高中物理验证动量守恒定律实验方案设计研究
动量守恒定律教案优秀6篇

动量守恒定律教案优秀6篇高中物理动量守恒定律教案篇一教学目标:一、知识目标1、理解动量守恒定律的确切含义。
2、知道动量守恒定律的适用条件和适用范围。
二、能力目标1、运用动量定理和牛顿第三定律推导出动量守恒定律。
2、能运用动量守恒定律解释现象。
3、会应用动量守恒定律分析、计算有关问题(只限于一维运动).三、情感目标1、培养实事求是的科学态度和严谨的推理方法。
2、使学生知道自然科学规律发现的重大现实意义以及对社会发展的巨大推动作用。
重点难点:重点:理解和基本掌握动量守恒定律。
难点:对动量守恒定律条件的掌握。
教学过程:动(1mi)量定理研究了一个物体受到力的冲量作用后,动量怎样变化,那么两个或两个以上的物体相互作用时,会出现怎样的总结果?这类问题在我们的日常生活中较为常见,例如,两个紧挨着站在冰面上的同学,不论谁推一下谁,他们都会向相反的方向滑开,两个同学的动量都发生了变化,又如火车编组时车厢的对接,飞船在轨道上与另一航天器对接,这些过程中相互作用的物体的动量都有变化,但它们遵循着一条重要的规律。
(-)系统为了便于对问题的讨论和分析,我们引入几个概念。
1.系统:存在相互作用的几个物体所组成的整体,称为系统,系统可按解决问题的需要灵活选取。
2.内力:系统内各个物体间的相互作用力称为内力。
3.外力:系统外其他物体作用在系统内任何一个物体上的力,称为外力。
内力和外力的区分依赖于系统的选取,只有在确定了系统后,才能确定内力和外力。
(二)相互作用的两个物体动量变化之间的关系【演示】如图所示,气垫导轨上的A、B两滑块在P、Q两处,在A、B间压紧一被压缩的弹簧,中间用细线把A、B拴住,M和N为两个可移动的挡板,通过调节M、N的位置,使烧断细线后A、B两滑块同时撞到相应的挡板上,这样就可以用SA和SB分别表示A、B 两滑块相互作用后的速度,测出两滑块的质量mAmB和作用后的位移SA和SB比较mASA 和mBSB.高二物理《动量守恒定律》教案1.实验条件:以A、B为系统,外力很小可忽略不计。
实验:验证动量守恒定律-2022-2023学年高二物理(人教版2019选择性必修第一册)

尺测量遮光片的宽度,示数如图乙所示,测得本实验中遮光片
的宽度d=___________mm。(2)某次测量中,数字计时器记
录的遮光片通过光电门的遮光时间为40.0ms,则滑块的速度
大小为___________m/s(结果保留3位有效数字)。(3)若某
t 2
4.(2022·全国·高二专题练习)(1)利用气垫导轨通过闪光照相进行“探究碰撞中的不变量”这一实验。实
验要求研究两滑块碰撞时动能损失很小和很大等各种情况,若要求碰撞时机械能损失最大,应选图________(填
“甲”或“乙”),若要求碰撞时机械能损失最小,则应选图________(填“甲”或“乙”)。(甲图两滑块分
度分别为v1'、v2',如果速度的方向与设定的坐标轴的正方向一致,取正值,
反之则取负值。测出m1、m2,v1、v2,v1'、v2',若m1v1+m2v2=m1v1'+m2v2',那么
碰撞中动量守恒。
参考案例1:研究气垫导轨上滑块碰撞时的动量守恒
1.实验装置:
L
2.实验中物理量的测量:
(1)质量的测量:用天平测量两滑块的质量m1和m2。
(2)速度的测量:利用公式v= ,式中L为滑块(挡光片)的宽度,t为计时器显示的滑块(挡
光片)经过光电门所对应的时间。
(3)利用在滑块上增加重物的方法改变碰撞物体的质量。
3.实验方法:
(1)在两滑块相碰的端面上装上弹性碰撞架(图甲),
可以得到能量损失很小的碰撞。
(2)在两个滑块的碰撞端分别装上撞针和橡皮泥,
规定好正方向
高中物理 主题1 动量 4 实验:验证动量守恒定律课件 高二第一册物理课件

12/10/2021
第十五页,共五十八页。
栏目导航
五、数据处理
将实验中测得的物理量填入下表,填表时需注意物体碰撞后运
动的速度与原来的方向相反的情况.
碰撞前
碰撞后质量 m/kg Nhomakorabeam1
m2
m1
m2
速度 v/(m·s-1)
v1
v2
v1′
v2′
12/10/2021
第十六页,共五十八页。
栏目导航
mv/(kg·m·s-1)
⑧测出挡光片的宽度 d=5 mm,测得滑块 1(包括撞针)的质量为
m1=300 g,滑块 2(包括弹簧)质量为 m2=200 g;
12/10/2021
第二十四页,共五十八页。
栏目导航
(2)数据处理与实验结论: ①实验中气垫导轨的作用是:A._________________________, B.__________________________________________________. ②碰撞前滑块 1 的速度 v1 为________m/s;碰撞后滑块 1 的速度 v2 为________m/s;滑块 2 的速度 v3 为________m/s;(结果保留两位 有效数字)
12/10/2021
第五页,共五十八页。
栏目导航
探究以上各关系式是否成立,关键是准确测量碰撞前后的速度 v1、v2、v1′、v2′.因此,利用气垫导轨和与之配套的光电计时装置, 可保证两物体碰撞是一维碰撞,并可比较准确地测量出碰撞前后的 速度.
12/10/2021
第六页,共五十八页。
栏目导航
3.实验方案设计 方案一:用气垫导轨完成两个滑块的一维碰撞 实验装置如图所示:
高中物理动量守恒实验报告

高中物理动量守恒实验报告高中物理动量守恒实验报告引言:动量守恒是物理学中的一个重要定律,它指出在一个封闭系统中,总动量保持不变。
为了验证这一定律,我们进行了一系列的实验。
本报告将详细介绍实验的目的、实验装置、实验步骤、实验数据及分析结果,并对实验结果进行讨论和总结。
实验目的:本实验的目的是验证动量守恒定律。
通过观察和测量不同物体的碰撞过程,我们可以确定碰撞前后物体的动量变化情况,并验证动量守恒定律。
实验装置:实验所需的装置包括:动量守恒装置、两个小车、光电门、计时器、测量尺等。
实验步骤:1. 将动量守恒装置放置在平滑的水平桌面上。
2. 将两个小车放在动量守恒装置的轨道上,使它们靠近并保持相对静止。
3. 调整光电门的位置,使其能够准确地测量小车的运动时间。
4. 用测量尺测量小车的质量,并记录下来。
5. 在实验开始前,确保动量守恒装置的轨道平整,并保证小车能够自由运动。
6. 用计时器测量小车的运动时间,并记录下来。
7. 重复实验多次,取平均值。
实验数据及分析结果:我们进行了三组实验,每组实验重复了五次。
下面是我们的实验数据和分析结实验组一:小车1的质量为0.2kg,小车2的质量为0.3kg。
碰撞前,小车1的速度为0.5m/s,小车2的速度为-0.3m/s。
碰撞后,小车1的速度为-0.1m/s,小车2的速度为0.7m/s。
实验组二:小车1的质量为0.4kg,小车2的质量为0.4kg。
碰撞前,小车1的速度为0.2m/s,小车2的速度为-0.4m/s。
碰撞后,小车1的速度为-0.3m/s,小车2的速度为0.1m/s。
实验组三:小车1的质量为0.5kg,小车2的质量为0.6kg。
碰撞前,小车1的速度为0.3m/s,小车2的速度为-0.2m/s。
碰撞后,小车1的速度为-0.2m/s,小车2的速度为0.4m/s。
通过对实验数据的分析,我们可以得出以下结论:1. 在碰撞前后,两个小车的动量之和保持不变,验证了动量守恒定律。
核心素养下物理分组实验及拓展教学的探究——以高中实验“验证动量守恒定律”为例

学科综合XueKeZongHe教师·TEACHER2019年4月Apr.2019101广东省连州市连州中学地处粤北边远山区,实验设备非常简陋,在现有的实验器材基础上,对分组实验进行拓展显得尤为重要。
下面笔者以“验证动量守恒定律”实验为例,结合课题的研究,就该实验及拓展教学中如何培养学生学科核心素养,谈谈自己的观点。
一、创设问题情境引导学生设计实验方案,促进创新思维的形成分组实验问题情境不仅包含具体的问题、对问题解决方案的设计,还包含教师的启发、暗示、点拨,以及学生对问题的应激响应。
在“验证动量守恒定律”分组实验中,要想激发学生强烈的求知欲并促进学生学科核心素养的提高,教师提出的“问题”是关键。
因此,我设计了以下课前预习问题:(1)动量守恒的条件是什么?怎样通过一维碰撞验证动量守恒?实验原理是什么?(2)请设计一实验来验证动量守恒定律,并根据小组的设想,制订相应的实验方案。
接着,把各小组的实验方案都展示出来,再引导学生根据实验原理选出比较好的设备组合、操作性比较强的四个实验方案(如下),再进一步提问:“四个实验方案分别怎样测出物体碰撞前、后的速度?怎样用直接测量的量表达出实验原理?”下面是学生经过讨论、交流后选出来的四个方案:方案一:利用气垫导轨上两滑块完全非弹性碰撞完成实验。
滑块m 1在气垫导轨上匀速运动,与静止滑块m 2碰撞粘在一起,遮光条经过两光电门时,计时器分别记录遮光时间t 1、t 2,测出遮光条的宽度d ,就可计算出滑块的速度。
实验原理:m 1d /t 1=(m 1+m 2)d /t 2。
方案二:利用等长悬线悬挂等大的两小球完成碰撞实验。
小球m 1从一定的高度h 0释放与静止小球m 2碰撞,通过测量两小球摆动的高度h 1、h 2来代替测速度。
实验原理:m m m 。
碰撞前后,小车m 1拖着纸带在长木板上匀速运动,通过纸带上记录的两段匀速运动的距离x 1、x 2和时间t 1、t 2计算出速度。
高中物理第十六章动量守恒定律1实验:探究碰撞中的不变量2动量守恒..

1 实验:探究碰撞中的不变量2 动量守恒定律疱丁巧解牛知识·巧学一、实验:探究碰撞中的不变量1.一维碰撞两物体碰撞前沿同一条直线运动,碰撞后仍沿同一条直线运动,这种碰撞叫做一维碰撞. 要点提示一维磁撞是碰撞中最为简单的情景.2.实验探究的基本思路(1)与物体运动有关的物理量有哪些?(质量和速度)(2)碰撞前后哪个物理量可能是变化的?哪个物理量是不变化的?(速度的大小和方向可能变化;质量是不变化的)(3)新的不变量可能的形式是怎样的?(比如:两个物体各自的质量与速度的乘积之和;两个物体各自的质量与速度的二次方的乘积之和;两个物体各自的质量与速度的比值之和等等) (4)碰撞的情形可能有哪些?(两个质量相同的物体相碰撞;两个质量悬殊很大的物体相碰撞;两个速度方向相同的物体相碰撞;两个速度方向相同的物体相碰撞;两物体碰撞后可能分开,也可能不分开等等)深化升华在设计实验前应充分考虑到各种不同的情景,以便于我们得到的结论具有普适性.3.需要考虑的问题(1)怎样保证两个物体在碰撞之前沿同一直线运动,在碰撞之后还沿同一直线运动?(可以用气垫导轨或其他)(2)怎样测量物体的质量、怎样测量两个物体在碰撞前后的速度?(质量可用天平测量,速度可用与气垫导轨配套的光电计时装置测量或用打点计时器或其他原理,如平抛运动等)4.实验探究(1)实验器材:气垫导轨、光电计时器、两个质量相同的小车、弹簧、细线、砝码、双面胶.(2)探究过程:①调整导轨使之处于水平状态,并使光电计时器系统开始工作;②导轨上一小车静止,用另一小车与其碰撞,观察两小车的速度变化;③将两小车用压缩的弹簧连接在一起,烧断细线,观察两小车的运动速度;④在一小车上贴上双面胶,用另一小车碰撞它,使两小车随后粘在一起.观察小车碰撞前、后速度的变化;⑤改变其中某一小车的质量,重复以上步骤.(3)分析论证:两车在碰撞过程中所受合外力为零,碰撞前后小车的质量与速度的乘积的矢量和不变.二、动量1.定义:运动物体的质量和它的速度的乘积叫做物体的动量.联想发散引入动量这一物理量的目的.运动的物体能够产生一定的机械效果,如迎面飞来的足球我们可以用手接,若是铅球呢.这说明这个效果的强弱取决于物体的质量和速度两个因素,这个效果只能发生在物体运动方向上,为描述运动物体的这一特性而引入动量这一概念.2.表达式:p=mv.3.单位:千克米每秒,符号kg·m·s-1.4.方向:动量是矢量,它的方向与速度的方向相同.其方向表示了运动物体在哪个方向上能产生机械效果,运动物体在某一时刻的动量方向,就是该时刻物体运动的方向,即瞬时速度方向,如做圆周运动的物体其速度方向时刻在改变,故动量也是时刻在变化.学法一得动量的运算服从矢量运算法则,即要按平行四边形法则进行运算.深化升华(1)动量是状态量,我们讲物体的动量,总是指物体在某一时刻的动量,因此计算时相应的速度应取这一时刻的瞬时速度;(2)动量具有相对性,选用不同参考系时,同一运动物体的动量可能不同,通常在不说参考系的情况下,指的是物体相对于地面的动量.在分析有关问题时要指明相应的参考系.5.动量的变化量(1)动量是矢量,它的大小p=mv,方向与速度的方向相同.因此,速度发生变化时,物体的动量也发生变化.速度的大小或方向发生变化时,速度就发生变化,物体具有的动量的大小或方向也相应发生了变化,我们就说物体的动量发生了变化.设物体的初动量p1=mv1,末动量p2=mv2,则物体动量的变化Δp=p2-p1=mv2-mv1由于动量是矢量,因此,上式一般意义上是矢量式.深化升华动量改变有三种情况:①动量的大小和方向都发生变化,对同一物体而言p=mv,则物体的速度的大小和方向都发生变化;②动量的方向改变而大小不变,对同一物体来讲,物体的速度方向发生改变而速度大小没有变化,如匀速圆周运动的情况;③动量的方向没有发生变化,仅动量的大小发生变化,对同一物体来说,就是速度的方向没有发生变化,仅速度的大小改变.(2)动量的变化量Δp是用末动量减去初动量.(3)动量的变化量Δp是矢量,其方向与速度的改变量Δv的方向相同.学法一得动量的变化量的计算遵循矢量合成法则,要用平行四边形法则进行计算.若在同一直线上,先规定正方向,再用正、负表示初末动量,即可将矢量运算转化为代数运算.三、动量守恒定律1.几个相关概念系统:相互作用的几个物体所组成的整体叫做系统.内力:系统内各物体之间的相互作用力叫做内力.外力:外部其他物体对系统的作用力叫做外力.2.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为零,那么这个系统的总动量保持不变.(2)表达式:①p=p′,表示系统的总动量保持不变;②Δp1=Δp2,表示一个物体的动量变化量与另一个物体的动量变化量大小相等、方向相同;③Δp=0,表示系统的总动量增量为零,即系统的总动量保持不变;④m1v1+m2v2=m1v1′+m2v2′,表示相互作用前的总动量等于相互作用后的总动量.动量守恒定律的表达式是矢量式,解题时选取正方向为正、负来表示方向,将矢量运算转换为代数运算.学法一得动量守恒定律表达式中各速度应对应同一参考系,一般以地面为参考系.在利用动量守恒定律的表达式解题时,一定要先规定正方向.在利用动量守恒定律解题时要掌握把矢量运算转化为标量运算的方法:选定一正方向,速度方向与其相同的取正值,相反的取负值.在计算时一定要把正确的正、负号代入,对于结果中的正、负号也要理解其表示的物理意义.(3)适用条件:①系统不受外力或者所受外力之和为零则系统的动量守恒;②系统内力远大于外力,可以忽略外力,系统总动量守恒;③系统在某一方向上不受外力或所受合外力为零,或所受外力比内力小得多,该方向上的动量守恒.学法一得 动量守恒定律是对应于某一系统,系统的选取是否恰当,直接影响动量守恒定律能否成立,因此系统的正确选取是利用动量守恒定律解题的前提. 典题·热题 知识点一 动量例1 下列关于动量的说法中,正确的是( ) A.速度大的物体,它的动量不一定大 B.动量大的物体,它的速度不一定大C.只要物体速度大小不变,则物体的动量也保持不变D.竖直上抛的物体(不计空气阻力)经过空中同一点时动量一定相同解析:动量的大小由质量和速度的乘积决定,p=mv ,故A 、B 两项正确,动量是矢量,其方向与速度方向相同,竖直上抛的物体两次经过同一点,方向相反,故C 、D 两项错误. 答案:AB方法点拨 动量总是与物体的瞬时速度相对应,这一点可记作动量的瞬时性.例2 有一质量为0.1 kg 的小钢球从5 m 高处自由下落,与水平钢板碰撞后反弹跳起,若规定竖直向下的方向为正方向,碰撞过程中钢球动量的变化为-1.8 kg·ms -1,求钢球反弹跳起的最大高度(g 取10 m/s 2,不计空气阻力).解析:由动量的变化求出钢球与水平钢板碰撞后反弹跳起时的初速度,再据竖直上抛运动规律求出反弹跳起的最大高度. 小钢球与水平钢板碰前速度为 v=gh 2=5102⨯⨯ m/s=10 m/s 方向竖直向下,此时其动量p=mv=0.1×10 kg·m/s=1 kg·m/s设小钢球与水平钢板碰撞后的速度为v ′,选向下为正. 因为 Δp=mv′- mv 所以v=m 1(Δp+mv)=1.01×(-1.8+1) m/s=-8 m/s 负号表示方向竖直向上.小钢球反弹跳起的最大高度为h′h′=g v 22'=102(-8)2⨯ m=3.2 m.方法归纳 将题中小球的运动分为三个过程:自由落体,与钢板的碰撞,竖直上抛.注意这三个过程的转折点.和解其他的动力学问题一样,都应从受力分析和运动分析入手.深化升华 动量的变化也是矢量,且一定为末动量减初动量,如初、末动量的方向沿一条直线,可先规定一个正方向,将矢量运算变成代数运算,用正、负号表示方向.知识点二 动量守恒定律成立的条件例3 在光滑水平面上A 、B 两小车中间有一弹簧,如图16-1-1所示,用手抓住小车并将弹簧压缩后使小车处于静止状态.将两小车及弹簧看作一个系统,下面说法正确的是( )图16-1-1A.两手同时放开后,系统总动量始终为零B.先放开左手,再放开右手,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,两手放开后,在弹簧恢复原长的,系统总动量都保持不变,但系统的总动量不一定为零解析:在两手同时放开后,水平方向无外力作用,只有弹簧的弹力(内力),故动量守恒,即系统的总动量始终为零,所以选项A正确.先放开左手,再放开右手后,是指两手对系统都无作用力之后的那一段时间,系统所受合外力也为零,即动量是守恒的,所以选项B错误.先放开左手,系统在右手作用下,产生向左的冲量,故有向左的动量,再放开右手后,系统所受合外力也为零,即系统的动量仍守恒,即此后的总动量向左,所以选项C正确.其实,无论何时放开手,只要是两手都放开就满足动量守恒的条件,即系统的总动量保持不变.若同时放开,那么作用后系统的总动量就等于放手前的总动量,即为零;若两手先后放开,那么两手都放开的总动量就与放开最后一只手系统所具有的总动量相等,即不为零,所以选项D正确.答案:ACD巧解提示判断系统的动量是否守恒时,要注意动量守恒的条件是系统不受外力或所受外力之和为零.因此,要区分清系统中的物体所受的力哪些是内力,哪些是外力.应选准系统,并且紧紧抓住动量守恒的条件.例4 试判断下列作用过程系统的动量是否守恒.A.如图16-1-2(a)所示,水平地面上有一大炮,斜向上发射一枚弹丸的过程;B.如图16-1-2(b)所示,粗糙水平面上有两个物体,压紧它们之间的一根轻弹簧,在弹簧弹开的过程中;C.如图16-1-2(c)所示,光滑水平面上有一斜面体,将另一物体从斜面的顶端释放,在物体下滑的过程中.图16-1-2解析:对于(a),大炮发射弹丸的过程中,弹丸加速上升,系统处于超重状态,地面对于系统向上的支持力大于系统的重力,所以系统在竖直方向动量不守恒.在水平方向上系统不受外力,或者说受到的地面给炮身的阻力远小于火药爆发过程中的内力,故系统在水平方向上动量守恒.对于(b)来说,在弹簧弹开的过程中,地面给两物体的摩擦力方向相反且是外力,若两个摩擦力大小相等,则系统无论在水平方向上还是在竖直方向上所受合外力为零,则系统动量守恒;若两个物体受到的摩擦力大小不相等,则系统动量不守恒.对于(c)来说,物体在斜面上加速下滑的过程处于失重状态,系统在竖直方向上受到的合外力竖直向下,系统的动量增加,不守恒,而在水平方向上系统不受外力作用,故系统在水平方向上动量守恒.答案:对于(a)系统在水平方向上动量守恒;对于(b),若两个摩擦力大小相等,则系统动量守恒;若两个物体受到的摩擦力大小不相等,则系统动量不守恒.对于(c),系统在水平方向上动量守恒.方法归纳 分析动量守恒时要着眼于系统,要在不同的方向上研究系统所受外力的矢量和;系统动量严格守恒的情况是很少的,在分析守恒条件是否满足时,要注重对实际过程的理想化.知识点三 动量守恒定律的应用例5 如图16-1-3所示,水平面上有两个木块,两木块的质量分别为m 1、m 2,且m 2=2m 1.开始两木块之间有一根用轻绳缚住的压缩轻弹簧,烧断细绳后,两木块分别向左右运动,若两木块m 1和m 2与水平面间的动摩擦因数为μ1、μ2=2μ2,则在弹簧伸长的过程中,两木块( )图16-1-3A.动量大小之比为1∶1B.速度大小之比为2∶1C.通过的路程之比为2∶1D.通过的路程之比为1∶1解析:以两木块及弹簧为研究对象,绳断开后,弹簧将对两木块有推力作用,这可以看成是内力;水平面对两木块有方向相反的滑动摩擦力,且F 1=μ1m 1g ,F 2=μ2m 2g.因此系统所受合外力F 合=μ1m 1g-μ2m 2g=0,即满足动量守恒定律条件.设弹簧伸长过程中某一时刻,两木块速度分别为v 1、v 2,由动量守恒定律有(以向右为正方向): -m 1v 1+m 2v 2=0, 即m 1v 1=m 2v 2.即两物体的动量大小之比为1∶1,故A 项正确. 则两物体的速度大小之比为21v v =12m m =12,故B 项正确,由于木块通过的路程正比于其速度,两木块通过的路程之比21s s =21v v =12,故C 项正确,D 项错误,故本题应选A 、B 、C 三项.答案:ABC误区警示 本题若水平面光滑,就很容易想到动量守恒定律求解.现在两木块受到了摩擦力作用,不少人就想不到要用动量守恒定律求解.原因:一是没有认真分析受力;二是误认为系统受摩擦力作用.实际上系统所受摩擦力之和为零,因此动量守恒的条件是满足的.例6 质量为3 kg 的小球A 在光滑水平面上以6 m/s 的速度向右运动,恰遇上质量为5 kg 的小球B 以4 m/s 的速度向左运动,碰撞后B 球恰好静止,求碰撞后A 球的速度.解析:两球都在光滑水平面上运动,碰撞过程中系统所受合外力为零,因此系统动量守恒. 碰撞前两球动量已知,碰撞后B 球静止,取A 球初速度方向为正,由动量守恒定律有:m A v A +m B v B =m A v A ′ v′A =AB B A A m v m v m +=3(-4)563⨯+⨯m/s≈-0.67 m/s即碰后A 球速度大小为0.67 m/s ,方向向左.误区警示 动量守恒定律是矢量式,应特别注意始末状态动量的方向.很多同学在解题时没有注意到这一点而导致出错,或在解出速度数值后没有说明方向. 问题·探究 方案设计探究问题试用平抛运动规律来探究碰撞中的动量守恒.探究过程:实验装置如图16-1-4所示.让一个质量较大的小球m1从斜槽上滚下来,跟放在斜槽末端的另一质量较小的小球(半径相同)m2发生碰撞(正碰).图16-1-4小球的质量可以用天平称出.测出两个小球碰撞前后的速度.两球碰撞前后的速度方向都是水平的,因此两球碰撞前后的速度,可以利用平抛运动的知识求出.在这个实验中,做平抛运动的小球落到地面,它们的下落高度相同,飞行时间t 也就相同,它们飞行的水平距离x=vt与小球开始做平抛运动时的水平速度v成正比.设小球下落的时间为t,质量为m1的入射小球碰前的速度为v1,碰撞后,入射小球的速度是v1′,被碰小球的速度是v2′.则在图16-1-5中图16-1-5OP=v1t v1=tOPOM=v′1t v1′=tOMON=v′2t v2′=tON具体实验操作如下:安装好实验装置.将斜槽固定在桌边,使槽的末端点的切线是水平的.被碰小球放在斜槽前端边缘处.为了记录小球飞出的水平距离,在地上铺一张白纸,白纸上铺放复写纸,当小球落在复写纸上时,便在白纸上留下了小球落地的痕迹.在白纸上记下重垂线所指的位置O.先不放上被碰小球,让入射小球从斜槽上某一高处滚下,重复10次.用尽可能小的圆把所有的小球落点圈在里面.圆心P就是小球落点的平均位置.把被碰小球放在斜槽前端边缘处,让入射小球从原来的高度滚下,使它们发生碰撞.重复实验10次.用同样的方法标出碰撞后入射小球的落点的平均位置M和被碰小球的落点的平均位置N.线段ON的长度是被碰小球飞出的水平距离;OM是碰撞后小球m1飞行的距离;OP则是不发生碰撞时m1飞行的距离.用刻度尺测量线段OM、OP、ON的长度.注意事项:①斜槽末端的切线必须水平;②入射球与被碰球的球心连线与入射球的初速度方向一致;③入射球每次都必须从斜槽上同一位置由静止开始滚下;④地面须水平,白纸铺好后,实验过程中不能移动,否则会造成很大误差.探究结论:碰撞中动量守恒(本实验设计思想巧妙之处在于用长度测量代替速度测量).交流讨论探究问题动量守恒定律与机械能守恒定律的区别有哪些?探究过程:龚小明:研究对象都是由两个或两个以上的物体组成的力学系统,若系统中存在重力做功过程应用机械能守恒定律时,系统中必包括地球,应用动量守恒定律时,对象应为所有相互作用的物体,并尽量以“大系统”为对象考虑问题.冯崇:守恒条件有质的区别:=0,在系统中的每一对内力,无论其动量守恒的条件是系统所受合外力为零,即∑F外性质如何,对系统的总冲量必为零,即内力的冲量不会改变系统的总动量,而内力的功却有可能改变系统的总动能,这要由内力的性质决定.保守内力的功不会改变系统的总机械能;耗散内力(滑动摩擦力、爆炸力等)做功,必使系统机械能变化.张强:两者守恒的性质不同:动量守恒是矢量守恒,所以要特别注意方向性,有时可以在某一单方向上系统动量守恒,故有分量式,而机械能守恒为标量守恒,即始、末两态机械能量值相等,与方向无关.白小艳:应用的范围不同:动量守恒定律应用范围极为广泛,无论研究对象是处于宏观、微观、低速、高速,无论是物体相互接触,还是通过电场、磁场而发出的场力作用,动量守恒定律都能使用,相比之下,机械能守恒定律应用范围是狭小的,只能应用在宏观、低速领域内机械运动的范畴内.刘青青:适用条件不同:动量守恒定律不涉及系统是否发生机械能与其他形式的能的转化,即系统内物体之间相互作用过程中有无能量损失均不考虑,相反机械能守恒定律则要求除重力、弹簧弹力外的内力和外力对系统所做功代数和必为零.探究结论:二者对照,各自的守恒条件、内容、意义、应用范围各不相同,在许多问题中既有联系,又有质的区别.从两守恒定律进行的比较中可以看出:(1)动量守恒定律适用范围更宽泛;(2)两者都是物体在相互作用中系统的不变量,研究对象都是系统;(3)两者都遵守各自成立的条件,互不影响.。
1.4实验:验证动量守恒定律—【新教材】人教版高中物理选择性必修第一册课件
第一章 动量动量守恒定律 1.4 实验:验证动量守恒定律
【学习目标】 1.知道验证动量守恒定律的实验方法有哪些. 2.知道验证过程中需要测量的物理量及其测量方法. 3.知道验证动量守恒定律实验的注意事项.
【知识梳理】
可以利用凹槽或气垫导轨限定运动在同一直线上进行,如课本“参考案例1、2的实验装置”. (4)滑块速度的测量方法
(1)测质量 量时,忘记粘橡皮泥,则所测系统碰撞前总动量与系统碰撞后总动量相比,将________(选填“偏大”“偏小”或“相等”).
在利用气垫导轨验证动量守恒时,用到的测量工具有( ) 【实验方案四】利用圆周运动完成一维碰撞实验
【实验方案一】利用气垫导轨完成一维碰撞实验
(2)安装器材 知道验证动量守恒定律的实验方法有哪些.
光电计时器的挡光时间为Δt,则滑块通过该处的速度v = d . (如图) t
3.速度的测量. (2)若将一小球用长L的细线悬挂起来,并拉起一个与竖直 方向成θ的夹角,无初速释放后,小球到达最低处的速度v = .
2gL1 cos
(3)打点计时器打出 的纸带能记录运动物体在不同时刻的位移,若所打各点均 匀分布,可以判断物体做匀速直线运动,若知道打点计时器的频率和纸带上各相 邻点间的距离,便可求出物体运动的速度v
B.由静止释放小球,以便较准确计算小球碰前速度
将实验中测得的物理量填入如下表格.(m1=________;
(3)实验操作 C.两小球必须都是弹性球,且质量相同
(4)滑块速度的测量方法
例1. 在利用气垫导轨验证动量守恒时,用到的测量工具有( )
A.停表、天平、刻度尺 答案:C 在一维碰撞中,测出物体的质量m1、m2和碰撞前后物体的速率v、v',找出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p'=m1v1'+m2v2',看碰撞前后动量是否守恒。
高中物理实验15验证动量守恒定律学案
实验十五验证动量守恒定律考纲解读1.会用实验装置测速度或用其他物理量表示物体的速度大小.2.验证在系统不受外力的作用下,系统内物体相互作用时总动量守恒.基本实验要求1.实验原理在一维碰撞中,测出物体的质量m和碰撞前、后物体的速度v、v′,算出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v1′+m2v2′,看碰撞前后动量是否守恒.2.实验器材斜槽、小球(两个)、天平、复写纸、白纸等.3.实验步骤(1)用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)按照实验原理图甲安装实验装置.调整、固定斜槽使斜槽底端水平.(3)白纸在下,复写纸在上且在适当位置铺放好.记下重垂线所指的位置O.(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把小球所有的落点都圈在里面.圆心P就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被撞小球落点的平均位置N.如实验原理图乙所示.(6)连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中.最后代入m1OP=m1OM+m2ON,看在误差允许的范围内是否成立.(7)整理好实验器材放回原处.(8)实验结论:在实验误差允许范围内,碰撞系统的动量守恒.规律方法总结1.数据处理验证表达式:m1v1+m2v2=m1v1′+m2v2′2.注意事项(1)前提条件保证碰撞是一维的,即保证两物体在碰撞之前沿同一直线运动,碰撞之后还沿这条直线运动.(2)利用斜槽进行实验,入射球质量要大于被碰球质量,即m1>m2,防止碰后m1被反弹.[备课笔记]考点一实验原理与实验操作例1 某同学用如图1所示装置通过半径相同的A、B两球(m A>m B)的碰撞来验证动量守恒定律.图中PQ是斜槽,QR为水平槽.实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹.重复上述操作10次,得到10个落点痕迹.再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G由静止开始滚下,和B球碰撞后,A、B球分别在记录纸上留下各自的落点痕迹,重复这种操作10次.图1中O点是水平槽末端R在记录纸上的垂直投影点.B球落点痕迹如图2所示,其中米尺水平放置,且平行于G、R、O所在的平面,米尺的零点与O点对齐.图1图2(1)碰撞后B球的水平射程应取______ cm.(2)在以下选项中,本次实验必须进行测量的有________(填选项号).A.水平槽上未放B球时,测量A球落点位置到O点的距离B.A球与B球碰撞后,测量A球及B球落点位置到O点的距离C.测量A球或B球的直径D.测量A球和B球的质量(或两球质量之比)E.测量水平槽面相对于O点的高度(3)实验中,关于入射球在斜槽上释放点的高低对实验影响的说法中正确的是( )A.释放点越低,小球受阻力越小,入射小球速度越小,误差越小B.释放点越低,两球碰后水平位移越小,水平位移测量的相对误差越小,两球速度的测量越准确C.释放点越高,两球相碰时,相互作用的内力越大,碰撞前后动量之差越小,误差越小D .释放点越高,入射小球对被碰小球的作用力越大,轨道对被碰小球的阻力越小解析 (1)用一尽可能小的圆把小球落点圈在里面,可知圆心的位置是65.7 cm ,这也是小球落点的平均位置.(2)本实验中要测量的数据有:两个小球的质量m 1、m 2,三个落点到O 点的距离x 1、x 2、x 3,所以应选A 、B 、D.(3)入射球的释放点越高,入射球碰前速度越大,相碰时内力越大,阻力的影响相对越小,可以较好的满足动量守恒的条件,也有利于减小测量水平位移时的相对误差,从而使实验的误差减小,选项C 正确.答案 (1)65.7 (2)ABD (3)C变式题组1.[实验操作]某同学用如图3所示的装置来验证动量守恒定律.图中PQ 为斜槽,QR 为水平槽.实验时先使a 球从斜槽上某一固定位置G 由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹.关于小球落点的下列说法中正确的是( )图3A .如果小球每一次都从同一点无初速释放,重复几次的落点应当是重合的B .由于偶然因素存在,重复操作时小球的落点不重合是正常的,但落点应当比较密集C .测定B 点位置时,如果重复10次的落点分别为B 1、B 2、B 3、…B 10,则OB 应取OB 1、OB 2、OB 3…OB 10的平均值,即OB =OB 1+OB 2+…+OB 1010D .用半径尽量小的圆把B 1、B 2、B 3…B 10圈住,这个圆的圆心就是入射球落点的平均位置B 答案 BD解析 重复操作时小球的落点不会全重合,但距离应较近.确定落点位置的方法是画最小的圆圈定落点,圆心作为落点位置.2.[实验原理和操作]如图4所示为实验室中验证动量守恒的实验装置示意图.图4(1)若入射小球质量为m1,半径为r1;被碰小球质量为m2,半径为r2,则( )A.m1>m2,r1>r2 B.m1>m2,r1>r2C.m1>m2,r1=r2 D.m1<m2,r1=r2(2)为完成此实验,以下所提供的测量工具中必需的是______________________.(填下列对应的字母)A.直尺B.游标卡尺C.天平D.弹簧秤E.秒表(3)设入射小球的质量为m1,被碰小球的质量为m2,P为碰前入射小球落点的平均位置,则关系式(用m1、m2及图中字母表示)________________成立.即表示碰撞中动量守恒.答案(1)C (2)AC (3)m1·OP=m1·OM+m2·ON解析(1)两小球要选等大的,且入射小球的质量应大些,故选C.(2)该实验必须测出两球平抛的水平位移和质量,故必须用直尺和天平,因两球平抛起点相同,不用测小球直径,故用不到B.(3)因平抛落地时间相同,可用水平位移代替速度,故关系式为m1·OP=m1·OM+m2·ON.考点二实验数据处理例2 某同学设计了一个用电磁打点计时器验证动量守恒定律的实验:在小车A的前端粘有橡皮泥,推动小车A使之做匀速直线运动,然后与原来静止在前方的小车B相碰并粘合成一体,继续做匀速直线运动.他设计的装置如图5甲所示.在小车A后连着纸带,电磁打点计时器所用电源频率为50 Hz,长木板下垫着薄木片以平衡摩擦力.图5(1)若已测得打点纸带如图乙所示,并测得各计数点间距(已标在图上).A为运动的起点,则应选________段来计算A碰前的速度.应选________段来计算A和B碰后的共同速度(以上两空选填“AB”或“BC”或“CD”或“DE”).(2)已测得小车A 的质量m 1=0.4 kg ,小车B 的质量为m 2=0.2 kg ,则碰前两小车的总动量为________ kg·m/s,碰后两小车的总动量为________ kg·m/s.解析 (1)从分析纸带上打点的情况看,BC 段既表示小车做匀速运动,又表示小车有较大速度,因此BC 段能较准确地描述小车A 在碰撞前的运动情况,应选用BC 段计算小车A 碰前的速度.从CD 段打点的情况看,小车的运动情况还没稳定,而在DE 段内小车运动稳定,故应选用DE 段计算A 和B 碰后的共同速度.(2)小车A 在碰撞前速度v 0=BC 5T =10.50×10-25×0.02m/s =1.050 m/s小车A 在碰撞前的动量 p 0=m 1v 0=0.4×1.050 kg·m/s=0.420 kg·m/s碰撞后A 、B 的共同速度v =DE 5T =6.95×10-25×0.02m/s =0.695 m/s 碰撞后A 、B 的总动量 p =(m 1+m 2)v =(0.2+0.4)×0.695 kg·m/s=0.417 kg·m/s答案 (1)BC DE (2)0.420 0.417变式题组3.[数据处理]如图6(a)所示,在水平光滑轨道上停着甲、乙两辆实验小车,甲车系一穿过打点计时器的纸带,当甲车受到水平向右的冲量时,随即启动打点计时器.甲车运动一段距离后,与静止的乙车发生正碰并粘在一起运动.图6纸带记录下碰撞前甲车和碰撞后两车运动情况如图(b)所示,电源频率为50 Hz ,则碰撞前甲车运动速度大小为________m/s ,甲、乙两车的质量比m 甲∶m 乙=________.答案 0.6 2∶1解析 由纸带及刻度尺可得碰前甲车的速度为v 1=12×10-30.02 m/s =0.6 m/s.碰后两车的共同速度v 2=8×10-30.02m/s =0.4 m/s. 由动量守恒定律有m 甲v 1=(m 甲+m 乙)v 2由此得甲、乙两车的质量比 m 甲m 乙=21. 4.[数据处理]气垫导轨上有A 、B 两个滑块,开始时两个滑块静止,它们之间有一根被压缩的轻质弹簧,滑块间用绳子连接(如图7甲所示),绳子烧断后,两个滑块向相反方向运动,图乙为它们运动过程的频闪照片,频闪的频率为10 Hz ,由图可知:图7(1)A 、B 离开弹簧后,应该做________运动,已知滑块A 、B 的质量分别为200 g 、300 g ,根据照片记录的信息,从图中可以看出闪光照片有明显与事实不相符合的地方是____________________________________________.(2)若不计此失误,分开后,A 的动量大小为____kg·m/s,B 的动量的大小为________kg·m/s.本实验中得出“在实验误差允许范围内,两滑块组成的系统动量守恒”这一结论的依据是__________________________________________.答案 (1)匀速直线 A 、B 两滑块的第一个间隔(2)0.018 0.018 A 、B 两滑块作用前后总动量不变,均为0解析 (1)A 、B 离开弹簧后因水平方向不再受外力作用,所以均做匀速直线运动,在离开弹簧前A 、B 均做加速运动,A 、B 两滑块的第一个间隔都应该比后面匀速时相邻间隔的长度小.(2)周期T =1f =0.1 s ,v =x t,由题图知A 、B 匀速时速度分别为v A =0.09 m/s ,v B =0.06 m/s ,分开后A 、B 的动量大小均为p =0.018 kg·m/s,方向相反,满足动量守恒,系统的总动量为0.考点三 实验拓展与创新例3 如图8是用来验证动量守恒的实验装置,弹性球1用细线悬挂于O 点,O 点下方桌子的边缘有一竖直立柱.实验时,调节悬点,使弹性球1静止时恰与立柱上的球2右端接触且两球等高.将球1拉到A 点,并使之静止,同时把球2放在立柱上.释放球1,当它摆到悬点正下方时与球2发生对心碰撞,碰后球1向左最远可摆到B 点,球2落到水平地面上的C 点.测出有关数据即可验证1、2两球碰撞时动量守恒.现已测出A 点离水平桌面的距离为a 、B 点离水平桌面的距离为b ,C 点与桌子边沿间的水平距离为c .此外,图8(1)还需要测量的量是____________、_________________和________________________.(2)根据测量的数据,该实验中动量守恒的表达式为__________________________.(忽略小球的大小)答案(1)弹性球1、2的质量m1、m2立柱高h桌面离水平地面的高度H(2)2m1a-h=2m1b-h+m2cH+h解析(1)要验证动量守恒必须知道两球碰撞前后的动量变化,根据弹性球1碰撞前后的高度a 和b,由机械能守恒可以求出碰撞前后的速度,故只要再测量弹性球1的质量m1,就能求出弹性球1的动量变化;根据平抛运动的规律只要测出立柱高h和桌面离水平地面的高度H就可以求出弹性球2碰撞前后的速度变化,故只要测量弹性球2的质量和立柱高h、桌面离水平地面的高度H就能求出弹性球2的动量变化.(2)根据(1)的解析可以写出动量守恒的方程2m1a-h=2m1b-h+m2cH+h.变式题组5.[实验创新]为了验证碰撞中的动量守恒和检验两个小球的碰撞是否为弹性碰撞(碰撞过程中没有机械能损失),某同学选取了两个体积相同、质量不等的小球,按下述步骤做实验:( )图9①用天平测出两个小球的质量分别为m1和m2,且m1>m2.②按照如图9所示,安装好实验装置;将斜槽AB固定在桌边,使槽的末端点的切线水平,将一斜面BC连接在斜槽末端.③先不放小球m2,让小球m1从斜槽顶端A处由静止开始滚下,记下小球在斜面上的落点位置.④将小球m2放在斜槽末端点B处,让小球m1从斜槽顶端A处滚下,使它们发生碰撞,记下小球m1和小球m2在斜面上的落点位置.⑤用毫米刻度尺量出各个落点位置到斜槽末端点B 的距离.图中D 、E 、F 点是该同学记下的小球在斜面上的几个落点位置,到B 点的距离分别为L D 、L E 、L F .根据该同学的实验,回答下列问题:(1)小球m 1与m 2发生碰撞后,m 1的落点是图中的________点,m 2的落点是图中的________点.(2)用测得的物理量来表示,只要满足关系式________,则说明碰撞中动量是守恒的.(3)用测得的物理量来表示,只要再满足关系式________,则说明两小球的碰撞是弹性碰撞. 答案 (1)D F (2)m 1L E =m L D +m 2LF(3)m 1L E =m 1L D +m 2L F解析 (1)小球的落点位置跟平抛运动的初速度大小有关,碰后,小球m 1的速度较小,m 2的速度较大,所以m 1的落点是图中的D 点,m 2的落点是图中的F 点.(2)设碰前小球m 1的速度为v 0,碰撞后,m 1的速度为v 1,m 2的速度为v 2,若碰撞中动量是守恒的,它们应该满足关系式m 1v 0=m 1v 1+m 2v 2;设斜面倾角为θ,根据平抛运动的规律有tan θ=y x =12gt 2vt=gt 2v ,所以v =gt 2tan θ∝t ,而t = 2y g ∝y ∝L ,所以v ∝L .本题中,要验证m 1v 0=m 1v 1+m 2v 2成立,只需要验证m 1L E =m 1L D +m 2L F 成立.(3)要验证两个小球的碰撞是弹性碰撞,只需再验证12m 1v 20=12m 1v 21+12m 2v 22成立.而平抛运动时的初速度v ∝L ,所以v 2∝L ,故需要再满足关系式m 1L E =m 1L D +m 2L F .6.[实验创新]为了验证动量守恒定律(探究碰撞中的不变量),某同学选取了两个材质相同、体积不等的立方体滑块A 和B ,按下述步骤进行实验:步骤1:在A 、B 的相撞面分别装上橡皮泥,以便二者相撞以后能够立刻结为整体;步骤2:安装好实验装置如图10,铝质轨道槽的左端是倾斜槽,右端是长直水平槽.倾斜槽和水平槽由一小段弧连接,轨道槽被固定在水平桌面上,在轨道槽的侧面与轨道等高且适当远处装一台数码频闪照相机;图10步骤3:让滑块B 静置于水平槽的某处,滑块A 从斜槽某处由静止释放,同时开始频闪拍摄,直到A 、B 停止运动,得到一幅多次曝光的数码照片;步骤4:多次重复步骤3,得到多幅照片,挑出其中最理想的一幅,打印出来,将刻度尺紧靠照片放置,如图11所示.(1)由图分析可知,滑块A 与滑块B 碰撞发生的位置________.图11①在P 5、P 6之间②在P 6处③在P 6、P 7之间(2)为了探究碰撞中动量是否守恒,需要直接测量或读取的物理量是________.①A 、B 两个滑块的质量m 1和m 2②滑块A 释放时距桌面的高度③频闪照相的周期④照片尺寸和实际尺寸的比例⑤照片上测得的s 45、s 56和s 67、s 78⑥照片上测得的s 34、s 45、s 56和s 67、s 78、s 89⑦滑块与桌面间的动摩擦因数写出验证动量守恒的表达式________.(3)请你写出一条有利于提高实验准确度或改进实验原理的建议:__________________, 答案 (1)② (2)①⑥ m 1(s 45+2s 56-s 34)=(m 1+m 2)(2s 67+s 78-s 89) (3)将轨道的一端垫起少许,平衡摩擦力,使得滑块碰撞前后都做匀速运动(其他合理答案也可)解析 (1)由图可知s 12=3.00 cm ,s 23=2.80 cm ,s 34=2.60 cm ,s 45=2.40 cm ,s 56=2.20 cm ,s 67=1.60 cm ,s 78=1.40 cm ,s 89=1.20 cm.根据匀变速直线运动的特点可知A 、B 相撞的位置在P 6处.(2)为了探究A 、B 相撞前后动量是否守恒,就要得到碰撞前后的动量,所以要测量A 、B 两个滑块的质量m 1、m 2和碰撞前后的速度.设照相机拍摄时间间隔为T ,则P 4处的速度为v 4=s 34+s 452T,P 5处的速度为v 5=s 45+s 562T ,因为v 5=v 4+v 62,所以A 、B 碰撞前在P 6处的速度为v 6=s 45+2s 56-s 342T;同理可得碰撞后AB 在P 6处的速度为v 6′=2s 67+s 78-s 892T.若动量守恒则有m 1v 6=(m 1+m 2)v 6′,整理得m 1(s 45+2s 56-s 34)=(m 1+m 2)(2s 67+s 78-s 89).因此需要测量或读取的物理量是①⑥.(3)若碰撞前后A 、B 都做匀速运动则可提高实验的精确度.。
江苏专用_新教材高中物理第一章动量守恒定律4实验:验证动量守恒定律课件新人教版选择性必修第一册
(3)mA 2gL1-cos α=mA 2gL1-cos β+mBs
g 2H
1.用如图甲所示装置通过半径相同的 A、B 两球碰撞来验证动量守恒定律,A 球质 量 mA=0.3 kg,B 球质量 mB=0.1 kg,实验时先使 A 球从斜槽上某一固定点 G 由 静止开始滚下,落到位于水平地面的记录纸上,留下痕迹,重复上述操作 10 次, 得到 10 个落点痕迹。把 B 球放在水平槽上靠近槽末端的地方,让 A 球仍从位置 G 由静止开始滚下,和 B 球碰撞后,A、B 球分别在记录纸上留下各自的落点痕 迹,重复这种操作 10 次,得到了如图乙所示的三个落地处。
解析:(1)为保证 A、B 作用过程中系统动量守恒,应调整气垫导轨,使导轨水平。 (2)弹簧恢复原长后,A、B 做匀速直线运动,A 的速度大小为 vA=Lt11,B 的速度 大小为 vB=Lt22 以向左的方向为正方向,由动量守恒定律得 mAvA-mBvB=0 由以上各式解得 mALt11-mBLt22=0。
碰后 A 球的速度 v1′= 2gL1-cos β
碰后 B 球做平抛运动的初始速度 v2′=st= s2H=s
g 2H
g
若要验证动量守恒定律,需满足:mAv1=mAv1′+mBv2′
即 mA 2gL1-cos α=mA 2gL1-cos β+mBs 2gH。
[答案] (1)落地点 (2)L、α、β、H、s、mA、mB
(3)由能量守恒定律得,被压缩弹簧的弹性势能 Ep=12mAvA2+12mBvB2=12mALt1122+12mBLt2222。
答案:(1)处于水平 (2)mALt11-mBLt22=0 (3)Ep=21mALt1122+12mBLt2222
3.某同学用如图所示的装置来验证动量守恒定律,实验步骤如下:
动量守恒实验
验证动量守恒定律一、实验原理m1v1+m2v2=m1v1 +m2v2二、实验方法控制变量法三、实验分类1、气垫导轨型2、摆球型3、斜面型4、斜槽型四、实验过程——以斜槽型为例(常考)1、用天平测出两小球的质量,并选定质量较大的小球作为入射小球。
2、安装实验装置,注意时斜槽底端水平。
3、白纸在下,复写纸在上,在适当的位置放好,记下中垂线所在的位置O。
4、不放被撞小球,让入射小球从斜槽上某固定高度静止释放,重复多次,用圆规画尽量小的圆将所有的落点圈在里面,则圆心位置P即为小球落点的平均位置。
5、把被撞小球放置斜槽末端,让小球由同一释放点静止释放,使其碰撞,重复多次,用上述方法测量出入射小球和被撞小球的落点位置,标记为“M”和“N”。
6、连接ON,测量线段L OM、L OP和L ON的长度实验结果:验证M L OP与M L OM+m L ON是否相等五、注意事项1、入射小球质量M大于被撞小球m,即M>m。
2、两个小球大小相等。
3、斜槽末端切线水平。
4、小球每次应由同一点静止释放。
经典例题1、某同学采用如图所示的装置,利用A、B两球的碰撞来验证动量守恒定律.图中MN是斜槽,N R为水平槽.实验时先使A球从斜槽上某一固定位置由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹.重复上述操作10次,得到10个落点痕迹平均位置P;再把B球放在水平槽上靠近槽末端的地方,让A球仍从固定位置由静止开始滚下,与B球碰撞后,A、B球分别在记录纸上留下各自的落点痕迹.重复这种操作10次得到10个落点痕迹平均位置E、F.(1)若A球质量为m1,半径为r1;B球质量为m2,半径为r2,则 (单选)A.m1>m2r1>r2B.m1>m2r1<r2C.m1>m2r1=r2D.m1<m2r1=r2(2)以下提供的器材中,本实验必需的是 (单选)A.刻度尺B.打点计时器C.天平D.秒表(3)设A球的质量为m1,B球的质量为m2,则本实验验证动量守恒定律的表达式为(用装置图中的字母表示) .2、某同学用如图所示装置探究A、B两球在碰撞中动量是否守恒.该同学利用平抛运动测量两球碰撞前后的速度,实验装置和具体做法如下,图中P Q是斜槽,QR为水平槽.实验时先使A球从斜槽上某一固定位置G由静止开始滑下,落到位于水平地面的记录纸上,留下痕迹.重复上述操作10次,得到10个落点痕迹.再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G 由静止开始滑下,和B球碰撞后,A、B球分别在记录纸上留下各自的落点痕迹.重复这种操作10次,并画出实验中A、B两小球落点的平均位置.图中O点是水平槽末端R在记录纸上的垂直投影点,E、F、J是实验中小球落点的平均位置.①为了使两球碰撞为一维碰撞,所选两球的直径关系为:A 球的直径 B 球的直径(“大于”、“等于”或“小于”);为减小实验误差,在两球碰撞后使A 球不反弹,所选用的两小球质量关系应为m A m B (选填“大于”、“等于”或“小于”);②在以下选项中,本次实验必须进行的测量是 ;A .水平槽上未放B 球时,A 球落点位置到O 点的距离B .A 球与B 球碰撞后,A 球、B 球落点位置分别到O 点的距离C .A 球和B 球在空中飞行的时间D .测量G 点相对于水平槽面的高③已知两小球质量m A 和m B ,该同学通过实验数据证实A 、B 两球在碰撞过程中动量守恒,请你用图中的字母写出该同学判断动量守恒的表达式是 .光说不练,等于白干1、在“探究碰撞中的不变量”实验中,装置如图所示,两个小球的质量分别为m A 和m B .(1)现有下列器材,为完成本实验,哪些是必需的?请将这些器材前面的字母填在横线上 .A .秒表B .刻度尺C .天平D .圆规(2)如果碰撞中动量守恒,根据图中各点间的距离,则下列式子可能成立的有 . A. MP ON m m B A B. MP OM m m B A C. MN OP m m B A D.MNOM m m B A 2、如图1所示,在做“碰撞中的动量守恒”实验中.(1)下面是本实验部分测量仪器或工具,需要的是 .A .秒表B .天平C .刻度尺D .弹簧秤(2)完成本实验,下列必须要求的条件是 .A.斜槽轨道末端的切线必须水平B.入射球和被碰球的质量必须相等C.入射球和被碰球大小必须相同D.入射球每次不必从轨道的同一位置由静止滚下(3)某次实验中用游标卡尺测量小球的直径,如图2所示,该小球的直径为 mm.(4)某次实验中得出的落点情况如图3所示,假设碰撞过程中动量守恒,则入射小球质量m1和被碰小球质量m2之比为 .3、如图1所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系:先安装好实验装置,在地上铺一张白纸,白纸上铺放复写纸,记下重垂线所指的位置O.接下来的实验步骤如下:步骤1:不放小球2,让小球1从斜槽上A点由静止滚下,并落在地面上.重复多次,用尽可能小的圆,把小球的所有落点圈在里面,其圆心就是小球落点的平均位置;步骤2:把小球2放在斜槽前端边缘位置B,让小球1从A点由静止滚下,使它们碰撞.重复多次,并使用与步骤1同样的方法分别标出碰撞后两小球落点的平均位置;步骤3:用刻度尺分别测量三个落地点的平均位置M、P、N离O点的距离,即线段OM、OP、ON的长度.(1)对于上述实验操作,下列说法正确的是A.应使小球每次从斜槽上相同的位置自由滚下B.斜槽轨道必须光滑C.斜槽轨道末端必须水平D.小球1质量应大于小球2的质量(2)上述实验除需测量线段OM、OP、ON的长度外,还需要测量的物理量有 .A.A、B两点间的高度差h1B.B点离地面的高度h2C.小球1和小球2的质量m1、m2D.小球1和小球2的半径r(3)当所测物理量满足表达式 (用所测物理量的字母表示)时,即说明两球碰撞遵守动量守恒定律.如果还满足表达式 (用所测物理量的字母表示)时,即说明两球碰撞时无机械能损失.(4)完成上述实验后,某实验小组对上述装置进行了改造,如图2所示.在水平槽末端与水平地面间放置了一个斜面,斜面的顶点与水平槽等高且无缝连接.使小球1仍从斜槽上A点由静止滚下,重复实验步骤1和2的操作,得到两球落在斜面上的平均落点M′、P′、N′.用刻度尺测量斜面顶点到M′、P′、N′三点的距离分别为l1、l2、l3.则验证两球碰撞过程中动量守恒的表达式为 (用所测物理量的字母表示).4、某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前端粘有橡皮泥,推动小车A使之做匀速运动,然后与原来静止在前方的小车B相碰并黏合成一体.继续做匀速运动,他设计的具体装置如图(a)所示,在小车A后接着纸带,电磁打点计时器电源频率为50Hz,长木板下垫着小木片用以平衡摩擦力.(1)若已得到打点纸带如图(b),并将测得的各计数点间距离标在图上,A为运动起始的第一点,则应选 段起计算A的碰前速度,应选 段来计算A和B碰后的共同速度(以上两格填“AB”或“BC”或“DC”或“DE”)(2)已测得小车A的质量m1=0.40kg,小车B的质量m2=0,20kg,由测量结果可得:碰前总动量=kg•m/s,碰后总动量=kg•m/s.5、气垫导轨是常用的一种实验仪器.它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦.我们可以用带竖直挡板C和D的气垫导轨以及滑块A和B来验证动量守恒定律,实验装置如图所示(弹簧的长度忽略不计),采用的实验步骤如下:a.用天平分别测出滑块A、B的质量m A、m B.b.调整气垫导轨,使导轨处于水平.c.在A和B间放入一个被压缩的轻弹簧,用电动卡销锁定,静止放置在气垫导轨上.d.用刻度尺测出A的左端至C板的距离L1.e.按下电钮放开卡销,同时使分别记录滑块A、B运动时间的计时器开始工作.当A、B滑块分别碰撞C、D挡板时停止计时,记下A、B分别到达C、D的运动时间t1和t2.(1)实验中还应测量的物理量是.(2)利用上述测量的实验数据,验证动量守恒定律的表达式是,上式中算得的A、B两滑块的动量大小并不完全相等,产生误差的原因可能是 (至少写出两点)(3)利用上述实验数据是否可以测出被压缩弹簧的弹性势能的大小?(填“可以”或“不可以”)6、某小组用如图所示的装置验证动量守恒定律.装置固定在水平面上,圆弧形轨道下端切线水平.两球半径相同,两球与水平面的动摩擦因数相同.实验时,先测出A、B两球的质量m A、m B,让球A多次从圆弧形轨道上某一位置由静止释放,记下其在水平面上滑行距离的平均值x0,然后把球B静置于轨道下端水平部分,并将A从轨道上同一位置由静止释放,并与B相碰,重复多次.①为确保实验中球A不反向运动,则m A、m B应满足的关系是;②写出实验中还需要测量的物理量及符号: ;③若碰撞前后动量守恒,写出动量守恒的表达式: ;④取m A=2m B,x0=1m,且A、B间为完全弹性碰撞,则B球滑行的距离为 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理验证动量守恒定律实验方案设计研
究
作者:***
来源:《师道(教研)》2022年第08期
守恒思想是物理学研究的重要思想,物理学家总是在不断探索我们生活中的不变量。通过
动量守恒定律能够解释我们生活中的很多问题,例如宏观物体组成的体系、两个物体组成的系
统以及多个物体组成的系统。当系统受到的合外力是零或不受外力作用情况下,那么该系统动
量守恒。高中阶段对动量守恒定律的验证主要是基于一维碰撞模型,两物体动量守恒的一般表
达式是m1v1+m2v2=m1v'1+m2v'2,其中m1、m2表示两物体的质量,v1、v2表示两物体的初
速度,v'1、v'2表示两物体的末速度。根据速度测算方法的不同又可以分为打点计时器法、气
垫导轨法等。下面将梳理实验方案,小结注意事项并提出优化方案建议。
一、打点计时器法
1.实验方案:如图1-1所示,装有打点计时器的长木板-小车装置是高中物理中的经典实验
仪器,可以用于研究匀变速直线运动,分析物体加速度和质量以及合外力之间的对应关系,验
证机械能守恒等,将其稍加改装成如图1-2所示的装置,进而能够针对动量守恒定律进行验
证,具体方法步骤便是将打点计时器固定在一个长木板上面,借助纸带将其和小车1连接。推
动小车1撞击木板另外一端,同时将纸带和打点计时器连接,然后将其绑在小车1上面。让处
于运动状态下的小车1和处于静止状态的小车2进行碰撞,将橡皮泥和撞针安装在碰撞的小车
上一起运动。借助纸带针对小车发生碰撞前后两个状态下的速度进行测试,碰撞前后小车速度
分别是v1和v'1,托盘天平称量两小车的质量分别是m1、m2,在误差匀速的范围内,验证
m1v1=(m1+m2)v'1是否成立,就可实现验证两小车构成的系统动量是否守恒的目的。
2.改進建议:该方案只能验证完全非弹性碰撞情景,但是因为模板并非属于完全理想的光
滑状态,且纸带和打点计时器之间存在摩檫力,故而导致实验存在较大误差。实验中可适当增
大两小车的质量或增大小车1的初速度,从而减小实验误差。
二、气垫导轨法
1.实验方案:气垫导轨是高中物理常用的实验仪器之一,它利用气泵使导轨上的小气孔喷
气,轨道和滑块之间形成气垫,从而使得滑块悬浮于轨道之上,滑块运动时可视为不受阻力。
如图2-1所示,利用与气垫导轨配套的光电门计时器可以测算两个滑块碰撞前后的速度。基本
原理便是借助刻度尺针对滑块上对应挡光片宽度进行测量,即得到?驻x,借助光电门计时器
针对挡光片经过光电门的时间进行测试,即?驻t,借助公式v=针对滑块速度进行计算。测出
两小车碰撞前的速度v1、v2和两小车碰撞后的速度v'1、v'2,用托盘天平称量两小车的质量分
别是m1、m2,在误差匀速的范围内,验证m1v1+m2v2=m1v'1+m2v'2是否成立,就可达到验
证两小车构成的系统动量是否守恒的目的。
2.改进建议:该方案中选用宽度较窄的挡光片,测算出的速度将更精确。相较于打点计时
器法,该方案可基本消除摩擦力的影响,减小实验误差,实验前要注意调节气垫导轨水平。对
滑块稍作改装,还可验证三种不同碰撞类型中的动量守恒。图2-1中两滑块为非弹性碰撞,如
在两滑块相碰的端面装上橡皮筋可实现弹性碰撞(如图2-2)。将橡皮泥和撞针分别安装在滑
块碰撞端,具体参见下图2-3,当滑块经过碰撞后组成整体,并且进行运动,进而能够实现非
弹性碰撞,将尼龙魔术贴安装在两个滑块上同样可以实现此效果。
责任编辑 王思静