镍基单晶高温合金研究进展.
镍基高温合金的SEM和TEM研究

0引言材料的性能对于材料的应用有十分重要的作用,而不同材料具有不同的性能,有些还具有特异性,这样的差异与材料的物相、结构和成分等密不可分。
想要明确材料具体的物相、粒径、形貌、组分和结构等材料自身的性质,就要用到材料的表征。
在常规实验中,我们用到的方法有X 射线衍射分析,扫描电子显微镜分析(SEM ),透射电子显微镜分析(TEM ),BET 法比表面积分析,振动样品磁强计(VSM )磁矩分析等。
[1-3]高温合金是一种广泛用于航空航天、能源、化工、船等领域的一类金属材料,具有显著的耐高温特性和高合金化程度,又被称为“超合金”。
高温合金主要以铁(Fe )、钴(Co )、镍(Ni )为基,再加入少量的铬(Cr )、钛(Ti )等元素,故高温合金又可被分类为镍基高温合金、钴基高温合金和铁基高温合金。
镍基高温合金有很好的抗蠕变、抗压和抗屈服性能。
铁基高温合金的使用温度一般在750~780℃,远低于镍基高温合金。
钴基高温合金具有耐热性能很好特点,主要用于航空发动机和航天发动机。
但世界钴资源的稀少成为钴基高温合金广泛应用的一大阻碍。
[4-6]1实验原理1.1扫描电子显微镜(SEM )扫描电子显微镜是一种先进的多用途仪器,能够获得高质量、高空间分辨率(1nm )和详细的粒子视觉图像,主要的用途是观察材料的表面情况,提供表面形貌、成分、晶粒取向等信息。
其原理主要基于电子枪发射的电子束在试样表面作光栅状扫描,与样品原子核或核外电子之间的相互作用,引起的电子的散射,从而产生能够反映样品信息和特征的信号。
透射电子、二次电子(SE )、背散射电子(BSE )和俄歇电子为电子信号,特征X 射线、连续X 射线为电磁波信号,吸收电子、电子束产生的是电流信号。
[7]二次电子和背散射电子是我们常用的信号。
二次电子是指电子束与样品中原子的价层电子发生非弹性散射而辐射出的一类电子,带有较低的能量,一般从表层5-10nm 的深度范围内发射出来,分析深度在10nm 以内,对样品的表面形貌具有很高的敏感度。
镍基高温合金生产工艺及其在核反应堆中的应用分析

镍基高温合金生产工艺及其在核反应堆中的应用分析镍基高温合金是一类具有优异高温性能的合金材料,广泛应用于航空、航天、能源等领域。
本文将介绍镍基高温合金的生产工艺及其在核反应堆中的应用分析。
一、镍基高温合金的生产工艺镍基高温合金的生产工艺主要包括原料选取、合金设计、熔炼铸造、热加工和热处理等环节。
1. 原料选取:镍基高温合金的主要成分是镍、铬、钼、钽等合金元素,其中镍是基体元素,其他元素用于合金强化和抗腐蚀。
原料选取需要保证材料的纯度和均匀性,以提高合金的性能。
2. 合金设计:根据合金的使用要求,通过调整合金元素的配比和含量,设计出具有优异高温性能的合金配方。
合金设计需要兼顾强度、塑性、耐腐蚀等综合性能。
3. 熔炼铸造:将选取的原料按照一定比例放入高温电炉中进行熔炼。
在熔炼过程中,需控制合金中各元素的含量,以及铸态组织的形成,避免夹杂物的产生。
4. 热加工:熔炼得到的合金块需要经过热加工,如热压、热挤压、热轧等,以改变合金的形状和尺寸。
热加工可以提高材料的塑性和强度,同时也能改善材料的晶粒结构和机械性能。
5. 热处理:通过热处理可以调控合金的晶粒尺寸和组织结构,提高合金的抗氧化、抗蠕变和抗疲劳性能。
热处理包括固溶处理、时效处理等环节,需根据合金的具体成分和要求进行选择。
二、镍基高温合金在核反应堆中的应用分析镍基高温合金由于其优异的高温性能,被广泛应用于核反应堆中的核燃料元件、包壳、涡轮、管道等关键部件。
1. 核燃料元件:在核反应堆中,核燃料元件是承载核燃料的重要部件。
镍基高温合金具有良好的抗辐照性能、高温强度和耐腐蚀性能,可用于制造核燃料元件的包壳和结构支撑杆。
2. 反应堆包壳:核反应堆的反应堆包壳需要承受高温和高压的环境。
镍基高温合金具有优异的耐热性和耐腐蚀性,能够在高温和强酸环境中保持稳定的性能,因此可用于制造核反应堆的包壳。
3. 涡轮:核反应堆中的涡轮是转动设备,要求具有较高的强度和耐热性。
镍基高温合金具有出色的高温强度和耐蠕变性能,适合用于制造核反应堆的涡轮叶片。
dd5镍基单晶高温合金使用极限

dd5镍基单晶高温合金使用极限以dd5镍基单晶高温合金使用极限为题,本文将从合金的组成、性能及应用等方面进行阐述。
一、合金的组成dd5镍基单晶高温合金是一种由镍、铬、钼、铁等元素组成的合金。
这种合金中的镍具有良好的耐高温性能,能够在高温下保持较高的强度和耐蠕变性能。
铬和钼的添加能够提高合金的抗氧化性能和耐腐蚀性能。
此外,铁的加入可以增加合金的热塑性,提高合金的加工性能。
二、合金的性能dd5镍基单晶高温合金具有优异的高温性能,主要表现在以下几个方面:1. 高温强度:dd5合金在高温下具有很高的强度,能够承受高温环境下的较大载荷。
2. 耐氧化性:合金中的铬元素能够形成致密的铬氧化物层,有效阻止氧气的渗透,提高合金的抗氧化性能。
3. 耐蠕变性能:dd5合金具有较好的耐蠕变性能,能够在高温和高应力条件下保持形状稳定性。
4. 抗疲劳性能:合金具有良好的抗疲劳性能,能够在循环加载下长时间保持稳定的性能。
三、合金的应用dd5镍基单晶高温合金在航空航天领域有着广泛的应用,主要用于制造高温部件,如燃烧室、涡轮叶片、燃气轮机等。
具体应用包括以下几个方面:1. 燃烧室:合金具有良好的耐高温性能和抗氧化性能,能够承受高温燃烧室中的高温和高压环境,保证燃烧室的稳定工作。
2. 涡轮叶片:dd5合金具有优异的高温强度和耐蠕变性能,能够承受高温和高速气流的冲击,保证涡轮叶片的稳定运转。
3. 燃气轮机:dd5合金具有良好的抗氧化性能和耐疲劳性能,能够在高温和高应力条件下长时间工作,保证燃气轮机的可靠性。
4. 其他高温部件:dd5合金还可用于制造其他高温部件,如燃气轮机的燃烧室、燃烧器和涡轮机组件等,能够满足高温工作环境下的需求。
dd5镍基单晶高温合金具有优异的高温性能,广泛应用于航空航天领域的高温部件制造。
通过合金的组成优化和性能调控,不断提高合金的高温稳定性和耐蠕变性能,将进一步推动合金在航空航天领域的应用。
DD5镍基单晶高温合金缓进磨削表面完整性研究

DD5镍基单晶高温合金缓进磨削表面完整性研究靳淇超;曹帅帅;汪文虎;蒋睿嵩;郭磊【期刊名称】《西北工业大学学报》【年(卷),期】2022(40)1【摘要】为控制单晶涡轮叶片榫齿缓进磨削成形表面质量,通过实验研究缓进磨削工艺参数对DD5镍基单晶高温合金磨削表面完整性的影响规律。
实验结果表明,当砂轮线速度在15~30 m/s、工件进给速度在120~210 mm/min、磨削深度在0.1~0.7 mm参数范围内,磨削表面垂直磨削方向粗糙度在0.56~0.74μm范围内,沿磨削方向粗糙度约为垂直磨削方向粗糙度的1/5。
三维形貌和表面纹理测试结果表明磨削表面存在明显的因磨粒耕犁和划擦而产生的表面凹槽和材料隆起现象,不同工艺参数下磨削表面凹槽和隆起材料的长度和高度有较明显变化;砂轮线速度对沿磨削方向凹槽和隆起长度影响较敏感;磨削深度和工件进给速度对垂直磨削方向的凹槽和隆起轮廓起伏程度敏感。
磨削表面出现了不同程度加工硬化,最高达11.6%,最大硬化层深度达到110μm;磨削表面层出现明显塑性变形,γ相沿着磨削方向出现不同程度的滑移变形,立方化的γ′相出现了偏移、扭曲、破碎断裂现象,最大塑性变形层厚度为2.92μm;DD5缓进磨削塑性变形是加工硬化产生主要原因。
实验结果对DD5榫齿磨削提供理论指导。
【总页数】10页(P189-198)【作者】靳淇超;曹帅帅;汪文虎;蒋睿嵩;郭磊【作者单位】长安大学道路施工技术与装备教育部重点实验室;西北工业大学航空发动机高性能制造工业和信息化部重点实验室;四川大学空天科学与工程学院【正文语种】中文【中图分类】TG580【相关文献】1.表面再结晶对DD5镍基单晶高温合金组织和力学性能的影响2.镍基单晶高温合金磨削表面质量及亚表面微观组织试验3.DD5镍基单晶高温合金铣削亚表面损伤研究4.DD5镍基单晶高温合金缓进磨削力和温度实验研究5.镍基单晶高温合金磨削润滑方式对表面完整性的影响因版权原因,仅展示原文概要,查看原文内容请购买。
镍基合金研究报告

镍基合金研究报告本文以镍基合金为研究对象,介绍了镍基合金的特点、制备方法、应用领域以及未来研究方向。
镍基合金具有高温强度、耐腐蚀性能好、热膨胀系数小等优点,在航空、航天、能源等领域有广泛应用。
未来的研究方向包括改善合金性能、提高制备效率、拓展应用领域等。
关键词:镍基合金、制备方法、应用领域、研究方向一、引言镍基合金是一类以镍为基础元素,添加其他合金元素制成的合金材料。
镍基合金具有高温强度、耐腐蚀性能好、热膨胀系数小等优点,在航空、航天、能源等领域有广泛应用。
本文将介绍镍基合金的特点、制备方法、应用领域以及未来研究方向。
二、镍基合金的特点1.高温强度镍基合金具有优异的高温强度,可在高温下保持较高的强度和韧性,长期使用不会发生塑性变形和断裂。
这种性质使镍基合金在高温下具有很好的应用前景。
2.耐腐蚀性能好镍基合金具有良好的耐腐蚀性能,可耐受强酸、强碱、盐水等腐蚀介质的侵蚀。
这种性质使镍基合金在化工、石油、海洋等领域有广泛应用。
3.热膨胀系数小镍基合金的热膨胀系数小,可在高温下保持较好的尺寸稳定性,不会因温度变化而导致形变和破坏。
三、镍基合金的制备方法1.真空熔炼法真空熔炼法是一种制备高品质镍基合金的方法,其制备过程中可实现高温、高真空度的环境,减少了氧、氮等杂质的污染,提高了合金的纯度和品质。
2.粉末冶金法粉末冶金法是一种制备镍基合金的常用方法,其制备过程中可控制合金成分和结构,提高了合金的稳定性和性能。
3.热等静压法热等静压法是一种通过高温、高压下实现合金粉末的烧结和成型的方法,可制备出高密度、高性能的镍基合金材料。
四、镍基合金的应用领域镍基合金在航空、航天、能源等领域有广泛应用,主要应用于以下方面:1.航空领域镍基合金可用于制造高温下的航空发动机叶片、涡轮盘、燃烧室等部件,具有较好的高温强度和耐腐蚀性能。
2.航天领域镍基合金可用于制造航天器的发动机、燃烧室、涡轮等部件,具有较好的高温强度和耐腐蚀性能。
单晶镍基高温合金的高温蠕变及相关参数

单晶镍基高温合金的高温蠕变及相关参数
刘宝柱;田素贵;尹玲娣;洪鹤;徐永波;胡壮麒
【期刊名称】《钢铁研究学报》
【年(卷),期】2003()z1
【摘要】通过测定一种单晶镍基高温合金的高温拉伸蠕变曲线和位错运动的内摩擦应力σ0,建立了综合蠕变方程,计算出不同蠕变阶段的激活能和相关参数.结果表明:在蠕变期间,内摩擦应力σ0随外加应力σ的增加而略有提高,但随温度升高而明显下降.在实验温度和应力范围内,在不同蠕变阶段,具有不同的激活能Q,时间指数m和结构常数Bi.因此,合金在不同蠕变阶段具有不同的蠕变机制.蠕变初期,形变机制是位错在基体通道中运动;而大量位错切入筏状γ'相中是蠕变第3阶段的主要特征,在γ'/γ两相界面产生空洞及空洞的聚集和微裂纹扩展是蠕变断裂的直接原因.【总页数】5页(P284-288)
【关键词】单晶;镍基高温合金;蠕变;内摩擦应力
【作者】刘宝柱;田素贵;尹玲娣;洪鹤;徐永波;胡壮麒
【作者单位】
【正文语种】中文
【中图分类】TG132.3;TG111.8
【相关文献】
1.一种镍基单晶高温合金的高温蠕变行为 [J], 张剑;赵云松;骆宇时;贾玉亮;杨帅;唐定中
2.镍基单晶高温合金定向粗化行为及高温蠕变力学性能研究进展 [J], 吴文平;郭雅芳;汪越胜
3.含Re镍基单晶高温合金高温低应力蠕变初期γ/γ′界面结构研究 [J], 黄鸣;朱静;
4.镍基单晶合金CMSX-2高温蠕变后的显微组织及合金元素分布特征 [J], 彭志方;任遥遥;骆宇时;燕平;赵京晨;王延庆
5.一种单晶镍基合金高温蠕变相关参数的试验研究 [J], 田素贵;杨洪才;周惠华;张静华;徐永波;胡壮麒
因版权原因,仅展示原文概要,查看原文内容请购买。
镍基高温合金的研究和应用

镍基高温合金的研究和应用王睿【摘要】镍基高温合金是通常以镍铬为合金基体,并根据具体需求加入不同的合金元素,从而形成的单一奥氏体基体组织.由于镍元素在化学稳定性、合金化能力和想稳定性上的优势,镍基高温合金相对于铁基和钴基高温合金具有更优异的高温强度、抗疲劳性能、抗热腐蚀性、组织稳定性等性能.经过几十年发展和完善,我国高温合金领域在合金设计方法、合金种类、冶炼和热处理工艺、工业化管理等方面均取得了较大的进展,而凭借其独特的优势,镍基高温合金已经成为当代航空航天和燃气轮机工业中地位最重要的高温结构材料.本文主要从常见镍基高温合金分类、冶炼工艺和处理方式、强化机理以及合金化等方面,简要介绍了镍基高温合金的主要研究进展和实际应用.%Nickel-base high-temperature alloys are usually made of nickel-chromium alloy and different alloy elements are added according to specific requirements, thus forming a single austenitic matrix. Because of the advantages of chemical stability, alloying ability and relative stability of nickel element, Nickel-base high-temperature alloys has more excellent high temperature strength, fatigue resistance, thermal properties, such as corrosion resistance, stability of the organization. After decades of development and improvement, the high temperature alloys in China have made great progress in the aspects of alloy design methods, alloy types, smelting and heat treatment processes, industrialization management, etc. With their unique advantages, Ni-based superalloys have become themost important high temperature structural materials in the aerospace and gas turbine industries. In this paper, the main research progress andpractical application of nickel-based superalloy are briefly introduced from the aspects of classification, smelting process and treatment, strengthening mechanism and alloying of common Ni-based superalloys.【期刊名称】《化工中间体》【年(卷),期】2017(000)007【总页数】2页(P50-51)【关键词】镍基高温合金;航空航天【作者】王睿【作者单位】江苏省常州市武进区前黄高级中学国际分校江苏 213000【正文语种】中文【中图分类】T高温合金特指以镍、钴、铁或三者与铬的合金为基体,能够承受苛刻的机械应力和600℃以上高温环境的一类高温结构材料.它一般具有较高的室温和高温强度、良好的抗蠕变性能和疲劳性能、优良的抗氧化性和抗热腐蚀性能、优异的组织稳定性和使用可靠性.上个世纪50年代初,我国通过仿照前苏联,自主研制并生产了出第一款高温合金GH3030,从而拉开了我国对于高温合金研究和应用的序幕.20世纪60年代初,我国投入大量人力和物力研究高温合金等军工领域用材料,许多高温合金的研究和生产中心在此时得以建立,并且引进了大量的科研和检测设备.这一阶段,考虑到我国本身存在quot;缺钴少镍quot;的情况,因此我国在高温合金领域特别是铁基高温合金上取得了前所未有的突破,研究和生产均出具规模,生产了诸如GH4037、K417等多个牌号的高温合金.但是由于基体本身化学和物理性质的原因,铁基高温合金在多方面均远逊色与同成分的镍基高温合金,因此在改革开放后,镍基高温合金逐渐成为我国高温合金研究和生产的主体,通过全面紧扣镍原矿,引进欧美技术,我国在粉末镍基高温合金,单晶镍基高温合金和定向凝固柱晶高温合金等尖端领域均取得了重大突破,先后推出了FGH 系列粉末涡轮盘材料,第一、二代单晶镍基高温合金DD402、DD26等.本文主要从镍基高温合金常见分类、冶炼和制备工艺、强化机理和合金化、实际应用等几个方面来简要介绍了镍基高温合金的研究发展.镍基高温合金具有许多种类,通常按照成型工艺的不同,将其分为铸造高温合金和变形高温合金.铸造高温合金由铸造工艺制备,通常分为等轴晶、定向柱晶和单晶三种.而变形高温合金普遍由粉末工艺制备,分为粉末高温合金和弥散强化型高温合金,通常具有良好的冷热加工性能和力学性能.(1)粉末高温合金利用粉末冶金工艺制造而成的高温合金称为粉末高温合金.传统铸造-锻造工艺制成的高合金化高温合金,存在宏观偏析严重、难于成型、疲劳性低等缺点,因此在工艺生产中并未大规模使用.随着粉末工艺的推广,通过在真空或惰性气体气氛下,以制粉工艺将高合金化难变形高温合金制成细小粉末,再通过不同的成形法制成目标合金.由于晶粒细小、成分均匀、微观偏析轻微,故相对于传统铸造合金,粉末高温合金往往在热加工性能,屈服强度和疲劳强度等力学性能上均得到较大提升.目前我国常用的粉末高温合金主要有FGH系列等,其中80年代研制的FGH95是目前强度最高的粉末高温合金.(2)定向柱晶高温合金通过定向凝固技术,使得合金内的横向晶界被消除,制备出只保留了平行于主应力轴的单一晶界的合金称为定向柱晶高温合金.定向凝固柱晶工艺通过螺旋选晶器或籽晶法,只允许一个柱状晶生长,可制成消除一切晶界的单晶涡轮叶片或导向叶片.定向柱晶高温合金具有优异的高温强度和屈服强度,并且相较于单晶高温合金,工艺更为简单、制作成本和检验成本也更低,因此定向柱晶高温合金被广泛应用于涡轮叶片的制造.(3)单晶高温合金采用定向凝固工艺消除所有晶界的高温合金称为单晶高温合金.单晶高温合金同样采用定向凝固技术,但是在型壳设计上增加了单晶选择通道.由于合金内一切晶界被消除,合金化程度很高,其高温强度、疲劳性能等力学性能相对于等轴晶和定向柱晶高温合金有了大幅度的提高,因此在尖端航空领域,单晶高温合金得到广泛应用,比如美国F35战斗机涡轮叶片所采用的的即使第三代镍基单晶高温合金CMSX-10.但是单晶高温合计由于制造成本相对较高、工艺复杂,因此使用受到局限.不同种类的镍基高温合金采用的制备方式截然不同,定向柱晶高温合金和单晶高温合金均采用定向凝固技术,粉末高温合金采用粉末冶金工艺方法生产,而传统的铸造高温合金采用铸-锻工艺生产.粉末高温合金和单晶高温合金是时下应用最前沿的两类镍基高温合金,因此对于其制备方法的研究是具有直接代表意义的.(1)定向凝固技术制备单晶高温合金和定向柱晶高温合金通常采用定向凝固技术,二者差别在于单晶高温合金往往会增设单晶选择通道.现在常用的定向凝固技术有,高速凝固法(HRS)、液态金属冷却法(LMC)、发热剂法(EP)和功率降低法(PD)等,这其中高速凝固法和液态金属凝固冷却法是目前应用最广的制造工艺.高速凝固法(HRS)通过在加热区底部增设了隔热挡板,并且在水冷底盘添加水冷套,使浇注后型壳与加热器之间发生了相对移动,增大了挡板附近的温度梯度,从而实现细化组织,消除晶界各异性的目的.液态金属冷却法(LMC)则是通过加入一个冷却剂槽,通常以锡为冷却剂.当合金熔体浇注成型后,将其从加热器中移出并逐渐匀速浸入到液态锡冷却剂中,这样在合金凝固表面和内部形成了较大的温度梯度,促使晶粒以单一方向生长.通过控制诸如冷却剂温度、浸入速率等参数可以调整合金的晶粒尺寸.(2)粉末冶金工艺粉末冶金工艺通常分为粉末制备和粉末固结两个阶段.目前在实际生产中的粉末制备工艺主要采用气体雾化法和旋转电极法.气体雾化法又被称为AA法,首先将真空熔炼过的母合金加入到雾化设备中,在真空环境下进行重熔,熔解的合金经由漏嘴流出后,在高压气体流的冲击下被雾化成粉末,其中氩气是最常用的气体.旋转电极法则是将合金料在高速旋转,利用固定的钨电极产生等离子弧来连续熔化合金料,这样在离心力的作用下,形成的液滴飞出形成了细小的粉末.粉末制备成功后,需要进行固结以便成形.由于传统的高温合金粉末中往往含有难烧结且易氧化元素,因此在传统的直接烧结工艺下成形相当困难,必须引入高温高压气氛.目前常见的粉末固结方式有真空热压成形、热等静压成形、热挤压和锻造、电火花烧结等成型方法,其中热等静压和热挤压是国内常用的两个工艺.镍基高温合金的强化效应通常组织强化和工艺强化两种.第一种是因为高温合金中的合金元素和基体元素相互作用,引起组织的变化而产生的强化效应.工艺强化是通过改良生产工艺、处理方式、锻造工艺等来实现对高温合金性能的提升.众多强化方式中,合金化对于高温合金性能的改变尤为重要.镍可以通过固溶、形成第二相等方式与加入的合金元素相互作用,其中常见的合金元素有Cr,W,Mo,Re,Al,Ti,Ta,C,B,Zr和稀土元素等十余种合金元素,这些元素在合金中起着不同的作用.Cr是镍基高温合金中含量相对较高的一个元素,它以固溶态存在于基体中,从而改善镍基高温合金的抗氧化性和抗热腐蚀性.W和Mo通过提高扩散激活能,降低合金中的扩散,从而增强原子间结合力,提高合金的硬度和高温强度.Al 是最主要的γ'相形成元素,且在高温下能形成保护性的氧化膜,提高合金的抗氧化性能,因此Al也常被用于表面化处理.其他如C,B,Zr和稀土元素等微量元素,在镍基高温合金中的含量均在1%以下,但是也起着很强的作用.经过几十年的研究和发展,镍基高温合金虽已经在多个方面均取得较大的突破,但为了满足航空、航天领域对于高性能高温合金材料不断增加的需求,也为了应对相关领域的国际竞争,增加我国的制空竞争力,在以后得研究中仍得从以下几个方面加强:(1)建立和完善更有效的合金设计方法,通过调整合金元素的比例,改善制造工艺来得到强度更高,质量更轻,成本更低的镍基高温合金;(2)应该对尖端高温合金诸如第三代单晶高温合金、第五代粉末高温合金的研制,改善制备工艺,使得这类合金的性能和质量更加稳记录并完善合金的性能和数据;(3)要扩大应用范围,扩展对于民用燃气轮机中高温合金的研制和开发.总之,镍基高温合金是航空航天领域发展的核心关键,高温材料的强度决定了飞机发动机的推重比和性能,因此研究镍基高温合金是认识材料领域,了解我国乃至世界航空航天领域发展,探索我国国防事业的一块敲门砖.王睿,男,江苏省常州市武进区前黄高级中学国际分校;研究方向:材料类.【相关文献】[1]郭建亭.高温材料学[J].北京:科学出版社,2010.06.[2]张义文.粉末高温合金研究进展[J].中国材料进展,2013年第1期.[3]孙晓峰.镍基单晶高温合金研究进展[J].中国材料进展,2012年第12期.[4]王斌,Al对高温合金高温抗氧化性能的影响[J].材料热处理技术,2012年5月.。
高温合金材料发展现状与趋势

高温合金材料发展现状与趋势高温合金是指具有优异的高温强度、高温蠕变和高温抗氧化性能的材料。
这些材料被广泛应用于航空航天、火箭、汽车、能源、化工和核工业等领域。
随着这些领域对高温材料需求的不断增加,高温合金材料也因此得到了广泛的关注和研发。
本文旨在对高温合金材料的发展现状和未来趋势进行探讨。
一、高温合金材料的分类高温合金材料主要可分为镍基高温合金、铬基高温合金和钛基高温合金。
其中镍基高温合金是应用最为广泛的一类高温合金。
镍基高温合金具有强的抗氧化性、良好的高温蠕变和高温疲劳性能、优异的耐腐蚀性、高的热强度和热稳定性等优点,被广泛应用于各种高温领域。
二、高温合金材料的发展现状高温合金材料的发展历程可以追溯到20世纪50年代。
在此以前,主要采用的是铁基合金,但铁基合金存在工作温度范围狭窄、低温下脆性易剥落等缺点。
20世纪50年代中期,美国医生·布拉斯特博士首次成功研制出镍基合金,开创了高温合金材料的新时代。
70年代至80年代之间,欧美日等国的高温合金技术突飞猛进,并得到广泛推广应用。
目前,高温合金材料已经具备了广泛的应用场景和应用前景,尤其是在航空航天、火箭、船舶、发电等领域。
随着材料科学技术的逐步提高,未来高温合金的研究和应用将更加广泛,发展也将日益壮大。
三、高温合金材料的未来趋势1. 单晶高温合金材料将得到广泛应用单晶高温合金材料是指各向同性粉末冶金高温合金,具有耐蠕变和循环寿命长、耐热劣化和抗氧化性能好的特点。
单晶高温合金材料主要应用于高温部件上,例如发动机涡轮叶片、转子盘、燃烧室内强制部件等方面。
2. 复合材料和纳米材料将成为研究热点复合材料和纳米材料将成为高温合金材料的研究热点。
复合材料具有优良的力学性能和耐热性能,可以制备成薄壁结构材料和非对称结构材料等多种形状的零部件。
纳米材料具有优异的力学性能和微观结构特性,可以强化高温合金材料的高温强度和热稳定性能。
3. 新型高温合金材料将不断发展新型高温合金材料将不断涌现,例如具有先进内部组织结构的超高温合金材料和低密度强韧高温合金材料等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
镍基单晶高温合金研究进展孙晓峰,金涛,周亦胄,胡壮麒(中国科学院金属研究所,沈阳 110016)摘要:单晶高温合金具有较高的高温强度、良好的抗氧化和抗热腐蚀性能、优异的蠕变与疲劳抗力、良好的组织稳定性和使用可靠性,广泛应用于涡轮发动机等先进动力推进系统涡轮叶片等部件。
由于采用定向凝固工艺消除了晶界,单晶高温合金明显减少了降低熔点的晶界强化元素,使合金的初熔温度提高,能够在较高温度范围进行固溶和时效处理,其高温强度比等轴晶和定向柱晶高温合金大幅度提高。
经过几十年的发展,单晶高温合金已经在合金设计方法、组织结构与力学性能关系、纯净化冶炼工艺和定向凝固工艺等方面取得了重要进展。
本文从单晶高温合金成分特点、合金元素作用、强化机理、力学性能各向异性、凝固过程及缺陷控制、单晶制备工艺等方面,简要介绍了单晶高温合金的主要研究进展。
关键词:单晶高温合金;强化机理;定向凝固;各向异性Research Progress of Nickel-base Single Crystal SuperalloysSun Xiaofeng, Jin Tao, Zhou Yizhou, Hu Zhuangqi(Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China)Abstract:Single crystal superalloys have been widely used to make turbine blades and guide vanes for aero-engines and industrial gas turbines because of improved strength, creep-rupture, fatigue, oxidation and hot corrosion properties as well as stable microstructure and reliability at high temperature environments. After removal of grain boundary by using directional solidification technique, grain boundary elements which decrease the incipient melting temperature were reduced remarkably in single crystal superalloys. Consequently, the solution and aging treatment of single crystal superalloys can be done at higher temperature due to the enhanced incipient melting temperature, and then the high temperature strength of single crystal superalloys is higher than that of equiaxed and directionally solidified superalloys. There were great progress on approach of alloy design, relationship between structure and mechanical performances, process of pure smelting and processing of directional solidification in the last decades. The present work reviews these progress from compositions of alloys, role of elements, mechanism of strengthening, anisotropy of mechanical properties, procedure of solidification, control of defects and processing of single crystal superalloys.Key words:single crystal superalloy;mechanism of strengthening;directional solidification;anisotropy of properties——————————————————基金项目:国家973计划项目(2010CB631206)通讯作者:孙晓峰,男,1964年生,研究员,博士生导师1引言高温合金(Superalloy)是以铁、镍、钴为基体的一类高温结构材料,可以在600℃以上高温环境服役,并能承受苛刻的机械应力。
高温合金具有高的室温和高温强度、良好的抗氧化和抗热腐蚀性能、优异的蠕变与疲劳抗力、良好的组织稳定性和使用可靠性,广泛应用于涡轮发动机等先进动力推进系统热端部件。
高温合金研究的不断深入,不仅推动了航空/航天发动机等国防尖端技术的进步,而且促进了交通运输、能源动力、石油化工、核工业等国民经济相关产业的技术发展。
单晶高温合金消除了晶界,明显减少了降低熔点的晶界强化元素,使合金的初熔温度提高,能够在较高温度范围进行固溶处理,其强度比等轴晶和定向柱晶高温合金大幅度提高,因而得到了广泛应用。
自二十世纪80年代开始,PWA1480、CMSX-2、CMSX-3、SRR99等第一代单晶高温合金出现以来,单晶高温合金的研究取得了突破性进展。
随着合金设计理论水平的提高和铸造工艺技术的进步,以及Re元素的添加,相继出现了以PWA1484、CMSX-4、RenéN5等为代表,耐温能力比第一代单晶高温合金高约30℃的第二代单晶高温合金[1-3],和以CMSX-10、RenéN6等为代表,耐温能力比第一代高约60℃的第三代单晶高温合金[4-6]。
近年来,通过添加Ru、Pt、Ir等元素,又发展出以MC-NG、TMS-138、TMS-162等为代表的第四代和第五代单晶高温合金[7-9]。
由于Re和Ru元素稀缺的储量和昂贵的价格,使得先进单晶合金的成本成倍地增加,制约了这些合金的推广应用。
单晶高温合金当前的发展重点之一是研发低成本合金。
通过优化合金成分,降低Re和Ru的含量,在保证性能的前提下,尽可能降低合金成本。
法国ONERA发展的无Re合金MC2已经达到了第二代单晶高温合金的性能水平[10]。
近来,美国的GE、C-M公司以及NASA在发展低成本合金方面也取得了重要进展[11,12]。
2008年,GE公司在Rene N5合金的基础上研制了Rene N515(含1.5wt%Re)和Rene N500(无Re)合金,并对Rene N515合金在一些航空发动机上进行了测试,计划将其应用到GEnx 等发动机上[13]。
我国发展了DD98系列无Re高性能合金,其高温力学性能基本达到了第二代单晶高温合金性能水平[14]。
本文从单晶高温合金元素作用、强化机理、制备方法、缺陷控制等方面,简要介绍了单晶高温合金的主要研究进展。
2 单晶高温合金的成分特点及强化元素作用2.1单晶高温合金成分发展的主要特点镍基铸造高温合金的发展经历了等轴晶、定向柱晶、单晶等几个阶段(如图1所示[9]),其承温能力不断提高。
单晶高温合金经历了从第一代的无Re合金到第二代的含3%Re合金,再发展至第三代含6%Re的合金,以及在高Re基础上加入Ru、Ir等元素的第四代和第五代合金。
表1给出了国内外典型单晶高温合金的主要元素成分[7,15,16],可以看出单晶高温合金的成分发展有以下主要特点[15]:图1高温合金承温能力的发展过程[9]Fig. 1 History of improvement in temperature capability of Ni-base superalloys.晶界强化元素从完全去除转为限量使用C、B、Hf等元素历来被看作是晶界强化元素,而且易于降低合金的初熔温度。
而单晶合金没有晶界,在最初发展的PWA1480、CMSX-2等商用单晶合金中不含有这些元素,但近年来发展的单晶高温合金中又重新引入了这些元素。
难熔金属加入总量增加为了提高单晶高温合金的高温持久强度,W、Mo、Ta和Re 等难熔元素的加入量不断增加。
以CMSX系列单晶合金为例,第一代为14.6wt.%,第二代为16.4wt.%,而第三代达到20.7wt.%。
Cr含量降低在第三代单晶合金中,Cr含量降至5wt.%以下,尤其是CMSX-10合金的Cr含量只有3wt.%左右。
在第四代单晶合金MC-NG中,Cr含量也降到4wt.%。
稀土元素的应用在一些第二代和第三代单晶合金中,加入了Y、La和Ce等稀土元素,以改善单晶合金的抗氧化性能。
Ru元素的引入在发展第二代和第三代单晶合金时,已开始尝试加入元素Ru,美国的GE公司和法国的ONERA首先进行了该元素的合金化实验,并在此基础上研制出第四代单晶合金。
表1典型单晶高温合金的成分[7,15,16]Table 1 Nominal compositions of representative single crystal superalloys2.2 单晶高温合金主要强化元素的作用镍基高温合金通常含有Cr、Co、W、Mo、Re、Al、Ti、Nb、Ta、Hf、C、B、Zr和Y等十余种合金元素。
这些元素在合金中起着不同的作用,如固溶强化、第二相强化和晶界强化等。
Al、Ti、Ta和Nb这些元素是γ'相形成元素,决定着合金中强化相的数量。
Al是最主要的γ'相形成元素,且在高温下能形成保护性的氧化膜,提高合金的抗氧化性能。
Ti 可以改善合金的抗热腐蚀性能,但对合金的抗氧化性能和铸造性能不利,而且Ti含量的增加使共晶难以溶解,增加固溶处理的难度。
因此,第三代和第四代单晶高温合金中都将Ti含量控制得很低。
Ta偏聚于γ'相,能提高γ'相的固溶温度和强度,同时有效地改善合金的抗氧化和抗热腐蚀性能。
Nb提高γ'相的热稳定性,延缓γ΄相的聚集长大过程,但对合金的抗氧化和抗热腐蚀性能不利。
Cr镍基高温合金中Cr主要以固溶态存在于基体中,少量生成碳化物,其主要的作用是增加抗氧化和抗热腐蚀能力。
由于单晶高温合金中加入了大量的W、Mo、Nb、Ti、Al和Ta等强化元素,Cr含量过高会降低合金的组织稳定性[17],造成有害相析出而严重损害合金的强度及塑性。