【统计课件】06-第六章 抽样调查.doc

合集下载

抽样误差(简单随机抽样)--高等教育自学考试辅导《国民经济统计概论》第六章第二节讲义

抽样误差(简单随机抽样)--高等教育自学考试辅导《国民经济统计概论》第六章第二节讲义

正保远程教育旗下品牌网站 美国纽交所上市公司(NYSE:DL)
自考365 中国权威专业的自考辅导网站
官方网站: 高等教育自学考试辅导《国民经济统计概论》第六章第二节讲义
抽样误差(简单随机抽样)
一、抽样误差的概念及分类:
1.抽样误差的概念:指样本指标与全及指标之间数量上的差数。

例如:样本平均数与总体平均数之差
2.抽样误差的分类:173页
(1) 登记性误差:是指统计调查时,由于主客观原因,在登记、汇总、计算、记录中所产生的差错。

(2) 代表性误差:
1) 系统性误差:由于没有遵循随机原则,产生的抽样误差。

这类误差是可以避免的。

2) 随机误差:遵循了随机原则,也会产生抽样误差。

这类误差是不可以避免的。

二、抽样平均误差的概念及计算:
(一)抽样平均误差的概念:
1.抽样实际误差:指某一样本指标与同类全及指标之间数量上的差数。

但是,由于全及指标是一个未知数,并且样本指标可以有多个,因此,实际误差成为一个不易确定的值。

通常,使用平均误差指标计量。

2.抽样平均误差():是指所有可能出现的样本指标(样本平均数与样本成数)的标准差。

或者说,是样本指标与总体指标的平均离差。

(二)抽样平均误差的计算:
1.抽样平均数的抽样平均误差:
当总体方差已知时,。

第六章抽样调查习题答案

第六章抽样调查习题答案

第六章抽样调查习题答案一、单项选择题1、 C2、 A3、 D4、 D5、C6、 D7、 C8、 A9、 D 10、A11、 D 12、C 13、B 14、 A 15、A16、 B 17、 B 18、D 19、 A 20、A21、 A 22、 D 23、 D 24、 B 25、A二、判断题1、CD2、AE3、BCD4、ABDE5、ABD6、AB7、ABCD8、AC9、ABCD三、判断题1、×2、√3、√4、√5、√6、×7、√8、×9、√10、√11、×12、√13、√14、×15、×16、√17、√18、×四、填空题1、随机、部分、总体2、计算、控制3、重复、不重复4、大于5、点估计、区间估计6、增加到4倍、减少三分之二、减少四分之三7、大样本、小样本8、正、反五、复习思考题1、影响抽样误差的主要因素有哪些?答:影响抽样误差大小的因素主要有:(1)总体单位的标志值的差异程度。

差异程度愈大则抽样误差愈大,反之则愈小。

(2)样本单位数的多少。

在其他条件相同的情况下,样本单位数愈多,则抽样误差愈小。

(3)抽样方法。

抽样方法不同,抽样误差也不相同。

一般说,重复抽样比不重复抽样,误差要大些。

(4)抽样调查的组织形式。

抽样调查的组织形式不同,其抽样误差也不相同,而且同一组织形式的合理程度也会影响抽样误差。

2、什么是抽样调查?它有哪些特点?答:抽样调查是根据部分实际调查结果来推断总体标志总量的一种统计调查方法,属于非全面调查的范畴。

它是按照科学的原理和计算,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用所得到的调查标志的数据以代表总体,推断总体。

(1)只抽取总体中的一部分单位进行调查。

(2)用一部分单位的指标数值去推断总体的指标数值(3)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。

第六章抽样调查练习及答案

第六章抽样调查练习及答案

第 六章 抽样调查一、填空题1.抽选样本单位时要遵守 原则,使样本单位被抽中的机会 。

2.常用的总体指标有 、 、 。

3.在抽样估计中,样本指标又称为 量,总体指标又称为 。

4.全及总体标志变异程度越大,抽样误差就 ;全及总体标志变异程度越小,抽样误差 。

5.抽样估计的方法有 和 两种。

6.整群抽样是对被抽中群内的 进行 的抽样组织方式。

7.误差分为 和代表性误差;代表性误差分为________和偏差;偏差是____________________________,也称为________________。

8.简单随机抽样的成数抽样平均误差计算公式是:重复抽样条件下: ;不重复抽样条件下: 。

9.误差范围△,概率度t 和抽样平均误差μ之间的关系表达式为 。

10.抽样调查的组织形式有: 。

二、单项选择题1.所谓大样本是指样本单位数在( )及以上A 30个B 50个C 80个 D100个2.抽样指标与总体指标之间抽样误差的可能范围是( )A 抽样平均误差B 抽样极限误差C 区间估计范围D 置信区间3.抽样平均误差说明抽样指标与总体指标之间的( )A 实际误差B 平均误差C 实际误差的平方D 允许误差4.是非标志方差的计算公式( )A P(1-P)B P(1-P)2C )1(P P -D P 2(1-P)5.总体平均数和样本平均数之间的关系是( )A 总体平均数是确定值,样本平均数是随机变量B 总体平均数是随机变量,样本平均数是确定值C两者都是随机变量 D两者都是确定值6.对入库的一批产品抽检10件,其中有9件合格,可以( )概率保证合格率不低于80%。

A 95.45%B 99.7396C 68.27%D 90%7.在简单随机重复抽样情况下,若要求允许误差为原来的2/3,则样本容量( )A 扩大为原来的3倍B 扩大为原来的2/3倍C 扩大为原来的4/9倍D 扩大为原来的2.25倍8.根据抽样调查得知:甲企业一等品产品比重为30%,乙企业一等品比重为50%一等品产品比重的抽样平均误差为 ( )A 甲企业大B 两企业相同C 乙企业大D 无法判断9.是非标志的平均数是( )A -P)1P(B P(1-P)C pD (1-P)210.重复抽样的误差一定( )不重复抽样的误差。

抽样调查(青岛1天)

抽样调查(青岛1天)
目标总体和抽样总体 抽样总体的具体体现——抽样框 良好抽样框的标志:
目标总体单位与抽样总体单位“一对一联接” 没有遗漏 没有多涵盖 没有复合联接
抽样框的的类型: 名录框 地域框(如地图) 自然框(如列车车厢,座位)
一个好的抽样框是抽样调查成功的一半。
(三)等概抽样与不等概抽样
等概抽样:每个单位入选样本的概率相等 特点:数据处理比较简单 不等概抽样:每个单位入选样本的概率不完全相等 特点:在一定条件下有助于提高估计的效率,但数
(五)多阶段抽样
什么是多阶段抽样? 特点:构造抽样框相对容易
调查单元相对集中 政府调查中可以得到各级行政单位支持 抽样误差与划分阶段多少有关,公式表现为 各阶段误差之和。
第一阶段抽样在抽样总误差中占有重要位置, 采用的技术措施主要有:
抽取初级单元数量的保证 对初级单元的合理分层
初级单元大小不等时的抽样,主要采用不等概抽样。 PPS抽样在多阶段抽样中有广泛应用。
阶段的抽样常采用简单随机抽样
(二)分层抽样 什么是分层抽样
N N1 N2 NL
n n1 n2 nl
特点: 提高估计的精度 可以对各层(子总体)进行估计
分层原则:
✓层内方差尽可能小 ✓层间方差尽可能大
对此可以用方差分析的原理来说明。
估计量的特征:


yst

雪儿·海蒂(Shere Hite)在1987年出版的《女性与爱情:前进中的文化 之旅》一书中,给出了一些数据: 84%的女性“在情感上对两性关系不满意”(第804页)。 70%的女性“在结婚五年或者更久后发生了婚外性关系”(第856页)。 95%的女性“在恋爱时会因男友而出现情感及心理上的烦恼”(第81页)。 84%的女性在与男友的恋爱中有屈尊感(第809页)。

抽样调查习题答案

抽样调查习题答案

抽样调查习题答案【篇一:抽样调查习题及答案】ss=txt>1. 抽样调查是遵循随机的原则抽选样本,通过对样本单位的调查来对研究对象的总体数量特征作出推断的。

2. 采用不重复抽样方法,从总体为n的单位中,抽取样本容量为n的可能样本个数为n(n-1)(n-2)??(n-n+1)。

3. 只要使用非全面调查的方法,即使遵守随机原则,抽样误差也不可避免会产生。

4. 参数估计有两种形式:一是点估计,二是区间估计。

5. 判别估计量优良性的三个准则是:无偏性、一致性和有效性。

6. 我们采用“抽样指标的标准差”,即所有抽样估计值的标准差,作为衡量抽样估计的抽样误差大小的尺度。

7. 常用的抽样方法有简单随机抽样、类型(分组)抽样、等距抽样、整群抽样和分阶段抽样。

9. 如果总体平均数落在区间960~1040内的概率是95%,则抽样平均数是1000,极限抽样误差是40.82,抽样平均误差是20.41。

10. 在同样的精度要求下,不重复抽样比重复抽样需要的样本容量少,整群抽样比个体抽样需要的样本容量多。

二、判断题3. 重复抽样条件下的抽样平均误差总是大于不重复抽样条件下的抽样平均误差。

(√) 4. 在其他条件不变的情况下,抽样平均误差要减少为原来的1/3,则样本容量必须增大到9倍。

(√)1. 用简单随机抽样(重复)方法抽取样本单位,如果要使抽样平均误差降低50%,则样本容量需扩大为原来的(c)a. 2倍b. 3倍c. 4倍d. 5倍2. 事先将全及总体各单位按某一标志排列,然后依固定顺序和间隔来抽选调查单位的抽样组织方式叫做(d)a. 分层抽样b. 简单随机抽样c. 整群抽样d. 等距抽样3. 计算抽样平均误差时,若有多个样本标准差的资料,应选哪个来计算(b)a. 最小一个 b. 最大一个 c. 中间一个 d. 平均值4. 抽样误差是指(d)a. 计算过程中产生的误差b. 调查中产生的登记性误差c. 调查中产生的系统性误差d. 随机性的代表性误差5. 抽样成数是一个(a)a. 结构相对数b. 比例相对数c. 比较相对数d. 强度相对数 6. 成数和成数方差的关系是(c)A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大 7. 整群抽样是对被抽中的群作全面调查,所以整群抽样是(b)a. 全面调查b. 非全面调查c. 一次性调查d. 经常性调查8. 对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(40%)a. 4% b. 4.13% c. 9.18% d. 8.26%9. 根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(b)a. 甲产品大b. 乙产品大c. 相等d. 无法判断10. 抽样调查结果表明,甲企业职工平均工资方差为25,乙企业为100,又知乙企业工人数比甲企业工人数多3倍,则随机抽样误差(b)a. 甲企业较大b. 乙企业较大c. 不能作出结论d. 相同四、多项选择题抽样调查中的抽样误差是(abcde)a. 是不可避免要产生的b. 是可以通过改进调查方法来避免的c. 是可以计算出来的d. 只能在调查结果之后才能计算e. 其大小是可以控制的 2. 重复抽样的特点是(ac)a. 各次抽选相互影响b. 各次抽选互不影响c. 每次抽选时,总体单位数始终不变 d 每次抽选时,总体单位数逐渐减少e. 各单位被抽中的机会在各次抽选中相等 3. 抽样调查所需的样本容量取决于(abe)a. 总体中各单位标志间的变异程度b. 允许误差c. 样本个数d. 置信度e. 抽样方法4. 分层抽样误差的大小取决于(bcd)a. 各组样本容量占总体比重的分配状况b. 各组间的标志变异程度c. 样本容量的大小d. 各组内标志值的变异程度e. 总体标志值的变异程度 5. 在抽样调查中(acd)a. 全及指标是唯一确定的b. 样本指标是唯一确定的c. 全及总体是唯一确定的d. 样本指标是随机变量e. 全及指标是随机变量五、名词解释 1.抽样推断 2.抽样误差3.重复抽样与不重复抽样4.区间估计六、计算题1.某公司有职工3000人,现从中随机抽取60人调查其工资收入情况,得到有关资料如下:(1)试以0.95的置信度估计该公司工人的月平均工资所在范围。

七年级上册-第六章-第二讲 普查和抽样调查

七年级上册-第六章-第二讲  普查和抽样调查

第二讲普查和抽样调查一、全面调查与抽样调查1.全面调查:(1)定义:为某一特定目的而对所有考察对象进行的全面调查叫做普查;(2)主要方法:问卷调查、访问调查、电话调查等.(3)适用范围:调查范围小、调查不具有破坏性、数据要求准确全面.2.抽样调查:(1)定义:从总体中抽取部分个体进行调查,这种调查称为抽样调查.(2)主要方法:①简单随机抽样:它的特点是每个对象被抽取的可能性都相等;当全体对象较少时,常采取简单随机抽样.②分层抽样:当全体对象是由有明显差异的几部分构成时,可将全体对象按差异情况分成几个部分,然后按各个部分所占的比例进行抽样,这样的抽样方法叫做分层抽样.(3)适用范围:调查对象涉及面广,范围大,或受条件限制,或具有破坏性等.例1 下列调查中,适合做普查的是()A.某班同学“立定跳远”的成绩B.某水库中鱼的种类C.某鞋厂生产的鞋底承受的弯折次数D.某型号节能灯的使用寿命二、全面调查与抽样调查例2 下列调查中,哪些适宜抽样调查,哪些适宜普查?(1)调查我市中学生每天做作业的时间;(2)调查某班学生对“中国梦”的知晓率;(3)调查一架“歼20”隐形战机各零部件的质量;(4)调查伦敦奥运会100 m跨栏决赛参赛运动员兴奋剂的使用情况.小结:(1)要判断一个调查是否适合采用抽样调查,先看调查的范围有多大,调查的目的如何,对调查结果的要求是否很高,同时,还要兼顾人力、物力的节省.(2)选择抽样调查的情况有:①当被调查的对象数目较多时,全面调查的工作量较大,可选择抽样调查;②当客观条件限制,无法对所有调查对象进行全面调查时,可选择抽样调查;③当调查具有破坏性时,可选择抽样调查.例3 (中考·重庆)下列调查中,最适宜采用全面调查方式(普查)的是()A.对重庆市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对重庆市初中学生课外阅读量的调查例4 (中考·通辽)下列调查中适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查例5 为了了解本校学生所穿校服尺码的分布情况,四位同学进行了不同的调查:甲对七年级的三个班的全体同学进行调查;乙对八年级的三个班的全体同学进行调查;丙对九年级的三个班的全体同学进行调查;丁分别对三个年级的任意一个班的全体同学进行调查.则抽样调查较为合理的是()A.甲B.乙C.丙D.丁三、总体、个体、样本在上一节中,我们曾对全班同学的节水意识进行了调查,像这种为某一特定目的而对所有考察对象进行的全面调查叫做普查.其中,所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体.总体:所要考察对象的全体称为总体.个体:组成总体的每一个考察对象称为个体.样本:从总体中抽取的一部分个体叫做总体的一个样本.样本容量:一个样本中包含的个体的数目叫做样本容量;注意:样本容量没有单位.例6 某市有3万名学生参加2013年的中考,想要了解这3万名考生的中考成绩,从中抽取了500名考生的中考成绩进行统计分析,以下说法正确的是()A.这500名考生是总体的一个样本B.每个考生的中考成绩是个体C.3万名考生是总体D.500名考生是样本容量小结:(1)样本、个体、总体都是调查过程中的考察对象,所要考察的内容是相同的,只是数量不同;(2)样本的抽取是否得当直接关系到对总体估计的准确度,因此抽取的样本要具有代表性和广泛性.(3)样本和总体的关系:总体包括所有个体,样本只包括一部分个体;样本是总体的一部分,总体可以有多个样本;一个样本所体现的特征只是近似地反映总体的特征.(4)样本容量是一个样本中包含的个体的数目;样本容量越大,样本的特征越接近总体的特征.(5)用样本的情况去估计总体的情况的思想称为用样本估计总体.例7 (中考·聊城)电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象.某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2 400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是()A.2 400名学生B.100名学生C.所抽取的100名学生对“民族英雄范筑先”的知晓情况D.每一名学生对“民族英雄范筑先”的知晓情况四、样本的代表性例8 判断下列调查中样本的选取是否合适,并说明理由.(1)在网上调查“你对老师讲课时‘拖堂现象’的态度”;(2)在某一个敬老院里调查我国老年人的寿命情况;(3)在校园里调查我国青年人上网的时间;(4)为了了解我校七年级同学看电视的时间,随机选取了100名同学进行调查.注意:①样本容量适当;②样本具有广泛性:当总体是由有明显差异的几个部分组成时,每个部分都应被抽取到且比例适中;③样本具有随机性,即保证每个个体被抽到的机会相等.例9 要调査下面的问题,你觉得用什么调查方式比较合理?(1)调査某种灯泡的使用寿命;(2)调査你们学校七年级学生的体重;(3)调査你们班学生早餐是否有喝牛奶的习惯.例10 为了了解你们学校的学生是否吃早饭,下列这些抽取样本的方式是否合适?(1)早上7: 00至7: 30在校门口随机选择50名同学进行调査;(2)选择全校每个班级中学号是5和15的同学进行调查;(3)选择七(1)班全体学生进行调查.例11 (中考·宁德)为了解本地区老年人一年中生病次数,下列样本抽取方式最合理的是()A.到公园调查100名晨练老人B.到医院调查100名老年病人C.到某小区调查10名老年居民D.利用户籍资料,按规则抽查10%老年人例12 (中考·淄博)下列调查中,样本具有代表性的是()A.了解全校同学对课程的喜欢情况,对某班男同学进行调查B.了解某小区居民的防火意识,对你们班同学进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查第二讲普查和抽样调查1.考察全体对象的调查称为________________,又叫__________.它可以直接获得____________的情况,结果__________,但工作量__________,费时费力.2.(中考•山西)以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高3.(中考•西宁)下列调查中,适合采用全面调查(普查)方式的是()A.了解西宁电视台“教育在线”栏目的收视率B.了解青海湖斑头雁种群数量C.了解全国快递包裹产生包装垃圾的数量D.了解某班同学“跳绳”的成绩4.(中考•辽阳)下列事件中适合采用抽样调查的是()A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检查D.对端午节期间市面上粽子质量情况的调查5.(中考•襄阳)下列调查中,调查方式选择合理的是()A.为了解襄阳市初中生每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查6.在某一调查过程中,所要考察对象的全体称为________,而组成总体的每一个________称为个体;从总体中抽取的一部分个体叫做总体的一个________.7.(中考•营口)为了解某市参加中考的25 000名学生的身高情况,抽查了其中1 200名学生的身高进行统计分析,下面叙述正确的是()A.25 000名学生是总体B.1 200名学生的身高是总体的一个样本C.每名学生是总体的一个个体D.以上调查是普查8.样本的抽取是否得当直接影响到对总体的估计,因此抽取的样本要具有_________和___________.9.为了解某市老人的身体健康状况,需要抽取部分老人进行调查,下列抽取老人的方法最合适的是( ) A.随机抽取100位女性老人B.随机抽取100位男性老人C.随机抽取公园内100位老人D.在城市和乡镇各选10个点,每个点任选5位老人10.(中考•苏州)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见,现从学校所有2 400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1 680 D.2 37011.为了建设和谐、平安、效益社会,区政府通过发调查表的方式广泛向居民征求对社会热点问题的意见,要求每位被调查者只写一个自己最关心的问题.根据调查统计得如图所示的统计图.(1)这次调查是全面调查还是抽样调查?(2)已知收回的调查表中,对社会治安提出意见的有540份,则这次共收回调查表多少份?(3)提道路交通问题的比提环境保护问题的多多少人?(4)请用一两句话谈谈你对这次调查结果的感想.12.家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康,某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查.(1)下列选取样本的方法最合理的一种是__________(只需填上正确答案的序号).①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图所示.①m=________,n=________;②补全条形统计图;③根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少万户家庭处理过期药品的方式是送回收点.。

统计学基础 第六章 指数分析讲解

统计学基础第六章指数分析【教学目的】1.深刻理解指数的意义及指数编制原理2.熟练掌握综合指数的计算方法3.运用指数体系进行两因素分析【教学重点】1.统计指数的概念2.数量指标综合指数;质量指标综合指数;综合指数变形——加权算数指数、调和指数和固定权数指数;平均指标指数的编制原则和方法3.应用指数体系进行两因素分析、计算【教学难点】1.同度量因素概念2.各种指数编制原理及相互区别与联系3.运用指数体系进行因素分析的方法【教学时数】教学学时为10课时【教学内容参考】第一节指数的意义一、指数的含义指数的含义有广义和狭义之分。

广义的指数泛指所有反映社会经济现象数量变动或差异程度的相对数。

如第四章所讲的动态相对数、计划完成程度相对数、比较相对数等都属于广义指数;狭义的指数是指用来综合反映那些不能直接相加的复杂社会经济现象总体在不同时间上数量变动的相对数,这是一种特殊的动态相对数。

如零售物价指数,是反映所有零售商品价格总变动的动态相对数;工业产品产量指数,是表明在某一范围内全部工业产品实物量总变动的动态相对数,等等。

统计中所讲的指数,主要是指狭义的指数。

二、指数的种类(一)个体指数和总指数指数按研究对象范围不同分为个体指数和总指数。

个体指数是反映个别现象数量变动的动态相对数。

例如,研究个别商品的销售量指数、个别产品的单位成本指数等。

个体指数是在简单现象总体的条件下计算的。

总指数是综合反映复杂现象总体数量变动的动态相对数。

例如,研究使用价值不同的商品销售量总指数、商品价格总指数等。

总指数是在复杂现象总体的条件下计算的。

总指数的计算形式有综合指数和平均指数。

(二)数量指标指数和质量指标指数指数按所表明现象的性质不同分为数量指标指数和质量指标指数。

数量指标指数是反映数量指标变动的动态相对数。

例如,产量指数、销售量指数等。

质量指标指数是反映质量指标变动的动态相对数。

例如,劳动生产率指数、单位成本指数、商品价格指数等。

第六章抽样调查习题

第六章抽样调查习题一、单项选择题1、抽样调查必须遵循的原则是()。

A、准确性原则B、可靠性原则C、随机原则D、灵活性原则2、所谓小样本是指样本单位数在()。

A、30个以下B、100个以下C、20个以下D、50个以下3、重复抽样误差和不重复抽样误差相比()。

A、两者相等B、前者小于后者C、两者不定D、前者大于后者4、在纯随机重复抽样的情况下,要使抽样误差减少一半,(其它条件不变),则样本单位数必须()。

A、增加2倍B、增加到2倍C、增加4倍D、增加到4倍5、某工厂连续生产,在一天中每隔半小时取出一分钟的产品进行全部检查,这是()。

A、等距抽样B、类型抽样C、整群抽样D、纯随机抽样6、纯随机重复抽样条件下,抽样单位数扩大为原来的9倍,则()。

A、抽样误差不变B、无法判断C、抽样误差缩小为原来的九分之一D、抽样误差缩小为原来的三分之一7、抽样推断的理论基础是概率论中的()。

A、参数估计B、方差分析C、大数法则D、误差理论8、在抽样调查中()。

A、既有登记误差,也有代表性误差B、只有登记误差,没有代表性误差C、没有登记误差,只有代表性误差D、既无登记误差,也无代表性误差9、在抽样调查中,无法避免的误差是()。

A、登记性误差B、允许误差C、系统性误差D、抽样误差10、能够事先加以计算和控制的误差是()。

A、抽样误差B、代表性误差C、登记误差D、系统性误差11、抽样误差与抽样极限误差的关系为()。

A、前者小于后者B、前者大于后者C、前者等于后者D、不能断定大小12、抽样估计中,要概率保证程度为95%,则相应的概率度为()。

A、2B、3C、1.96D、1.813、抽样单位数与抽样误差的关系为()。

A、正比B、反比C、反向D、相等14、抽样误差与标准差的关系为()。

A、正比B、反比C、反向D、相等15、抽样单位数与标准差的关系为()。

A、正比B、反比C、反向D、相等16、抽样单位数与概率度的关系为()。

A、反比B、正比C、反向D、相等17、一个全及总体()。

_新教材高中数学第六章统计2

简单随机抽样新课程标准解读核心素养通过实例,了解简单随机抽样的含义及其解决问题的过程,掌握两种数学抽象简单随机抽样方法:抽签法和随机数法2020年11月第七次全国人口普查全面展开,人口普查的工作量是何等的巨大,那么一般的统计工作如何进行调查呢?仍然使用普查的方法吗?[问题] 有一种调查的方法比较科学,那就是抽样调查,那么如何进行抽样呢?知识点简单随机抽样1.随机抽样在抽样调查中,每个个体被抽到的可能性均相同的抽样方法.2.简单随机抽样一般地,从N(N为正整数)个不同个体构成的总体中,逐个不放回地抽取n(1≤n<N)个个体组成样本,并且每次抽取时总体内的每个个体被抽到的可能性相等,这样的抽样方法叫作简单随机抽样.简单随机抽样是一种最基本的抽样方法.3.抽签法(1)定义:先把总体中的N(N为正整数)个个体编号,并把编号依次分别写在形状、大小相同的签上(签可以是纸条、卡片或小球等),再将这些号签放在同一个不透明的箱子里搅拌均匀.每次随机地从中抽取一个,然后将箱中余下的号签搅拌均匀,再进行下一次抽取.如此下去,直至抽到预先设定的样本容量;(2)抽签法的具体步骤:①给总体中的每个个体编号;②抽签.4.随机数法(1)定义:先把总体中的N个个体依次编码为0,1,2,…,N-1,然后利用工具(转盘或摸球、随机数表、科学计算器或计算机)产生0,1,2,…,N-1中的随机数,产生的随机数是几,就选第几号个体,直至选到预先设定的样本容量;(2)利用随机数表进行抽样的具体步骤:①给总体中的每个个体编号;②在随机数表中随机抽取某行某列作为抽样的起点,并规定读取方法;③依次从随机数表中抽取样本号码,凡是抽到编号范围内的号码,就是样本的号码,并剔除相同的号码,直至抽满为止.抽签法与随机数表法的异同点抽签法随机数表法不同点①抽签法比随机数表法简单;②抽签法适用于总体中的个体数相对较少的情况①随机数表法要求编号的位数相同;②随机数表法适用于总体中的个体数相对较多的情况相同点①都是简单随机抽样,并且要求被抽取样本的总体的个数有限;②都是从总体中逐个不放回地抽取用随机数表进行简单随机抽样的规则是什么?提示:(1)定方向:读数的方向(向左、向右、向上或向下都可以).(2)读数规则:读数时结合编号的特点进行读取,编号为两位数则两位两位地读取,编号为三位数则三位三位地读取,若得到的号码不在编号中或已被选用,则跳过,直到选满所需号码为止.1.对于简单随机抽样,每个个体被抽到的机会( )A.相等B.不相等C.不确定D.与抽取的次数有关解析:选A 由简单随机抽样的概念可知,每个个体被抽到的机会相等,与抽取的次数无关.2.某学校数学组要从11名数学老师中推选3名老师参加市里举办的教学能手比赛,制作了11个签,抽签中确保公平性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析:选B 利用抽签法要做到搅拌均匀才具有公平性.3.某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将70个同学按01,02,03,…,70进行编号,然后从随机数表第9行第9列的数开始向右读,则选出的第7个个体是( )(注:下为随机数表的第8行和第9行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54A.07 B.44C.15 D.51解析:选B 找到第9行第9列数开始向右读,符合条件的是29,64,56,07,52,42,44,故选出的第7个个体是44.简单随机抽样的概念辨析[例1] 下面的抽样方法是简单随机抽样吗?为什么?(1)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签;(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出1个零件进行质量检验后,再把它放回箱子里.[解] (1)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等机会的抽样.(2)不是简单随机抽样.因为它是有放回抽样.简单随机抽样的判断方法判断所给的抽样是否为简单随机抽样的依据是简单随机抽样的四个特征:[提醒] 教科书中简单随机抽样单指不放回简单随机抽样.[跟踪训练](多选)已知下列抽取样本的方式,其中,不是简单随机抽样的是( ) A.从无限多个个体中抽取100个个体作为样本B.盒子里共有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出1个零件进行质量检验后再把它放回盒子里C.从20件玩具中一次性抽取3件进行质量检验D.某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛解析:选ABCD A中不是简单随机抽样,简单随机抽样中总体的个数是有限的,而题中是无限的;B中不是简单随机抽样,简单随机抽样是不放回地抽取,而题中是放回地抽取;C中不是简单随机抽样,简单随机抽样是逐个抽取,而题中是一次性抽取;D中不是简单随机抽样,原因是个子最高的5名同学是56名同学中特定的,不存在随机性,不是等可能抽样.故选A、B、C、D.抽签法的应用[例2] 某单位对口支援西部开发,现从报名的18名志愿者中选取6人组成志愿小组到西藏工作3年,请用抽签法设计抽样方案.[解] 方案如下:第一步,将18名志愿者编号,号码为:01,02,03, (18)第二步,将号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放到一个不透明的盒子中,充分搅匀.第四步,从盒子中依次取出6个号签,并记录上面的编号.第五步,所得号码对应的志愿者就是志愿小组的成员.抽签法的5个步骤[跟踪训练]甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个入样,请用抽签法设计抽样方案?解:第一步:将30个篮球,编号为01,02, (30)第二步,将以上30个编号分别写在外观、质地等无差别的小纸条上,揉成小球状,制成号签;第三步,把号签放入一个不透明的盒子中,充分搅拌;第四步,从盒子中不放回地逐个抽取3个号签,并记录上面的号码;第五步,找出与所得号码对应的篮球.随机数表法及应用[例3] (链接教科书第154页例1)现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检测,如何用随机数表法设计抽样方案?[解] 第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任取一数作为开始,任选一方向作为读数方向.第三步,从选中的数开始,按上步选取方向,每次读取三位,凡不在010~600中的跳过去不读,前面已经读过的数也跳过去不读,读满6个数为止.第四步,以上选出的号码对应的元件就是要抽取的对象.随机数表法抽样应抓住3个关键点(1)编号:这里的所谓编号,实际上是总体中的每个个体对应一个编号,且每个编号位数相同;(2)确定读数方向和规则:为了保证选取数字的随机性,应在面对随机数表之前就指出开始数字的纵横位置,然后确定读数方向;(3)获取样本:读数在总体编号内的取出,而读数不在总体编号内的和已取出的舍去,依次下去,直至得到容量为n的样本.[跟踪训练]总体由编号为00,01,02,…,18,19的20个个体组成.利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为________. 78166572080263140702436997280198 32049234493582003623486969387481 解析:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字组成的两位数中,小于20的编号依次为08,02,14,07,02,01,04,…,其中第2个编号和第5个编号都是02,重复.可知对应的数值为08,02,14,07,01,04,…,则第6个个体的编号为04.答案:041.下列问题中,最适合用简单随机抽样的方法抽样的是( )A.某报告厅有32排座位,每排有40个座位,座位号是1至40.某次报告会坐满了观众,报告会结束以后为听取观众的意见,要留下32名观众进行座谈B.从10台冰箱中抽取3台进行质量检验C.某学校有教职工160人,其中行政人员16人,教师112人,后勤人员32人.教育部门为了解大家对学校机构改革的意见,要从中抽取20人D.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量解析:选B 对于A,总体容量较大,用简单随机抽样法比较麻烦;对于B,总体容量较少,用简单随机抽样法比较方便;对于C,由于教职工对这一问题的看法可能差异较大,不宜采用简单随机抽样法;对于D,总体容量较大,且各类农田的差别很大,不宜采用简单随机抽样法.故选B.2.下列抽样实验中,适合用抽签法的有( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验解析:选B A、D两项总体容量较大,不适合用抽签法;对C项甲、乙两厂生产的产品质量可能差异明显.3.某工厂的质检人员利用随机数表产生随机数的方法对生产的100件产品进行检验,对这100件产品采用下列编号方法:①01,02,…,100;②001,002,…,100;③00,01,…,99.其中正确的是( )A.①②B.①③C.②③D.③解析:选C 利用随机数表产生随机数的方法抽取样本,总体中各个个体的编号必须位数相同,这样便于读数,故②③正确.4.用随机数法从100名学生(其中男生25人)中抽取20人参加评教,某男生被抽到的机会是( )A.1100B.125C.15D.14解析:选C 用随机数法进行抽样,每个学生被抽到的机会都相等,均为20100=15.。

2022年北师大版高中数学必修第一册同步培优第六章统计第2节抽样的基本方法第1课时简单随机抽样

第六章§2 2.1A组·素养自测一、选择题1.福利彩票“双色球”中红色球由编号为01,02,…,33的33个球组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表(如下)第1行的第5列数字开始由左向右依次选取两个数字,则选出来的第6个红色球的编号为(C) 49544354821737932378873520964384173491645724550688770474476721763350258392120676A.23 B.20C.04 D.17[解析]根据随机数表法的定义,从第1行的第5列数字开始由左向右选取两个数字43开始,凡不在01~33内的跳过,得到17,23,20,24,06,04,则第6个红色球的编号为04.2.下列抽样方法是简单随机抽样的是(D)A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其质量是否合格C.某学校分别从行政人员、教师、后勤人员中各抽取2人,调查他们对学校某项机构改革的意见D.从10件产品中随机抽取3件进行质量检验[解析]分析每个选项中抽样的特征,A、B选项抽取的个体间的间隔是固定的,不是简单随机抽样;C选项中个体有明显的层次差异,不是简单随机抽样;D选项符合简单随机抽样的特征.3.下列抽样试验中,用抽签法方便的有(B)A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验4.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是( C )A .①②B .①③C .②③D .③[解析] 根据随机数表的要求,只有编号时数字位数相同,才能达到随机等可能抽样.5.为了调查高一学生的数学学习状况,从50名高一同学的数学成绩中用抽签法随机抽取5名同学数学成绩为:80分,85分,75分,60分,90分,那么据此可以估计这50名同学的数学平均分为( B )A .76B .78C .80D .82[解析] 由题意可估计这50名同学的数学平均分为15(80+85+75+60+90)=78. 6.(多选)下面的抽样方法是简单随机抽样的是( CD )A .从无数张高考试卷中抽取50张试卷作为样本B .从80台笔记本电脑中一次性抽取6台电脑进行质量检查C .一福彩彩民买30选7彩票时,从装有30个大小、形状都相同的乒乓球的盒子(不透明)中逐个无放回地摸出7个有标号的乒乓球,作为购买彩票的号码D .用抽签法从10件产品中选取3件进行质量检验[解析] A 中样本总体数目不确定,不是简单随机抽样;B 中样本不是从总体中逐个抽取,不是简单随机抽样;C 、D 符合简单随机抽样的特点,是简单随机抽样.故选CD .二、填空题7.一次体育运动会,某代表团有6名代表参加,欲从中抽取一人检查是否服用兴奋剂,抽检人员将6名队员名字编号为1~6号,然后抛掷一枚骰子,朝上的一面是几就抽检几号对应的队员,问这种抽检方式是简单随机抽样吗?__是__(填“是”或“不是”).[解析] 抛掷一枚均匀的骰子,各面向上的机会是均等的,故每名队员被抽到的机会相等.8.为了检验某种产品的质量,决定从1 001件产品中抽取10件进行检查,用随机数法抽取样本的过程中,所编的号码的位数最少是__四__.[解析] 由于所编号码的位数要一致,因此所编号码的位数最少是四位.从0000到1000,或者是从0001到1001等.9.已知总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取4个个体,选取方法是从随机数表第1行的第5个数字开始,由左到右依次选取两个数字,则选取的4个个体编号分别为__08,02,14,07__.[解析]第1次选取的是65,不合题意;第2次选取的是72,不合题意;第3次选取的是08,符合题意;第4次选取的是02,符合题意;第5次选取的是63,不合题意;第6次选取的是14,符合题意;第7次选取的是07,符合题意.三、解答题10.现有120台机器,试用随机数法抽取10台机器,写出抽样过程.[解析]使用随机数表法步骤如下:第一步,先将120台机器编号,可以编为000,001,002, (119)第二步,在随机数表中任选一个数作为开始,任选一个方向作为读数方向,每次读取三位,凡不在000~119中的数跳过去不读,前面已经读过的也跳过去不读,直到取满10个小于或等于120的数为止,说明10个样本号码已取满;第三步,根据对应的编号,再对应抽出10台机器,这10台机器就是要抽取的对象.11.某市为增强市民的交通安全意识,面向全市征召“小红帽”志愿者在部分交通路口协助交警维持交通,为保障市民出行安全,还需要从某社区的28名志愿者中随机抽取6人组成志愿者小分队.请用抽签法设计抽样方案.[解析]抽样方案如下:第一步,将28名志愿者编号,号码分别是1,2, (28)第二步,将28个号码分别写在形状、大小、材质等均相同的号签上.第三步,将得到的号签放在一个不透明的容器中,搅拌均匀.第四步,从容器中连续不放回地抽取6个号签,并记录上面的号码.所得号码对应的志愿者就是组成志愿者小分队的成员.B组·素养提升一、选择题1.下列调查方式合适的是(A)A.为了解东江湖的水质情况,采用抽样调查的方式B.我市某企业为了解所生产的产品的合格率,采用普查的方式C .某小型企业给在职员工做工作服前进行尺寸大小的调查,采用抽样调查的方式D .某市教育部门为了解该市中小学生的视力情况,采用普查的方式[解析] 对于A ,不可能普查,采用抽样调查的方式合适;对于B ,因调查范围广,工作量大,采用普查的方式不合适;对于C ,因调查范围小,采用抽样调查的方式不合适;对于D ,因调查范围广,采用普查的方式不合适.2.(2021·北京市丰台区期末)某校为了分析高三年级的8个班400名学生第一次高考模拟考试的数学成绩,决定在8个班中每班随机抽取12份试卷进行分析,这个问题中样本量是( C )A .8B .400C .96D .96名学生的成绩[解析] 在本题所叙述的问题中,400名学生第一次高考模拟考试的数学成绩是总体,8×12=96(名)学生的数学成绩是样本,400是总体量,96是样本量.3.某学校高三年级有10个班,每班各有50名学生,若从该高三年级中以简单随机抽样的方法抽取20人,则下列选项中正确的是( D )A .每班至少会有一名学生被抽中B .抽出来的男生人数一定比女生多C .班长被抽到的可能性比较大D .每个学生被抽到的概率都是125[解析] 简单随机抽样中,每个个体入样的可能性都一样,所以每个学生被抽到的概率都是样本量总体量=2010×50=125. 4.从一群游戏的小孩中抽出k 个,一人分一个苹果,让他们返回继续游戏,一段时间后,再从中任取m 人,发现其中有n 个小孩曾分到过苹果,估计一共有小孩( B )A .k ·n m人 B .k ·m n 人 C .(k +m -n )人 D .不能估计[解析] 设一共有x 人,由k x =n m ,解得x =km n. 二、填空题5.某工厂抽取50个机械零件检验其直径大小,得到如下数据:估计这50个零件的直径大约为__12.84__cm .[解析] y -=12×12+13×34+14×450=12.84(cm). 6.一个布袋中有10个同样质地的小球,从中不放回地依次抽取3个小球,则某一特定小球被抽到的可能性是__310__,第三次抽取时,剩余每个小球被抽到的可能性是__18__. [解析] 因为简单随机抽样过程中每个个体被抽到的可能性均为n N,所以某一特定小球被抽到的可能性是310.因为本题中的抽样是不放回抽样,所以第一次抽取时,每个小球被抽到的可能性为110,第二次抽取时,剩余9个小球,每个小球被抽到的可能性为19,第三次抽取时,剩余8个小球,每个小球被抽到的可能性为18. 7.下列抽样方法是简单随机抽样的是__③__(填序号).①从无数个个体中抽取20个个体作为样本;②从50台冰箱中一次性抽取5台冰箱进行质量检测;③彩民选号,从装有36个大小、形状都相同的号签的不透明盒子中无放回地依次抽出6个号签;④某车间工人加工一种零件100个,为了解这100个零件的直径,从中有放回地依次抽取5个进行测量;⑤某社区组织100名党员研读十九大报告,学习十九大精神.[解析] ①不是,因为总体的个数是无限的,不是有限的;②不是,因为在这次抽样过程中,没有逐个抽取,而是一次性抽取;③是,因为满足简单随机抽样的四个特点;④不是,因为在这次抽样过程中,不是无放回抽样;⑤不是,因为这100名党员是被挑选出来的,不满足“等可能性”.三、解答题8.欲从某单位45名职工中随机抽取10名职工参加一项社区服务活动,试用随机数表法确定这10名职工.请写出抽样过程.现将随机数表部分摘录如下:16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07[解析] 先将这45名职工依次编号为01,02,03,…,44,45.选择一个位置进行读数,比如从所给数表第一行第一列的数字开始向右读,首先取16,然后是22;77,94大于45,继续读数得到39;49,54大于45;继续可以得到43,然后同样跳过大于45及与前面重复的数字可以得到17,37,23,35,20,42.最后确定编号为16,17,20,22,23,35,37,39,42,43的职工是参加社区服务活动的人选.9.一个学生在一次竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽取3道;从20道化学题中随机抽取3道;从12道生物题中随机抽取2道.使用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,生物题的编号为36~47).[解析]方法1:抽签法:第一步,将试题的编号1~47分别写在一张纸条上,将纸条揉成团儿制成号签,并将物理、化学、生物题的号签分别放在一个不透明的袋子中并搅匀.第二步,从装有物理题的袋子中逐个抽取3个号签,从装有化学题的袋子中逐个抽取3个号签,从装有生物题的袋子中逐个抽取2个号签,并记录所得号签上的编号,这便是所要回答的问题的序号.方法2:随机数法:第一步,将物理题的序号对应改成01,02,…,15,其余两科题的序号不变.第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向,每次读取两位,凡不在01~47中的数跳过去不读,前面已经读过的也跳过去不读,从01~15中选3个号码,从16~35中选3个号码,从36~47中选2个号码.直到取满8个数为止,说明8个样本号码已取满.第三步,对应以上号码找出所要回答的问题的序号.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章抽样调查
1.当研究H的一旦确定,全及总体也就相应确定,而从全及总体屮抽取的抽样
总体则是不确定的。

(v )
2.从全部总体单位屮按照随机原则抽取部分单位组成样本,只可能组成一个样
本。

(X )3.在抽样推断屮,作为推断的总体和作为观察对象的样本都是确定的、唯一的。

(X )
4.我们讨以任取某一次抽样所得的抽样误差,來作为衡量抽样指标对于全及指
标的代表性程度。

(X)
5.由于没有遵守随机原则而造成的误差,通常称为随机误差。

(X )
6.抽样平均误差是表明抽样估计的准确度,抽样极限误差则是表明抽样估计准
确程度的范围;两者既有区别,又有联系。

(V )7.抽样平均均误差反映抽样的可能误差范围,实际上每次的抽样误差可能大于
抽样平均误差,也可能小于抽样平均误差。

(V )
8.所有可能的样本平均数的平均数等于总体平均数。

(V )
9.按有关标志排队,随机起点的等距抽样可能产生系统性误差。

(V )
10.抽样推断是利用样本资料对总体的数量特征进行估计的一种统计分析方法,因
此不可避免的会产生误差,这种误差的大小是不能进行控制的。

(X )
11.重复抽样时,其他条件不变,允许误差扩大一倍,则抽样数H为原来的2倍。

(X)
12.扩大或缩小抽样误差范围的倍数叫概率度,其代表符号是V。

(V)
13.重复抽样时若其它条件一定,而抽样单位数FI增加3倍,则抽样平均误差为
原来的2倍。

(X)14.由于抽样调查存在抽样误差,所以抽样调查资料的准确性要比全面调查资料
的准确性差。

(X)
is.在保证概率度和总体方差一定的条件下允许误差大小与抽样数ri多少成正比。

(X)
16.扩大或缩小了以后的抽样误差范围叫抽样极限误差。

(X)
17.如果总体平均数落在区间(960, 1040)内的概率为0.9545,则抽样平均误
差等于30。

(X)18.抽样估计置信度就是表明抽样指标和总体指标的误差不超过一定范围的概
率保证程度。

(V )
19.扩大抽样误差的范围,会降低推断的把握程度,但会提高推断的准确度。

(X)
20.甲班男生33人,女生25人,乙班男生25人,女生20人,所以学生性别差
异甲班大于乙班。

(X)
21.计算抽样平均误差,当缺少总体方差资料时,可以用样本方差来代替。

(V)
22.按有关标志排队,随机起点的等距抽样可能产生系统性误差。

(V)
23.欲对一批成品合格率进行抽样调査,前不久曾经进行的两次全而调查,合格
率分别为P1=90%,p2=80%,根据》计算样本容量。

(X)
24.整群抽样为了降低抽样平均误差,在总体分群吋注意增大群内方差以缩小群
间方差。

(V)
25.在整群抽样中,若总体群内方差小,群间方差大,则抽样误差减少(X)
26.半全及总体单位数很大时,重复抽样和不重复抽样计算的抽样平均误差相差
无几。

(V)
27.在其它条件不变的情况下,提高抽样估计的可靠程度,可以提高抽样估计的
精确度。

(X )
28.由于简单随机抽样的抽样误差取决于总方差,血整群抽样的抽样误差只取决
于群间方差,所以在其他条件相同的情况下,整群抽样的抽样误差总是小于简单随机抽样的抽样误差。

(X )。

相关文档
最新文档