ,即φ=π6+2k π,k ∈Z ,又|φ|<π,所以φ=π6.12.已知函数f (x )=-12(ω>0),将f (x )图象上所有点的横坐标缩短为原来的12,纵坐标不变,得到函数g (x )的图象.已知g (x )在[0,π]上恰有5个零点,则ω的取值范围是________.答案2解析g (x )=ωx -12,令t =2ωx -π3,由题意g (x )在[0,π]上恰有5个零点,即cos t=12在t ∈-π3,2πω-π3上恰有5个不相等的实根,由y =cos t 的性质可得11π3≤2πω-π3<13π3,解得2≤ω<73.故ω的取值范围为213.函数y =tan x 的相邻两个周期的图象与直线y =2及y =-2围成的图形的面积是________.答案4π解析由题意,画出图象如图所示.根据正切函数的对称性可知,两个阴影部分的面积相等,因此由y =tan x 的相邻两个周期的图象与直线y =2及y =-2围成的图形的面积可以看成矩形ABCD 的面积,因而S 矩形ABCD =4π.14.已知M ,N 是函数f (x )=2cos(ωx +φ)(ω>0)的图象与直线y =3的两个不同的交点.若|MN |的最小值是π12,则ω=________.答案4解析由于M ,N 是函数f (x )=2cos(ωx +φ)(ω>0)的图象与直线y =3的两个不同的交点,故M ,N 的横坐标是方程2cos(ωx +φ)=3的解,即M ,N 的横坐标x 1,x 2(不妨令x 1<x 2)是方程cos(ωx +φ)=32的解,设u =ωx +φ,作出函数y =cos u 的图象如图所示,设u 1=ωx 1+φ,u 2=ωx 2+φ,当x 2-x 1取最小值时,u 2-u 1=ω(x 2-x 1)取得最小值,即π12ω=π6-=π3,解得ω=4.四、解答题15.已知函数f (x )=sin ωx +3cos ωx (ω>0)的最小正周期是π.(1)求ω的值;(2)求f (x )图象的对称中心;(3)将f (x )的图象向右平移π3个单位长度后,再将所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递增区间.解(1)f (x )=sin ωx +3cos ωx =又ω>0,∵T =2πω=π,∴ω=2.(2)由(1)知,f (x )=x 令2x +π3=k π,k ∈Z ,解得x =k π2-π6,k ∈Z ,∴f (x )-π6,k ∈Z .(3)将f (x )的图象向右平移π3个单位长度后可得y =2sin x ,再将所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到g (x )=2sin ,由2k π-π2≤x -π3≤2k π+π2,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z .∴g (x )的单调递增区间为2k π-π6,2k π+5π6,k ∈Z .16.(多选)函数f (x )=sin(ωx +φ>0,|φ()A .f (x )=xB .∀x ∈R ,f (x )≥C .f (x )在-π2,π上的零点之和为πD .若f (x 1)≤f (x )≤f (x 2),则|x 2-x 1|≥π答案ABC解析T 2=7π12-π12=π2,所以T =π=2πω,所以ω=2,f (x )=sin(2x +φ),1,又|φ|<π2,所以φ=π3,所以f (x )=x 所以A 正确;-5π6+1,f (x )≥f ,所以B 正确;f (x )=0,则2x +π3=k π,k ∈Z ,则x =-π6+k π2,k ∈Z ,k=0时,x 1=-π6,k =1时,x 2=π3,k =2时,x 3=5π6,x 1+x 2+x 3=-π6+π3+5π6=π,所以C 正确;若f (x 1)≤f (x )≤f (x 2),则x 1=-5π12+k π,k ∈Z ,x 2=π12+k π,k ∈Z ,所以|x 2-x 1|≥π2,所以D 错误.故选ABC.17.风车发电是指把风的动能转化为电能.如图,风车由一座塔和三个叶片组成,每两个叶片之间的夹角均为120°.现有一座风车,塔高60米,叶片长度为30米.叶片按照逆时针方向匀速转动,并且6秒旋转一圈,风车开始旋转时,某叶片的一个端点P 在风车的最低点(P 离地面30米),设点P 离地面的距离为S (单位:米),转动时间为t (单位:秒),则S 与t 之间的函数解析式为________,一圈内点P 离地面的高度不低于45米的时长为________秒.答案S =60-30cos π3t (t >0)4解析因为风车6秒旋转一圈,则其转动的角速度为π3rad/s ,经过t 秒时,叶片转过的圆心角为π3t ,此时离地面的高度为30+-故S =60-30cos π3t (t >0).由S =60-30cos π3t ≥45,得cos π3t ≤12,因为0≤t ≤6,cos π3t ≤12,所以π3≤π3t ≤5π3,解得1≤t ≤5,故一圈内点P 离地面的高度不低于45米的时长为4秒.18.设f (x )=m x m -1(m ≠0).(1)若m =2,求函数f (x )的零点;(2)当x ∈0,π2时,-3≤f (x )≤4恒成立,求实数m 的取值范围.解(1)由m =2,得f (x )=x1,令f (x )=0,则x =-12,即2x -π3=2k π+2π3(k ∈Z )或2x -π3=2k π+4π3(k ∈Z ),解得x =k π+π2(k ∈Z )或x =k π+5π6(k ∈Z ),所以f (x )的零点是x =k π+π2(k ∈Z )或x =k π+5π6(k ∈Z ).(2)由0≤x ≤π2可得-π3≤2x -π3≤2π3,所以-12≤x1,当m >0时,易得m 2-1≤f (x )≤2m -1,由-3≤f (x )≤4x )min ≥-3,x )max ≤4,1≥-3,-1≤4,,解得0<m ≤52;当m <0时,可得2m -1≤f (x )≤m 2-1,由-3≤f (x )≤4x )min ≥-3,x )max ≤4,-1≥-3,1≤4,,解得-1≤m <0.综上可得,实数m 的取值范围是[-1,0),52.。
2022届新高考高三数学一轮复习考点讲义第7讲:三角函数【含答案】

三角函数一、知识点 (一)角的概念的推广1、角:一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
其中顶点,始边,终边称为角的三要素。
角可以是任意大小的。
(1)角按其旋转方向可分为:正角,零角,负角。
①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角; ②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角。
(2)在直角坐标系中讨论角:①角的顶点在原点,始边在x 轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角。
②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角。
(3)终边相同的角的集合:设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为},360|{Z n n S ∈⋅+α=ββ= 。
集合S 的每一个元素都与α的终边相同,当0=k 时,对应元素为α。
2、弧度制和弧度制与角度制的换算(1)角度制:把圆周360等分,其中1份所对的圆心角是1度,用度作单位来度量角的制度叫做角度制。
(2)1弧度的角:长度等于半径长的圆弧所对的圆心角叫做1弧度的角。
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。
任一已知角α的弧度数的绝对值rl =α||,这种以“弧度”作为单位来度量角的制度叫做弧度制。
(3)角度制与弧度制的互化:π=2360,π=180;815730.571801'≈≈π= rad ; rad 01745.01801≈π= 。
3、特殊角的三角函数值0 3045 60 90 120 135 150 1800 6π4π 3π 2π 32π 43π 65ππ sin 0 2122 23 1 232221 0 cos 1 232221 0 21- 22- 23- 1- tan 0 331 3 ⨯3- 1- 33- 0210 225 240 270 300 315 330 36067π 45π 34π 23π 35π 47π 611ππ2sin21- 22- 23- 1- 23- 22- 21- 04、平面直角坐标系中特殊线表示的角的集合:其中:Z n ∈,Z k ∈;x 轴正半轴 360⋅nπk 2 第一象限角平分线36045⋅+nπ+πk 24 x 轴负半轴 360180⋅+n π+πk 2 第二象限角平分线 360135⋅+nπ+πk 243 x 轴 180⋅n πk 第三象限角平分线 360225⋅+nπ+πk 245 y 轴正半轴 36090⋅+n π+πk 22第四象限角平分线 360315⋅+nπ+πk 247 y 轴负半轴 360270⋅+n π+πk 223 第一、三象限角平分线 18045⋅+n π+πk 4y 轴 18090⋅+nπ+πk 2 第二、四象限角平分线 180135⋅+n π+πk 43 坐标轴 90⋅n 2πk 象限角平分线 9045⋅+n 24π+πk 5、弧长及扇形面积公式:弧长公式:r l ⋅α=||扇形弧长,扇形面积公式:lr r S 21||212=⋅α=扇形,α是圆心角且为弧度制,r 是扇形半径。
(江苏版)高考数学一轮复习 专题4.4 三角函数图像与性质(讲)-江苏版高三全册数学试题

专题4.4 三角函数图像与性质【考纲解读】【直击考点】题组一 常识题1. 函数y =2sin 12x -3的最小正周期是________.【解析】最小正周期T =2π12=4π.2. 函数y =A sin x +1(A >0)的最大值是5,则它的最小值是________.【解析】依题意得A +1=5,所以A =4,所以函数y =4sin x +1的最小值为-4+1=-3. 3.判断函数y =2cos x 在[-π,0]上的单调性:____________.(填“增函数”或“减函数”) 【解析】由余弦函数的单调性,得函数y =2cos x 在[-π,0]上是增函数. 4.不等式2sin x >3的解集为______________________________. 【解析】不等式2sin x >3,即sin x >32,由函数y =sin x 的图像得所求解集为⎩⎨⎧⎭⎬⎫x π3+2k π<x <2π3+2k π,k ∈Z .题组二 常错题5.函数y =1-2cos x 的单调递减区间是___________________________.【解析】函数y =1-2cos x 的单调递减区间即函数y =-cos x 的单调递减区间,也即函数y =cos x 的单调递增区间,即[2k π-π,2k π](k ∈Z ).6.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图像分别交于M ,N 两点,则|MN |的最大值为________.【解析】设直线x =a 与函数f (x )=sin x 的图像的交点为M (a ,y 1),直线x =a 与函数g (x )=cos x的图像的交点为N (a ,y 2),则|MN |=|y 1-y 2|=|sin a -cos a |=2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫a -π4≤2,7.函数f (x )=2sin x4对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值为________.题组三 常考题8.定义在区间[0,2π]上的函数y =sin 2x 的图像与y =sin x 的图像的交点个数是________. 【解析】由sin 2x =sin x 得sin x =0或cos x =12,因为x ∈[0,2π],所以x =0,π3,π,5π3,2π,交点个数是5.9. 在函数①y =cos|2x |,②y =|sin x |,③y =sin ⎝ ⎛⎭⎪⎫2x -π3,④y =tan ⎝ ⎛⎭⎪⎫2x +π5中,最小正周期为π的所有函数是________.(填序号)【解析】函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;将函数y =sin x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻折至x 轴上方,即可得到y =|sin x |的图像,所以其最小正周期为π,②正确;函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的最小正周期为π,③正确;函数y =tan ⎝ ⎛⎭⎪⎫2x +π5的最小正周期为π2,④不正确.【知识清单】1.正弦、余弦、正切函数的图像与性质 1.三角函数线三角函数线是通过有向线段直观地表示出角的各种三角函数值的一种图示方法。
(完整版)一轮复习三角函数的基本概念

Y 轴正半轴 Y 轴负半轴
{α|α=k·360°+90°, k∈Z}
{α|α=k·360°+270°,k∈Z}
弧度制
我们把长度等于半径长的弧所对的
圆心角叫做1弧度的角.
单位符号 :rad
B
读作:弧度
C
l = 2r
l =r
1rad
Oo r
A
2rad
A
r
Oo
S={ β| β=α+k·3600 , K∈ Z}
注:(1) K ∈ Z
(2) 是任意角
(3)相等的角终边一定相同,但终边相同的 角不一定相等,终边相同的角有无数多个,它 们相差360°的整数倍
y
O
x
α 终边所在的象限
角 α 的集合
第一象限
{α|k·360°<α<k·360°+90°,k∈Z}
第二象限
{α|k·360°+90°<α<k·360°+180°, k∈Z}
第三象限
{α|k·360°+180°<α<k·360°+270°, k∈Z}
第四象限
{α|k·360°-90°<α<k·360°,k∈Z}
y
O
x
α 终边所在的轴 X 轴正半轴
X 轴负半轴
角 α 的集合 {α|α=k·360°,k∈Z}
A.40 B.140 C. 40 D. 140
(2)有下列各式:① sin1125 ;② tan 37 sin 37 ;
12
12
③ sin 4 ;④ sin | 1|,其中为负值的个数是 ___2____ .
tan 4
高三一轮复习精题组正弦定理、余弦定理及解三角形(有详细答案)

§4.6 正弦定理、余弦定理及解三角形1. 正弦、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .3. 在△ABC 中,已知a 、b 和A 时,解的情况如下:4. 实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°等. (3)方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). (4)坡度:坡面与水平面所成的二面角的正切值.1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)在△ABC 中,A >B 必有sin A >sin B .( √ )(2)若满足条件C =60°,AB =3,BC =a 的△ABC 有两个,那么a 的取值范围是(3,2).( √ ) (3)若△ABC 中,a cos B =b cos A ,则△ABC 是等腰三角形.( √ ) (4)在△ABC 中,tan A =a 2,tan B =b 2,那么△ABC 是等腰三角形.( × )(5)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( × )2. (2013·湖南)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b ,若2a sin B =3b ,则角A 等于( )A.π12B.π6C.π4D.π3答案 D解析 在△ABC 中,利用正弦定理得 2sin A sin B =3sin B ,∴sin A =32. 又A 为锐角,∴A =π3.3. (2013·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sinA ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 B解析 由b cos C +c cos B =a sin A ,得sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,所以sin A =1,由0<A <π,得A =π2,所以△ABC 为直角三角形.4. 在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.答案 27解析 由正弦定理知AB sin C =3sin 60°=BCsin A, ∴AB =2sin C ,BC =2sin A .又A +C =120°,∴AB +2BC =2sin C +4sin(120°-C ) =2(sin C +2sin 120°cos C -2cos 120°sin C ) =2(sin C +3cos C +sin C )=2(2sin C +3cos C )=27sin(C +α), 其中tan α=32,α是第一象限角, 由于0°<C <120°,且α是第一象限角, 因此AB +2BC 有最大值27.5. 一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为______ km. 答案 30 2解析 如图所示,依题意有AB =15×4=60,∠MAB =30°,∠AMB =45°, 在△AMB 中,由正弦定理得60sin 45°=BM sin 30°,解得BM =30 2 (km).题型一 正、余弦定理的简单应用例1 (1)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A 等于( )A .30°B .60°C .120°D .150°(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C ,则sin B +sin C 的最大值为( )A .0B .1C.12D. 2思维启迪 (1)由sin C =23sin B 利用正弦定理得b 、c 的关系,再利用余弦定理求A . (2)要求sin B +sin C 的最大值,显然要将角B ,C 统一成一个角,故需先求角A ,而题目给出了边角之间的关系,可对其进行化边处理,然后结合余弦定理求角A . 答案 (1)A (2)B解析 (1)∵sin C =23sin B ,由正弦定理得c =23b , ∴cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,又A 为三角形的内角,∴A =30°.(2)已知2a sin A =(2b +c )sin B +(2c +b )sin C , 根据正弦定理,得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-12,又A 为三角形的内角,∴A =120°.故sin B +sin C =sin B +sin(60°-B )=32cos B +12sin B =sin(60°+B ), 故当B =30°时,sin B +sin C 取得最大值1.思维升华 (1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. (2)解题中注意三角形内角和定理的应用及角的范围限制.(1)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C 等于( )A.725B .-725C .±725D.2425(2)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为________. 答案 (1)A (2)π6解析 (1)由正弦定理b sin B =csin C ,将8b =5c 及C =2B 代入得bsin B =85b sin 2B ,化简得1sin B =852sin B cos B ,则cos B =45,所以cos C =cos 2B =2cos 2B -1=2×(45)2-1=725,故选A.(2)∵A +C =2B 且A +B +C =π,∴B =π3.由正弦定理知:sin A =a sin B b =12,又a <b ,∴A <B ,∴A =π6.题型二 正弦定理、余弦定理的综合应用例2 (2012·课标全国)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sinC -b -c =0. (1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .思维启迪 利用正弦定理将边转化为角,再利用和差公式可求出A ;面积公式和余弦定理相结合,可求出b ,c .解 (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12. 又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.思维升华 有关三角形面积问题的求解方法: (1)灵活运用正、余弦定理实现边角转化.(2)合理运用三角函数公式,如同角三角函数的基本关系、二倍角公式等.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状. 解 (1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C 得a 2+b 2-ab =4. 又∵△ABC 的面积为3,∴12ab sin C =3,ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)由sin C +sin(B -A )=sin 2A , 得sin(A +B )+sin(B -A )=2sin A cos A ,即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0, ∴cos A =0或sin A -sin B =0, 当cos A =0时,∵0<A <π, ∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A , 由正弦定理得a =b , 即△ABC 为等腰三角形.∴△ABC 为等腰三角形或直角三角形. 题型三 解三角形的实际应用例3 某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,立即测出该渔轮在方位角为45°,距离为10 n mile 的C 处,并测得渔轮正沿方位角为105°的方向,以9 n mile/h 的速度向某小岛靠拢,我海军舰艇立即以21 n mile/h 的速度前去营救,求舰艇的航向和靠近渔轮所需的时间.思维启迪 本题中所涉及的路程在不断变化,但舰艇和渔轮相遇时所用时间相等,先设出所用时间t ,找出等量关系,然后解三角形.解 如图所示,根据题意可知AC =10,∠ACB =120°,设舰艇靠近渔轮所需的时间为t h ,并在B 处与渔轮相遇,则AB =21t ,BC =9t ,在△ABC 中,根据余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos 120°,所以212t 2=102+92t 2+2×10×9t ×12,即360t 2-90t -100=0,解得t =23或t =-512(舍去).所以舰艇靠近渔轮所需的时间为23 h .此时AB =14,BC =6.在△ABC 中,根据正弦定理得BC sin ∠CAB =ABsin 120°,所以sin ∠CAB =6×3214=3314,即∠CAB ≈21.8°或∠CAB ≈158.2°(舍去). 即舰艇航行的方位角为45°+21.8°=66.8°.所以舰艇以66.8°的方位角航行,需23h 才能靠近渔轮.思维升华 求解测量问题的关键是把测量目标纳入到一个可解三角形中,三角形可解,则至少要知道这个三角形的一条边长.解题中注意各个角的含义,根据这些角把需要的三角形的内角表示出来,注意不要把角的含义弄错,不要把这些角与要求解的三角形的内角之间的关系弄错.在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端对于山坡的斜度为15°,如图所示,向山顶前进100 m 后,又从B 点测得斜度为45°,设建筑物的高为50 m .求此山对于地平面的斜度θ的余弦值.解 在△ABC 中,∠BAC =15°,∠CBA =180°-45°=135°,AB =100 m , 所以∠ACB =30°.由正弦定理,得100sin 30°=BC sin 15°,即BC =100sin 15°sin 30°.在△BCD 中,因为CD =50,BC =100sin 15°sin 30°,∠CBD =45°,∠CDB =90°+θ,由正弦定理,得50sin 45°=100sin 15°sin 30°sin (90°+θ),解得cos θ=3-1.因此,山对地面的斜度的余弦值为3-1.代数式化简或三角运算不当致误典例:(12分)在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状.易错分析 (1)从两个角的正弦值相等直接得到两角相等,忽略两角互补情形; (2)代数运算中两边同除一个可能为0的式子,导致漏解; (3)结论表述不规范. 规范解答解 ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),∴b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )], ∴2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .[4分]方法一 由正弦定理知a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,∴sin A cos A =sin B cos B , ∴sin 2A =sin 2B .[8分]在△ABC 中,0<2A <2π,0<2B <2π,∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰或直角三角形.[12分] 方法二 由正弦定理、余弦定理得: a 2b b 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0. 即a =b 或a 2+b 2=c 2.∴△ABC 为等腰或直角三角形.[12分]温馨提醒 (1)判断三角形形状要对所给的边角关系式进行转化,使之变为只含边或只含角的式子然后判断;注意不要轻易两边同除以一个式子.(2)在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.方法与技巧1. 应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2. 正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin 2A =sin 2B +sin 2C -2sin B ·sin C ·cos A ,可以进行化简或证明. 3. 合理利用换元法、代入法解决实际问题. 失误与防范1. 在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论.2. 利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题1. 在△ABC ,已知∠A =45°,AB =2,BC =2,则∠C 等于( )A .30°B .60°C .120°D .30°或150°答案 A解析 在△ABC 中,AB sin C =BC sin A ,∴2sin C =2sin 45°,∴sin C =12,又AB <BC ,∴∠C <∠A ,故∠C =30°.2. △ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cb<cos A ,则△ABC 为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形答案 A解析 依题意得sin Csin B <cos A ,sin C <sin B cos A ,所以sin(A +B )<sin B cos A ,即sin B cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,B 为钝角,△ABC 是钝角三角形.3. (2012·湖南)△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394答案 B解析 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC cos B 知7=a 2+4-2a ,即a 2-2a -3=0,∴a =3(负值舍去). ∴BC 边上的高为AB ·sin B =3×32=332. 4. (2013·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cosA =12b ,且a >b ,则∠B 等于( )A.π6B.π3C.2π3D.5π6答案 A解析 由条件得a b sin B cos C +c b sin B cos A =12,依正弦定理,得sin A cos C +sin C cos A =12,∴sin(A +C )=12,从而sin B =12,又a >b ,且B ∈(0,π),因此B =π6.5. 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知b 2=c (b +2c ),若a =6,cos A=78,则△ABC 的面积等于 ( )A.17B.15C.152D .3答案 C解析 ∵b 2=c (b +2c ),∴b 2-bc -2c 2=0, 即(b +c )·(b -2c )=0,∴b =2c .又a =6,cos A =b 2+c 2-a 22bc =78,解得c =2,b =4.∴S △ABC =12bc sin A =12×4×2×1-(78)2=152.二、填空题6. (2013·安徽)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sinB ,则角C =________. 答案2π3解析 由已知条件和正弦定理得:3a =5b ,且b +c =2a , 则a =5b 3,c =2a -b =7b 3cos C =a 2+b 2-c 22ab =-12,又0<C <π,因此角C =2π3.7. 在△ABC 中,若b =5,∠B =π4,tan A =2,则a =________.答案 210解析 由tan A =2得sin A =2cos A . 又sin 2A +cos 2A =1得sin A =255. ∵b =5,∠B =π4,根据正弦定理,有a sin A =bsin B ,∴a =b sin A sin B =2522=210.8. 如图,设A ,B 两点在河的两岸,一测量者在点A 的同侧的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为________. 答案 50 2 m 解析 由正弦定理得AB sin ∠ACB =ACsin B,所以AB =AC ·sin ∠ACBsin B =50×2212=50 2.三、解答题9. (2013·北京)在△ABC 中,a =3,b =26,∠B =2∠A .(1)求cos A 的值; (2)求c 的值.解 (1)在△ABC 中,由正弦定理 a sin A =b sin B ⇒3sin A =26sin 2A =262sin A cos A,∴cos A =63. (2)由余弦定理,a 2=b 2+c 2-2bc cos A ⇒32=(26)2+c 2-2×26c ×63则c 2-8c +15=0. ∴c =5或c =3.当c =3时,a =c ,∴A =C .由A +B +C =π,知B =π2,与a 2+c 2≠b 2矛盾.∴c =3舍去.故c 的值为5.10.(2013·江西)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知cos C +(cos A -3sin A )cos B =0. (1)求角B 的大小;(2)若a +c =1,求b 的取值范围.解 (1)由已知得-cos(A +B )+cos A cos B -3sin A cos B =0 即有sin A sin B -3sin A cos B =0, 因为sin A ≠0,所以sin B -3cos B =0, 即3cos B =sin B . 因为0<B <π, 所以sin B >0, 所以cos B >0, 所以tan B =3, 即B =π3.(2)由余弦定理得b 2=a 2+c 2-2ac cos B , 因为a +c =1,cos B =12,所以b 2=(a +c )2-3ac ≥(a +c )2-3⎝⎛⎭⎫a +c 22=14(a +c )2=14, ∴b ≥12.又a +c >b ,∴b <1,∴12≤b <1.B 组 专项能力提升 (时间:25分钟,满分:43分)1. △ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba等于( )A .2 3B .2 2C. 3D. 2答案 D解析 ∵a sin A sin B +b cos 2A =2a , ∴sin A sin A sin B +sin B cos 2A =2sin A , ∴sin B =2sin A ,∴b a =sin Bsin A= 2.2. 有一长为1的斜坡,它的倾斜角为20°,现高不变,将倾斜角改为10°,则斜坡长为( )A .1B .2sin 10°C .2cos 10°D .cos 20°答案 C解析 如图,∠ABC =20°,AB =1,∠ADC =10°, ∴∠ABD =160°.在△ABD 中,由正弦定理得AD sin 160°=ABsin 10°,∴AD =AB ·sin 160°sin 10°=sin 20°sin 10°=2cos 10°.3. (2013·浙江)在△ABC 中,∠C =90°,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC =________. 答案63解析 因为sin ∠BAM =13,所以cos ∠BAM =223.如图,在△ABM 中,利用正弦定理,得BM sin ∠BAM =AM sin B ,所以BM AM =sin ∠BAM sin B =13sin B =13cos ∠BAC .在Rt △ACM 中,有CMAM =sin ∠CAM =sin(∠BAC -∠BAM ).由题意知BM =CM ,所以13cos ∠BAC=sin(∠BAC -∠BAM ).化简,得22sin ∠BAC cos ∠BAC -cos 2∠BAC =1. 所以22tan ∠BAC -1tan 2∠BAC +1=1,解得tan ∠BAC = 2.再结合sin 2∠BAC +cos 2∠BAC =1,∠BAC 为锐角可解得sin ∠BAC =63.4. (2012·江西)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a . (1)求证:B -C =π2;(2)若a =2,求△ABC 的面积.(1)证明 由b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a ,应用正弦定理,得sin B sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =sin A , sin B ⎝⎛⎭⎫22sin C +22cos C -sin C⎝⎛⎭⎫22sin B +22cos B =22, 整理得sin B cos C -cos B sin C =1, 即sin(B -C )=1.由于0<B ,C <34π,从而B -C =π2.(2)解 B +C =π-A =3π4,因此B =5π8,C =π8.由a =2,A =π4,得b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π8,所以△ABC 的面积S =12bc sin A =2sin 5π8sin π8=2cos π8sin π8=12.5. 已知△ABC 的三个内角A ,B ,C 成等差数列,角B 所对的边b =3,且函数f (x )=23sin 2x+2sin x cos x -3在x =A 处取得最大值. (1)求f (x )的值域及周期; (2)求△ABC 的面积.解 (1)因为A ,B ,C 成等差数列, 所以2B =A +C ,又A +B +C =π, 所以B =π3,即A +C =2π3.因为f (x )=23sin 2x +2sin x cos x - 3 =3(2sin 2x -1)+sin 2x =sin 2x -3cos 2x=2sin ⎝⎛⎭⎫2x -π3, 所以T =2π2=π.又因为sin ⎝⎛⎭⎫2x -π3∈[-1,1], 所以f (x )的值域为[-2,2]. (2)因为f (x )在x =A 处取得最大值, 所以sin ⎝⎛⎭⎫2A -π3=1. 因为0<A <23π,所以-π3<2A -π3<π,故当2A -π3=π2时,f (x )取到最大值,所以A =512π,所以C =π4.由正弦定理,知3sin π3=csinπ4⇒c = 2. 又因为sin A =sin ⎝⎛⎭⎫π4+π6=2+64, 所以S △ABC =12bc sin A =3+34.。
高三高考数学第一轮复习课件三角函数复习
]
20)在△ABC中,a、b、c分别为角A、B
、C的对边,4sin2
B
2
C
-cos2A=
7 2
。
(1)求角A的度数;
(2)若a= 3 ,b+c=3,求b和c的值。
解:∴c4∴ocsoc2Aos(21s=A+A2 c-b=co2os122csAb22c)Aa-∴22==c72oA12s=2A60+。1=b272+c2-a2=bc 又∵b+c=3 bc=2
22 3
选A
例4
函数f(x)=cos2(x-
2 3
)+sin2(x-
5 6
)
+msinxcosx的值域为[a,2](x∈R,m>a)求m
值和f(x)的单调增区间。
解 :1 f (x1 2 )[ = c 2 1 x c o o 2 2 4 3 x s ) 4 3 ()c s 1 2 co x ( o 2 2x 5 s 3 5 3 ) (s ) m ] 2 m 2( s s2 i2 x i x n
=sin(45。±35。). ∴ Sinα =sin 10。 ,sinβ=sin 80。
∴α=10。 β=80。 cos(2α-β)=cos60。= 1
2
〔三〕单元测试
一、选择题
1〕函数y=
coxs s
|cox|s |s
inx inx|
|ttaaxxnn|的值域是〔A〕
(A) |3,-1| (B) |3,1| (C) |-1,1,3| (D) |-1,1-3|
(2)若x∈[求a的值。
2
,
2
]时,f(x)的最大值为1,
解:(1)f(x)=sin(x+
(完整版)高中数学三角函数复习专题
高中数学三角函数复习专题一、知识点整理 :1、角的看法的推行:正负,范围,象限角,坐标轴上的角;2、角的会集的表示:①终边为一射线的角的会集:x x2k, k Z=|k 360o, k Z②终边为向来线的角的会集:x x k, k Z;③两射线介定的地域上的角的会集:x 2k x2k, k Z④两直线介定的地域上的角的会集:x k x k, k Z;3、任意角的三角函数:(1)弧长公式: l a R R 为圆弧的半径,a为圆心角弧度数, l 为弧长。
(2)扇形的面积公式:S 1lR R 为圆弧的半径, l 为弧长。
2(3)三角函数定义:角中边上任意一点 P 为 ( x, y) ,设 | OP |r 则:sin y, cos x ,tan y r= a 2b2 r r x反过来,角的终边上到原点的距离为r 的点P的坐标可写为:P r cos, r sin 比如:公式 cos()cos cossin sin的证明(4)特别角的三角函数值α032 64322sin α012310-10222cosα13210-101222tan α0313不存不存0 3在在(5)三角函数符号规律:第一象限全正,二正三切四余弦。
(6)三角函数线:(判断正负、比较大小,解方程或不等式等)y T 如图,角的终边与单位圆交于点P,过点 P 作 x 轴的垂线,P 垂足为 M ,则Ao 过点 A(1,0)作 x 轴的切线,交角终边OP 于点 T,则M x。
(7)同角三角函数关系式:①倒数关系: tana cot a 1sin a ②商数关系: tan acosa③平方关系: sin 2 a cos2 a1( 8)引诱公试sin cos tan三角函数值等于的同名三角函数值,前方-- sin+ cos- tan加上一个把看作锐角时,原三角函数值的- tan-+ sin- cos符号;即:函数名不变,符号看象限+- sin- cos+ tan2-- sin+ cos- tan2k++ sin+ cos+ tansin con tan2+ cos+ sin+ cot三角函数值等于的异名三角函数值,前方2+ cos- sin- cot加上一个把看作锐角时,原三角函数值的3- cos- sin+ cot2符号 ;3- cos+ sin- cot2即:函数名改变,符号看象限 : sin x cos x cos x比方444cos x sin x444.两角和与差的三角函数:(1)两角和与差公式:cos() cos a cos sin a sin sin( a) sin a coscosa sintan a(atan a tan注:公式的逆用也许变形)1 tan a tan.........(2)二倍角公式:sin 2a 2sin acosa cos 2a cos2 a sin 2 a12 sin2 a 2 cos2 a 12 tan atan 2a1 tan2 a(3)几个派生公式:①辅助角公式:a sinx bcosx a2b2 sin(x)a22 cos()b x比方: sinα± cosα= 2 sin4= 2 cos4.sinα±3 cosα= 2sin3=2cos3等.②降次公式: (sin cos) 21sin 2cos21cos2,sin 21cos222③ tan tan tan()(1 tan tan)5、三角函数的图像和性质:(此中 k z )三角函数y sin x定义域(- ∞, +∞)值域[-1,1]最小正周期T2奇偶性奇[ 2k,2k]22单调性单调递加[ 2k,2k3 ]22单调递减x k对称性2(k ,0)零值点x ky cosx(- ∞, +∞)[-1,1]T 2偶[( 2k 1) ,2k ]单调递加[( 2k , (2k 1) ]单调递减x k(k,0)2x k2y tan xx k2(-∞,+∞)T奇(k,k)22单调递加k(,0)x kx k2x 2 k,最值点y max1ymax 1;无x k2x(2k 1) ,y min1y min1 6、 .函数y Asin( x) 的图像与性质:(本节知识观察一般能化成形如y Asin( x) 图像及性质)( 1)函数 y Asin( x) 和 y Acos( x2 ) 的周期都是T( 2)函数y A tan( x) 和 y Acot( x) 的周期都是T( 3)五点法作y Asin( x) 的简图,设t x,取0、、、3、2来求相应x22的值以及对应的y 值再描点作图。
2024年上海数学高考一轮复习必刷大题 专题1 解三角形大题综合含详解
专题01解三角形大题综合一、解答题1.(2023·上海长宁·上海市延安中学校考三模)已知()2sin cos c 2πos 6f x x x x ⎛⎫=++ ⎪⎝⎭.(1)求方程()0f x =的解集;(2)求函数()y f x =在[]0,π上的单调增区间.2.(2023·上海闵行·统考二模)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知sin sin 2A B =,4a =,6b =.(1)求cos B 的值;(2)求ABC 的面积.3.(2023·上海宝山·统考二模)已知函数()23sin cos 32f x x x x =-+.(1)求函数()y f x =的最小正周期和单调区间;(2)若关于x 的方程()0f x m -=在π0,2x ⎡⎤∈⎢⎥⎣⎦上有两个不同的实数解,求实数m 的取值范围.4.(2023·上海浦东新·华师大二附中校考模拟预测)在ABC 中,a b c 、、分别是角A B C 、、的对边.设()()2,,cos ,cos m a c b n B C =+= ,已知0m n ⋅=r r (1)求角B 的大小;(2)设()()2π2cos sin 2sin sin 2sin cos cos 3f x x x x B x x A C ⎛⎫=+-++ ⎪⎝⎭,当2,63ππx ⎡⎤∈⎢⎣⎦时,求函数()y f x =的最小值.5.(2023·上海闵行·上海市七宝中学校考三模)如图,P 是边长为2的正三角形ABC 所在平面上一点(点A 、B 、C 、P 逆时针排列),且满足CP CA =,记θ∠=CAP .(1)若π3θ=,求PB 的长;(2)用θ表示PAB 的面积S ,并求S 的取值范围.6.(2023·上海松江·校考模拟预测)已知向量())2sin ,cos2,3cos ,1m x x n x ωωω==,其中0ω>,若函数()f x m n=⋅的最小正周期为π.(1)求()f x 的单调增区间;(2)在ABC 中,若()2,f B BC B A =-==,求BA BC ⋅的值.7.(2023·上海奉贤·上海市奉贤中学校考三模)已知扇形OAB 的半径为1,π3AOB ∠=,P 是圆弧上一点(不与A ,B 重合),过P 作,PM OA PN OB ⊥⊥,M ,N为垂足.(1)若12PM =,求PN 的长;(2)设AOP x ∠=,PM ,PN 的线段之和为y ,求y 的取值范围.8.(2023·上海徐汇·上海市南洋模范中学校考三模)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,()π4cos sin(6f x x x =-的最大值为()f A .(1)求角A ;(2)当a =2b =时,求ABC 的面积.9.(2023·上海·高三专题练习)在ABC 中,点D 在边AC 上,且2,AD CD BD AC ==.(1)若BD 平分ABC ∠,求sin sin ABDBDC∠∠的值;(2)若,,AB AC BC成递增的等比数列,AC =ABC 的面积.10.(2023·上海·高三专题练习)已知向量,2sin 22x x m ⎛⎫=- ⎪⎝⎭ ,cos ,cos 22x x n ⎛⎫= ⎝⎭ ,函数()y f x m n ==⋅ .(1)设ππ,22θ⎡⎤∈-⎢⎥⎣⎦,且()1f θ=,求θ的值;(2)在ABC 中,1AB =,()1f C =,且ABC的面积为2,求sin sin A B +的值.11.(2023春·上海杨浦·高三上海市杨浦高级中学校考开学考试)已知函数()()()sin 0,0,πf x A x A ωϕωϕ=+>><的部分图像如图所示.(1)求()f x 的解析式及对称中心;(2)先将()f x 的图像纵坐标缩短到原来的12,再向左平移π6个单位后得到()g x 的图像,求方程()12g x =在[]π,π-的解集.12.(2023春·上海·高三校联考阶段练习)已知函数()221cos sin 2f x x x =-+.(1)求()f x 的单调增区间;(2)设ABC 为锐角三角形,角A B C 、、所对的边分别是,,,5a b c a b ==,若()0f A =,求ABC 的面积.13.(2023·上海嘉定·统考二模)已知向量()sin ,1cos 2a x x =+ ,1cos ,2b x ⎛⎫= ⎪⎝⎭ ,()f x a b =⋅ .(1)求函数()y f x =的最大值及相应x 的值;(2)在ABC 中,角A 为锐角,且7π12A B +=,()1f A =,2BC =,求边AC 的长.14.(2023·上海黄浦·格致中学校考三模)在ABCcos cos C A =,6B π=,BC边中线AM (1)求A 的值;(2)求ABC 的面积.15.(2023·上海金山·统考二模)在ABC 中,角A 、B 、C 所对边的边长分别为a 、b 、c,已知a =45C =︒.(1)若sin A B =,求c ;(2)若15B A -=︒,求ABC 的面积.16.(2023春·上海·高三上海市实验学校校考阶段练习)已知函数25π()sin 2cos 16f x x x ⎛⎫=+-+ ⎪⎝⎭.(1)求函数()f x 的最小值和单调增区间;(2)设角A B 、、C 为ABC 的三个内角,若1cos 3B =,124C f ⎛⎫=- ⎪⎝⎭,求sin A .17.(2023·上海黄浦·统考二模)在ABC 中,53cos ,cos 135A B =-=.(1)求sin C 的值;(2)若4AB =,求ABC 的周长和面积.18.(2023·上海浦东新·统考三模)已知向量),cos a x x =,πsin ,cos 2b x x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭.设()f x a b =⋅ .(1)求函数()y f x =的最小正周期;(2)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若()1f A =,4b =,三角形ABC的面积为a 的长.19.(2023·上海奉贤·校考模拟预测)已知函数()ππsin 2cos sin 122f x x x x x ⎛⎫⎛⎫=+--+ ⎪ ⎪⎝⎭⎝⎭,(1)求函数()f x 的最值;(2)设ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若()2f A =,2b =,且2sin sin B C A +=,求ABC 的面积.20.(2023·上海·华师大二附中校考模拟预测)已知函数21()2cos 2f x x x =--,x R ∈.(1)求函数()y f x =在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值;(2)设ABC 的内角A ,B ,C 的对边分别为a ,b ,c 且c =()0f C =,若sin 2sin B A =,求ABC S .21.(2023·上海普陀·曹杨二中校考三模)设函数()2cos 2f x x x ωω=+,其中02ω<<.(1)若()f x 的最小正周期为π,求()f x 的单调增区间;(2)若函数()f x 图像在π0,3⎛⎤⎥⎝⎦上存在对称轴,求ω的取值范围.22.(2023·上海徐汇·统考三模)如图,ABC 中,角A 、B 、C 的对边分别为a 、b 、c .(1)若33cos a c b C -=,求角B 的大小;(2)已知3b =、π3B =,若D 为ABC 外接圆劣弧AC 上一点,求ADC △周长的最大值.23.(2023·上海长宁·统考二模)(1)求简谐振动sin cos y x x =+的振幅、周期和初相位([0,2π))ϕϕ∈;(2)若函数11sincos 22y x x =+在区间(0,)m 上有唯一的极大值点,求实数m 的取值范围;(3)设0a >,()sin sin f x ax a x =-,若函数()y f x =在区间(0,π)上是严格增函数,求实数a 的取值范围.xπ0,3⎛⎫ ⎪⎝⎭π3π,π3⎛⎫ ⎪⎝⎭π5ππ,3⎛⎫ ⎪⎝⎭5π35π,3π3⎛⎫ ⎪⎝⎭y '+0-0+0-y极大值极小值极大值专题01解三角形大题综合一、解答题1.(2023·上海长宁·上海市延安中学校考三模)已知()2sin cos c 2πos 6f x x x x ⎛⎫=++ ⎪⎝⎭.(1)求方程()0f x =的解集;(2)求函数()y f x =在[]0,π上的单调增区间.【答案】(1)ππ,Z 26k x x k ⎧⎫=-∈⎨⎬⎩⎭(2)π0,12⎡⎤⎢⎥⎣⎦和7π,π12⎡⎤⎢⎥⎣⎦【分析】(1)化简得到()πsin 23f x x ⎛⎫=+ ⎪⎝⎭,取π2π,Z 3x k k +=∈,解得答案.(2)取πππ2π22π,Z 232k x k k -+≤+≤+∈,解不等式,取0k =和1k =得到单调增区间.【详解】(1)()312sin cos cos 2sin 2cos 2si 2622πn f x x x x x x x ⎛⎫=++=+- ⎪⎝⎭13sin 2222πsin 23x x x ⎛⎫=+ ⎪⎝⎭=,取()πsin 203f x x ⎛⎫=+= ⎪⎝⎭,则π2π,Z 3x k k +=∈,解得ππ,Z 26k x k =-∈.故方程()0f x =的解集为ππ,Z 26k x x k ⎧⎫=-∈⎨⎬⎩⎭.(2)取πππ2π22π,Z 232k x k k -+≤+≤+∈,解得5ππππ,Z 1212k x k k -+≤≤+∈,当0k =时,π0,12⎡⎤⎢⎣⎦满足条件;当1k =时,7π,π12⎡⎤⎢⎥⎣⎦满足条件;综上所述:单调增区间是π0,12⎡⎤⎢⎥⎣⎦和7π,π12⎡⎤⎢⎥⎣⎦2.(2023·上海闵行·统考二模)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知sin sin 2A B =,4a =,6b =.(1)求cos B 的值;(2)求ABC 的面积.【答案】(1)1cos 3B =(2)82【分析】(1)利用正弦定理结合二倍角公式可得解.(2)根据余弦定理可得c ,由cos B 可得sin B ,进而可得面积.【详解】(1)在ABC 中,由正弦定理sin sin a bA B=,又sin sin 22sin cos A B B B ==,所以2sin cos sin a b B B B=,即462sin cos sin B B B =,解得1cos 3B =;(2)由(1)得1cos 3B =,则sin 3B =,又由余弦定理222222461cos 2243a cbc B ac c +-+-===⨯,0c >,解得6c =,所以11sin 4622S ac B ==⨯⨯=3.(2023·上海宝山·统考二模)已知函数()2sin cos 2f x x x x =-+.(1)求函数()y f x =的最小正周期和单调区间;(2)若关于x 的方程()0f x m -=在π0,2x ⎡⎤∈⎢⎥⎣⎦上有两个不同的实数解,求实数m 的取值范围.【答案】(1)最小正周期πT =;单调递增区间为()π5ππ,πZ 1212k k k ⎡⎤-+∈⎢⎥⎣⎦;单调递减区间为()5π11π,πZ 2211k k k π⎡⎤++∈⎢⎥⎣⎦.(2)2⎫⎪⎪⎣⎭【分析】(1)利用降幂公式和辅助角公式化简函数解析式,用周期公式求周期,整体代入法求函数单调区间;(2)由区间内函数的单调性和函数值的变化范围求解实数m 的取值范围.【详解】(1)()21πsin cos cos sin 2cos 2sin 22223f x x x x x x x ⎛⎫=+=-=- ⎪⎝⎭,则函数()y f x =的最小正周期2ππ2T ==;令()πππ2π22πZ 232k x k k -≤-≤+∈,解得()π5πππZ 1122k x k k -≤≤+∈,可得函数()y f x =的单调递增区间为()π5ππ,πZ 1212k k k ⎡⎤-+∈⎢⎥⎣⎦·令()ππ3π2π22πZ 232k x k k +≤-≤+∈,解得()5π11ππZ 1122k x k k π+≤≤+∈,可得因数()y f x =的单调递减区间为()5π11π,πZ 2211k k k π⎡⎤++∈⎢⎥⎣⎦;(2)由(1)可知,π0,2x ⎡⎤∈⎢⎥⎣⎦时,()y f x =在5π0,12⎡⎤⎢⎥⎣⎦上单调递增,在5ππ,122⎡⎤⎢⎥⎣⎦上单调递减,当5π0,12x ⎡⎤∈⎢⎥⎣⎦,πππ2,332x ⎡⎤-∈-⎢⎣⎦,()f x 由增大到1,当5ππ212,x ⎡⎤∈⎢⎥⎣⎦,ππ2π2,323x ⎡⎤-∈⎢⎥⎣⎦,()f x 由1若关于x 的方程()0f x m -=在π0,2x ⎡⎤∈⎢⎥⎣⎦上有两个不同的实数解,则实数m 的取值范围为⎫⎪⎪⎣⎭4.(2023·上海浦东新·华师大二附中校考模拟预测)在ABC 中,a b c 、、分别是角A B C 、、的对边.设()()2,,cos ,cos m a c b n B C =+= ,已知0m n ⋅=r r(1)求角B 的大小;(2)设()()2π2cos sin 2sin sin 2sin cos cos 3f x x x x B x x A C ⎛⎫=+-++ ⎪⎝⎭,当2,63ππx ⎡⎤∈⎢⎣⎦时,求函数()y f x =的最小值.【答案】(1)2π3B =(2)最小值2-【分析】(1)利用向量的坐标运算和正弦定理即可求解;(2)先利用两角和的正弦公式及余弦的二倍角公式化简,再用辅助角公式化为()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,最后利用三角函数的性质求出最小值及其取得最小值时的x 值.【详解】(1)由题意可得:()2cos cos 0m n a c B b C ⋅=++=,由正弦定理得:()2sin sin cos sin cos 0A C B B C ++=,则()2sin cos sin cos sin cos 2sin cos sin 0A B C B B C A B B C ++=++=,可得2sin cos sin 0A B A +=,因为()0,πA ∈,则sin 0A ≠,可得2cos 10B +=,即1cos 2B =-,又因为()0,πB ∈,所以2π3B =.(2)由(1)可得2π3B =,则ππ3A CB +=-=,由题意可得:()2ππ2cos sin 2sin sin 2sin cos cos33f x x x x B x x ⎛⎫=+-+ ⎪⎝⎭212cos sin sin cos 2x x x x x x ⎛⎫=++ ⎪ ⎪⎝⎭222sin cos x x x x=πsin22sin 23x x x ⎛⎫==+ ⎪⎝⎭,因为2,63ππx ⎡⎤∈⎢⎥⎣⎦,则π2π5π2,333x ⎡⎤+∈⎢⎥⎣⎦,可得π22sin 23x ⎛⎫-≤+≤ ⎪⎝⎭,所以当π3π232x +=,即7π12x =时,()f x 有最小值2-.5.(2023·上海闵行·上海市七宝中学校考三模)如图,P 是边长为2的正三角形ABC 所在平面上一点(点A 、B 、C 、P 逆时针排列),且满足CP CA =,记θ∠=CAP .(1)若π3θ=,求PB 的长;(2)用θ表示PAB 的面积S ,并求S 的取值范围.【答案】(1)(2)(π2sin 20,23S θ⎛⎫=+++ ⎪⎝⎭【分析】(1)由余弦定理直接计算即可;(2)由正弦定理求出AP ,然后代入三角形面积公式,结合辅助角公式及三角函数值域求出面积范围.【详解】(1)由π3θ=,且ABC 是边长为2的正三角形,则2π3PAB ∠=,且2PA CP CA ===,所以在PAB 中,由余弦定理得22212cos 448122PB PA AB PA AB PAB ∠⎛⎫=+-⋅⋅=+-⨯-= ⎪⎝⎭,所以PB =;(2)由CP CA =,则CAP CPA θ∠=∠=,则π2PCA θ∠=-,在PAC △中,由正弦定理有()2sin π2sin sin AP BC θθθ==-,得()2sin π24cos sin AP θθθ-==,所以1ππsin 4cos sin 233S PA AB θθθ⎛⎫⎛⎫=⋅⋅+=⋅+ ⎪ ⎪⎝⎭⎝⎭2π2sin cos 2sin 22sin 23θθθθθθ⎛⎫=+=+=++ ⎪⎝⎭,又0πθ<<,且0π2πθ<-<,则π02θ<<,所以ππ4π2333θ<+<,所以πsin 23θ⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,则(π2sin 20,23θ⎛⎫+++ ⎪⎝⎭,故S 的取值范围为(0,2⎤+⎦.6.(2023·上海松江·校考模拟预测)已知向量())2sin ,cos2,,1m x x n x ωωω==,其中0ω>,若函数()f x m n=⋅的最小正周期为π.(1)求()f x 的单调增区间;(2)在ABC 中,若()2,f B BC B A =-==,求BA BC ⋅的值.【答案】(1)πππ,π,36k k k ⎡⎤-+∈⎢⎥⎣⎦Z (2)32-【分析】(1)根据题意,由辅助角公式将函数()f x 化简,再由函数周期即可求得ω,再根据正弦型函数的单调区间即可得到结果;(2)根据题意,由(1)中函数()f x 的解析式可得2π3B =,再由正弦定理可得a c =,再结合平面向量数量积的定义代入计算,即可得到结果.【详解】(1)()πcos22sin 26f x m n x x x ωωω⎛⎫=⋅=+=+ ⎪⎝⎭ ()f x 的最小正周期为2ππ,π,12T ωω∴==∴=.故()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,令πππ2π22π262k x k -≤+≤+,解得,3πππ6πk x k k -≤≤+∈Z ,故函数()f x 的单调增区间为πππ,π,36k k k ⎡⎤-+∈⎢⎣⎦Z (2)设ABC 中角,,A B C 所对的边分别是,,a b c .()π2,2sin 226f B B ⎛⎫=-∴+=- ⎪⎝⎭ ,即πsin 216B ⎛⎫+=- ⎪⎝⎭,解得2π3B =.1sin ,,3,sin2BC a B A b b A ∴==∴=∴== ,πππ0,,,366A A C a c <<∴==∴== 13cos 322BA BC c a B ⎛⎫∴⋅=⋅⋅=⨯-=- ⎪⎝⎭.7.(2023·上海奉贤·上海市奉贤中学校考三模)已知扇形OAB 的半径为1,π3AOB ∠=,P 是圆弧上一点(不与A ,B 重合),过P 作,PM OA PN OB ⊥⊥,M ,N 为垂足.(1)若12PM =,求PN 的长;(2)设AOP x ∠=,PM ,PN 的线段之和为y ,求y 的取值范围.【答案】(1)12;(2)2.【分析】(1)在直角POM 与直角PON △中,利用锐角三角函数的定义求解作答.(2)由(1)中信息,把y 用x 的函数表示出,再借助正弦函数的性质求解作答.【详解】(1)在POM 中,PM OA ⊥,则1sin 2PM POM OP ∠==,显然π(0,3POM ∠∈,则π6POM ∠=,从而πππ366PON AOB POM ∠=∠-∠=-=,在PON △中,PN OB ⊥,所以π1sin 1sin 62PN OP PON =∠=⨯=.(2)依题意,ππ,(0,33PON AOB POM x x ∠=∠-∠=-∈πsin sin ,sin sin()3PM OP POM x PN OP PON x =∠==∠=-,因此π11πsin sin()sin sin sin sin()3223y x x x x x x x x =+-=+-=+=+,显然ππ2π(,)333x +∈,于是πsin()3x +∈,所以y 的取值范围是.8.(2023·上海徐汇·上海市南洋模范中学校考三模)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,()π4cos sin(6f x x x =-的最大值为()f A .(1)求角A ;(2)当a =2b =时,求ABC 的面积.【答案】(1)π3;(2)2.【分析】(1)根据给定条件,利用三角恒等变换化简()f x ,再利用正弦函数性质求出角A 作答.(2)利用余弦定理求出c ,再利用三角形面积公式求解作答.【详解】(1)依题意,2ππ()4cos (sin cos cos sin )sin 2cos 66f x x x x x x x =-=-π2cos 212sin(216x x x =--=--,因为()0,πA ∈,则ππ11π2(,666A -∈-,又π()2sin(2)16f A A =--是()f x 的最大值,所以ππ262A -=,即π3A =.(2)在ABC 中,由余弦定理2222cos a b c bc A =+-,得222π222cos 3c c =+-⨯,即2230c c --=,解得3c =,所以ABC 的面积11πsin 23sin223ABC S bc A ==⨯⨯⨯ .9.(2023·上海·高三专题练习)在ABC 中,点D 在边AC 上,且2,AD CD BD AC ==.(1)若BD 平分ABC ∠,求sin sin ABDBDC∠∠的值;(2)若,,AB AC BC成递增的等比数列,AC =ABC 的面积.【答案】(1)11(2)4【分析】(1)运用余弦定理求出,CD BC 的关系,再运用正弦定理求解;(2)运用余弦定理求出AB ,BC 的值,再求出sin B ∠,用面积公式计算即可.【详解】(1)设CD m =,则2,3AD m BD AC m ===,因为BD 平分ABC ∠,所以2AB ADBC CD==,设BC n =,则2AB n =,在ABC 中,2222239cos 212AB AC BC n m A AB AC mn +-+==⋅,在ABD △中,2222245cos 28AB AD BD n m A AB AD mn+--==⋅,由22223945128n m n m nm mn+-=,得22112n m =,sin sinsin sin ABD CBD CD m BDC BDC BC n ∠∠====∠∠;(2)因为,,AB AC BC 成递增的等比数列,AC =26AB BC AC ⋅==,在ABD △中,2222263cos 28AB AD BD AB ADB AD BD -+-∠==⋅,在BCD △中,2222203cos 24BC BD CD BC BDC BD CD -+-∠==⋅,因为cos cos 0ADB BDC ∠+∠=,所以22262033084AB BC --+=,整理得22222AB BC +=,又6AB BC ⋅=,所以2236222BC BC+=,解得BC =3BC =,若BC =AB BC =>,不符合题意,若3BC =,则2AB =,符合题意,此时2227cos 212AB BC AC ABC AB BC +-∠==⋅,则sin ABC ABC ∠=△的面积1sin 2S AB BC ABC =⋅∠=10.(2023·上海·高三专题练习)已知向量,2sin 22x x m ⎛⎫=- ⎪⎝⎭ ,cos ,cos 22x x n ⎛⎫= ⎝⎭,函数()y f x m n ==⋅ .(1)设ππ,22θ⎡⎤∈-⎢⎥⎣⎦,且()1f θ=,求θ的值;(2)在ABC 中,1AB =,()1f C =,且ABC的面积为2,求sin sin A B +的值.【答案】(1)π2-或π6(2)1+【分析】(1)化简得到s π()2co 6f x x ⎛⎫=+ ⎪⎝⎭1cos 62πθ⎛⎫+= ⎪⎝⎭,得到2π(Z)63ππk k θ+=±∈,根据范围得到答案.(2)确定π6C =,根据面积公式得到=ab 227a b +=,得到2+=a b ,再根据正弦定理得到答案.【详解】(1)2π()cos2sin cos cos )sin 2cos 2226x x x f x x x x ⎛⎫=-+-=+ ⎪⎝⎭()π2cos 16f θθ⎛⎫=+= ⎪⎝⎭,得1cos 62πθ⎛⎫+= ⎪⎝⎭,故2π(Z)63ππk k θ+=±∈,ππ,22θ⎡⎤∈-⎢⎥⎣⎦,故π2θ=-或π6.(2)(0,π)C ∈,由(1)知π6C =,在ABC 中,设内角A 、B 的对边分别是,a b,则1s n πi 26S ab ==,故=ab 由余弦定理得2222π12cos66a b ab a b =+-=+-,故227a b +=.解得2a b =⎧⎪⎨=⎪⎩或2a b ⎧=⎪⎨=⎪⎩,于是2+=a b 由正弦定理得sin sin sin 112===A B C a b,故1sin sin ()12+=+=+A B a b 11.(2023春·上海杨浦·高三上海市杨浦高级中学校考开学考试)已知函数()()()sin 0,0,πf x A x A ωϕωϕ=+>><的部分图像如图所示.(1)求()f x 的解析式及对称中心;(2)先将()f x 的图像纵坐标缩短到原来的12,再向左平移π6个单位后得到()g x 的图像,求方程()12g x =在[]π,π-的解集.【答案】(1)()π2sin 23f x x ⎛⎫=- ⎪⎝⎭;对称中心为ππ,026k ⎛⎫+ ⎪⎝⎭,Z k ∈;(2)π5π11π7π,,,12121212⎧⎫⎨⎬⎩⎭--.【分析】(1)结合函数()()()sin 0,0,πf x A x A ωϕωϕ=+>><的部分图像特征可求()f x 的解析式及对称中心;(2)根据图象变换可得()g x 的解析式,从而方程可求.【详解】(1)根据函数()()()sin 0,0,πf x A x A ωϕωϕ=+>><的部分图像,可得32π5ππ2,4123A ω=⋅=+,∴2ω=.再根据五点法作图,5ππ2122ϕ⨯+=,∴π3ϕ=-,故()π2sin 23f x x ⎛⎫=- ⎪⎝⎭.令π2π,Z 3x k k -=∈,解得ππ,Z 62k x k =+∈,此时0y =.所以函数()f x 的对称中心为ππ,026k ⎛⎫+ ⎪⎝⎭,Z k ∈.(2)先将()f x 的图像纵坐标缩短到原来的12,可得πsin 23y x ⎛⎫=- ⎪⎝⎭的图像,再向左平移π6个单位,得到ππsin 2sin 632y x x ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦的图像,令1sin 22x =,[][]π,π,22π,2πx x ∈-∴∈- 所以π5π11π7π2,,,6666x =--,解得π5π11π7π,,,12121212x =--故方程()12g x =在[]π,π-的解集为π5π11π7π,,12121212⎧⎫⎨⎬⎩⎭--.12.(2023春·上海·高三校联考阶段练习)已知函数()221cos sin 2f x x x =-+.(1)求()f x 的单调增区间;(2)设ABC 为锐角三角形,角A B C 、、所对的边分别是,,,5a b c a b ==,若()0f A =,求ABC 的面积.【答案】(1)ππ,π,Z2k k k ⎡⎤-+∈⎢⎥⎣⎦(2)4【分析】(1)利用二倍角的余弦公式及三角函数的性质即可求解;(2)根据已知条件及余弦定理,利用余弦定理的推论及三角形的面积公式即可求解.【详解】(1)()2211cos sin cos 222f x x x x =-+=+由π2π22π,Z k x k k -+≤≤∈,得πππ,Z 2k x k k -+≤≤∈,所以()f x 的单调增区间为ππ,π,Z 2k k k ⎡⎤-+∈⎢⎥⎣⎦.(2)由(1)知,()1cos 22f x x =+,因为()0f A =,所以()1cos 202f A A =+=,即1cos 22A =-,因为π02A <<,所以02πA <<,所以2π23A =,即π3A =.由余弦定理可知,2222cos a b c bc A =+-,将5a b ==代入并整理得2560c c -+=,解得2c =或3c =.又因为ABC 为锐角三角形,所以222cos 0,02a c b B c ac+-=>>,即219250c +->,解得c 所以3c =.所以ABC的面积为11sin 5322ABC S bc A ==⨯⨯⨯△.13.(2023·上海嘉定·统考二模)已知向量()sin ,1cos 2a x x =+ ,1cos ,2b x ⎛⎫= ⎪⎝⎭ ,()f x a b =⋅ .(1)求函数()y f x =的最大值及相应x 的值;(2)在ABC 中,角A 为锐角,且7π12A B +=,()1f A =,2BC =,求边AC 的长.【答案】(1)ππ8x k =+,k ∈Z ;(2)AC =【分析】(1)利用向量数量积坐标运算、二倍角公式以及辅助角公式求得函数()y f x =的解析式,再由正弦函数的性质求解;(2)由(1)求出角A 的值,再利用正弦定理求出AC 边的长作答.【详解】(1)依题意,cos 2111π1()cos sin (sin 2cos 2))22242x f x x x x x x +=+=++=++当ππ22π42x k +=+,即ππ,Z 8x k k =+∈时,()y f x =取最大值12.(2)由(1)及()1f A =π12142A ⎛⎫++= ⎪⎝⎭,即πsin 24A ⎛⎫+= ⎪⎝⎭,因π02A <<,则ππ5π2444A <+<,因此,324ππ4A +=,则π4A =,而7π12A B +=,有π3B =,在ABC 中,由正弦定理sin sin BC AC A B =得,π2sinsin 3πsin sin 4BC B AC A ==所以边AC.14.(2023·上海黄浦·格致中学校考三模)在ABCcos cos C A =,6B π=,BC边中线AM (1)求A 的值;(2)求ABC 的面积.【答案】(1)π6【分析】(1)由正弦定理结合三角恒等变换得出A 的值;(2)由余弦定理得出2b =,最后由面积公式得出ABC 的面积.【详解】(1cos cos C A =cos cos CA=2sin cos cos sin cos sin()sin B A A C C A A C B+因为sin 0B ≠,所以cos 2A =,因为()0,πA ∈,所以π6A =.(2)因为6B π=,23C A B ππ=--=,可知ABC 为等腰三角形.在AMC 中,由余弦定理可得2222cos120AM AC MC AC MC =+-⋅︒即227(2cos12022b b b b =+-⨯⨯⨯︒,解得2b =.所以ABC的面积为2211sin 222S b C ==⨯=.15.(2023·上海金山·统考二模)在ABC 中,角A 、B 、C 所对边的边长分别为a 、b 、c,已知a =45C =︒.(1)若sin A B =,求c ;(2)若15B A -=︒,求ABC 的面积.【答案】(1)2c =(2)2+3【分析】(1)根据正弦定理求边长后再应用余弦定理求解即可.(2)先求出角,再求出边长,最后应用面积公式求解可得.【详解】(1)由sin A B =,应用正弦定理得a ==2b ∴=,2842242c ∴=+-⨯⨯,即得2c =.(2)因为15135B A B A -=︒⎧⎨+=︒⎩则7560B A =︒⎧⎨=︒⎩,c ==111sin =222ABC S ac B ==⨯⨯ 16.(2023春·上海·高三上海市实验学校校考阶段练习)已知函数25π()sin 2cos 16f x x x ⎛⎫=+-+ ⎪⎝⎭.(1)求函数()f x 的最小值和单调增区间;(2)设角A B 、、C 为ABC 的三个内角,若1cos 3B =,124C f ⎛⎫=- ⎪⎝⎭,求sin A .【答案】(1)()min 12f x =,单调递增区间()π3ππ,πZ 44k k k ⎡⎤++∈⎢⎥⎣⎦(2)6【分析】(1)由三角恒等变换得1()222f x x =-,结合正弦函数的性质求解即可;(2)由1cos 3B =,可得sin B =且β为锐角,60B >︒,由124C f ⎛⎫=- ⎪⎝⎭,可得60C =︒,再由()sin sin A B C =+求解即可.【详解】(1)解:由题意可得()2225ππππsin 2cos 1=sin 2++1cos =cos 2n 33si 62f x x x x x x x⎛⎫⎛⎫⎛⎫=+-++-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ππ1cos 21cos 2cos sin 2sin 23322x x x x -=-+=-,所以当π2=2π+,Z 2x k k ∈,即ππ,Z 4x k k =+∈时,函数()f x 由π3π2π+22π+,Z 22k x k k ≤≤∈,解得π3ππ+π+,Z 44k x k k ≤≤∈,所以()f x 的单调递增区间()π3ππ,πZ 44k k k ⎡⎤++∈⎢⎥⎣⎦;综上所述:()min π1π42f x f k ⎛⎫=+= ⎪⎝⎭,单调递增区间()π3ππ,πZ 44k k k ⎡⎤++∈⎢⎥⎣⎦;(2)解:因为112224C f C ⎛⎫=-=- ⎪⎝⎭,sin C ∴=()0,πC ∈ ,60C ∴=︒或120︒,1cos sin 33662B B =⇒==>=Q ,且β为锐角,所以60B >︒,∴角C 只能为锐角60C =︒,()sin sin A B C ∴=+sin cos cos sin 6B C B C =+=.17.(2023·上海黄浦·统考二模)在ABC 中,53cos ,cos 135A B =-=.(1)求sin C 的值;(2)若4AB =,求ABC 的周长和面积.【答案】(1)1665;(2)周长32,面积24.【分析】(1)利用两角和的正弦公式即可求得sin C 的值;(2)先利用正弦定理求得ABC 的,a b 的长,进而求得ABC 的周长和面积.【详解】(1)在ABC 中,53cos ,cos 135A B =-=,又(),0,πA B ∈,则124sin ,sin 135A B ==,则1235416sin sin()sin cos cos sin 13513565C A B A B A B ⎛⎫=+=+=⨯+-⨯= ⎪⎝⎭.(2)4c AB ==,又124sin ,sin 135A B ==,16sin 65C =,则由正弦定理得124sin sin 135415,4131616sin sin 6565A Ba cbc C C =====⨯=,则ABC 的周长为1513432++=ABC 的面积为1116sin 1513242265ab C =⨯⨯⨯=.18.(2023·上海浦东新·统考三模)已知向量),cos a x x =,πsin ,cos 2b x x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭.设()f x a b =⋅ .(1)求函数()y f x =的最小正周期;(2)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若()1f A =,4b =,三角形ABC的面积为a 的长.【答案】(1)π(2)【分析】(1)利用数量积的坐标公式及二倍角公式、辅助角公式化简函数,利用最小正周期公式求解即可;(2)根据()1f A =求出角A ,结合条件及三角形面积公式求出c ,利用余弦定理即可求解a .【详解】(1)由题意,()f x a b =⋅=2πsin cos 2x x x ⎛⎫++ ⎪⎝⎭2cos cos x x x =+112cos 222x x =++π1sin 262x ⎛⎫=++ ⎪⎝⎭,因此函数()y f x =的最小正周期为2ππ2T ==;(2)由()1f A =得π1sin 262A ⎛⎫+= ⎪⎝⎭,因为()0,πA ∈,所以ππ7π2,666A ⎛⎫+∈ ⎪⎝⎭,解得π3A =,因为11sin 422ABC S bc A c ==⨯=V 2c =,由余弦定理解得2222212cos 42242122a b c bc A =+-=+-⨯⨯⨯=,所以a =.19.(2023·上海奉贤·校考模拟预测)已知函数()ππsin 2cos sin 122f x x x x x ⎛⎫⎛⎫=+--+ ⎪ ⎪⎝⎭⎝⎭,(1)求函数()f x 的最值;(2)设ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若()2f A =,2b =,且2sin sin B C A +=,求ABC 的面积.【答案】(1)最大值为2,最小值为2-(2)2或3【分析】(1)把()f x 化为“一角一函数”的形式:先用诱导公式把角化为x ,再用二倍角公式把二次项化为一次项,同时把角化为2x ,最后用辅助角公式把函数名化为正弦,即可求出函数的最值;(2)先求出角A ,由余弦定理得到关于,a c 的方程,再由正弦定理把已知的方程化简为含,a c 的方程,联立方程组即可解出,a c 的值,再代入三角形的面积公式即可.【详解】(1)因为()sin 2cos sin 122f x x x x x ππ⎛⎫⎛⎫=+--+ ⎪ ⎪⎝⎭⎝⎭2cos 2cos 12cos 2x x x x x=-+=-2sin 26x π⎛⎫=- ⎪⎝⎭,所以()f x 的最大值为2,最小值为2-.(2)结合(1)可知()2sin 226f A A π⎛⎫=-= ⎪⎝⎭,所以sin 216A π⎛⎫-= ⎪⎝⎭.因为()0,A π∈,所以112666A πππ⎛⎫-∈- ⎪⎝⎭,则2,623A A πππ-==.由余弦定理得2222241cos 242b c a c a A bc c +-+-===,化简得2224a c c =-+①.又2sin sin B C A +=,由正弦定理可得2b c +=,即4c +=②.结合①②得3a c ==或23a c ==.3c =时,1sin 22ABCS bc A ==;23c =时,1sin 23ABC S bc A ==△.综上,ABC 的面积为2或3.20.(2023·上海·华师大二附中校考模拟预测)已知函数21()2cos 2f x x x =--,x R ∈.(1)求函数()y f x =在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值;(2)设ABC 的内角A ,B ,C 的对边分别为a ,b ,c 且c =()0f C =,若sin 2sin B A =,求ABC S .【答案】(1)max 0y =,min 22y +=-;(2)2.【分析】(1)利用辅助角公式将函数()f x 化简可得π()sin 216f x x ⎛⎫=-- ⎪⎝⎭,利用正弦函数的单调性得到()f x 在ππ,123⎡⎤-⎢⎥⎣⎦递增,在π5π,312⎡⎤⎢⎥⎣⎦递减,进而求出最值;(2)根据题意得到π3C =,然后利用正弦定理得到2b a =,再结合余弦定理和三角形面积公式即可求解.【详解】(1)()1cos 21π2sin 21226x f x x x +⎛⎫=-=-- ⎪⎝⎭,由ππ3π2π22π262k x k +≤-≤+,Z k ∈,得()f x 的单调递减区间为π5ππ,π36k k ⎡⎤++⎢⎥⎣⎦,Z k ∈,故()f x 在ππ,123⎡⎤-⎢⎥⎣⎦递增,在π5π,312⎡⎤⎢⎥⎣⎦递减,故max π03y f ⎛⎫== ⎪⎝⎭,min π5πmin ,1212y ff ⎧⎫⎛⎫⎛⎫=-=-⎨⎬ ⎪ ⎝⎭⎝⎭⎩⎭(2)π()sin 2106f C C ⎛⎫=--= ⎪⎝⎭,则πsin 2106C ⎛⎫--= ⎪⎝⎭,0πC <<,022πC <<,所以ππ11π2666C -<-<,所以ππ262C -=,π3C =,因为sin 2sin B A =,所以由正弦定理得2b a =,①由余弦定理得222π2cos3=+-c a b ab ,即2223c a b ab =+-=,②由①②解得:1a =,2b =.故1sin 2ABC S ab C ==△.21.(2023·上海普陀·曹杨二中校考三模)设函数()2cos 2f x x x ωω=+,其中02ω<<.(1)若()f x 的最小正周期为π,求()f x 的单调增区间;(2)若函数()f x 图像在π0,3⎛⎤⎥⎝⎦上存在对称轴,求ω的取值范围.【答案】(1)πππ,π36k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z(2)122ω≤<【分析】(1)根据三角恒等变换化简函数表达式,然后根据最小正周期公式算出ω,然后利用正弦函数的单调性求解;(2)利用正弦函数sin y x =的对称轴公式求参数的范围.【详解】(1)由题意,()21π1sin2cos sin2(cos 21)sin 222262f x x x x x x ωωωωω⎛⎫=+++=++ ⎪⎝⎭,又02ω<<,于是2ππ2ω=,则1ω=,则()1sin 262πf x x ⎛⎫=++ ⎪⎝⎭,根据正弦函数的单调递增区间,令πππ22π,2π,622x k k k ⎡⎤+∈-+∈⎢⎥⎣⎦Z ,解得πππ,π36k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z ,即为()f x 的单调递增区间.(2)当π0,3x ⎛⎤∈ ⎥⎝⎦,ππ2ππ2,6636x ωω⎛⎤+∈+ ⎥⎝⎦,注意到题干02ω<<,则2πππ3π,3662ω⎛⎫+∈ ⎪⎝⎭,根据正弦函数sin y x =的对称轴ππ,2x k k =+∈Z ,显然只有0k =时一条对称轴32π2ππ,6x =∈⎛⎫ ⎪⎝⎭,于是2πππ362ω+≥,解得12ω≥,结合02ω<<可得122ω≤<22.(2023·上海徐汇·统考三模)如图,ABC 中,角A 、B 、C 的对边分别为a 、b 、c .(1)若33cos a c b C -=,求角B 的大小;(2)已知3b =、π3B =,若D 为ABC 外接圆劣弧AC 上一点,求ADC △周长的最大值.【答案】(1)1arccos 3B =;(2)3+【分析】(1)根据给定条件,利用正弦定理边化角,再结合和角的正弦求解作答.(2)由(1)及给定条件,求出ADC ∠,再利用余弦定理结合均值不等式求解作答.【详解】(1)在ABC 中,由33cos a c b C -=及正弦定理,得3sin sin 3sin cos A C B C -=,即3sin()sin 3sin cos B C C B C +-=,则3(sin cos sin cos )sin 3sin cos B C C B C B C +-=,整理得sin (3cos 1)0C B -=,而sin 0C ≠,即1cos 3B =,又因为0B π<<,所以1arccos 3B =.(2)在ADC △中,2π,33ADC AC ∠==,由余弦定理得2222π2cos3AC AD DC AD DC =+-⋅,于是22()()994AD DC AD DC AD DC ++=+⋅≤+,解得AD DC +≤当且仅当AD DC ==所以当AD DC ==ADC △周长取得最大值3+23.(2023·上海长宁·统考二模)(1)求简谐振动sin cos y x x =+的振幅、周期和初相位([0,2π))ϕϕ∈;(2)若函数11sin cos 22y x x =+在区间(0,)m 上有唯一的极大值点,求实数m 的取值范围;(3)设0a >,()sin sin f x ax a x =-,若函数()y f x =在区间(0,π)上是严格增函数,求实数a 的取值范围.【答案】(12π2π1T ==,初相位π4ϕ=;(2)π5π,33⎛⎤ ⎥⎝⎦;(3)()0,1;【分析】(1)利用辅助角公式化简,即可得到振幅、周期和初相位;(2)求导,令0y '=,求出导函数的零点,利用三角函数的单调性判断导函数的正负,进而分析出()y f x =的单调,列表分析出有唯一的极大值点的情况,即可得到实数m 的取值范围;(3)求导,并对a 分类讨论,利用余弦函数的单调性分析导函数在区间(0,π)的正负,即可判断()y f x =是否为严格增函数,进而得到实数a 的取值范围.【详解】解:(1)πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭,2π2π1T ==,初相位π4ϕ=;(2)111111cos sin cos sin 222222y x x x '⎛⎫=-=- ⎪⎝⎭,令0y '=,得1cos 02x =,11sin 22x =,列表,x π0,3⎛⎫ ⎪⎝⎭π3π,π3⎛⎫ ⎪⎝⎭π5ππ,3⎛⎫ ⎪⎝⎭5π35π,3π3⎛⎫ ⎪⎝⎭y '+0-0+0-y 极大值 极小值 极大值函数11sin cos 22y x x =+在区间(0,)m 上有唯一的极大值点时,π5π33m <≤,即实数m 的取值范围为π5π,33⎛⎤ ⎥⎝⎦.(3)()cos cos f x a ax a x '=-,当01a <<时,因为0πx <<,所以0πax x <<<,进而cos cos ax x >,()(cos cos )0f x a ax x '=->此时,()y f x =在区间(0,π)上是严格增函数;当1a =时,()0f x =,()y f x =不是严格增函数;当1a >时,设π0,x a ⎛⎫∈ ⎪⎝⎭,则0πx ax <<<,进而cos cos x ax >,()0f x '<,此时,()y f x =在区间π0,a ⎛⎫ ⎪⎝⎭上是严格减函数;综上,若函数()y f x =在区间(0,π)上是严格增函数,则01a <<,即实数a 的取值范围()0,1.【点睛】思路点睛:分类讨论思想是高中数学一项重要的考查内容,分类讨论思想要求在不能用统一的方法解决问题的时候,将问题划分成不同的模块,通过分块来实现问题的求解,体现了对数学问题的分析处理能力和解决能力.。
高考数学一轮复习专题训练—同角三角函数的基本关系式与诱导公式
同角三角函数的基本关系式与诱导公式考纲要求 1.理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α;2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.知识梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan__α.2.三角函数的诱导公式 公式 一 二 三 四 五 六 角 2k π+α(k ∈Z )π+α -α π-α π2-α π2+α 正弦 sin α -sin__α -sin__α sin__α cos__α cos__α 余弦 cos α -cos__α cos__α -cos__α sin__α -sin__α正切 tan αtan__α-tan__α-tan__α口诀函数名不变,符号看象限 函数名改变,符号看象限1.同角三角函数关系式的常用变形(sin α±cos α)2=1±2sin αcos α;sin α=tan α·cos α. 2.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( ) (2)sin(π+α)=-sin α成立的条件是α为锐角.( ) (3)若α∈R ,则tan α=sin αcos α恒成立.( )(4)若sin(k π-α)=13(k ∈Z ),则sin α=13.( )答案 (1)× (2)× (3)× (4)×解析 (1)对任意的角α,sin 2α+cos 2α=1. (2)中对于任意α∈R ,恒有sin(π+α)=-sin α. (3)中当α的终边落在y 轴上时,商数关系不成立. (4)当k 为奇数时,sin α=13,当k 为偶数时,sin α=-13.2.已知tan α=2,则3sin α-cos αsin α+2cos α=( )A.54B.-54C.53D.-53答案 A解析 原式=3tan α-1tan α+2=3×2-12+2=54.3.已知α为锐角,且cos α=45,则sin(π+α)=( )A.-35B.35C.-45D.45答案 A解析 由题意得sin α=1-cos 2α=35,故sin(π+α)=-sin α=-35.4.(2021·天津南开质检)cos 480°=( ) A.-12B.12C.-32D.32答案 A解析 由诱导公式可得cos 480°=cos(540°-60°)=cos(180°-60°)=-cos 60°=-12.故选A.5.(2021·成都诊断)已知θ∈(0,π),sin θ+cos θ=15,则下列结论错误的是( )A.θ∈⎝⎛⎭⎫π2,πB.cos θ=-35C.tan θ=-34D.sin θ-cos θ=75答案 C解析 ∵sin θ+cos θ=15,①∴(sin θ+cos θ)2=⎝⎛⎭⎫152, 即sin 2θ+2sin θcos θ+cos 2θ=125,∴2sin θcos θ=-2425,∴(sin θ-cos θ)2=1-2sin θcos θ=4925,∵θ∈(0,π),∴sin θ>0,cos θ<0, ∴θ∈⎝⎛⎭⎫π2,π,sin θ-cos θ=75.② ①+②得sin θ=45,①-②得cos θ=-35,∴tan θ=sin θcos θ=45-35=-43.6.(2021·海南期末)若cos ⎝⎛⎭⎫π3-α=15,则sin ⎝⎛⎭⎫π6+α=________.答案 15解析 sin ⎝⎛⎭⎫π6+α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π3-α=15.考点一 诱导公式的应用1.化简cos (π+α)cos ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫11π2-αcos (π-α)sin (-π-α)sin ⎝⎛⎭⎫9π2+α的结果是( )A.-1B.1C.tan αD.-tan α答案 C解析 由诱导公式,得原式=-cos α·(-sin α)·cos ⎝⎛⎭⎫3π2-α-cos α·sin α·sin ⎝⎛⎭⎫π2+α=-sin 2α·cos α-sin α·cos 2α=tan α,故选C.2.(2021·长春模拟)已知α为锐角,且sin ⎝⎛⎭⎫α+π3sin ⎝⎛⎭⎫α-π3=tan ⎝⎛⎭⎫α+π3,则角α=( ) A.π12 B.π6C.π4D.π3答案 C解析 由条件得sin ⎝⎛⎭⎫α+π3sin ⎝⎛⎭⎫α-π3=sin ⎝⎛⎭⎫α+π3cos ⎝⎛⎭⎫α+π3,又因为α为锐角,所以sin ⎝⎛⎭⎫α-π3=cos ⎝⎛⎭⎫α+π3,即sin ⎝⎛⎭⎫α-π3=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π3,所以有α-π3=π2-⎝⎛⎭⎫α+π3,解得α=π4,故选C. 3.(2021·皖北名校联考)sin 613°+cos 1 063°+tan(-30°)的值为________. 答案 -33解析 sin 613°+cos 1 063°-tan 30°=sin(180°+73°)+cos(-17°)-tan 30°=-sin 73°+cos(-17°)-tan 30°=-cos 17°+cos 17°-33=-33. 感悟升华 1.诱导公式的两个应用(1)求值:负化正,大化小,化到锐角为终了. (2)化简:统一角,统一名,同角名少为终了. 2.含2π整数倍的诱导公式的应用由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算.如cos(5π-α)=cos(π-α)=-cos α. 考点二 同角三角函数基本关系及其应用角度1 切弦互化【例1】 (1)已知α是第四象限角,tan α=-815,则sin α等于( )A.1517B.-1517C.817D.-817(2)已知曲线f (x )=23x 3在点(1,f (1))处的切线的倾斜角为α,则sin 2α-cos 2α2sin αcos α+cos 2α=( )A.12B.2C.35D.-38答案 (1)D (2)C解析 (1)因为tan α=-815,所以sin αcos α=-815,所以cos α=-158sin α,代入sin 2α+cos 2α=1,得sin 2α=64289,又α是第四象限角,所以sin α=-817.(2)由f ′(x )=2x 2,得tan α=f ′(1)=2, 故sin 2α-cos 2α2sin αcos α+cos 2α=tan 2α-12tan α+1=35.故选C.角度2 sin α±cos α与sin αcos α的转化【例2】(2020·东北三省三校联考)若sin θ-cos θ=43,且θ∈⎝⎛⎭⎫34π,π,则sin(π-θ)-cos(π-θ)=( ) A.-23B.23C.-43D.43答案 A解析 由sin θ-cos θ=43得1-2sin θcos θ=169,即2sin θcos θ=-79,∴(sin θ+cos θ)2=1+2sin θcos θ=29,又θ∈⎝⎛⎭⎫34π,π,∴sin θ+cos θ<0, ∴sin θ+cos θ=-23, 则sin(π-θ)-cos(π-θ)=sin θ+cos θ=-23,故选A. 感悟升华 1.(1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)形如a sin x +b cos xc sin x +d cos x,a sin 2x +b sin x cos x +c cos 2x 等类型可进行弦化切.2.注意公式的逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.3.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.【训练1】 (1)已知α是第四象限角,sin α=-1213,则tan(π+α)等于( )A.-513B.513C.-125D.125(2)(2021·兰州诊断)已知sin α+cos α=75,则tan α=________.答案 (1)C (2)43或34解析 (1)因为α是第四象限角,sin α=-1213,所以cos α=1-sin 2α=513,故tan(π+α)=tan α=sin αcos α=-125.(2)将sin α+cos α=75两边平方得1+2sin αcos α=4925,∴sin αcos α=1225,∴sin αcos αsin 2α+cos 2α=tan αtan 2α+1=1225, 整理得12tan 2α-25tan α+12=0,解得tan α=43或tan α=34.考点三 同角三角函数基本关系式和诱导公式的综合应用【例3】 (1)(2020·全国Ⅰ卷)已知α∈(0,π),且3cos 2α-8cos α=5,则sin α=( ) A.53B.23C.13D.59(2)已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫5π6+α=________. (3)已知cos ⎝⎛⎭⎫π6-θ=a (|a |≤1),则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是________. 答案 (1)A (2)-33(3)0 解析 (1)由3cos 2α-8cos α=5, 得3(2cos 2α-1)-8cos α=5, 即3cos 2α-4cos α-4=0, 解得cos α=-23或cos α=2(舍去).又因为α∈(0,π),所以sin α=1-cos 2α=1-⎝⎛⎭⎫-232=53.故选A. (2)∵⎝⎛⎭⎫π6-α+⎝⎛⎭⎫5π6+α=π, ∴tan ⎝⎛⎭⎫5π6+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α =-tan ⎝⎛⎭⎫π6-α=-33.(3)∵cos ⎝⎛⎭⎫5π6+θ=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-θ=-cos ⎝⎛⎭⎫π6-θ=-a ,sin ⎝⎛⎭⎫2π3-θ=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-θ=cos ⎝⎛⎭⎫π6-θ=a ,∴cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ=0. 感悟升华 1.利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.注意角的范围对三角函数值符号的影响.2.用诱导公式求值时,要善于观察所给角之间的关系,利用整体代换的思想简化解题过程.常见的互余关系有π3-α与π6+α,π3+α与π6-α,π4+α与π4-α等,常见的互补关系有π6-θ与5π6+θ,π3+θ与2π3-θ,π4+θ与3π4-θ等.【训练2】 (1)已知α是第四象限角,且3sin 2α=8cos α,则cos ⎝⎛⎭⎫α+2 021π2=( ) A.-223B.-13C.223D.13(2)(2020·上海徐汇区期中)若sin ⎝⎛⎭⎫α+π4=35,则cos ⎝⎛⎭⎫α-π4=________. 答案 (1)C (2)35解析(1)∵3sin 2α=8cos α,∴sin 2α+⎝⎛⎭⎫3sin 2α82=1, 整理可得9sin 4α+64sin 2α-64=0, 解得sin 2α=89或sin 2α=-8(舍去),又∵α是第四象限角,∴sin α=-223,∴cos ⎝⎛⎭⎫α+2 021π2=cos ⎝⎛⎭⎫α+1 010π+π2 =cos ⎝⎛⎭⎫α+π2=-sin α=223,故选C. (2)∵sin ⎝⎛⎭⎫α+π4=35, ∴cos ⎝⎛⎭⎫α-π4=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π4-π2 =cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π4=sin ⎝⎛⎭⎫α+π4=35.A 级 基础巩固一、选择题 1.tan 420°=( ) A.- 3 B. 3 C.33D.-33答案 B解析 tan 420°=tan(360°+60°)=tan 60°= 3. 2.若角α的终边在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为( )A.3B.-3C.1D.-1答案 B解析 由角α的终边在第三象限,得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-cos α+2sin α-sin α=-1-2=-3,故选B. 3.已知3s in(π+θ)=cos(2π-θ),|θ|<π2,则θ等于( )A.-π6B.-π3C.π6D.π3答案 A解析 ∵3sin(π+θ)=cos(2π-θ), ∴-3sin θ=cos θ,∴tan θ=-33, ∵|θ|<π2,∴θ=-π6.4.已知sin α-cos α=43,则sin 2α=( )A.-79B.-29C.29D.79答案 A解析 ∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α, ∴sin 2α=1-⎝⎛⎭⎫432=-79. 5.1-2sin (π+2)cos (π-2)=( )A.sin 2-cos 2B.sin 2+cos 2C.±(sin 2-cos 2)D.cos 2-sin 2答案 A 解析1-2sin (π+2)cos (π-2)=1-2sin 2cos 2=(sin 2-cos 2)2=|sin 2-cos 2|=sin 2-cos 2. 6.已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α的值是( )A.35 B.-35C.-3D.3答案 A 解析sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin 2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35.故选A.7.(2021·四川名校联考)在△ABC 中,sin A ·cos A =-18,则cos A -sin A 的值为( )A.-32B.-52C.52D.±32答案 B解析 ∵在△ABC 中,sin A ·cos A =-18,∴A 为钝角,∴cos A -sin A <0, ∴cos A -sin A =-(cos A -sin A )2 =-cos 2A +sin 2A -2sin A cos A =-1-2×⎝⎛⎭⎫-18=-52. 8.已知α为锐角,且2tan(π-α)-3cos ⎝⎛⎭⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α=( ) A.355B.377C.31010D.13答案 C解析 由已知得⎩⎪⎨⎪⎧3sin β-2tan α+5=0,tan α-6sin β-1=0. 消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1,化简得sin 2α=910,则sin α=31010(α为锐角). 二、填空题9.(2021·西安调研)sin(-570°)+cos(-2 640°)+tan 1 665°=________.答案 1解析 原式=sin(-570°+720°)+cos(-2 640°+2 880°)+tan(1 665°-1 620°)=sin 150°+cos 240°+tan 45°=sin 30°-cos 60°+1=12-12+1=1. 10.若sin ⎝⎛⎭⎫θ+π4=35,则sin ⎝⎛⎭⎫3π4-θ=________. 答案 35解析 sin ⎝⎛⎭⎫3π4-θ=sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π4+θ =sin ⎝⎛⎭⎫θ+π4=35. 11.已知θ为第四象限角,sin θ+3cos θ=1,则tan θ=________.答案 -43解析 由(sin θ+3cos θ)2=1=sin 2θ+cos 2θ,得6sin θcos θ=-8cos 2θ,又因为θ为第四象限角,所以cos θ≠0,所以6sin θ=-8cos θ,所以tan θ=-43. 12.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为________.答案 1- 5解析 由题意知sin θ+cos θ=-m 2,sin θcos θ=m 4, 又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m 2,解得m =1±5, 又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5.B 级 能力提升13.已知α∈⎝⎛⎭⎫0,π2,2sin 2α=cos 2α+1,则sin α=( ) A.15B.55C.33D.255答案 B解析 由2sin 2α=cos 2α+1,得4sin αcos α=2cos 2α,因为α∈⎝⎛⎭⎫0,π2,cos α≠0,所以 2sin α=cos α.又因为sin 2α+cos 2α=1,所以5sin 2α=1,sin 2α=15,sin α=55.故选B. 14.已知α∈[0,2π),cos α+3sin α=10,则tan α=( )A.-3B.3或13C.3D.13 答案 C解析 因为(cos α+3sin α)2=10,所以cos 2α+6sin αcos α+9sin 2α=10,所以cos 2α+6sin αcos α+9sin 2αcos 2α+sin 2α=10,所以1+6tan α+9tan 2α1+tan 2α=10,所以tan α=3. 15.(2021·嘉兴联考)已知α为钝角,sin ⎝⎛⎭⎫π4+α=34,则sin ⎝⎛⎭⎫π4-α=________,cos ⎝⎛⎭⎫α-π4=________.答案 -74 34 解析 sin ⎝⎛⎭⎫π4-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4-α=cos ⎝⎛⎭⎫π4+α, ∵α为钝角,∴34π<π4+α<54π. ∴cos ⎝⎛⎭⎫π4+α<0.∴cos ⎝⎛⎭⎫π4+α=-1-⎝⎛⎭⎫342=-74.cos ⎝⎛⎭⎫α-π4=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫α-π4=sin ⎝⎛⎭⎫π4+α=34. 16.已知2θ是第一象限的角,且sin 4θ+cos 4θ=59,那么tan θ=________. 答案 22解析 因为sin 4θ+cos 4θ=59, 所以(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59. 所以sin θcos θ=23,所以sin θcos θsin 2θ+cos 2θ=23, 即tan θ1+tan 2θ=23,解得tan θ=2或tan θ=22. 又因为2θ为第一象限角,所以2k π<2θ<2k π+π2,k ∈Z . 所以k π<θ<π4+k π,k ∈Z . 所以0<tan θ<1.所以tan θ=22.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弘知教育内部资料 中小学课外辅导专家
用心 爱心 专心
- 1 -
三角函数典型习题
1 .
设锐角ABC的内角ABC,,的对边分别为abc,,,2sinabA.
(Ⅰ)求B的大小;
(Ⅱ)求cossinAC的取值范围.
2 .
在ABC中,角CBA,,所对的边分别为cba,,,22sin2sinCBA.
(I)试判断△ABC的形状;
(II)若△ABC的周长为16,求面积的最大值.
3 .
已知在ABC中,AB,且Atan与Btan是方程0652xx的两个根.
(Ⅰ)求)tan(BA的值;
(Ⅱ)若AB5,求BC的长.
4.
在ABC中,角A. B.C所对的边分别是a,b,c,且.21222acbca
(1)求BCA2cos2sin2的值;
(2)若b=2,求△ABC面积的最大值.
5.
已知函数2π()2sin3cos24fxxx,ππ42x,.
(1)求)(xf的最大值和最小值;
(2)2)(mxf在ππ42x,上恒成立,求实数m的取值范围.
6.
在锐角△ABC中,角A. B.C的对边分别为a、b、c,已知.3tan)(222bcAacb
(I)求角A;
(II)若a=2,求△ABC面积S的最大值。
7.
已知函数2()(sincos)+cos2fxxxx.
(Ⅰ)求函数fx的最小正周期;
(Ⅱ)当0,2x时,求函数fx的最大值,并写出x相应的取值.
8.
在ABC中,已知内角A. B.C所对的边分别为a、b、c,向量
2sin,3mB
,2cos2,2cos12BnB,且//mn。
(I)求锐角B的大小;
(II)如果2b,求ABC的面积ABCS的最大值。
弘知教育内部资料 中小学课外辅导专家
用心 爱心 专心
- 2 -
答案解析
1【解析】:(Ⅰ)由2sinabA,根据正弦定理得sin2sinsinABA,所以1sin2B,
由ABC为锐角三角形得π6B.
(Ⅱ)cossincossinACAA
cossin6AA
13
coscossin22AAA
3sin3A
.
2【解析】
:I.)42sin(22sin2cos2sin2sinCCCCC
2242
CC即
,所以此三角形为直角三角形.
II.ababbaba221622,2)22(64ab当且仅当ba时取等
号,
此时面积的最大值为24632.
3【解析】:(Ⅰ)由所给条件,方程0652xx的两根tan3,tan2AB.
∴
tantantan()1tantanABABAB231123
(Ⅱ)∵180CBA,∴)(180BAC.
由(Ⅰ)知,1)tan(tanBAC,
∵C为三角形的内角,∴
2
sin2C
∵tan3A,A为三角形的内角,∴
3
sin10A
,
由正弦定理得:sinsinABBCCA
弘知教育内部资料 中小学课外辅导专家
用心 爱心 专心
- 3 -
∴
53
352102BC
.
8【解析】:(1) //mn 2sinB(2cos2B2-1)=-3cos2B
2sinBcosB=-3cos2B tan2B=-3
∵0<2B<π,∴2B=
2π3,∴锐角B=π
3
(2)由tan2B=-3 B=π3或5π6
①当B=π3时,已知b=2,由余弦定理,得:
4=a2+c2-ac≥2ac-ac=ac(当且仅当a=c=2时等号成立)
∵△ABC的面积S
△ABC
=
12 acsinB=3
4
ac≤3
∴△ABC的面积最大值为3
②当B=5π6时,已知b=2,由余弦定理,得:
4=a2+c2+3ac≥2ac+3ac=(2+3)ac(当且仅当a=c=6-2时等号成立)
∴ac≤4(2-3)
∵△ABC的面积S
△
ABC
=
12 acsinB=1
4
ac≤ 2-3
∴△ABC的面积最大值为2-3
4【解析】:(1) 由余弦定理:cosB=14
2
sin
2
AC
+cos2B= 41
(2)由.415sin,41cosBB得 ∵b=2,
a
2
+c2=12ac+4≥2ac,得ac≤38, S△ABC=12acsinB≤315(a=c时取等号)
故S△ABC的最大值为315
5【解析】(Ⅰ)π()1cos23cos21sin23cos22fxxxxx∵
π
12sin23x
.
弘知教育内部资料 中小学课外辅导专家
用心 爱心 专心
- 4 -
又ππ42x,∵,ππ2π2633x∴≤≤,
即π212sin233x≤≤,
maxmin
()3()2fxfx,∴
.
(Ⅱ)()2()2()2fxmfxmfx∵,ππ42x,,
max()2mfx∴且min
()2mfx
,
14m∴
,即m的取值范围是(14),.
6【解析】:(I)由已知得23sin23cossin2222AAAbcacb
又在锐角△ABC中,所以A=60°,[不说明是锐角△ABC中,扣1分]
(II)因为a=2,A=60°所以bcAbcSbccb43sin21,422
而424222bcbcbcbccb
又344343sin21bcAbcS
所以△ABC面积S的最大值等于3
7【解析】:(Ⅰ)因为222()(sincos)+cos2sin2sincoscoscos2 fxxxxxxxxx
1sin2cos2 xx
( ) =1+2sin(2)4x
所以,22T,即函数()fx的最小正周期为
(Ⅱ)因为02x,得52444x,所以有2sin(2)124x
12sin(2)24x,即012sin(2)124x
所以,函数fx的最大值为12
此时,因为52444x,所以,242x,即8x