海水源热泵系统运投资与运行费用分析

海水源热泵系统运投资与运行费用分析
海水源热泵系统运投资与运行费用分析

海水源热泵系统运投资与运行费用分析

本文出自: 能源世界网作者: 飞上天点击率: 445

海水热泵机组参数及投资运行费用估算

一、Joyance ?

模块化海水热泵空调机组技术参数与特点:

2、技术特点:

⑴ HSR-M系列海水热泵机组可直接使用2℃以上海水连续制热运行。

⑵ 海水热泵机组制热供水55℃时输入功率仅为最大额定功率的80%。

HSR-M系列海水热泵机组配有智能海水流量检测系统,制冷/制热时按海水温度确定海水流量值运行,最大限度的减少附属设备的能耗。

⑷ 海水热泵机组换热器水通道采用圆滑的表面设计,耐脏耐垢不易堵塞,预留

清洗接口,清洗维护快捷方便。

⑸ 制冷或制热的同时均可提供生活热水。

智能控制系统保证机组高低温工况下安全运行;

二、海水热泵空调系统投资与运行费用分析

节能型建筑单位投资费用: 3.7555元/w;

非节能型建筑单位投资费用: 3.3625元/w;

2、使用海水热泵制热供暖运行费用分析:

⑴、建筑面积热负荷:节能建筑0.045kw/m2,非节能建筑0.08kw/m2,

⑵、机组COP值:3.8w/w;(平均海水温度7.5℃时的制热能效比)

⑶、空调水泵及海水泵的能耗:30%(水泵能耗占机组能耗的比例);

⑷、日运行时间:24h;

⑸、面积使用率:80%

⑹、全年运行:140天;

⑺、全年平均运行系数:50%;

⑻、电费价格:民用电价0.54元/kwh,工业平均电价0.79元/kwh;

A、节能型建筑民用电价0.54元/kwh冬季取暖费用:

(0.045÷3.8)×130%×80%×24×140×50%×0.54≈11.17元/m2

B、节能建筑居工业电价0.79元/kwh冬季取暖费用:

(0.045÷3.8)×130%×80%×24×140×50%×0.79≈16.34元/m2

C、非节能建筑民用电价0.54元/kwh冬季取暖费用

(0.080÷3.8)×130%×80%×24×140×50%×0.54≈19.86元/m2

D、非节能建筑工业电价0.79元/kwh冬季取暖费用

(0.080÷3.8)×130%×80%×24×140×50%×0.79≈29.06元/m2海水热泵空调费用与燃油、燃气、燃煤的对比

在青岛地区,使用海水直接进机组的空调系统制热,按0.54元/kwh民用电价计算,使用海水热泵空调机组供暖是最为廉价的供热方案。不考虑投资因素,非节能型建筑使用模块化海水源热泵空调机组的运行费用,冬季取暖使用电价0.64

元/kwh时与现行供热收费价格持平。

节能型建筑单位投资费用: 3.7555元/w;非节能型建筑单位投资费用: 3.3625

元/w;

相变蓄热电采暖经济性分析

相变蓄热电采暖经济性分析 摘要: 直供式电采暖系统与相变蓄热式电采暖系统是两种截然不同的电采暖方案, 本文利用静态分析法从初投资、年运行费用及简单回收期等方面预测其经济性。 经济性预测结果表明,相变蓄热式电采暖年运行费用低,简单回收期较短,在节 省电能方便更具优势。 关键词:直供式电采暖系统;相变蓄热式电采暖系统;经济性预测 前言 从全球形势来看,能源革命发展趋势以清洁能源为主流,旨在逐步优化能源 结构。近年来,为了解决北方地区燃煤取暖产生的环境污染问题,国家出台了“煤改电”等一系列保护政策,因此清洁能源电采暖被广泛关注及应用,清洁供暖已成为国家能源战略的重要组成部分。 目前,直供式电采暖以其安装控制方便、升温速度快、绿色环保等优势被企 业和个人用户所使用,但除去电采暖电价优惠政策补贴外,电费仍然较高。在这 种情况下,笔者提出一种相变蓄热式电采暖供热方式,将相变蓄热的原理与电采 暖相结合,预期通过间歇式供暖,利用蓄热式电采暖峰谷电价,谷时加热蓄热, 峰时停止加热,利用所蓄的热量进行供热,既避开了用电高峰,又节省了电费, 从而实现电能“移峰填谷”的目标。 以吉林省长春市某40m2房间为例,本文对比分析了常规电采暖系统(方案一)与带有蓄热功能的电采暖系统(方案二)的经济性,该分析过程涉及初投资、年运行费用及简单回收期三个方面。 1.初投资 两种方案的初投资主要是指研究并计算两种采暖形式的前期造价成本。首先 介绍两种方案的前期造价详细费用情况。 1.1方案一:直供式电采暖系统 该系统以发热电缆为发热体。购买电缆的费用是方案一系统的主要投入费用:以50W/m2作为供热指标,单价为1.5元/W,由于供热所要达到的总负荷为 50×40=2000W,所以40m2房间的热源造价为1.5×2000=3000元。本文选取水泥 砂浆作为热源下方结构层填充物,其造价为20元/m2,根据房间需求水泥砂浆成 本为40×20=800元。 1.2方案二:相变蓄热电采暖系统 热源造价与方案一相同,为3000元。据所给40m2建筑的面积可知,实际的 采暖安装面积是:2000/460=4.35m2,式中,460W/m2是发热源的发热量, 2000W是房间采暖的总负荷。本文选取石蜡微胶囊和泡沫金属铜的复合材料作为 相变蓄热式电采暖装置中的相变蓄热结构层。其造价计算为:泡沫金属铜成本计 算公式为4.35m2×1000元/m2=4350元;石蜡微胶囊单价为20元/kg,为实现预设谷时蓄热8h的想法,按照实际采暖安装面积,经理论计算共需34.8kg石蜡微胶囊,因此总计材料石蜡微胶囊的投入费用是20×34.8=696元。 上述计算得到直供式电采暖系统及相变蓄热式电采暖系统的初投资结果,如 表1所示。 表1二种方案初投资

地源热泵与传统空调运行费用比较

XXX电子厂空调运行比较分析1.冷、热源及空调方式选择比较

2.运行费用分析比较: 制冷机选用二大一小三台机组,300冷吨两台,150冷吨一台,(共2637KW计算),以适应不同负荷时制冷机能处于高效状态下运行。采暖总热量约1.2MW(1200KW)。 选用地源热泵机组LTLHM-370,制冷量1300KW,功率245. 4KW;制热量1400KW,功率324.6KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 地埋管循环泵功率(估算):30KW(一用一备) 冬季使用一台机组。 A、地源热泵系统,冬夏两用 ·夏季各设备的配电功率 · a.地源热泵机组:夏季245.4kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。

· e.埋管侧电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: ·1、电价按0.80元/KWH。 ·2、夏季制冷90天,每天间歇运行8小时。 ·3、空调同时使用率取0.8。 ·4、机组运行率取65%。 夏季运行费用: 90×8×0.8×(0.2×2+4+30+245.4×2+37)×65%×0.8=16.8万元。·冬季各设备的配电功率 · a.地源热泵机组:夏季324.6kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.井水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: ·1、电价按0.80元/KWH。 ·2、冬季制热120天,每天间歇运行8小时。 ·3、空调同时使用率取0.8。 ·4、机组运行率取65%。 冬季运行费用:

集中供热换热站优化配置及运行分析

集中供热换热站优化配置及运行分析 作为连接用户和热源极为重要的一环,换热站设计的合理性将会对供热质量产生直接影响。通过对某热网调研数据发现,在换热站中存在能耗普遍较高的情况。造成能耗高最主要的原因就在于换热站规模不合适、设备选型不合理、连接方式不恰当、运行管理不科学等。文章就某换热站中现存管理问题以及设备型号进行了大致分析,并就此提出了相应的改进对策。 标签:集中供热;换热站;优化配置 1 换热站规模 1.1 大规模换电站优缺点 对于供热能力在二十五万平方米的换热站而言,由于其集中度高,进而使设备数量得以减少,也使得设备运行中的局部损失得以减少。 1.2 小规模换热站优缺点 就面积在一万平方米以下的换热站而言,其二次网的建筑物比较少,容易调节。但就其一次网而言,由于换热站的数量太多,使得换热站热力和水力的平衡很难实现,致使热网的稳定性差。并且小规模的换热站其设备投资费高,回收年限长,同时管理也很困难。 大规模的换热站其二次网辐射半径比较大,并且管线也比较长,致使二次网管网的损失也就比较大,同时水力失调的情况也比较严重。 1.3 换热站规模 由于不同规模的换热站其耗水和耗电都很高,在对运行过程中的年经济费相结合的状况下,对城市规划和规模加以考虑,通常情况下需将换热站规模控制在二十万平方米一个站较合理。 2 循环水泵 2.1 确定水泵扬程和流量 水泵输送能力在很大程度上是由水泵的扬程和流量来决定的,对扬程和流量加以恰当的选择能使水泵高效率运行,进而减低能耗。 通过对热负荷加以设计来确定循环水泵流量,通常情况下,循环水泵扬程不能比设计流量中各部分的阻力之和小。在设计中一定要注意,热水循环系统是闭式系统,当对扬程加以确定之时,只需对管网损失加以考虑,而无需对建筑物高

09、供暖系统运行管理制度

供暖系统运行管理制度 1.目的 规范工程部员工运行、检查、维护保养操作行为,加强对热力系统管理,保障人员和设备安全,保证热力系统正常运行。 2.范围 适用于项目部热力系统运行和管理。 3.职责 3.1工程部负责人负责审批热力系统管理制度,监督、检查水工操作行 为,并组织安排相关工作。 3.2工程部专业负责人负责制定热力系统管理制度,负责对水工进行安 全、技术培训,并负责组织实施,监督、检查水工操作的规范性。 3.3工程部水工遵守执行相关工作制度和内容。 4.管理制度 4.1 值班制度 4.1.1 值班人员按照公司规定着工装,持证上岗。 4.1.2 当值人员服从管理,按班次上岗,不得擅自离岗,严格执行 交接班制度。只有在专业负责人批准后,有人接班的情况 下,方可离岗。 4.1.3 值班人员应熟悉配供热设备设施性能、原理和运行方式, 掌握操作规程和应急方案。对本站设备负有监视、维护、 操作及事故处理的责任。

4.1.4 按规定严格执行设备操作规程,正确操作设备,使设备安 全经济运行。 4.1.5 值班人员应按时、按规定线路巡视热交换器、水泵、水 箱、软化水装置设备,检查设备运行参数值是否在规定范 围内,声音、温度、气味是否正常,发现异常现象迅速查 明原因,正确处理,并向上级汇报。 4.1.6 监督软化水化验结果,保证供热系统水质,保证供热系统 正常补水和水量。 4.1.7 按规定运行方式和温度供热。需改变运行方式或停止供热 时,应提前向部门领导提出申请,经同意后方可实施。 4.1.8 值班人员应根据天气情况调整供热运行温度,达到节能降 耗的效果。 4.1.9 配合入室测量室内温度工作。当市政供热管网发生问题 时,应主动联系供热公司,保证供热温度。 4.1.10 值班人员均需掌握发生灾害事故和设备运行故障处理方 法,应正确判断事故原因并及时处理,防止事故扩大,主 动上报上级,在未找出原因和排除故障之前,不得重新启 动供热设备。 4.1.11 及时发现和处理事故隐患,无法处理的及时报告上级。 4.1.12 当发生威胁设备或人身安全紧急情况下,有权利立即停止 设备运行,事后向上级汇报。 4.1.13 熟练使用消防报警器材和灭火器材,注意防止小动物进入机

电锅炉的采暖费用分析

电锅炉的采暖费用分析 取暖看似小事,然而,随着社会经济的持续发展,居民对供暖的要求变得分外突出,已成为关系环保国策、改革发展和社会安定的大事。 我国大气污染主要是煤烟型污染,近年来全国煤炭消费量居高不下,以北京地区为例,全年用煤量2700万吨,仅冬季取暖就要烧掉600万 吨煤炭。这对北京大气造成的污染显而易见。北京市对此高度重视,从改变能源结构、实行集中供暖、改造燃煤锅炉等方面入手,全力治理煤烟型污染。在2000年度就完成了城八区1500多台1吨以上供暖锅炉的改造。仅此一项,全市燃煤可减少120万吨,二氧化硫排放量减少9000余吨。 随着人民群众物质生活水平的提高,大家对冬季供暖的舒适性及安全性有了新的要求。在集中供暖条件下,不同楼层、不同朝向等因素会造成相当大的室内温差、室温低的住户自然牢骚满腹。在采用燃气为能源的小区和住宅中,其采暖质量毋庸置疑。但燃气经燃烧后产生的二氧化硫、总悬浮颗粒物、可吸入颗粒物等对区域空气质量还是有一定影响的。此外,燃气装置的防火防爆问题也不容忽视。由于国内一些生产此类锅炉的企业起步较晚、技术工艺不够成熟及稳定,使燃气锅炉的安全性得不到足够的保证,再加上某些人为的安装、使用、维修不当,使燃气锅炉爆炸、伤人的事件时有发生。

以北京为例,在综合考察各种采暖方式的利弊之后,北京市大力推行具有节省用地、有利环保、安全可靠、收费简易的电采暖。电采暖的污染率为零,实现电采暖所需设备不多,十分安全,而且室温高低全由住户自行调节。在收费方面,住户先买IC卡,后用电,可以彻底根除 有意欠费。这种采暖方式的综合费用低于集中燃煤锅炉和城市集中供暖,北京地区规定供暖总耗热能为61.8kwh/平方米/采暖季,按IC卡电价0.44元/kwh计,用电采暖的费用为27.19元/平方米/采暖季(按峰谷用电价格计算,可降低30%—50%),与燃煤锅炉18元/平方米/采暖季,城市集中供暖为20~24元/平方米/采暖季相比,在节能、节约维修费用 和管理开支方面,有着明显的优势。在我国电力已相对缓和及电采暖具有众多明显优势的前提下,电采暖已成为今后城市供暖发展的一个重要方向。 怎样才能节省电锅炉采暖费呢? 合理选择电锅炉的功率 电锅炉功率的选择一定要按照采暖房间的电锅炉热负荷来计算。不同的房屋结构、房间高度、采光面积、房间位置,其热负荷是不同的。我们建议,节能建筑电锅炉可以取 13 - 15m2 /KW ; 普通楼房电锅炉 可以取 10 - 11 m2 /KW ;别墅、平房电锅炉可以取 8 - 9 m2 /KW ;密封条件不好、房间高度大于 2.7 米或经常有人出入的房屋要适当减小 电锅炉每千瓦的取暖面积。

地源热泵造价与运行费用对比

目录 一、公司简介。。。。。。。。。。。.。。。。。。。。。。2 二、标志性工程案例。。。。。。。。。。。。。。。。。。。3 三、地源热泵技术原理介绍。。。。。。。。。。。。。。。。6 四、冷暖方式的分析。。。。。。。。。。。。。。。。。。。15 五、设计方案说明。。。。。。。。。。。。。。。。。。。。17 六、系统设计方案。。。。。。。。。。。。。。。。。。。。20 七、投资概算及运行费用对比。。。。。。。。。。。。。。。25 八、补充说明。。。。。。。。。。。。。。。。。。。。。。29 九、附件(图纸、企业资质及相关政策文件)。。。。。。。。30

一、公司简介 浙江亿能建筑节能科技有限公司其前身是台州亿能建筑节能科技有限公司,于2010年4月由浙江省工商行政管理局批准正式更名,是台州首家集科技、设计、培训、咨询、新能源投资、建筑节能、环境保护于一体的科技型企业,公司成立至今一直从事于节能、环保工作。随着人们生活水平的不断改善与提高,环境保护意识的日益增强,国家政府大力提倡减排,公司于2010年5月在山东滨州先后成立了“浙江亿能建筑节能科技有限公司滨城分公司”、“滨州市艾斯达节能材料有限公司”,致力于建筑节能新技术与新产品的开发与利用、节能环保型中央空调系统配件与设备的研发与推广,形成产品系列化。 目前,公司已经建立了包括生产、营销、采购、供应、质量控制、设计、决策等在内的科学、高效的管理体系,为公司的迅速发展提供了组织机构和管理制度保障,使公司呈现良好的发展态势。现与中国建筑科学研究院建筑环境与节能研究院等多家科研机构建立了战略合作同盟体,可以为客户提供各种建筑节能方案和先进的节能设备。 公司08年度被浙江省科学技术协会、浙江省科技报社评为“浙江省优秀创新型企业”,被中国质量诚信企业协会、中国品牌价值评估中心评为“浙江省重质量守承诺创品牌”单位,暨“首批三满意单位”。2008年12月份公司参与了国家4个标准的制定:①地源热泵系统经济运行标准;②溴化锂吸收式冷水机组能效限定值节能标准;③地源热泵机组能效限定值及能源效率等级标准;④商业或工业用及类似用途低温空气源热泵机组标准,其中地源热泵系统经济运行标准由我司参与主编。2009年6月,我司与台州职业技术学院于市政府签订了“台州市校企校地合作协议书”。 公司始终坚守“高效、节能、环保”为重的经营理念及“诚信、团结、创新”的企业精神,以推广建筑节能事业为目标,以缓解能源紧张,降低能源消耗为己任,大力促进可再生能源应用和节能环保项目的推广,为加快建设“十一五”规划提出的能源节约型社会做出自己的贡献。亿能人以精湛的合作团队,凭借先进的技术真诚希望与国内外的客商携手共创节能型社会!

西安某小区供热系统间歇运行供暖房间热环境分析

!""#年#!月第#$卷第%期 西北建筑工程学院学报&自然科学版’ ()*+,-./01)*+2345)6/7)&,81938:;4<=/4=’ >=4)?!""# @*:)#$,* A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A )%西安某小区供热系统间歇运行供暖 房间热环境分析 官燕玲?田安民?刘宁 &长安大学环境工程学院?陕西西安B#""C#’ D摘要E对西安市某小区集中供热系统间歇调节运行的室内热环境进行了动态实测分析?得出供 水温度的变化规律及供暖房间热舒适的现况)指出只要适当调整供热时间就能明显地改善热舒 适条件) D关键词E集中供热F间歇供暖F热环境F热舒适 D中图分类号E G H$I!D文献标识码E2D文章编号E#""#J B K C L&!""#’"%J"#B"J"K M N O P Q R S R T U S N V T T W X Y Z W[O P Z N\S W T N[Z N X X TO W Z R S V Z N X S O P ]^O W X Z W Y Z O X S N_R Q R X Z[T U S N X Z W[S X X Z N X Y Z O X S N_S N‘S a O N b c M d e O N f P S N_?g h M d M N f[S N?i h c d S N_ &j*::=7=*+6/k<3*/l=/18:6/7

供暖系统运行出现的问题及解决方法(通用版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 供暖系统运行出现的问题及解决 方法(通用版)

供暖系统运行出现的问题及解决方法(通用 版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 摘要:对实际供暖系统运行中出现的问题分析产生原因,提出了解决方法。 关键词:供暖系统;运行;问题;解决方法 ProblemsoccurredduringOperationofHeatingSystemandSolutions GAOFeng-chun,LIChang-rong,LIJing-bo,ZHONGMin Abstract:Thereasonsforproblemsduringactualoperationofheatingsystemare analyzed,andthesolutionsayeputforward. Keywords:heatingsystem;operation;problem;solution 冬季供热关系到千家万户,供热质量直接影响供热单位的社会形象,甚至影响到社会的稳定。在实际供热工作中会遇到各种各样影响供热质量的问题,为处理好这些问题,我们对多年来在实际供热运行

电锅炉运行费用

整个采暖期一平方米的电锅炉采暖运行费用公式计算: 单位面积热负荷×热负荷系数×每天电锅炉工作时间×采暖期天数×电费单价=整个采暖期单位面积的电锅炉采暖费用。 电锅炉采暖运行状态可分为以下几种: 1、用户长时间在家,电锅炉采暖炉24小时不间断运行,为节省运行费用将夜晚的电锅炉取暖温度适当调低。 电锅炉采暖费用为:0.06kw/平米× 0.6 × 10小时× 140天× 0.48元/度= 24.2元/平米 2、上班族,电锅炉用户只有中午、夜晚在家,电锅炉采暖炉分3时段间歇运行。 电锅炉采暖费用为:0.06kw/平米× 0.6 × 6小时× 140天× 0.48元/度= 14.5元/平米 3、办公室,5日工作制,电锅炉只在周一至周五取暖,电锅炉采暖炉白天运行,其余时间电锅炉运行在防冻状态。 电锅炉采暖费用为:0.07kw/平米× 0.6 × 6小时×(140天× 5/7)× 0.48元/度= 12.1元/平米 4、学校,电锅炉除了每周5日工作制外还有35天的假期,电锅炉采暖时间比较短。 电锅炉采暖费用为:0.07kw/平米× 0.6 × 6小时× [(140天 - 35天)× 5/7] ×0.48元/度 = 9.1元/平米 用以上计算值×房间的实际采暖面积(实用面积)就可以大约算出整个采暖期的电锅炉运行费用,若电锅炉用户合理调整电锅炉或关闭不需电锅炉采暖房间(如闲置的客房、洗手间或厨房)的电锅炉采暖器,电锅炉实际采暖面积就相应减小,电锅炉采暖费用就会相应降低。 注:0.07kw/平米是标准节能建筑要求电锅炉冬季采暖热负荷为55-70w/平米0.48元/度是2000年北京的居民用电锅炉电单价,若实行峰谷电价可按平均0.35元/度计算电锅炉运行费用,电锅炉用户长时间在家的电锅炉采暖费用为17.6元 热负荷系数0.6是指在取暖期的初期和末期室内需求的热负荷较小,在取暖期最冷的时期室内需求的热负荷较大,平均取0.6

(整理)地源热泵与传统空调运行费用比较.

江西某电子厂空调运行比较分析1.冷、热源及空调方式选择比较

2.运行费用分析比较: 制冷机选用二大一小三台机组,300冷吨两台,150冷吨一台,(共2637KW计算),以适应不同负荷时制冷机能处于高效状态下运行。采暖总热量约1.2MW(1200KW)。 选用地源热泵机组LTLHM-370,制冷量1300KW,功率245.4KW;制热量1400KW,功率324.6KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 地埋管循环泵功率(估算):30KW(一用一备) 冬季使用一台机组。 A、地源热泵系统,冬夏两用 ·夏季各设备的配电功率 · a.地源热泵机组:夏季245.4kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.埋管侧电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: · 1、电价按0.80元/KWH。 · 2、夏季制冷90天,每天间歇运行8小时。 · 3、空调同时使用率取0.8。 · 4、机组运行率取65%。 夏季运行费用: 90×8×0.8×(0.2×2+4+30+245.4×2+37)×65%×0.8=16.8万元。 ·冬季各设备的配电功率

· a.地源热泵机组:夏季324.6kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.井水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: · 1、电价按0.80元/KWH。 · 2、冬季制热120天,每天间歇运行8小时。 · 3、空调同时使用率取0.8。 · 4、机组运行率取65%。 冬季运行费用: 120×8×0.8×(0.2×2+4+30+324.6+37)×65%×0.8=15.8万元。 B、水冷冷水机组和燃油锅炉 选用水冷冷水机组LTLS-280两台,制冷量1021KW,功率243KW。另选用水冷冷水机组LTLS-160一台,制冷量550KW,功率130KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 冷却塔循环泵功率(估算):30KW(一用一备) ·夏季各设备的配电功率 · a.水冷冷水机组:夏季243kW/台*2台,130kW/台*1台 · b.空调侧循环泵:37kW/台。 · c.冷却塔循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.冷却水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·冷水水冷工程运行费用如下:

供热系统工况分析

供热系统工况分析 1.供热系统工况分析 1.1何为热力工况、水力工况? 研究供热系统供热量、温度等参数的分布状况称为热力工况。在热力工况的研究中,热用户室内温度的分布状况的分析尤为重要,室内实际温度是否达到设计温度直接关系到供热效果的好坏;当供热成为商品时,室温是否达标,将变为衡量供热这个商品质量优劣的唯一标尺。因此,无论供热系统的设计,还是供热系统的运行,分析供热系统的热力情况都是头等重要的任务。 研究供热系统压力、流量等参数的分布状况称为水力状况。供热系统的供热量是通过热媒(亦称介质,为热水、蒸汽、空气等)输送的。因此,热媒的输送状况,直接影响供热量的分布状况,进而影响室内温度的分布状况。而热媒的输送状况,通常是通过其压力、流量等来描述的。由于水力状况是用来分析热媒传送状况的,因此,水力状况是热力工况的源头,研究热力工况,必须着手研究水力状况。 1.2热力工况与水力工况的关系 在供热行业里,通常困扰我们的最大难题就是冷热不均,处于热源近端的室温过热,被迫开窗户;靠近热源末端的室温过冷。表1.1告诉我们:凡是室外温低的,都是进入散热器的循环流量远小于设计流量造成的。进一步分析,还可得出以下结论:凡室温低于4.5℃的,其循环流量只是设计流量的20%;凡室温在10℃左右的,流量约为设计值的30%左右;凡室温在16以上时,流量均在设计流量的70%以上;

凡实际流量超过设计流量1-2倍以上的,室温都将超过20℃以上。 1.3热力工况与水力工况的稳定性 实现热力工况稳定,供热系统在整个运行期间,并不是始终维持设计流量(最大循环流量)进行定流量运行,而是随着室外温度的升高逐渐减少系统循环流量。在表1.2的实例中,当室外温度tw为设计外温tw=-18℃时,保持热力工况稳定的循环流量为设计运行流量,此时,各热用户皆为室温18℃。当外温升至-4.1℃(当地供暖季的平均外温)时,维持热力工况稳定的循环流量是设计流量的89%(即失调度Xs=0.89),而不是设计流量。而且随着室外温度的不断升高,维持热力工况稳定的循环流量也将不断减少。这就说明:供热系统,只有实施变流量调节,才能使热力工况得到稳定。因此,通常习惯采用的质调节即定流量调节,是无法维持热力工况稳定的。这种调节的好处是简单方便,因而,多年来,国内长期一直延用这种调节方式。随着信息技术和变频调速技术的普遍应用,变流量调节已经变得十分方便,不但可以保证热力工况的稳定,而且有显著的节电效果,此时,再坚持质调节即定流量调节,就显得太过落后了。 推广供热计量技术以来,行业内仍有一些技术人员主张继续维持定流量运行。他们的理由是:推广供热计量技术以后,由于恒温阀的调节作用,系统的流量肯定是变动的,但这种变动只是系统总流量的10%左右,因此,为了维持热力工况的稳定,建议系统仍然按定流量运行。这种理念的基础,是认定定流量调节才能保证热力工况稳定。根据上述分析,这显然是错误的,根源是对室内供暖系统的工况缺乏

几种电采暖运行费用对比

几种户式电采暖运行费用的分析 中科合康(北京)电气有限公司 随着北京地区煤改电的深入进行,农村地区的居民采暖也纳入煤改电行列,由于居住分散,单户建筑面积小,不适合大规模集中供暖,比较适合单户电采暖的方式有:直热式电暖器、蓄热式电暖器和空气源热泵等三种,现对以上供暖方式的运行费用进行对比。 数据分析依据: 以北京地区农村每户3间房,每间建筑面积30㎡,且已进行过节能改造的房屋为例,则每㎡供暖热负荷指标为70W/m2,平均负荷率为0.7,日平均供暖时间为18小时,则每间房的采暖负荷计算如下: 最大小时最大热负荷为:30㎡*70W/m2=2100W; 全天最大平均总热负荷为:2100W/h*0.7*18h=26460W 全年总热负荷为:2100W/h*0.7*18h*120=3176KW 一:设备选型: 1、直热式电暖器:功率为30㎡*70W/m2=2100W/h;选型2100W共三台 2、蓄热式电暖器:功率为26460W/9h=2940W/h;选型3200W三台 3、空气源热泵:按冬季最小能效比2.0计算, 空气源热泵输入电功率为:2100W*3/2/0.95=3316W; 选型为输入功率为3.9KW(4匹)一台 注:空气源热泵系统末端需为地采暖或风机盘管。 二、采暖季耗电量及运行费用计算: 按每天晚上23:00-早上5:00基本不供暖,其余时间供暖考虑,则其中3小时使用低谷电,15小时使用平电,采暖低谷电价为0.1元/KWh,其余时间电价为0.488元/h,北京地区低谷电时间为晚上21:00-早上 6:00,则每户全年耗电量和运行费用为:

1、直热式电暖器: 年耗电量: 2.1KW*18*0.7*120天*3台=9526Kwh 年运行费用:2.1KW*(3h*0.1元/KWh+15h*0.488元/KWh)*0.7*120天*3台=4032元 每平米年运行费用为:4032元/90㎡=44.8元/㎡ 2、蓄热式电暖器: 年耗电量: 3.2KW*9h*0.7*120天*3台=7258Kwh 年运行费用:3.2KW*9h*0.1元/Kwh*120天*3台=725.76元 每平米年运行费用为:725.76元/90㎡=8.06元/㎡ 3、空气源热泵:因空气源热泵机组为水系统,晚上不能停止,需要低温运 行,低温运行按30%负荷率考虑,则计算如下: 年耗电量:3.9KW*18h*0.7*120+4.87*6h*0.3*120=6879KWh 正常运行费用:3.9KW*(3h*0.1元/KWh+15h*0.488元/KWh)*0.7*120天 =2497元 低温运行费用:3.9KW*6h*0.1元/KWh*0.3*120天=84元 每平米运行费用为:(2497+84)元/90㎡=28.67元/㎡ 根据以上分析,直热式电暖器运行费用最高,蓄热式电暖器运行费用最低,且放置位置灵活,不需要进行维护,空气源热泵运行费用也较低,但还需要进行末端采暖管道的安装,系统比较复杂,且需要专业人员进行日常维护。

低谷电蓄热设备供暖运行分析

低谷电蓄热设备供暖运 行分析 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

低谷电蓄热设备在集中供暖领域运行分析 低谷电蓄热设备是采用电热丝利用低谷电时段廉价的电力,将电能转化为热能,以800度以上高温存储在固体蓄热材料中,通过风水交换器输出85度以下热水,作为供热热源,是集中供热热源的一种新型模式。 现就该设备的典型应用,采用具体案例进行初投入及运行分析。 A:在写字楼,学校等办公类间歇供热场所的应用 概况:某办公楼供暖面积1万平米,每天白天运行时间10小时。原采用集中供暖每个取暖季费用35万。供暖指标18度,每个取暖季120天,每个取暖季每平米实际耗能量约吉焦(平均热负荷40-50瓦,供热系数)。现采用低谷电蓄热设备进行替换。 设备选型:每天理论最大耗能10000㎡×45w/㎡×10h=4500kwh 4500kwh÷8h=562kw 可以选择500kw低谷电蓄热设备(实践中选择大于562×=设备即可,这样可以有效降低设备初投资,此种情况下在极端天气时,如果储能不足,可以在8小时低谷电时段外再利用平价电进行少量补充)。本方案以选取500kw设备,采用白天供热,夜间循环对管道保温防冻方式进行计算分析。 初投资:500kw×1200元/kw=60万元。 政府补贴:按《电力需求侧管理城市综合试点工作 中央财政奖励资金管理暂行办法》的通知(见附件1),可以申请500kw×440元/kw=22万元

运行费用:10000㎡×45w/㎡×10h×元/kwh×120天×=119880元。折合每个取暖季每平米12元左右。考虑到周末节假日期间只是循环保温防冻(每个取暖季节假日约30---40天),实际费用还有可控部分约1/4。 结论:1低谷电蓄热设备非常适合办公类间歇分布式供热场所,如学校办公楼,工厂办公楼,单位集体宿舍,社区基本医疗点,金融营业网点,中小型酒店,写字间,营业网点,商场等场所。 2设备运行两个取暖季,则节省的运行费用可以全部回收设备初投入。且低谷电蓄热设备完全采取无人值守,PLC智能控制运行模式,无污染无噪音,无天然气等能源供应紧张的制约。 3非集中供暖季或者需用热水的情况下,非常适合采用,如宾馆洗浴及集体宿舍等。 B在居民住宅楼,连续供热等领域的应用 概况:某住宅(或者办公楼)供暖面积10万平米,全天24小时运行。原采用天然气集中供暖每个取暖季费用220万,另政府补贴供暖企业150万。供暖指标18度,每个取暖季120天,每个取暖季每平米实际耗能量吉焦(平均热负荷40-50瓦,供热系数)。现采用低谷电蓄热设备进行替换。 设备选型:每天理论最大耗100000㎡×45w/㎡ ×24h=108000kwh 10800kwh÷8h=13500kw,最低可以选择 13500×=8100kw设备。建议本方案选择12000kw设备。(针对节

供暖系统中常见问题

供暖系统运行中的常见问题分析 摘要:我国集中供热事业发展,特别是近年来城市集中供热发展较快,但在实际运行中也存在很多的问题,根据调研及近二十年的设计和运行管理经验,就我国目前供暖系统普遍存在的共性问题,如水力失调、系统积气、系统失水以及系统压力不稳定等做了简要分析,提出了解决方案,并列举了供暖系统改造的工程实例。 关键词:供暖系统水力失调压力波动 1、问题的提出 供热工程是利用热媒(如水、蒸汽或其它介质)将热能从热源输送到各热用户的工程技术。通常的供暖系统由热源、热网、热用户的三部分组成,其能否正常运行主要取决于系统设计、施工、运行管理水平等三个方面,并且这三个方面相互影响、相互制约,其中的任何一个环节出现问题都会影响到整个系统的正常运行,使供暖的质量无法满足用户的要求。根据调研,我国目前的供暖系统在设计、施工、运行管理等方面均不同程度的存在着问题,主要表现为系统冷热不均、失调严重、运行中的水、煤、电

等的能耗严重,运行故障时有发生,严重的威胁着热网的正常运行,供热质量难以保证。 一个供暖系统若按规范进行设计施工,其正常运行是 有保障的。但是,我国的采暖系统大部分都不是很合理,集中表现为热负荷选取过大,造成设备选型过大,输送设备大,备用率高,经济效益差。在实际工程中还常常出现这样的情况,供热系统若按规范和节能标准设计,由于施工和运行管理中的种种问题,使得系统往往满足不了热用户的需求,造成设计者不能按常规的设计理论进行设计,出现了节能建筑不节能的尴尬局面,即建筑的墙体是节能 墙体,而供暖系统未能按节能标准设计。尤其在改扩建工程中表现得尤为突出,设计者必须按原有的老建筑的供暖设计负荷进行设计,否则将造成系统的不平衡;在对原有系统的运行状况缺乏了解,或根本无从了解时,设计者只能利用大负荷进行弥补。久而久之,不合理反而变得合理,为人们所接受。就我国的供暖现状而言,采取何种措施,在保证供暖质量的同时,尽可能的减少浪费,提高现有供热系统的效率是工程设计和运行管理人员所面临的一个重大课题。 2、存在的问题及对策 2.1水力失调

电采暖运行费用计算方式及原理

电采暖运行费用计算方 式及原理 Hessen was revised in January 2021

电采暖运行费用计算方式及原理 随着社会对环保意识的增强,政府和居民也在环境治理方面给予高度关注,各项环保政策及法规也已相继出台,特别是在加入WTO及北京申奥的成功,改变能源结构,推广清洁能源已刻不容缓。北京二环以内25万平米居民将改为。更多城市已经在逐步实施控制使用高污染染料,限期使用清洁能源,可以说“绿色供暖”的机遇再一次为电热供暖带来了希望,故此本产品有着极大的社会推广价值及效益。电采暖已经在采暖市场广泛应用,该如何计算电采暖运行的费用呢?小编整理了电采暖运行费用计算方法的相关资料,一起来关注下吧! 整个采暖期一平方米的电采暖运行费用可按以下公式计算:单位面积热负荷×热负荷系数×每天工作时间×采暖期天数×电费单价=整个采暖期单位面积的采暖费用电采暖运行状态可分为以下几种: (1)、用户长时间在家,电采暖炉24小时不间断运行,为节省运行费用将夜晚的取暖温度适当调低。采暖费用为:0.06kw/m2×0.6×10小时×140天×0.48元/度=24.2元/m2 (2)、上班族,用户只有中午、夜晚在家,电采暖炉分3时段间歇运行。采暖费用为:0.06kw/m2×0.6×6小时×140天×0.48元/度=14.5元/m2 (3)、办公室,5日工作制,只在周一至周五取暖,电采暖炉白天运行,其余时间运行在防冻状态。采暖费用为:0.07kw/m2×0.6×6小时×(140天×5/7)×0.48元/度=12.1元/m2(4)、学校,除了每周5日工作制外还有35天的假期,采暖时间比较短。 采暖费用为:0.07kw/m2×0.6×6小时×[(140天-35天)×5/7]×0.48元/度=9.1元/m2用以上计算值×房间的实际采暖面积(实用面积)就可以大约算出整个采暖期的运行费用,若用户合理调整或关闭不需采暖房间(如闲置的客房、洗手间或厨房)的采暖器,实际采暖面积就相应减小,采暖费用就会相应降低。注:0.07kw/m2是标准节能建筑要求冬季采暖热负荷为55-70w/m20.48元/度是目前北京的居民用电单价,若实行峰谷电价可按平均0.35元/度计算,用户长时间在家的采暖费用为17.6元热负荷系数0.6是指在取暖期的初期和末期室内需求的热负荷较小,在取暖期最冷的时期室内需求的热负荷较大,平均取0.6实际采暖面积:建筑面积乘以0.78,再减去不需采暖房间的实用面积

锅炉和空气热泵成本对比

广东工商职业学院室内泳池加热系统 空气源热泵与锅炉费用对比 一、广东工商职业学院室内比赛池和跳水池设计参数 室内跳水池:25m*25m、水深5.65m-5.85m,总水量3162.5m3,水温28° 室内跳水池:25m*25m、水深5.65m-5.85m,总水量3162.5m3,水温28° 二、设计能源参数表 三空气能热水系统设计 3.1 游泳池能耗计算 根据泳池性质结合上述标准,设计补充水量为总容积的1%。 游泳水容量为6475m3 ;游泳池水表面积为1875m2;每天补充水量为 64.75m3。 3.2 热量计算 游泳池水加热所需热量,应为下列各项耗热量的总和:(《游泳池和水上游乐池给水排水设计规程》CECS14:2002规定) A、水表面蒸发和传导损失的热量; B、池壁和池底传导损失的热量; C、管道的净化水设备损失的热量; D、补充水加热需要的热量。 3.3 详细热量计算过程 (1)水表面蒸发损失热量计算: Qz=a·r(0.0174Vi+0.0229)(Pb-Pc)A(760/B) 式中:Qz——游泳池水表面蒸发损失的热量(kJ/h); A——热量换算系数,a=4.18KJ/Kcal; r——与游泳池水温相等的饱和蒸汽的蒸发汽化潜热(Kcal/kg); Vi——游泳池水面上的风速(m/s)室内0.2~0.5m/s,室外 2~3m/s; Pb——与游泳池水温相等的饱和空气的水蒸汽压力(mmHg); Pc——游泳池的环境空气的水蒸汽压力(mmHg); A——游泳池的水表面面积(㎡); B——当地的大气压力(mmHg);

将数值代入计算得: Qz=a·r(0.0174Vi+0.0229)(Pb-Pc)A(760/B)=4.18×582.5×(0.0174×0.5+0.0 229)×(28.2-17)×1875×760/760=1605540(kJ/h)=446kw/h (1kw/h=3600kJ) (2)游泳池的水表面、池底、池壁、管道和设备等传导所损失的热量,应按游泳池水表面蒸发损失热量的20%计算确定,即: Qc=446×20%=89.2kw/h (1kw/h=3600kJ) (3)游泳池补充水加热所需的热量,按下式计算: Qb= qbr( tr-tb ) Qb——游泳池补充水加热所需的热量(KJ); 热量换算系数,a=4.18KJ/Kcal; Qb——游泳池每日的补充水量(L),qb=64.75m3; r——水的密度(kg/L),r=1kg/L; Tr——游泳池水的温度(℃),tr=28℃; tb——游泳池补充水水温(可参照土壤温度)(℃),tb=10℃; 代入数值计算如下: Qb=qb r( tr- tb )=4.18×64.75×1000×1×(28-10)= (kJ/h)=1354kw/h(1kw/h=3600kJ) (4)游泳池日用总热负荷计算: 将以上各项耗热量相加,即为每天需补充的热量。 ΣQh=(Qz+Qc)×24+Qb=(446+89.2)×24+1354=14201.8kw/h (5) 游泳池一次性冲击负荷(初次充水或换水)计算: 一次性冲击负荷(初次充水或换水),按照换水量以及水温差来计算其总用热负荷和单位(小时)热负荷(机器所需的制热功率)。自来水按水温10℃计算,换水周期根据实际情况设计,则: 一次性冲击负荷:Qzh=[1.1×V×(T2-T1)]÷0.86kwhr 小时热负荷:Pzh=Qzh÷T 式中:V- 游泳池的总容积m3;(V=6475m3) T2- 池水所需温度,℃;(T2=28℃) T1- 平均冷水温度,℃;(T2=10℃) T- 初次加热时间,h;(取T=48小时) 1.1- 考虑在换水周期内的热损失附加值。 代入数值计算如下: Qzh=1.1×6475m3×1×(28-10)℃÷0.86=149075kwh 四、根据上述热量计算结果,测算空气热源泵与燃气锅炉运行成本对比如下(一年按照270天计算):

埋管式地源热泵系统介绍,成本,运行费用.

一、地源热泵系统简介 0 引言 “热泵”这一术语是借鉴“水泵”一词而来。在自然环境中,水往低处流动,热向低温位传递,水泵将水从低处“泵送”到高处利用。而热泵可将低温位热能“泵送”(交换传递)到高温位提供利用。在我国《暖通空调术语标准(GB50155-02)》中,对“热泵”的解释是“能实现蒸发器和冷凝器功能转换的制冷机”。我们也可以称热泵为既可以制冷又可以供热的机组。热泵的分类多种多样,国际上通常根据热泵的热汇:即冷源和热源的不同,以及供暖和制冷输送介质的不同进行热泵分类。当按冷源和热源分类时,可分为空气源热泵、水源热泵、地源热泵三大类。由于输送冷、热量的介质主要为空气和水,当同时考虑冷、热源的输送介质时,就形成了:空气-水热泵、水-空气热泵(包括地下水热泵和地表水热泵)、水-水热泵、以及地下耦合热泵。 地源热泵(GSHP)是一个广义的术语,它包括了使用土壤、地下水和地表水作为热源和冷源的热泵系统。即:地下耦合热泵系统,也叫地下热交换器地源热泵系统、地下水热泵系统、地表水热泵系统。地源热泵还有一系列其他术语:如地热热泵、地能热泵、地源系统等。1997年之后由ASHAE统一为标准术语:地源热泵(ground-source heat pump,GSHP)。 00 空气源热泵 空气源热泵以室外空气作为热源。在供热工况下将室外空气作为低温热源,从室外空气中吸收热量,经热泵提高温度送入室内供暖。空气源热泵系统简单,初投资较低。空气源热泵的主要缺点是在夏季高温和冬季寒

冷天气时热泵的效率大大降低。而且,其制热量随室外空气温度降低而减少,这与建筑负荷需求正好相反。因此当室外空气温度低于热泵工作的平衡点温度时,需要用电或其它辅助热源对空气进行加热。此外,在供热工况下空气源热泵的蒸发器上会结霜,需要定期除霜,这也消耗大量的能量。在寒冷地区和高湿度地区热泵蒸发器的结霜成为较大的技术障碍。在夏季高温天气,由于其制冷量随室外空气温度升高而降低,同样可能导致系统不能正常工作。空气源热泵不适用于寒冷地区,应用受到很大局限。 01地下水源热泵 地下水源热泵系统的热源是从水井或废弃的矿井中抽取的地下水。经过换热的地下水可以排入地表水系统,但对于较大的应用项目通常要求通过回灌井把地下水回灌到原来的地下水层。最近几年地下水源热泵系统在我国得到了迅速发展。但是,应用这种地下水热泵系统也受到许多限制。首先,这种系统需要有丰富和稳定的地下水资源作为先决条件。因此在决定采用地下水源热泵系统之前,一定要作详细的水文地质调查,并先打斟测井,以获取地下温度、地下水深度、水质和出水量等数据。地下水热泵系统的经济性与地下水层的深度有很大的关系。如果地下水位较低,不仅成井的费用增加,运行中水泵的耗电将大大降低系统的效率。此外,虽然理论上抽取的地下水将回灌到地下水层,但目前国内地下水回灌技术还不成熟,在很多地质条件下回灌的速度大大低于抽水的速度,从地下抽出来的水经过换热器后很难再被全部回灌到含水层内,造成地下水资源的流失。此外,即使能够把抽取的地下水全部回灌,怎样保证地下水层不受污染也是一个棘手的课题。水资源是当前最紧缺、最宝贵的资源,任何对水

相关文档
最新文档