重庆江津区慈云镇第二初级中学 2014-2015学年八年级下学期期末数学试卷(含答案)
2014年重庆市重庆一中八年级下学期期末考试数学试题-初二数学试卷与试题

A3 B5 C8 D4
[4分]-----正确答案(D)
11. 如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共 有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦个图形中完整菱形的个数为( )
[4分]-----正确答案(C)
A 83
24. 在正方形ABCD 中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE. (1)若正方形ABCD边长为3,DF=4,求CG的长;
(2)求证:EF+EG= CE.
参考答案:
[10分]
五、解答题(本大题1个小题,每小题12分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过 程书写在答题卷中对应的位置上.
22.
先化简,再求值: 参考答案:
,其中满足
.[10分]
23. 某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是 第一次购进数量的2倍,但进货价每千克少了0.5元. (1)第一次所购该蔬菜的进货价是每千克多少元? (2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗, 若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?[10分] 参考答案:
7. 某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率. 设平均每次降价的百分率为
,可列方程为( )
A B C D
8. 如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,若
[4分]-----正确答案(A) ,则是( )
A4 B6 C8 D9
(附七套八下期末试卷)八年级数学下册学案设计:19.1.2 第1课时 函数的图象

19.1.2 函数的图象第1课时 函数的图象 学习目标①知道函数图象的意义.②学会用列表、描点、连线画函数图象. ③学会观察、分析函数图象信息. ④能利用函数的图象解决实际问题重点难点:函数图象的画法;观察、分析、概括图象中的信息. 学习过程一、自主学习(阅读教材并完成下列活动)【活动1】思考:如图是某人体检时的心电图,图上点的横坐标x 表示时间,纵坐标y 表示心脏部位的生物电流,y 与x 之间的函数关系能用式子表达吗?显然有些函数问题 用函数关系式表示出来, 然而可以通过来直观反映.【活动2】正方形的边长x 与面积S 的函数关系式为 ;在这个函数中,自变量是 、思考与探究:如果把自变量x 的值当作横坐标, 函数S 的值作为纵坐标,组成一对有序实数对(x 、S ), 这样的实数对有多少对?请在下面的直角坐标系中描出 这些点,你有什么发现? 二、探究新知识①一般地,对于一个函数,如果把自变量与函数的每 对对应值分别作为点的 、 坐标,那么坐标平面内 由这些点组成的图形,就是这个函数的 。
②画函数图象的一般步骤是: 、 、 。
③在坐标平面内,若点P (x,y )向右上方移动,则y 随x 的增大而 ;若点P (x,y )向右下方移动,则y 随x 的增大而 。
三、课堂练习1、若函数y =2x +n 的图象经过点(-2,1),则n = .2、当a = 时,点(a ,1)在函数y =-3x -5的图象上.3、打开某洗衣机开关(洗衣机内无水),在洗衣时,洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机内的水量y 升与时间x 分钟之间满足某种函数关系,其函数图象大致为( )四、课后作业1、下面的图像反映的过程是:小明从家去菜地浇水,又去玉米地锄草,然后回家,其中x 表示时间,y 表示小明离他家的距离,小明的家、菜地、玉米地在同一条直线上。
请根据图像回答下列问题:(1)菜地离小明家有多远?小明从家到菜地用了多少时间? (2)小明给菜地浇水用了多少时间?(3)菜地离玉米地多远?小明从菜地到玉米地用了多少时间? (4)小明给玉米地锄草用了多少时间?(5)玉米地离小明家多远?小明从玉米地回家的平均速度是多少?2、在下列式子中,对于x 的每一确定的值,y 有唯一的对应值,即y 是x 的函数,画出这些函数的图象: (1)y = x + 0.5; (2) y =x6(x >0) 解(1) 列出下表,并描点连线(见第1题图)x五、课后反思问题:八年级下学期数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
初二下册数学 2014-2015学年八年级下期末数学试卷含答案解析

3.计算 × 的结果是( )
A.
B.4
C.
【考点】二次根式的乘除法.
D.2
【分析】直接利用二次根式的乘法运算法则求出即可.
【解答】解: × = =4.
2.三角形的三边长分别为 a、b、c,且满足等式:(a+b)2﹣c2=2ab,则此三角形是
()
A.锐角三角形
B.直角三角形
【考点】勾股定理的逆定理.
C.钝角三角形
D.等腰三角形
【分析】因为 a、b、c,为三角形的三边长,可化简:(a+b)2﹣c2=2ab,得到结论.
【解答】解:∵(a+b)2﹣c2=2ab ,
2014-2015 学年内蒙古鄂尔多斯市八年级(下)期末数学试卷
一、单项选择(本大题共 10 题,每题 3 分,共 30 分.) 1.已知 是二次根式,则 a 的值可以是( )
A.﹣2
B.﹣1
C.2
D.﹣7
2.三角形的三边长分别为 a、b、c,且满足等式:(a+b)2﹣c2=2ab,则此三角形是
() A.锐角三角形
2014-2015 学年内蒙古鄂尔多斯市鄂托克旗乌兰中学八 年级(下)期末数学试卷
参考答案与试题解析
一、单项选择(本大题共 10 题,每题 3 分,共 30 分.) 1.已知 是二次根式,则 a 的值可以是( )
A.﹣2
B.﹣1
C.2
D.﹣7
【考点】二次根式的定义. 【分析】根据二次根式的被开方数是非负数,可得答案. 【解答】解: 是二次根式,则 a 的值可以是 2,故 C 符合题意; 故选:C. 【点评】本题考查了二次根式的定义,二次根式的被开方数是非负数.
重庆市江津中学校2015-2016学年八年级数学下学期第一次阶段考试试题(扫描版)湘教版

重庆市江津中学校2015-2016学年八年级数学下学期第一次阶段考试试题(扫描版)湘教版重庆市江津中学校2015-2016学年八年级数学下学期第一次阶段考试试题1234初二数学参考答案选择题1——5 ACABC 6——10 BDDBC 11——12 AB二、填空题13. , 14. 4 15. 211或2;16. 17. 18. 4 434,37,三、解答题19.(本小题满分8分)111(1)原式= ………………4分 45,,,4445 123352363,,,,,,,(2)原式= ………………4分20. (本小题满分8分),,aaa,,,1243原式 ,,,,,2(2)(2)aaaa,,,,341aa, ,,, 22aaaa(2)43(2),,,a,,23a,,,23当即时1,上式= 321. (本小题满分8分)22ACADCD,,,15连接AC,222,?ABACBC,,,,ACB90 ?111536129216SSS,,,,,,,,, ABCACD? 2222((本小题满分10分), xy,,,752xy,,27222(1) xxyyxyxy,,,,,,,,()282261127yx,(2) ,,,,7xyxy223.(本小题满分10分)5?四边形ABCD是平行四边形 AD?BC,AD=BC ???,,,ADFEBC, 又DF=BE ?ADF?CBE ???,AF=EC 同理?ABE?CFD AE=CF ?四边形AECF为平行四边形24. (本小题满分10分),?(1)?ABC为等边三角形,EF?AB ,AB=AE ,,AEF30?,,??, 又 ?ACB?EFA ,,,,AEFBAC30,,,,ACBEFA90??AC=EF,?(2)?ACD为等边三角形 AD=AC,,,DAC60?,??,,,DAFAFEAD=EF,,,,,,,DAFDACBAC90??AD?EF 四边形ADFE是平行四边形 25.(本小题满分12分)22?(1) OA,0OA,,,(10)111OA,11?10101010 S,102n2OAnn,,,,()11(2), (为正整数) S,nnn21231055222SSS,,,,,,,…………+=(3) 12104444426.(本小题满分12分) ??,,,BC,,,EDCB(1)AB=AC DE?AB ????,,,EDCC DE=EC DE?AB,DF?AC ???四边形AEDF为平行四边形DF=AE ?DE+DF=EC+AE=AC(2)DF-DE=AC,证明如下??,,,BACB,,,EDCBAB=AC DE?AB ??6??,ACB=,EDC,,,EDCECD又 CE=DE ?? DE?AB,DF?AC 四边形AEDF为平行四边形???DF=AE DF-DE=AE-CE=AC(3)DE- DF=AC7。
【精品】2014-2015学年重庆市荣昌区八年级(下)期末数学试卷word

2014-2015学年重庆市荣昌区八年级(下)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下方,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将你认为正确的答案代号填在答题卡表格中对应的位置.1.(4分)在函数y=中,自变量x的取值范围是()A.x≤1 B.x≥1 C.x<1 D.x>12.(4分)下列各组数中能作为直角三角形的三边长的是()A.1,2,3 B.3,4,5 C.4,5,6 D.7,8,93.(4分)期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数4.(4分)若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.15.(4分)下列式子一定是最简二次根式的是()A. B.C.D.6.(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°7.(4分)已知,如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC 交BC于点E,AD=10cm,则OE的长为()A.6cm B.5cm C.4cm D.3cm8.(4分)2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、丁的成绩的方差分别是0.11、0.03、0.05、0.02.则当天这四位运动员“110米跨栏”的训练成绩最稳定的是()A.甲B.乙C.丙D.丁9.(4分)如图,以原点O为圆心,OB为半径画弧与数轴交于点A,且点A表示的数为x,则x2﹣10的立方根为()A.B.﹣C.2 D.﹣210.(4分)小明一家自驾去永川“乐和乐都”主题公园游玩,汽车匀速行驶一段路程,进入服务区加油.休息了一段时间后,他们为了尽快赶到目的地,便提高了行车速度,很快到达了公园.下面能反映小明一家离公园的距离y(千米)与时间x(小时)之间的函数关系的大致图象是()A.B.C.D.11.(4分)平移边长为1的小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,其中第(1)个图形含边长为1的菱形2个,第(2)个图形含边长为1的菱形8个,第(3)个图形含边长为1的菱形18个,则第(6)个图形中含边长为1的菱形的个数是()A.32 B.36 C.50 D.7212.(4分)已知一次函数y=2x+a,y=﹣x+b的图象都经过A(﹣2,0),且与y 轴分别交于B、C两点,则△ABC的面积为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题4分,共24分)在每小题中,请将你认为正确的答案填在答题卡相应位置的横线上.13.(4分)在2014年重庆市初中毕业生体能测试中,某校初三有7名同学的体能测试成绩(单位:分)如下:50,48,47,50,48,49,48.这组数据的众数是.14.(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,请添加一个条件,使▱ABCD成为菱形(写出符合题意的一个条件即可)15.(4分)函数中,自变量x的取值范围是.16.(4分)一次函数y=﹣3x+6的图象不经过象限.17.(4分)在△ABC中,∠C=90°,若a+b=7cm,c=5cm,则△ABC的面积为.18.(4分)如图,在正方形ABCD中的边长为6,E为BC上一点,CE=2BE,将△ABE沿AE折叠的△AFE,连接DF,则线段DF的长度为.三、解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的盐酸过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.(7分)当x=2﹣时,求代数式(7+4)x2+(2+)x+的值.20.(7分)如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,过点O画直线EF分别交AD,BC于点E,F,求证:AE=CF.四、解答题(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的盐酸过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.(10分)已知,如图,把长方形纸片ABCD沿EF折叠后,点D与点B重合,点C落在点C′的位置上,若∠1=60°,AE=2.(1)求∠2,∠3的度数.(2)求长方形ABCD的纸片的面积S.22.(10分)如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.23.(10分)为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:(1)计算这家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?24.(10分)已知平行四边形ABCD中,G为BC中点,点E在AD边上,且∠1=∠2(1)求证:E是AD的中点;(2)若F为CD延长线上一点,连接BF,且满足∠3=∠2.求证:CD=BF+DF.五、解答题(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的盐酸过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.(12分)A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台,已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D村的运费分别是300元和500元.(1)设B市运往C村机器x台,求总运费W关于x的函数关系式;(2)若要求总运费不超过9000元,共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?分析由已知条件填出下表:26.(12分)如图,在正方形ABCD外取一点E,连接AE,BE,DE,过点A作AE的垂线交DE于P,若AE=AP=1,PB=;(1)求证:△ABE≌△ADP;(2)求证;BE⊥DE;(3)求正方形ABCD的面积.2014-2015学年重庆市荣昌区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下方,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将你认为正确的答案代号填在答题卡表格中对应的位置.1.(4分)在函数y=中,自变量x的取值范围是()A.x≤1 B.x≥1 C.x<1 D.x>1【解答】解:由题意得,x﹣1≥0,解得x≥1.故选:B.2.(4分)下列各组数中能作为直角三角形的三边长的是()A.1,2,3 B.3,4,5 C.4,5,6 D.7,8,9【解答】解:A、因为12+22≠32,故不是勾股数;故此选项错误;B、因为32+42=52,故是勾股数.故此选项正确;C、因为42+52≠62,故不是勾股数;故此选项错误;D、因为72+82≠92,故不是勾股数.故此选项错误;故选:B.3.(4分)期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.4.(4分)若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.1【解答】解:∵点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,∴3k﹣2=1,解得k=1.故选:D.5.(4分)下列式子一定是最简二次根式的是()A. B.C.D.【解答】解:A.被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项错误;B.被开方数中含有分母,不是最简二次根式,故本选项错误;C.被开方数不含分母,被开方数中不含能开得尽方的因数或因式,是最简二次根式,故本选项正确;D.被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项错误;故选:C.6.(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°【解答】解:∵矩形ABCD的对角线AC,BD相交于点O,∴OB=OC,∴∠OBC=∠ACB=30°,∴∠AOB=∠OBC+∠ACB=30°+30°=60°.故选:B.7.(4分)已知,如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=10cm,则OE的长为()A.6cm B.5cm C.4cm D.3cm【解答】解:∵OE∥DC,AO=CO,∴OE是△ABC的中位线,∵四边形ABCD是菱形,∴AB=AD=10cm,∴OE=5cm.故选:B.8.(4分)2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、丁的成绩的方差分别是0.11、0.03、0.05、0.02.则当天这四位运动员“110米跨栏”的训练成绩最稳定的是()A.甲B.乙C.丙D.丁【解答】解:∵甲、乙、丙、丁的成绩的方差分别是0.11、0.03、0.05、0.02,∴丁的方差最小,∴丁运动员最稳定,故选:D.9.(4分)如图,以原点O为圆心,OB为半径画弧与数轴交于点A,且点A表示的数为x,则x2﹣10的立方根为()A.B.﹣C.2 D.﹣2【解答】解:由图可知,x2=12+12=2,则x2﹣10=2﹣10=﹣8,﹣8的立方根为﹣2,故选:D.10.(4分)小明一家自驾去永川“乐和乐都”主题公园游玩,汽车匀速行驶一段路程,进入服务区加油.休息了一段时间后,他们为了尽快赶到目的地,便提高了行车速度,很快到达了公园.下面能反映小明一家离公园的距离y(千米)与时间x(小时)之间的函数关系的大致图象是()A.B.C.D.【解答】解:A.路程应该在减少,故A不符合题意;B.路程先减少得快,后减少的慢,不符合题意,故B错误;C.休息前路程减少的慢,休息后提速在匀速行驶,路程减少得快,故C符合题意;D.休息时路程应不变,不符合题意,故D错误;故选:C.11.(4分)平移边长为1的小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,其中第(1)个图形含边长为1的菱形2个,第(2)个图形含边长为1的菱形8个,第(3)个图形含边长为1的菱形18个,则第(6)个图形中含边长为1的菱形的个数是()A.32 B.36 C.50 D.72【解答】解:第(1)个图形:2=2=2×12;第(2)个图形:8=2×4=2×22;第(3)个图形:18=2×9=2×32;…第(n)个图形为2n2个,∴第(6)个图形含有小菱形的个数为:2×62=72(个),应选D.12.(4分)已知一次函数y=2x+a,y=﹣x+b的图象都经过A(﹣2,0),且与y 轴分别交于B、C两点,则△ABC的面积为()A.4 B.5 C.6 D.7【解答】解:将A的坐标分别代入一次函数y=2x+a,y=﹣x+b中,可得a=4,b=﹣2,那么B,C的坐标是:B(0,4),C(0,﹣2),因此△ABC的面积是:BC×OA÷2=6×2÷2=6.故选:C.二、填空题(本大题共6个小题,每小题4分,共24分)在每小题中,请将你认为正确的答案填在答题卡相应位置的横线上.13.(4分)在2014年重庆市初中毕业生体能测试中,某校初三有7名同学的体能测试成绩(单位:分)如下:50,48,47,50,48,49,48.这组数据的众数是48.【解答】解:数据48出现了三次最多为众数.故答案为:48.14.(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,请添加一个条件AB=AD,使▱ABCD成为菱形(写出符合题意的一个条件即可)【解答】解:添加AB=AD,∵四边形ABCD是平行四边形,AB=AD,∴▱ABCD成为菱形.故答案为:AB=AD.15.(4分)函数中,自变量x的取值范围是x≥﹣2且x≠1.【解答】解:根据题意得:,解得:x≥﹣2且x≠1.故答案为:x≥﹣2且x≠1.16.(4分)一次函数y=﹣3x+6的图象不经过三象限.【解答】解:∵一次函数y=﹣3x+6中,k=﹣3<0,b=6>0,∴此函数的图象经过一、二、四象限故不经过三象限,故答案为:三17.(4分)在△ABC中,∠C=90°,若a+b=7cm,c=5cm,则△ABC的面积为6cm2.【解答】解:∵a+b=7,∴(a+b)2=49,∴2ab=49﹣(a2+b2)=49﹣25=24,∴ab=6,故答案为:6cm2.18.(4分)如图,在正方形ABCD中的边长为6,E为BC上一点,CE=2BE,将△ABE沿AE折叠的△AFE,连接DF,则线段DF的长度为.【解答】解:作FN⊥BC,FM⊥DC,垂足分别为N,M,连接BF,交AE于K,∵正方形ABCD的边长为6,E为BC上一点,CE=2BE,∴BE=2,∴AE=2,∵将△ABE沿AE折叠得到△AFE,连接DF,∴BF⊥AE,∴AB×BE=BK×AE,∴KB=KF=,设EN=x,则22﹣x2=()2﹣(2+x)2,解得:x=,故FN==,则DM=6﹣=,FM=NC=6﹣2﹣=,则DF==,故答案为:.三、解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的盐酸过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.(7分)当x=2﹣时,求代数式(7+4)x2+(2+)x+的值.【解答】解:∵x2=(2﹣)2=7﹣4,∴原式=(7+4)(7﹣4)+(2+)(2﹣)+=49﹣48+[22﹣()2]+=1+(4﹣3)+=2+.20.(7分)如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,过点O画直线EF分别交AD,BC于点E,F,求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.四、解答题(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的盐酸过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.(10分)已知,如图,把长方形纸片ABCD沿EF折叠后,点D与点B重合,点C落在点C′的位置上,若∠1=60°,AE=2.(1)求∠2,∠3的度数.(2)求长方形ABCD的纸片的面积S.【解答】解:(1)∵AD∥BC,∴∠2=∠1=60°;又∵∠4=∠2=60°,∴∠3=180°﹣60°﹣60°=60°.(2)在直角△ABE中,由(1)知∠3=60°,∴∠5=90°﹣60°=30°;∴BE=2AE=4,∴AB=2;∴AD=AE+DE=AE+BE=2+4=6,∴长方形纸片ABCD的面积S为:AB•AD=2×6=12.22.(10分)如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.【解答】解(1)∵A(8,0),∴OA=8,S=OA•|y P|=×8×(﹣x+10)=﹣4x+40,(0<x<10).(2)当S=10时,则﹣4x+40=10,解得x=,当x=时,y=﹣+10=,∴当△OPA的面积为10时,点P的坐标为(,).23.(10分)为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:(1)计算这家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?【解答】解:(1)这家庭的平均月用水量是(10×2+13×2+14×3+17×2+18)÷10=14(吨);(2)根据题意得:14×500=7000(吨),答:该小区居民每月共用水7000吨.24.(10分)已知平行四边形ABCD中,G为BC中点,点E在AD边上,且∠1=∠2(1)求证:E是AD的中点;(2)若F为CD延长线上一点,连接BF,且满足∠3=∠2.求证:CD=BF+DF.【解答】解:∵四边形ABCD为平行四边形,∴AD=BC,AB=CD,∠A=∠C,在△AEB和△CDG中,,∴△AEB≌△CDG,∴AE=CG,∵G为BC中点,∴,∴,∵AD=BC,∴,∴E是AD的中点;(2)如图,延长DF,BE,相交于点H,∵E为AD的中点,G为BC的中点,∴,:∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC,∴DE=BG,DE∥BG,∴四边形EBGD为平行四边形,∴BE∥DG,∴∠H=∠2,∵∠3=∠2,∴∠H=∠3,∴BF=HF,∵∠1=∠2,∴∠H=∠1,∵E为AD的中点,∴AE=DE,在△AEB和△DEH中,,∴△AEB≌△DEH,∴AB=DH,∵AB=CD,∴CD=DH,∵DH=HF+FD,HF=BF,∴DH=BF+FD,∴CD=BF+FD.五、解答题(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的盐酸过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.(12分)A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台,已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D村的运费分别是300元和500元.(1)设B市运往C村机器x台,求总运费W关于x的函数关系式;(2)若要求总运费不超过9000元,共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?分析由已知条件填出下表:【解答】解根据题意得:(1)W=300x+500(6﹣x)+400(10﹣x)+800[8﹣(6﹣x)]=200x+8600.(2)因运费不超过9000元∴W=200x+8600≤9000,解得x≤2.∵0≤x≤6,∴0≤x≤2.则x=0,1,2,所以有三种调运方案.(3)∵0≤x≤2,且W=200x+8600,∴W随x的增大而增大∴当x=0时,W的值最小,最小值为8600元,此时的调运方案是:B市运至C村0台,运至D村6台,A市运往C市10台,运往D村2台,最低总运费为8600元.26.(12分)如图,在正方形ABCD外取一点E,连接AE,BE,DE,过点A作AE的垂线交DE于P,若AE=AP=1,PB=;(1)求证:△ABE≌△ADP;(2)求证;BE⊥DE;(3)求正方形ABCD的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵AE⊥AP,∴∠EAP=90°,∴∠EAB=∠PAD,在△ABE和△ADP中,,∴△ABE≌△ADP;(2)证明:∵△ABE≌△ADP,∴∠APD=∠AEB,又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴BE⊥DE;(3)解:如图,过点B作BF⊥AF,交AE延长线于点F.∵△AEP为等腰直角三角形,∴∠AEP=45°,又∠DEB=90°,∴∠FEB=45°,又∠EFB=90°,∴△EFB为等腰直角三角形,∴PE==,∵PB=,∴BE==,∴EF=BF=BE=,∴AF=AE+EF=1+,∴AB2=AF2+BF2=(1+)2+()2=4+,∴正方形ABCD的面积=AB2=4+.。
江津中学初2015级初二下期第一阶段考试

江津中学初2015级初二下期第一阶段考试数学试题说明:①共四个大题,总分为150分 ②完卷时间为90分钟一、选择题(每题4分,共48分)1.下列各式中一定是二次根式的是 ( ) A .19- B .a 5 C .12+a D .392.下列每组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是 ( )A .3、4、5B .6、8、10C .3、2 、5D .5、12、13 3.有下列计算.①632)(m m =,②121442-=+-a a a ,③326m m m =÷,④1)21(2=--,⑤1565027=÷⨯,⑥31448332122=+-.其中正确的有 ( )A .①②⑤⑥B .①④⑤⑥C .②⑤⑥D .①⑤⑥ 4.在直角三角形中,有两边长分别为3和4,则第三边长为 ( ) A .5 B .7 C .5或7 D .14或7 5.若代数式1-x x有意义,则实数x 的取值范围是 ( ) A .1≠x B .0≥x C .0>x D .0≥x 且1≠x6.不能判定一个四边形是平行四边形的条件是 ( ) A .一组对边平行,另一组对角相等 B .两组对边分别平行 C .对角线互相平分 D .两组对边分别相等7.如图,在周长为20cm 的ABCD 中,AC 、BD 相交于点O ,OE ⊥BD 交AD 于点E ,则△ABE 的周长为 ( )A .4cmB . 6cmC .8cmD . 10cm8.如图,分别以Rt △ABC 的两直角边向外作等边△EAB 和△FAC ,以斜边BC 为边作正方形BCGH ,设△EAB 和△FAC 的面积分别为1S 、2S ,正方形的面积为S ,则 ( ) A .1S +2S =S B .1S +2S =S 43 C .1S +2S =S 23 D .1S +22S =S 3 9.若a =b =,则a 和b 可表示为( )A .10ab ; B .10b a -; C .10a b+; D .b a ; 10.如图,等边△ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是AC 边上一点。
2014-2015学年重庆市沙坪坝区八年级(下)期末数学试卷
2014-2015学年重庆市沙坪坝区八年级(下)期末数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.(4分)在平面直角坐标系中,点P(﹣3,0)在()A.x轴上B.y轴上C.第三象限D.第四象限2.(4分)七名学生的鞋号分别是:20,21,21,22,22,22,23.则这组数据的众数是()A.20 B.21 C.22 D.233.(4分)在▱ABCD中,∠A=2∠B,则∠B的度数是()A.30°B.60°C.90°D.120°4.(4分)用配方法解方程x2﹣8x+9=0时,原方程可变形为()A.(x﹣4)2=9 B.(x﹣4)2=7 C.(x﹣4)2=﹣9 D.(x﹣4)2=﹣75.(4分)平行四边形、矩形、菱形、正方形都具有的是()A.对角线互相平分 B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等6.(4分)某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y 与x之间的函数关系式为()A.y=﹣x B.y=x C.y=﹣2x D.y=2x7.(4分)菱形ABCD的周长是20,对角线AC=8,则菱形ABCD的面积是()A.12 B.24 C.40 D.488.(4分)已知反比例函数(m为常数),当x>0时,y随x的增大而增大,则m的取值范围是()A.m>0 B.m>2 C.m<0 D.m<29.(4分)一辆小轿车匀速从甲地开往乙地,但行至途中汽车出了故障,只好停下修车,修好后,为了按时到达乙地,司机适当加快了匀速行驶的速度.下面能反映小轿车行驶路程S(千米)与时间t(小时)的函数关系的大致图象是()A.B.C.D.10.(4分)如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.6 B.8 C.10 D.1211.(4分)已知关于x的方程kx2+(1﹣k)x﹣1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=﹣1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解12.(4分)如图,在△ABC中,点E,D,F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是菱形D.如果AD⊥BC且AB=AC,那么四边形AEDF是正方形二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)一元二次方程x(x﹣2)=0的两个实数根中较大的根是.14.(4分)某班5名同学进行定点投篮测试,每人投篮10次,投中的次数统计如下:2,6,8,2,10.则这组数据的中位数是.15.(4分)如图,点E是矩形ABCD内任一点,若AB=3,BC=4.则图中阴影部分的面积为.16.(4分)已知m、n是方程x2﹣x﹣3=0的两个根,则代数式m+n ﹣1的值为.17.(4分)如图,正方形ABCD中,AB=2,AC,BD交于点O.若E,F分别是边AB,BC上的动点,且OE⊥OF,则△OEF周长的最小值是.18.(4分)如图,函数y=﹣x与函数y=﹣的图象交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,点D.则四边形ACBD的面积为.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.(7分)解方程:x2+x﹣1=0.20.(7分)如图,在▱ABCD中,E,F是对角线AC上的两点,且AE=CF.求证:BE=DF .四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.(10分)小青在八年级上学期各次数学考试的成绩如表:(1)求小青该学期平时测验的平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,请计算出小青该学期的总评成绩.22.(10分)如图,一次函数y=x +2的图象交x 轴于点A ,且过点B (1,m ).点B 在反比例函数y=(k ≠0)的图象上.(1)求该反比例函数的解析式;(2)连结OB ,求△AOB 的面积;并结合图形直接写出当函数值y <m 时,该反比例函数的自变量x 的取值范围.23.(10分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得512元的利润,每件应降价多少元?24.(10分)阅读下面的例题与解答过程:例.解方程:x2﹣|x|﹣2=0.解:原方程可化为|x|2﹣|x|﹣2=0.设|x|=y,则y2﹣y﹣2=0.解得y1=2,y2=﹣1.当y=2时,|x|=2,∴x=±2;当y=﹣1时,|x|=﹣1,∴无实数解.∴原方程的解是:x1=2,x2=﹣2.在上面的解答过程中,我们把|x|看成一个整体,用字母y代替(即换元),使得问题简单化、明朗化,解答过程更清晰.这是解决数学问题中的一种重要方法﹣﹣换元法.请你仿照上述例题的解答过程,利用换元法解下列方程:(1)x2﹣2|x|=0;(2)x2﹣2x﹣4|x﹣1|+5=0.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.(12分)如图1,在菱形ABCD中,∠A=60°.点E,F分别是边AB,AD上的点,且满足∠BCE=∠DCF,连结EF.(1)若AF=1,求EF的长;(2)取CE的中点M,连结BM,FM,BF.求证:BM⊥FM;(3)如图2,若点E,F分别是边AB,AD延长线上的点,其它条件不变,结论BM⊥FM是否仍然成立(不需证明).26.(12分)如图1,在平面直角坐标系中,点A的坐标为(﹣4,4),点B的坐标为(0,2).(1)求直线AB的解析式;(2)以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴于点C,射线AD 交y轴的负半轴于点D.当∠CAD绕着点A旋转时,OC﹣OD的值是否发生变化?若不变,求出它的值;若变化,求出它的变化范围;(3)如图2,点M(﹣4,0)和N(2,0)是x轴上的两个点,点P是直线AB 上一点.当△PMN是直角三角形时,请求出满足条件的所有点P的坐标.2014-2015学年重庆市沙坪坝区八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.(4分)在平面直角坐标系中,点P(﹣3,0)在()A.x轴上B.y轴上C.第三象限D.第四象限【解答】解:∵点P的纵坐标为0,∴点P在x轴上,故选:A.2.(4分)七名学生的鞋号分别是:20,21,21,22,22,22,23.则这组数据的众数是()A.20 B.21 C.22 D.23【解答】解:在这一组数据中22是出现次数最多的,故众数是22.故选:C.3.(4分)在▱ABCD中,∠A=2∠B,则∠B的度数是()A.30°B.60°C.90°D.120°【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∵∠A=2∠B,∴2∠B+∠B=180°,解得:∠B=60°;故选:B.4.(4分)用配方法解方程x2﹣8x+9=0时,原方程可变形为()A.(x﹣4)2=9 B.(x﹣4)2=7 C.(x﹣4)2=﹣9 D.(x﹣4)2=﹣7【解答】解:方程x2﹣8x+9=0,变形得:x2﹣8x=﹣9,配方得:x2﹣8x+16=7,即(x﹣4)2=7,故选:B.5.(4分)平行四边形、矩形、菱形、正方形都具有的是()A.对角线互相平分 B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等【解答】解:A、对角线相等是平行四边形、矩形、菱形、正方形都具有的性质;B、对角线互相垂直是菱形、正方形具有的性质;C、对角线相等是矩形和正方形具有的性质;D、对角线互相垂直且相等是正方形具有的性质.故选:A.6.(4分)某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y 与x之间的函数关系式为()A.y=﹣x B.y=x C.y=﹣2x D.y=2x【解答】解:依题意有:y=2x,故选:D.7.(4分)菱形ABCD的周长是20,对角线AC=8,则菱形ABCD的面积是()A.12 B.24 C.40 D.48【解答】解:∵菱形ABCD的周长是20,∴AB=20÷4=5,AC⊥BD,OA=AC=4,∴OB==3,∴BD=2OB=6,∴菱形ABCD的面积是:AC•BD=×8×6=24.故选:B.8.(4分)已知反比例函数(m为常数),当x>0时,y随x的增大而增大,则m的取值范围是()A.m>0 B.m>2 C.m<0 D.m<2【解答】解:∵反比例函数,当x>0时y随x的增大而增大,∴m﹣2<0,∴m<2.故选:D.9.(4分)一辆小轿车匀速从甲地开往乙地,但行至途中汽车出了故障,只好停下修车,修好后,为了按时到达乙地,司机适当加快了匀速行驶的速度.下面能反映小轿车行驶路程S(千米)与时间t(小时)的函数关系的大致图象是()A.B.C.D.【解答】解:通过分析题意可知,行走规律是:匀速走﹣﹣停﹣﹣匀速走,速度是前慢后快.所以图象是.故选:C.10.(4分)如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.6 B.8 C.10 D.12【解答】解:∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=6,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6+4=10;故选:C.11.(4分)已知关于x的方程kx2+(1﹣k)x﹣1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=﹣1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解【解答】解:关于x的方程kx2+(1﹣k)x﹣1=0,A、当k=0时,x﹣1=0,则x=1,故此选项错误;B、当k=1时,x2﹣1=0方程有两个实数解,故此选项错误;C、当k=﹣1时,﹣x2+2x﹣1=0,则(x﹣1)2=0,此时方程有两个相等的实数解,故此选项正确;D、由C得此选项错误.故选:C.12.(4分)如图,在△ABC中,点E,D,F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是菱形D.如果AD⊥BC且AB=AC,那么四边形AEDF是正方形【解答】解:A、因为DE∥CA,DF∥BA所以四边形AEDF是平行四边形.故A 选项正确.B、∠BAC=90°,四边形AEDF是平行四边形,所以四边形AEDF是矩形.故B选项正确.C、因为AD平分∠BAC,所以AE=DE,又因为四边形AEDF是平行四边形,所以是菱形.故C选项正确.D、如果AD⊥BC且AB=BC不能判定四边形AEDF是正方形,故D选项错误.故选:D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)一元二次方程x(x﹣2)=0的两个实数根中较大的根是x=2.【解答】解:解方程x(x﹣2)=0得,x=2或x=0,所以一元二次方程x(x﹣2)=0的两个实数根中较大的根是x=2,故答案为:x=2.14.(4分)某班5名同学进行定点投篮测试,每人投篮10次,投中的次数统计如下:2,6,8,2,10.则这组数据的中位数是 6 .【解答】解:这组数据按照从小到大的顺序排列为:2,2,6,8,10, 则中位数为:6.故答案为:6.15.(4分)如图,点E 是矩形ABCD 内任一点,若AB=3,BC=4.则图中阴影部分的面积为 6 .【解答】解:∵四边形ABCD 是矩形,∴AD=BC=4,设两个阴影部分三角形的底为AD ,BC ,高分别为h 1,h 2,则h 1+h 2=AB , ∴S △EAB +S △ECD =AD•h 1+BC•h 2=AD (h 1+h 2)=AD•AB=矩形ABCD 的面积=×3×4=6;故答案为:6.16.(4分)已知m 、n 是方程x 2﹣x ﹣3=0的两个根,则代数式m +n﹣1的值为 ﹣ .【解答】解:∵m 、n 是方程x 2﹣x ﹣3=0的两个根,∴m 2﹣m=3,n 2﹣n=3, ∴m +n ﹣1=(m 2﹣m )﹣(n 2﹣n )﹣1=﹣3﹣1=﹣.故答案为:﹣.17.(4分)如图,正方形ABCD中,AB=2,AC,BD交于点O.若E,F分别是边AB,BC上的动点,且OE⊥OF,则△OEF周长的最小值是2+.【解答】解:在正方形ABCD中,AO=BO,∠AOB=90°,∠OAE=∠OBF=45°,∵点E、F的速度相等,∴AE=BF,在△AOE和△BOF中,,∴△AOE≌△BOF(SAS),∴∠AOE=∠BOF,∴∠AOE+∠BOE=90°,∴∠BOF+∠BOE=90°,∴∠EOF=90°,在Rt△BEF中,设AE=x,则BF=x,BE=2﹣x,EF===.∴当x=1时,EF有最小值为.∴OE=OF=1.∴△OEF周长的最小值=2+.故答案为:2.18.(4分)如图,函数y=﹣x与函数y=﹣的图象交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,点D.则四边形ACBD的面积为8.【解答】解:设A的坐标是(m,n),则B的坐标是(﹣m,﹣n),﹣mn=4则AC=﹣m,CD=2n.则S四边形ABCD=AC•CD=﹣2mn=8.故答案是:8.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.(7分)解方程:x2+x﹣1=0.【解答】解:a=1,b=1,c=﹣1,b2﹣4ac=1+4=5>0,x=;∴x1=,x2=.20.(7分)如图,在▱ABCD中,E,F是对角线AC上的两点,且AE=CF.求证:BE=DF.【解答】证明:证法一:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠BAE=∠DCF.在△ABE和△CDF中,∴△ABE≌△CDF.∴BE=DF.证法二:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∴∠DAF=∠BCE.∵AE=CF,∴AF=AE+EF=CF+EF=CE.在△ADF和△CBE中,∴△ADF≌△CBE.∴BE=DF.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.(10分)小青在八年级上学期各次数学考试的成绩如表:(1)求小青该学期平时测验的平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,请计算出小青该学期的总评成绩.【解答】解:(1)平时测验总成绩为:132+105+146+129=512,平时测验平均成绩为:=128(分);答:小青该学期平时测验的平均成绩是12(8分).…(5分)(2)总评成绩为:128×10%+134×30%+130×60%=131(分),答:小青该学期的总评成绩是131分.22.(10分)如图,一次函数y=x+2的图象交x轴于点A,且过点B(1,m).点B在反比例函数y=(k≠0)的图象上.(1)求该反比例函数的解析式;(2)连结OB,求△AOB的面积;并结合图形直接写出当函数值y<m时,该反比例函数的自变量x的取值范围.【解答】解:(1)∵一次函数y=x+2的图象过点B(1,m),∴m=1+2=3.∴点B的坐标为(1,3).∵点B在反比例函数y=(k≠0)的图象上,∴3=,即k=3.∴该反比例函数的解析式为y=.(2)在y=x+2中,令y=0,则0=x+2,得x=﹣2,∴点A的坐标为(﹣2,0),∴OA=2.又∵点B的坐标为(1,3),∴△AOB中OA边上的高为3.∴S=×2×3=3,△AOB当函数值y<m时,即y<3,由函数图象可知自变量x的取值范围是:x>1或x <0.23.(10分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得512元的利润,每件应降价多少元?【解答】解:(1)设每次降价的百分率为x,由题意,得40×(1﹣x)2=32.4,x=10%或190%(190%不符合题意,舍去).答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率啊10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价510元,由题意,得(40﹣30﹣y)(×4+48)=512,解得:y1=y2=2.答:要使商场每天要想获得512元的利润,每件应降价2元.24.(10分)阅读下面的例题与解答过程:例.解方程:x2﹣|x|﹣2=0.解:原方程可化为|x|2﹣|x|﹣2=0.设|x|=y,则y2﹣y﹣2=0.解得y1=2,y2=﹣1.当y=2时,|x|=2,∴x=±2;当y=﹣1时,|x|=﹣1,∴无实数解.∴原方程的解是:x1=2,x2=﹣2.在上面的解答过程中,我们把|x|看成一个整体,用字母y代替(即换元),使得问题简单化、明朗化,解答过程更清晰.这是解决数学问题中的一种重要方法﹣﹣换元法.请你仿照上述例题的解答过程,利用换元法解下列方程:(1)x2﹣2|x|=0;(2)x2﹣2x﹣4|x﹣1|+5=0.【解答】解:(1)原方程可化为|x|2﹣2|x|=0,设|x|=y,则y2﹣2y=0.解得y1=0,y2=2.当y=0时,|x|=0,∴x=0;当y=2时,∴x=±2;∴原方程的解是:x1=0,x2=﹣2,x3=2.(2)原方程可化为|x﹣1|2﹣4|x﹣1|+4=0.设|x﹣1|=y,则y2﹣4y+4=0,解得y1=y2=2.即|x﹣1|=2,∴x=﹣1或x=3.∴原方程的解是:x1=﹣1,x2=3.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.(12分)如图1,在菱形ABCD中,∠A=60°.点E,F分别是边AB,AD上的点,且满足∠BCE=∠DCF,连结EF.(1)若AF=1,求EF的长;(2)取CE的中点M,连结BM,FM,BF.求证:BM⊥FM;(3)如图2,若点E,F分别是边AB,AD延长线上的点,其它条件不变,结论BM⊥FM是否仍然成立(不需证明).【解答】(1)解:∵四边形ABCD是菱形,∴AB=AD=BC=DC,∠D=∠CBE,又∵∠BCE=∠DCF,∴△CBE≌△CDF,∴BE=DF.又∵AB=AD,∴AB﹣BE=AD﹣DF,即AE=AF,又∵∠A=60°,∴△AEF是等边三角形,∴EF=AF,∵AF=1,∴EF=1.(2)证明:如图1,延长BM交DC于点N,连结FN,∵四边形ABCD是菱形,∴DC∥AB,∴∠NCM=∠BEM,∠CNM=∠EBM∵点M是CE的中点,∴CM=EM.∴△CMN≌△EMB,∴NM=MB,CN=BE.又∵AB=DC.∴DC﹣CN=AB﹣BE,即DN=AE.∵△AEF是等边三角形,∴∠AEF=60°,EF=AE.∴∠BEF=120°,EF=DN.∵DC∥AB,∴∠A+∠D=180°,又∵∠A=60°,∴∠D=120°,∴∠D=∠BEF.又∵DN=EF,BE=DF.∴△FDN≌△BEF,∴FN=FB,又∵NM=MB,∴BM⊥MF;(3)结论BM⊥MF仍然成立.证明:如图2,延长BM交DC的延长线于点N,连结FN,∵四边形ABCD是菱形,∴DC∥AB,∴∠NCM=∠BEM,∠CNM=∠EBM∵点M是CE的中点,∴CM=EM.∴△CMN≌△EMB,∴NM=MB,CN=BE.又∵AB=DC.∴DC﹣CN=AB﹣BE,即DN=AE.∵△AEF是等边三角形,∴∠AEF=60°,EF=AE.∴∠BEF=120°,EF=DN.∵DC∥AB,∴∠A+∠FDC=180°,又∵∠A=60°,∴∠FDC=120°,∴∠FDC=∠BEF.又∵DN=EF,BE=DF.∴△FDN≌△BEF,∴FN=FB,又∵NM=MB,∴BM⊥MF.26.(12分)如图1,在平面直角坐标系中,点A的坐标为(﹣4,4),点B的坐标为(0,2).(1)求直线AB的解析式;(2)以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴于点C,射线AD 交y轴的负半轴于点D.当∠CAD绕着点A旋转时,OC﹣OD的值是否发生变化?若不变,求出它的值;若变化,求出它的变化范围;(3)如图2,点M(﹣4,0)和N(2,0)是x轴上的两个点,点P是直线AB 上一点.当△PMN是直角三角形时,请求出满足条件的所有点P的坐标.【解答】解:(1)设直线AB的解析式为:y=kx+b(k≠0),∵点A(﹣4,4),点B(0,2)在直线AB上,∴,解得:.∴直线AB的解析式为:y=﹣x+2;(2)不变.理由如下:过点A分别作x轴,y轴的垂线,垂足分别为E,F(如答图),可得∠AEC=∠AFD=90°,又∵∠BOC=90°,∴∠EAF=90°,即∠DAE+∠DAF=90°,∵∠CAD=90°,即∠DAE+∠CAE=90°,∴∠CAE=∠DAF,∵A(﹣4,4),∴OE=AF=AE=OF=4,在△AEC和△AFD中,,∴△AEC≌△AFD(ASA),∴EC=FD,∴OC﹣OD=(OE+EC)﹣(FD﹣OF)=OE+OF=8,则OC﹣OD的值不发生变化,值为8;(3)①当M为直角顶点时,点P的横坐标为﹣4,∵点P在直线AB上,将x=﹣4代入y=﹣x+2得,y=4,∴点P的坐标为P(﹣4,4);②当N为直角顶点时,点P的横坐标为2,∵点P在直线AB上,将x=2代入y=﹣x+2得,y=1,∴点P的坐标为P(2,1);③当P为直角顶点时,∵点P在直线AB上,可设点P的坐标为(x,﹣x+2),则MP2=(x+4)2+(﹣x+2)2,NP2=(x﹣2)2+(﹣x+2)2,在Rt△PMN中,MP2+NP2=MN2,MN=6,∴(x+4)2+(﹣x+2)2+(x﹣2)2+(﹣x+2)2=62,解得:x1=﹣,x2=,∴P(﹣,+2)或(,﹣+2),综上所述,满足条件的所有点P的坐标为(﹣4,4)或(2,1)或(﹣,+2)或(,﹣+2).。
2014-2015学年重庆市荣昌区八年级(下)期末数学试卷
2014-2015学年重庆市荣昌区八年级(下)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下方,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将你认为正确的答案代号填在答题卡表格中对应的位置.1.(4分)在函数y=中,自变量x的取值范围是()A.x≤1 B.x≥1 C.x<1 D.x>12.(4分)下列各组数中能作为直角三角形的三边长的是()A.1,2,3 B.3,4,5 C.4,5,6 D.7,8,93.(4分)期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数4.(4分)若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.15.(4分)下列式子一定是最简二次根式的是()A. B.C.D.6.(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°7.(4分)已知,如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC 交BC于点E,AD=10cm,则OE的长为()A.6cm B.5cm C.4cm D.3cm8.(4分)2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、丁的成绩的方差分别是0.11、0.03、0.05、0.02.则当天这四位运动员“110米跨栏”的训练成绩最稳定的是()A.甲B.乙C.丙D.丁9.(4分)如图,以原点O为圆心,OB为半径画弧与数轴交于点A,且点A表示的数为x,则x2﹣10的立方根为()A.B.﹣C.2 D.﹣210.(4分)小明一家自驾去永川“乐和乐都”主题公园游玩,汽车匀速行驶一段路程,进入服务区加油.休息了一段时间后,他们为了尽快赶到目的地,便提高了行车速度,很快到达了公园.下面能反映小明一家离公园的距离y(千米)与时间x(小时)之间的函数关系的大致图象是()A.B.C.D.11.(4分)平移边长为1的小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,其中第(1)个图形含边长为1的菱形2个,第(2)个图形含边长为1的菱形8个,第(3)个图形含边长为1的菱形18个,则第(6)个图形中含边长为1的菱形的个数是()A.32 B.36 C.50 D.7212.(4分)已知一次函数y=2x+a,y=﹣x+b的图象都经过A(﹣2,0),且与y 轴分别交于B、C两点,则△ABC的面积为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题4分,共24分)在每小题中,请将你认为正确的答案填在答题卡相应位置的横线上.13.(4分)在2014年重庆市初中毕业生体能测试中,某校初三有7名同学的体能测试成绩(单位:分)如下:50,48,47,50,48,49,48.这组数据的众数是.14.(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,请添加一个条件,使▱ABCD成为菱形(写出符合题意的一个条件即可)15.(4分)函数中,自变量x的取值范围是.16.(4分)一次函数y=﹣3x+6的图象不经过象限.17.(4分)在△ABC中,∠C=90°,若a+b=7cm,c=5cm,则△ABC的面积为.18.(4分)如图,在正方形ABCD中的边长为6,E为BC上一点,CE=2BE,将△ABE沿AE折叠的△AFE,连接DF,则线段DF的长度为.三、解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的盐酸过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.(7分)当x=2﹣时,求代数式(7+4)x2+(2+)x+的值.20.(7分)如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,过点O画直线EF分别交AD,BC于点E,F,求证:AE=CF.四、解答题(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的盐酸过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.(10分)已知,如图,把长方形纸片ABCD沿EF折叠后,点D与点B重合,点C落在点C′的位置上,若∠1=60°,AE=2.(1)求∠2,∠3的度数.(2)求长方形ABCD的纸片的面积S.22.(10分)如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.23.(10分)为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:(1)计算这家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?24.(10分)已知平行四边形ABCD中,G为BC中点,点E在AD边上,且∠1=∠2(1)求证:E是AD的中点;(2)若F为CD延长线上一点,连接BF,且满足∠3=∠2.求证:CD=BF+DF.五、解答题(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的盐酸过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.(12分)A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台,已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D村的运费分别是300元和500元.(1)设B市运往C村机器x台,求总运费W关于x的函数关系式;(2)若要求总运费不超过9000元,共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?分析由已知条件填出下表:26.(12分)如图,在正方形ABCD外取一点E,连接AE,BE,DE,过点A作AE的垂线交DE于P,若AE=AP=1,PB=;(1)求证:△ABE≌△ADP;(2)求证;BE⊥DE;(3)求正方形ABCD的面积.2014-2015学年重庆市荣昌区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下方,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将你认为正确的答案代号填在答题卡表格中对应的位置.1.(4分)在函数y=中,自变量x的取值范围是()A.x≤1 B.x≥1 C.x<1 D.x>1【解答】解:由题意得,x﹣1≥0,解得x≥1.故选:B.2.(4分)下列各组数中能作为直角三角形的三边长的是()A.1,2,3 B.3,4,5 C.4,5,6 D.7,8,9【解答】解:A、因为12+22≠32,故不是勾股数;故此选项错误;B、因为32+42=52,故是勾股数.故此选项正确;C、因为42+52≠62,故不是勾股数;故此选项错误;D、因为72+82≠92,故不是勾股数.故此选项错误;故选:B.3.(4分)期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.4.(4分)若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.1【解答】解:∵点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,∴3k﹣2=1,解得k=1.故选:D.5.(4分)下列式子一定是最简二次根式的是()A. B.C.D.【解答】解:A.被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项错误;B.被开方数中含有分母,不是最简二次根式,故本选项错误;C.被开方数不含分母,被开方数中不含能开得尽方的因数或因式,是最简二次根式,故本选项正确;D.被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项错误;故选:C.6.(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°【解答】解:∵矩形ABCD的对角线AC,BD相交于点O,∴OB=OC,∴∠OBC=∠ACB=30°,∴∠AOB=∠OBC+∠ACB=30°+30°=60°.故选:B.7.(4分)已知,如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC 交BC于点E,AD=10cm,则OE的长为()A.6cm B.5cm C.4cm D.3cm【解答】解:∵OE∥DC,AO=CO,∴OE是△ABC的中位线,∵四边形ABCD是菱形,∴AB=AD=10cm,∴OE=5cm.故选:B.8.(4分)2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、丁的成绩的方差分别是0.11、0.03、0.05、0.02.则当天这四位运动员“110米跨栏”的训练成绩最稳定的是()A.甲B.乙C.丙D.丁【解答】解:∵甲、乙、丙、丁的成绩的方差分别是0.11、0.03、0.05、0.02,∴丁的方差最小,∴丁运动员最稳定,故选:D.9.(4分)如图,以原点O为圆心,OB为半径画弧与数轴交于点A,且点A表示的数为x,则x2﹣10的立方根为()A.B.﹣C.2 D.﹣2【解答】解:由图可知,x2=12+12=2,则x2﹣10=2﹣10=﹣8,﹣8的立方根为﹣2,故选:D.10.(4分)小明一家自驾去永川“乐和乐都”主题公园游玩,汽车匀速行驶一段路程,进入服务区加油.休息了一段时间后,他们为了尽快赶到目的地,便提高了行车速度,很快到达了公园.下面能反映小明一家离公园的距离y(千米)与时间x(小时)之间的函数关系的大致图象是()A.B.C.D.【解答】解:A.路程应该在减少,故A不符合题意;B.路程先减少得快,后减少的慢,不符合题意,故B错误;C.休息前路程减少的慢,休息后提速在匀速行驶,路程减少得快,故C符合题意;D.休息时路程应不变,不符合题意,故D错误;故选:C.11.(4分)平移边长为1的小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,其中第(1)个图形含边长为1的菱形2个,第(2)个图形含边长为1的菱形8个,第(3)个图形含边长为1的菱形18个,则第(6)个图形中含边长为1的菱形的个数是()A.32 B.36 C.50 D.72【解答】解:第(1)个图形:2=2=2×12;第(2)个图形:8=2×4=2×22;第(3)个图形:18=2×9=2×32;…第(n)个图形为2n2个,∴第(6)个图形含有小菱形的个数为:2×62=72(个),应选D.12.(4分)已知一次函数y=2x+a,y=﹣x+b的图象都经过A(﹣2,0),且与y 轴分别交于B、C两点,则△ABC的面积为()A.4 B.5 C.6 D.7【解答】解:将A的坐标分别代入一次函数y=2x+a,y=﹣x+b中,可得a=4,b=﹣2,那么B,C的坐标是:B(0,4),C(0,﹣2),因此△ABC的面积是:BC×OA÷2=6×2÷2=6.故选:C.二、填空题(本大题共6个小题,每小题4分,共24分)在每小题中,请将你认为正确的答案填在答题卡相应位置的横线上.13.(4分)在2014年重庆市初中毕业生体能测试中,某校初三有7名同学的体能测试成绩(单位:分)如下:50,48,47,50,48,49,48.这组数据的众数是48.【解答】解:数据48出现了三次最多为众数.故答案为:48.14.(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,请添加一个条件AB=AD,使▱ABCD成为菱形(写出符合题意的一个条件即可)【解答】解:添加AB=AD,∵四边形ABCD是平行四边形,AB=AD,∴▱ABCD成为菱形.故答案为:AB=AD.15.(4分)函数中,自变量x的取值范围是x≥﹣2且x≠1.【解答】解:根据题意得:,解得:x≥﹣2且x≠1.故答案为:x≥﹣2且x≠1.16.(4分)一次函数y=﹣3x+6的图象不经过三象限.【解答】解:∵一次函数y=﹣3x+6中,k=﹣3<0,b=6>0,∴此函数的图象经过一、二、四象限故不经过三象限,故答案为:三17.(4分)在△ABC中,∠C=90°,若a+b=7cm,c=5cm,则△ABC的面积为6cm2.【解答】解:∵a+b=7,∴(a+b)2=49,∴2ab=49﹣(a2+b2)=49﹣25=24,∴ab=6,故答案为:6cm2.18.(4分)如图,在正方形ABCD中的边长为6,E为BC上一点,CE=2BE,将△ABE沿AE折叠的△AFE,连接DF,则线段DF的长度为.【解答】解:作FN⊥BC,FM⊥DC,垂足分别为N,M,连接BF,交AE于K,∵正方形ABCD的边长为6,E为BC上一点,CE=2BE,∴BE=2,∴AE=2,∵将△ABE沿AE折叠得到△AFE,连接DF,∴BF⊥AE,∴AB×BE=BK×AE,∴KB=KF=,设EN=x,则22﹣x2=()2﹣(2+x)2,解得:x=,故FN==,则DM=6﹣=,FM=NC=6﹣2﹣=,则DF==,故答案为:.三、解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的盐酸过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.(7分)当x=2﹣时,求代数式(7+4)x2+(2+)x+的值.【解答】解:∵x2=(2﹣)2=7﹣4,∴原式=(7+4)(7﹣4)+(2+)(2﹣)+=49﹣48+[22﹣()2]+=1+(4﹣3)+=2+.20.(7分)如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,过点O画直线EF分别交AD,BC于点E,F,求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.四、解答题(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的盐酸过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.(10分)已知,如图,把长方形纸片ABCD沿EF折叠后,点D与点B重合,点C落在点C′的位置上,若∠1=60°,AE=2.(1)求∠2,∠3的度数.(2)求长方形ABCD的纸片的面积S.【解答】解:(1)∵AD∥BC,∴∠2=∠1=60°;又∵∠4=∠2=60°,∴∠3=180°﹣60°﹣60°=60°.(2)在直角△ABE中,由(1)知∠3=60°,∴∠5=90°﹣60°=30°;∴BE=2AE=4,∴AB=2;∴AD=AE+DE=AE+BE=2+4=6,∴长方形纸片ABCD的面积S为:AB•AD=2×6=12.22.(10分)如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.【解答】解(1)∵A(8,0),∴OA=8,S=OA•|y P|=×8×(﹣x+10)=﹣4x+40,(0<x<10).(2)当S=10时,则﹣4x+40=10,解得x=,当x=时,y=﹣+10=,∴当△OPA的面积为10时,点P的坐标为(,).23.(10分)为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:(1)计算这家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?【解答】解:(1)这家庭的平均月用水量是(10×2+13×2+14×3+17×2+18)÷10=14(吨);(2)根据题意得:14×500=7000(吨),答:该小区居民每月共用水7000吨.24.(10分)已知平行四边形ABCD中,G为BC中点,点E在AD边上,且∠1=∠2(1)求证:E是AD的中点;(2)若F为CD延长线上一点,连接BF,且满足∠3=∠2.求证:CD=BF+DF.【解答】解:∵四边形ABCD为平行四边形,∴AD=BC,AB=CD,∠A=∠C,在△AEB和△CDG中,,∴△AEB≌△CDG,∴AE=CG,∵G为BC中点,∴,∴,∵AD=BC,∴,∴E是AD的中点;(2)如图,延长DF,BE,相交于点H,∵E为AD的中点,G为BC的中点,∴,:∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC,∴DE=BG,DE∥BG,∴四边形EBGD为平行四边形,∴BE∥DG,∴∠H=∠2,∵∠3=∠2,∴∠H=∠3,∴BF=HF,∵∠1=∠2,∴∠H=∠1,∵E为AD的中点,∴AE=DE,在△AEB和△DEH中,,∴△AEB≌△DEH,∴AB=DH,∵AB=CD,∴CD=DH,∵DH=HF+FD,HF=BF,∴DH=BF+FD,∴CD=BF+FD.五、解答题(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的盐酸过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.(12分)A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台,已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D村的运费分别是300元和500元.(1)设B市运往C村机器x台,求总运费W关于x的函数关系式;(2)若要求总运费不超过9000元,共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?分析由已知条件填出下表:【解答】解根据题意得:(1)W=300x+500(6﹣x)+400(10﹣x)+800[8﹣(6﹣x)]=200x+8600.(2)因运费不超过9000元∴W=200x+8600≤9000,解得x≤2.∵0≤x≤6,∴0≤x≤2.则x=0,1,2,所以有三种调运方案.(3)∵0≤x≤2,且W=200x+8600,∴W随x的增大而增大∴当x=0时,W的值最小,最小值为8600元,此时的调运方案是:B市运至C村0台,运至D村6台,A市运往C市10台,运往D村2台,最低总运费为8600元.26.(12分)如图,在正方形ABCD外取一点E,连接AE,BE,DE,过点A作AE的垂线交DE于P,若AE=AP=1,PB=;(1)求证:△ABE≌△ADP;(2)求证;BE⊥DE;(3)求正方形ABCD的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵AE⊥AP,∴∠EAP=90°,∴∠EAB=∠PAD,在△ABE和△ADP中,,∴△ABE≌△ADP;(2)证明:∵△ABE≌△ADP,∴∠APD=∠AEB,又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴BE⊥DE;(3)解:如图,过点B作BF⊥AF,交AE延长线于点F.∵△AEP为等腰直角三角形,∴∠AEP=45°,又∠DEB=90°,∴∠FEB=45°,又∠EFB=90°,∴△EFB为等腰直角三角形,∴PE==,∵PB=,∴BE==,∴EF=BF=BE=,∴AF=AE+EF=1+,∴AB2=AF2+BF2=(1+)2+()2=4+,∴正方形ABCD的面积=AB2=4+.。
重庆綦江中学 2014-2015学年八年级下学期期末数学试卷(含答案)
重庆綦江中学2014—2015学年度下学期期末质量监测八年级数学试卷(本卷共4页,满分150分,考试时间120分钟)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列根式中,是最简二次根式的是( )A D 2.下列计算正确的是( ) A .523=+ B.623=⨯ C.3312=- D .428=÷3.下列各点在函数x y 2=的图象上的是( )A .(2,-1)B .(-1,2)C .(1,2)D .(2,1) 4.下列各数组中,能作为直角三角形三边长的是( )A .1,1,2B .2,3,4C .2,3,5D .3,4,55.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲成绩的方差为1.21,乙成绩的方差为3.98,由此可知( )A .甲比乙的成绩稳定B .乙比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定谁的成绩更稳定 6.如图,矩形ABCD 中,0120=∠AOD ,3AB =,则BD 的长是( ) A .33 B .6 C .4 D .327.若1(4, )y -,2(2, )y 两点都在直线42--=x y 上,则1y 与2y 的大小关系是( ) A .12y y > B .12y y = C .12y y < D .无法确定8.如图,平行四边形ABCD 中,对角线AC 与BD 交于点O,已知∠OAB=90,BD=10cm ,AC=6cm ,则AB 的长为( )A .4cm B.5cm C.6cm D.8cm9.如图,菱形ABCD 的周长为48cm ,对角线AC 、BD 相交于O 点,E 是AD 的中点,连接OE ,则线段OE 的长等于( )A .4 cmB . 5cmC .6 cmD . 8cm10.为了解某班学生每天使用零花钱的情况,小红随机调查了该班15名同学,结果如下表:则这15名同学每天使用零花钱的中位数和众数分别是( )A .3,2B .4,2C .2 ,3D .5,4 11.李华从家骑自行车上学,匀速行驶了一段距离,休息了一段时间,发现自己忘了带数学复习资料,立刻原路原速返回,在途中遇到给他送数学复习资料的妈妈,拿到数学复习资料后,张华立刻掉头沿原方向用比原速大的速度匀速行驶到学校.在下列图形中,能反映张华离家的距离s 与时间的函数关系的大致图象是( )BCA DEO(9题图)A .12.如图,在平面直角坐标系中,直线x l ⊥1轴于点(1,0),直线x l ⊥2轴于点(2,0),直线x l ⊥3 轴于点(3,0)⋅⋅⋅直线x l n ⊥轴于点(n,0).函数y=x 的图象与直线n l l l l ,...,,321分别交于点n A A A A ....,,321,.函数y=2x的图象与直线n l l l l ,...,,321分别交于点n B B B B ....,,321.11B OA ∆的面积记为1S ,四边形1221B B A A 的面积记为2S ,四边形2332B B A A 的面积记为3S ,四边形11--n n n n B B A A 的面积记为n S ,则2014S =( )2013.5A.2012B.2013C.2013.5D.2014 二、填空题:本大题共6个小题,每小题4分,共24分. 13.若根式3-x 有意义,则x 的取值范围是__________.14. (= .15.在平面直角坐标系中,点O 为原点,直线4y kx =+交x 轴于点A,交y 轴于点B,若△AOB 的面积为8,则k 的值为 .16.如图,平行四边形ABCD 的对角线相交于点O ,且AB≠AD,过O 作OE ⊥BD 交BC 于点E .若△CDE 的周长为8,则平行四边形ABCD 的周长为 .17.如图,直线 (0)y kx b k =+<交x 轴于A(4,0),则关于x 的不等式0kx b +>的解集为_______.18.如图,正方形ABCD 中,对角线AC 与BD 相交于点O , DE 平分∠CDB 交BC 于E,交AC 于F,则BC:OF= .三、解答题:本大题共2个小题,每小题7分,共14分. 19.计算: ()3201481239123---+--÷.20.如图,ABC ∆中,o 90C ∠=,AC D 是BC 的中点,且o 45ADC ∠=,求△ABC 的周长.(结果保留根号)四、解答题:本大题共4个小题,每小题10分,共40分. 21.平行四边形ABCD 中,E F ,是对角线AC 上两点,且∠ADF= ∠CBE ,连接DE,BF .(1)求证:AFD CEB △≌△; (2)求证:四边形BFDE 是平行四边形.BCAD (20题图)22.某中学八年级在半期测试中数学取得了较好成绩,年级主任随机抽取了部分学生的成绩作为一个样本按A(满分)、B(优秀)、C(良好)、D(及格)四个等级进行统计,并将统计结果制成如下2幅不完整统计图,请你结合图表所给信息解答下列问题:(1)此次调查共随机抽取了__________名学生,其中学生成绩的中位数落在________等级;在图②中D所在扇形的圆心角的度数是;(2)将拆线统计图和扇形统计图在图中补充完整.23.如图,直线 (0)y ax b a =+≠与1y x =+交于y 轴上的点C ,与x 轴交于点 (2, 0)B . (1)求a ,b 的值;(2)设直线1y x =+与x 轴的交点为A ,求ABC ∆的面积.24.如图,P 为正方形ABCD 边BC 上任一点,BG ⊥AP 于点G ,在AP 的延长线上取点E ,使AG=GE ,连接BE ,CE .(1)求证:BE=BC ; (2)∠CBE 的平分线交AE 于N 点,连接DN ,求证:BN +DN =2AN .(23题图)五、解答题:本大题共2个小题,每小题12分,共24分.25.某渔场计划今年养殖无公害标准化生态白鲢和花鲢,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:(单位:万元/吨)渔场受经济条件的影响,先期投资不能超过36万元,养殖期间的投资不超过29万元.设白鲢种苗的投放量为x吨.(1)求x的取值范围;(2)设这两个品种产出后的总产值为y(万元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?26.如图,矩形OACB的顶点O是坐标原点,顶点A,B分别在y轴,x轴的正半轴上,OA=8,OB=6,等腰直角三角形EFD按图①摆放(点D与点O重合)FD=10,连接AB,△EFD从图①位置出发,以每秒1个单位的速度沿OB方向匀速移动,同时,点M从A出发,以每秒2个单位沿AB-BC匀速移动,AO与△EFD的直角边相交于点N。
重庆八中2024届八年级数学第二学期期末达标检测试题含解析
重庆八中2024届八年级数学第二学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.二次函数y =ax2+bx +c (a ≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x =2,下列结论:①4a +b =0;②9a +c >3b ;③8a +7b +2c >0;④当x >-1时,y 的值随x 值的增大而增大.其中正确的结论有( )A .1个B .2个C .3个D .4个2.如图,直线y ax b =+与直线y mx n =+交于点(2,1)P --,则根据图象可知不等式ax b mx n +>+的解集是( )A .2x >-B .2x <-C .20x -<<D .1x >-3.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .924.下列调查中,适宜采用普查方式的是( )A .调查全国中学生心理健康现状B .调查一片试验田里五种大麦的穗长情况C .要查冷饮市场上冰淇淋的质量情况D .调查你所在班级的每一个同学所穿鞋子的尺码情况5.如图,在Rt △ABC 中(AB >2BC ),∠C =90°,以BC 为边作等腰△BCD ,使点D 落在△ABC 的边上,则点D 的位置有( )A .2个B .3个C .4个D .5个6.在下列图形中,一定是中心对称图形,但不一定是轴对称图形的为( ) A .正五边形 B .正六边形 C .等腰梯形 D .平行四边形7.如图,在△ABC 中,BD 、CE 是△ABC 的中线,BD 与CE 相交于点O ,点F 、G 分别是BO 、CO 的中点,连结AO .若AO =6cm ,BC =8cm ,则四边形DEFG 的周长是( )A .14cmB .18 cmC .24cmD .28cm8.如图所示,在数轴上点A 所表示的数为a ,则a 的值为( )A .35--B .35-C .5-D .35-+9.如图,已知△ABC 为直角三角形,∠B =90°,若沿图中虚线剪去∠B ,则∠1+∠2=( )A .90°B .135°C .270°D .315°10.要使二次根式x 有意义,则x 的取值范围在数轴上表示正确的是( ) A . B . C .D .二、填空题(每小题3分,共24分)11.一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A 、B 、C 、D 、E 五人的成绩,其余人的平均分是62分,那么在这次测验中,C 的成绩是_____分.12.已知a 、b 为有理数,m 、n 分别表示77-的整数部分和小数部分,且24amn bn +=,则2a b += . 13.化简33﹣23=_____. 14.如图,直线y =mx 与双曲线y =xk交于A 、B 两点,D 为x 轴上一点,连接BD 交y 轴与点C ,若C (0,-2)恰好为BD 中点,且△ABD 的面积为6,则B 点坐标为__________.15.关于x 的方程a 2x+x=1的解是__.16.如图,过点N (0,-1)的直线y=kx+b 与图中的四边形ABCD 有不少于两个交点,其中A (2,3)、B (1,1)、C (4,1)、D (4,3),则k 的取值范围____________1748化为最简二次根式的结果是________________ 18.当m =______时,分式方程2133x mx x -=--会产生增根. 三、解答题(共66分)19.(10分)小聪从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是小聪离家的距离y (单位:km )与时间x (单位:min )的图象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 重庆江津区慈云镇第二初级中学2014—2015学年度下学期期末质量监测 八年级数学试卷 (本卷共4页,满分150分,考试时间120分钟) 一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列根式中,是最简二次根式的是( )
A.12 B.3 C.8 D.12 2.下列计算正确的是( ) A.523 B.623 C.3312 D.428 3.下列各点在函数xy2的图象上的是( ) A.(2,-1) B.(-1,2) C.(1,2) D.(2,1) 4.下列各数组中,能作为直角三角形三边长的是( )
A.1,1,2 B.2,3,4 C.2,3,5 D.3,4,5 5.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲成绩的方差为1.21,乙成绩的方差为3.98,由此可知( ) A.甲比乙的成绩稳定 B.乙比甲的成绩稳定 C.甲、乙两人的成绩一样稳定 D.无法确定谁的成绩更稳定 6.如图,矩形ABCD中,0120AOD,3AB,则BD的长是( ) A.33 B.6 C.4 D.32 7.若1(4, )y,2(2, )y两点都在直线42xy上,则1y与2y的大小关系是( ) A.12yy B.12yy C.12yy D.无法确定 2
8.如图,平行四边形ABCD中,对角线AC与BD交于点O,已知∠OAB=90,BD=10cm,AC=6cm,则AB 的长为( ) A.4cm B.5cm C.6cm D.8cm
9.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于( ) A.4 cm B. 5cm C.6 cm D. 8cm 10.为了解某班学生每天使用零花钱的情况,小红随机调查了该班15名同学,结果如下表:
则这15名同学每天使用零花钱的中位数和众数分别是( ) A.3,2 B.4,2 C.2 ,3 D.5,4
11.李华从家骑自行车上学,匀速行驶了一段距离,休息了一段时间,发现自己忘了带数学复习资料,立刻原路原速返回,在途中遇到给他送数学复习资料的妈妈,拿到数学复习资料后,张华立刻掉头沿原方向用比原速大的速度匀速行驶到学校.在下列图形中,能反映张华离家的距离s与时间的函数关系的大致图象是( )
B C
A D
E
O (9题图)
每天使用零花钱(单位:元) 1 2 3 5 6 人 数 2 5 4 3 1
t o t
so ts
o tso A. B. C. D.
s 3
12.如图,在平面直角坐标系中,直线xl1轴于点(1,0),直线xl2轴于点(2,0),直线xl3 轴于点(3,0)直线xln轴于点(n,0).函数y=x的图象与直线nllll,...,,321分别交于点nAAAA....,,321,.函数y=2x的图象与直线nllll,...,,321分别交于点
nBBBB....,,321.11BOA的面积记为1S,四边形1221BBAA的面积记为2S,四边形2332BBAA的面积记为3S,四边形11nnnnBBAA的面积记为nS,则2014S=( )2013.5
A.2012 B.2013 C.2013.5 D.2014 二、填空题:本大题共6个小题,每小题4分,共24分. 13.若根式3x有意义,则x的取值范围是__________. 14. 计算:827232= . 15.在平面直角坐标系中,点O为原点,直线4ykx交x轴于点A,交y轴于点B,若△AOB的面积为8,则k的值为 . 16.如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E.若
△CDE的周长为8,则平行四边形ABCD的周长为 . 17.如图,直线 (0)ykxbk交x轴于A(4,0),则关于x的不等式0kxb的解集为
_______.
18.如图,正方形ABCD中,对角线AC与BD相交于点O, DE平分∠CDB 4
交BC 于E,交AC 于F,则BC:OF= . 三、解答题:本大题共2个小题,每小题7分,共14分.
19.计算: 3201481239123.
20.如图,ABC中,o90C,2AC,D是 BC的中点,且o45ADC,求△ABC的周长.
(结果保留根号)
四、解答题:本大题共4个小题,每小题10分,共40分. 21.平行四边形ABCD中,EF,是对角线AC上两点,且∠ADF= ∠CBE,连接DE,BF. (1)求证:AFDCEB△≌△; (2)求证:四边形BFDE是平行四边形.
B C
A D (20题图) 5
22.某中学八年级在半期测试中数学取得了较好成绩,年级主任随机抽取了部分学生的成绩作为一个样本按A(满分)、B(优秀)、C(良好)、D(及格)四个等级进行统计,并将统计结果制成如下2幅不完整统计图,请你结合图表所给信息解答下列问题: (1)此次调查共随机抽取了__________名学生,其中学生成绩的中位数落在________等级; 在图②中D所在扇形的圆心角的度数是 ; (2)将拆线统计图和扇形统计图在图中补充完整. 6
23.如图,直线 (0)yaxba与1yx交于y轴上的点C,与x轴交于点 (2, 0)B. (1)求a,b的值; (2)设直线1yx与x轴的交点为A,求ABC的面积.
24.如图,P为正方形ABCD边BC上任一点,BG⊥AP于点G,在AP的延长线上取点E,使AG=GE,连接BE,CE.
(1)求证:BE=BC; (2)∠CBE的平分线交AE于N点,连接DN,求证:BN+DN=2AN .
yaxb 1yx O x y
A B C
(23题图) 7 五、解答题:本大题共2个小题,每小题12分,共24分. 25.某渔场计划今年养殖无公害标准化生态白鲢和花鲢,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:(单位:万元/吨)
渔场受经济条件的影响,先期投资不能超过36万元,养殖期间的投资不超过29万元.设白鲢种苗的投放量为x吨. (1)求x的取值范围; (2)设这两个品种产出后的总产值为y(万元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?
品种 先期投资 养殖期间投资 产值 白鲢 0.9 0.3 3 花鲢 0.4 1 2 8 26.如图,矩形OACB的顶点O是坐标原点,顶点A,B分别在y轴,x轴的正半轴上,OA=8,OB=6,等腰直角三角形EFD按图①摆放(点D与点O重合)FD=10,连接AB, △EFD从图①位置出发,以每秒1个单位的速度沿OB方向匀速移动,同时,点M从A出发,以每秒2个单位沿AB-BC匀速移动,AO与△EFD的直角边相交于点N。当M到达点C时,△EFD同时停止运动,连接MN,设移动时间为t(s),t>0.解答下列问题: (1) 求AB的解析式; (2) 在△EFD的移动过程中,当点E在AD上时t= s;当E在AC上时, t= s; (3) 记△EFD与△AOB重叠部分面积为S,直接写出S与t的函数关系式及相应自变量t的取值范围; (4) 在移动过程中,连接MN,是否存在△AMN为直角三角形。若存在,求出t的值;若不存在,说明理由. 9 10
答案:一1-6BCCDAB7-12AACADC 二. 13. 3x 14. 323 15. 1 16. 16 17. x<4 18. 22 三.解答题 19.解:原式=2132336……….5分 =133……….7分 20.解:∵o90C,o45ADC ∴AC=DC ∵2AC ∴DC=2 ……….2分 ∵D是BC的中点
∴BD=DC=2 ∴BC=22 ……….4分 在Rt△ABC中,根据勾股定理
AB=102222222ACBC ……….6分 ∴△ABC的周长:AC+BC+AB=2+22+10=1023 ……….7分 四.解答题 21. 证明:(1)∵四边形ABCD是平行四边形 ∴BC=AD,BC∥AD ∴∠DAF=∠BCE ∵∠ADF= ∠CBE 在△AFD和△CEB中
B C
A D (20题图) 11
CBEADFBCADBCEDAF
∴AFDCEB△≌△(ASA) ……….5分 (2)∵AFDCEB△≌△ ∴DF=BE……….6分 ∴∠AFD=∠CBE ∴∠DFE=∠BEF ∴DF∥BE ∴四边形BFDE是平行四边形……….10分 (方法不唯一) 22.(1) 20 , B , 36 。……….6分
……….10分 23(1)1,21ba……….5分
(2)OCABSABC21